US20140260399A1 - Methods and systems for mini-split liquid desiccant air conditioning - Google Patents

Methods and systems for mini-split liquid desiccant air conditioning Download PDF

Info

Publication number
US20140260399A1
US20140260399A1 US14/212,097 US201414212097A US2014260399A1 US 20140260399 A1 US20140260399 A1 US 20140260399A1 US 201414212097 A US201414212097 A US 201414212097A US 2014260399 A1 US2014260399 A1 US 2014260399A1
Authority
US
United States
Prior art keywords
conditioner
liquid desiccant
regenerator
air stream
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/212,097
Other languages
English (en)
Inventor
Peter F. Vandermeulen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Copeland LP
Original Assignee
7AC Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 7AC Technologies Inc filed Critical 7AC Technologies Inc
Priority to US14/212,097 priority Critical patent/US20140260399A1/en
Publication of US20140260399A1 publication Critical patent/US20140260399A1/en
Assigned to 7AC TECHNOLOGIES, INC. reassignment 7AC TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VANDERMEULEN, PETER F.
Priority to US15/880,275 priority patent/US10619867B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/00077Indoor units, e.g. fan coil units receiving heat exchange fluid entering and leaving the unit as a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1417Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with liquid hygroscopic desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/1458Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification using regenerators

Definitions

  • the present application relates generally to the use of liquid desiccants to dehumidify and cool, or heat and humidify an air stream entering a space. More specifically, the application relates to the replacement of conventional mini-split air conditioning units with (membrane based) liquid desiccant air conditioning system to accomplish the same heating and cooling capabilities as those conventional mini-split air conditioners.
  • Desiccant dehumidification systems both liquid and solid desiccants—have been used parallel to conventional vapor compression HVAC equipment to help reduce humidity in spaces, particularly in spaces that require large amounts of outdoor air or that have large humidity loads inside the building space itself.
  • Humid climates such as for example Miami, Fla. require a lot of energy to properly treat (dehumidify and cool) the fresh air that is required for a space's occupant comfort.
  • Desiccant dehumidification systems both solid and liquid—have been used for many years and are generally quite efficient at removing moisture from the air stream.
  • liquid desiccant systems generally use concentrated salt solutions such as ionic solutions of LiCl, LiBr or CaCl 2 and water.
  • concentrated salt solutions such as ionic solutions of LiCl, LiBr or CaCl 2 and water.
  • Such brines are strongly corrosive, even in small quantities, so numerous attempts have been made over the years to prevent desiccant carry-over to the air stream that is to be treated.
  • efforts have begun to eliminate the risk of desiccant carry-over by employing micro-porous membranes to contain the desiccant.
  • membrane based liquid desiccant systems have been primarily applied to unitary rooftop units for commercial buildings.
  • Liquid desiccant systems generally have two separate functions.
  • the conditioning side of the system provides conditioning of air to the required conditions, which are typically set using thermostats or humidistats.
  • the regeneration side of the system provides a reconditioning function of the liquid desiccant so that it can be re-used on the conditioning side.
  • Liquid desiccant is typically pumped between the two sides, and a control system helps to ensure that the liquid desiccant is properly balanced between the two sides as conditions necessitate and that excess heat and moisture are properly dealt with without leading to over-concentrating or under-concentrating the desiccant.
  • a condenser is installed outside and high pressure refrigerant lines connect the two components. Furthermore a drain line for condensate is installed to remove moisture that is condensed on the evaporator coil to the outside.
  • a liquid desiccant system can significantly reduce electricity consumption and can be easier to install without the need for high pressure refrigerant lines that need to be installed on site.
  • Mini-split systems typically take 100% room air through the evaporator coil and fresh air only reaches the room through ventilation and infiltration from other sources. This often can result in high humidity and cool temperatures in the space since the evaporator coil is not very efficient for removing moisture. Rather, the evaporator coil is better suited for sensible cooling. On days where only a small amount of cooling is required the building can reach unacceptable levels of humidity since not enough natural heat is available to balance the large amount of sensible cooling.
  • the liquid desiccant flows down the face of a support plate as a falling film.
  • the desiccant is contained by a microporous membrane and the air stream is directed in a primarily vertical orientation over the surface of the membrane and whereby both latent and sensible heat are absorbed from the air stream into the liquid desiccant.
  • the support plate is filled with a heat transfer fluid that ideally is flowing in a direction counter to the air stream.
  • the system comprises a conditioner that removes latent and sensible heat through the liquid desiccant into the heat transfer fluid and a regenerator that rejects the latent and sensible heat from the heat transfer fluid to the environment.
  • the heat transfer fluid in the conditioner is cooled by a refrigerant compressor or an external source of cold heat transfer fluid.
  • the regenerator is heated by a refrigerant compressor or an external source of hot heat transfer fluid.
  • the refrigerant compressor is reversible to provide heated heat transfer fluid to the conditioner and cold heat transfer fluid to the regenerator and the conditioned air is heat and humidified and the regenerated air is cooled and dehumidified.
  • the conditioner is mounted against a wall in a space and the regenerator is mounted outside of the building.
  • the regenerator supplies liquid desiccant to the conditioner through a heat exchanger.
  • the heat exchanger comprises two desiccant lines that are bonded together to provide a thermal contact.
  • the conditioner receives 100% room air.
  • the regenerator receives 100% outside air.
  • the conditioner and evaporator are mounted behind a flat screen TV or flat screen monitor or some similar device.
  • a liquid desiccant membrane system employs an indirect evaporator to generate a cold heat transfer fluid wherein the cold heat transfer fluid is used to cool a liquid desiccant conditioner.
  • the indirect evaporator receives a portion of the air stream that was earlier treated by the conditioner.
  • the air stream between the conditioner and indirect evaporator is adjustable through some convenient means, e.g., through a set of adjustable louvers or through a fan with adjustable fan speed.
  • the water supplied to the indirect evaporator is potable water.
  • the water is seawater.
  • the water is waste water.
  • the indirect evaporator uses a membrane to prevent carry-over of non-desirable elements from the seawater or waste water.
  • the water in the indirect evaporator is not cycled back to the top of the indirect evaporator such as would happen in a cooling tower, but between 20% and 80% of the water is evaporated and the remainder is discarded.
  • the indirect evaporator is mounted directly behind or directly next to the conditioner.
  • the conditioner and evaporator are mounted behind a flat screen TV or flat screen monitor or some similar device.
  • the exhaust air from the indirect evaporator is exhausted out of the building space.
  • the liquid desiccant is pumped to a regenerator mounted outside the space through a heat exchanger.
  • the heat exchanger comprises two lines that are thermally bonded together to provide a heat exchange function.
  • the regenerator receives heat from a heat source.
  • the heat source is a solar heat source.
  • the heat source is a gas-fired water heater.
  • the heat source is a steam pipe.
  • the heat source is waste heat from an industrial process or some other convenient heat source.
  • the heat source can be switched to provide heat to the conditioner for winter heating operation.
  • the heat source also provides heat to the indirect evaporator.
  • the indirect evaporator can be directed to provide humid warm air to the space rather than exhausting the air to the outside.
  • the indirect evaporator is used to provide heated, humidified air to a supply air stream to a space while a conditioner is simultaneously used to provide heated, humidified air to the same space.
  • a conditioner is simultaneously used to provide heated, humidified air to the same space.
  • the conditioner is heated and is desorbing water vapor from a desiccant and the indirect evaporator can be heated as well and is desorbing water vapor from liquid water.
  • the indirect evaporator and conditioner provide heated humidified air to the building space for winter heating conditions.
  • FIG. 1 illustrates an exemplary 3-way liquid desiccant air conditioning system using a chiller or external heating or cooling sources.
  • FIG. 2 shows an exemplary flexibly configurable membrane module that incorporates 3-way liquid desiccant plates.
  • FIG. 3 illustrates an exemplary single membrane plate in the liquid desiccant membrane module of FIG. 2 .
  • FIG. 4 shows a schematic of a conventional mini-split air conditioning system.
  • FIG. 5A shows a schematic of an exemplary chiller assisted mini-split liquid desiccant air conditioning system in a summer cooling mode in accordance with one or more embodiments.
  • FIG. 5B shows a schematic of an exemplary chiller assisted mini-split liquid desiccant air conditioning system in a winter heating mode in accordance with one or more embodiments.
  • FIG. 6 shows an alternate embodiment of a mini-split liquid desiccant air conditioning system using an indirect evaporative cooler and an external heat source in accordance with one or more embodiments.
  • FIG. 7 shows the liquid desiccant mini-split system of FIG. 6 configured for operation in a winter heating mode in accordance with one or more embodiments.
  • FIG. 8 is a perspective view of an exemplary liquid desiccant mini-split system similar to FIG. 5A .
  • FIG. 9A illustrates a cut-away rear-view of the system of FIG. 8 .
  • FIG. 9B illustrates a cut-away front-view of the system of FIG. 8 .
  • FIG. 10 shows a three dimensional view of a liquid desiccant mini-split system of FIG. 6 in accordance with one or more embodiments.
  • FIG. 11 shows a cut-away view of the system of FIG. 10 in accordance with one or more embodiments.
  • FIG. 12 illustrates an exemplary liquid desiccant supply and return structure comprising two bonded plastic tubes creating a heat exchange effect in accordance with one or more embodiments.
  • FIG. 1 depicts a new type of liquid desiccant system as described in more detail in U.S. Patent Application Publication No. US 20120125020, which is incorporated by reference herein.
  • a conditioner 101 comprises a set of plate structures that are internally hollow.
  • a cold heat transfer fluid is generated in cold source 107 and entered into the plates.
  • Liquid desiccant solution at 114 is brought onto the outer surface of the plates and runs down the outer surface of each of the plates.
  • the liquid desiccant runs behind a thin membrane that is located between the air flow and the surface of the plates.
  • Outside air 103 is now blown through the set of wavy plates.
  • the liquid desiccant on the surface of the plates attracts the water vapor in the air flow and the cooling water inside the plates helps to inhibit the air temperature from rising.
  • the treated air 104 is put into a building space.
  • the liquid desiccant is collected at the bottom of the wavy plates at 111 and is transported through a heat exchanger 113 to the top of the regenerator 102 to point 115 where the liquid desiccant is distributed across the wavy plates of the regenerator.
  • Return air or optionally outside air 105 is blown across the regenerator plate and water vapor is transported from the liquid desiccant into the leaving air stream 106 .
  • An optional heat source 108 provides the driving force for the regeneration.
  • the hot transfer fluid 110 from the heat source can be put inside the wavy plates of the regenerator similar to the cold heat transfer fluid on the conditioner.
  • the liquid desiccant is collected at the bottom of the wavy plates 102 without the need for either a collection pan or bath so that also on the regenerator the air flow can be horizontal or vertical.
  • An optional heat pump 116 can be used to provide cooling and heating of the liquid desiccant. It is also possible to connect a heat pump between the cold source 107 and the hot source 108 , which is thus pumping heat from the cooling fluids rather than the desiccant.
  • FIG. 2 describes a 3-way heat exchanger as described in further detail in U.S. patent application Ser. No. 13/915,199 filed on Jun. 11, 2013, Ser. No. 13/915,222 filed on Jun. 11, 2013, and Ser. No. 13/915,262 filed on Jun. 11, 2013, which are all incorporated by reference herein.
  • a liquid desiccant enters the structure through ports 304 and is directed behind a series of membranes as described in FIG. 1 .
  • the liquid desiccant is collected and removed through ports 305 .
  • a cooling or heating fluid is provided through ports 306 and runs counter to the air stream 301 inside the hollow plate structures, again as described in FIG. 1 and in more detail in FIG. 3 .
  • the cooling or heating fluids exit through ports 307 .
  • the treated air 302 is directed to a space in a building or is exhausted as the case may be.
  • FIG. 3 describes a 3-way heat exchanger as described in more detail in U.S. Provisional Patent Application Ser. No. 61/771,340 filed on Mar. 1, 2013, which is incorporated by reference herein.
  • the air stream 251 flows counter to a cooling fluid stream 254 .
  • Membranes 252 contain a liquid desiccant 253 that is falling along the wall 255 that contain a heat transfer fluid 254 .
  • Water vapor 256 entrained in the air stream is able to transition the membrane 252 and is absorbed into the liquid desiccant 253 .
  • the heat of condensation of water 258 that is released during the absorption is conducted through the wall 255 into the heat transfer fluid 254 .
  • Sensible heat 257 from the air stream is also conducted through the membrane 252 , liquid desiccant 253 and wall 255 into the heat transfer fluid 254 .
  • FIG. 4 illustrates a schematic diagram of a conventional mini-split air conditioning system as is frequently installed on buildings.
  • the unit comprises a set of indoor components that generate cool, dehumidified air and a set of outdoor components that release heat to the environment.
  • the indoor components comprise a cooling (evaporator) coil 401 through which a fan 407 blows air 408 from the room.
  • the cooling coil cools the air and condenses water vapor on the coil which is collected in drain pan 418 and ducted to the outside 419 .
  • the resulting cooler, drier air 409 is circulated into the space and provides occupant comfort.
  • the cooling coil 401 receives liquid refrigerant at pressures of typically 50-200 psi through line 412 , which has already been expanded to a low temperature and pressure by expansion valve 406 .
  • the pressure of the refrigerant in line 412 is typically 300-600 psi.
  • the cold liquid refrigerant 410 enters the cooling coil 401 where it picks up heat from the air stream 408 .
  • the heat from the air stream evaporates the liquid refrigerant in the coil and the resulting gas is transported through line 404 to the outdoor components and more specifically to the compressor 402 where it is re-compressed to a high pressure of typically 300-600 psi.
  • the system can have multiple cooling coils 410 , fans 407 and expansion valves 406 , for example a cooling coil assembly could be located in various rooms that need to be cooled.
  • the outdoor components comprise a condenser coil 403 and a condenser fan 417 .
  • the fan 417 blows outside air 415 through the condenser coil 403 where it picks up heat from the compressor 402 which is rejected by air stream 416 .
  • the compressor 402 creates hot compressed refrigerant in line 411 .
  • the heat of compression is rejected in the condenser coil 403 .
  • the system can have multiple compressors or multiple condenser coils and fans.
  • the primary electrical energy consuming components are the compressor through electrical line 413 , the condenser fan electrical motor through supply line 414 and the evaporator fan motor through line 405 .
  • the compressor uses close to 80% of the electricity required to operate the system, with the condenser and evaporator fans taking about 10% of the electricity each.
  • FIG. 5A illustrates a schematic representation of a liquid desiccant air conditioner system.
  • a 3-way conditioner 503 (which is similar to the conditioner 101 of FIG. 1 ) receives an air stream 501 from a room (“RA”). Fan 502 moves the air 501 through the conditioner 503 wherein the air is cooled and dehumidified. The resulting cool, dry air 504 (“SA”) is supplied to the room for occupant comfort.
  • the 3-way conditioner 503 receives a concentrated desiccant 527 in the manner explained under FIGS. 1-3 . It is preferable to use a membrane on the 3-way conditioner 503 to ensure that the desiccant is generally fully contained and is unable to get distributed into the air stream 504 .
  • the diluted desiccant 528 which contains the captured water vapor is transported to the outside regenerator 522 . Furthermore the chilled water 509 is provided by pump 508 , enters the conditioner module 503 where it picks up heat from the air as well as latent heat released by the capture of water vapor in the desiccant 527 .
  • the warmer water 506 is also brought outside to the heat exchanger 507 on the chiller system 530 . It is worth noting that unlike the mini-split system of FIG. 4 , which has high pressure between 50 and 600 psi, the lines between the indoor and outdoor system of FIG. 5A are all low pressure water and liquid desiccant lines. This allows the lines to be inexpensive plastics rather than refrigerant lines in FIG.
  • FIG. 5A which are typically copper and need to be braised in order to withstand the high refrigerant pressures. It is also worth noting that the system of FIG. 5A does not require a condensate drain line like line 419 in FIG. 4 . Rather, any moisture that is condensed into the desiccant is removed as part of the desiccant itself. This also eliminates problems with mold growth in standing water that can occur in the conventional mini-split systems of FIG. 4 .
  • the liquid desiccant 528 leaves the conditioner 503 and is moved through the optional heat exchanger 526 to the regenerator 522 by pump 525 . If the desiccant lines 527 and 528 are relatively long they can be thermally connected to each other, which eliminates the need for heat exchanger 526 .
  • the chiller system 530 comprises a water to refrigerant evaporator heat exchanger 507 which cools the circulating cooling fluid 506 .
  • the liquid, cold refrigerant 517 evaporates in the heat exchanger 507 thereby absorbing the thermal energy from the cooling fluid 506 .
  • the gaseous refrigerant 510 is now re-compressed by compressor 511 .
  • the compressor 511 ejects hot refrigerant gas 513 , which is liquefied in the condenser heat exchanger 515 .
  • the liquid refrigerant 514 then enters expansion valve 516 , where it rapidly cools and exits at a lower pressure.
  • the chiller system 530 can be made very compact since the high pressure lines with refrigerant ( 510 , 513 , 514 and 517 ) only have to run very short distances. Furthermore, since the entire refrigerant system is located outside of the space that is to be conditioned, it is possible to utilize refrigerants that normally cannot be used in indoor environments such as by way of example, CO 2 , Ammonia and Propane. These refrigerants are sometimes preferable over the commonly used R410A, R407A, R134A or R1234YF refrigerants, but they are undesirable indoor because of flammability or suffocation or inhaling risks. By keeping all of the refrigerants outside, these risks are essentially eliminated.
  • the condenser heat exchanger 515 now releases heat to another cooling fluid loop 519 which brings hot heat transfer fluid 518 to the regenerator 522 .
  • Circulating pump 520 brings the heat transfer fluid back to the condenser 515 .
  • the 3-way regenerator 522 thus receives a dilute liquid desiccant 528 and hot heat transfer fluid 518 .
  • a fan 524 brings outside air 523 (“OA”) through the regenerator 522 .
  • the outside air picks up heat and moisture from the heat transfer fluid 518 and desiccant 528 which results in hot humid exhaust air (“EA”) 521 .
  • the compressor 511 receives electrical power 512 and typically accounts for 80% of electrical power consumption of the system.
  • the fan 502 and fan 524 also receive electrical power 505 and 529 respectively and account for most of the remaining power consumption.
  • Pumps 508 , 520 and 525 have relatively low power consumption.
  • the compressor 511 will operate more efficiently than the compressor 402 in FIG. 4 for several reasons: the evaporator 507 in FIG. 5A will typically operate at higher temperature than the evaporator 401 in FIG. 4 because the liquid desiccant will condense water at much higher temperature without needing to reach saturation levels in the air stream. Furthermore the condenser 515 in FIG. 5A will operate at lower temperatures than the condenser 403 in FIG. 4 because of the evaporation occurring on the regenerator 522 which effectively keeps the condenser 515 cooler. As a result the system of FIG. 5A will use less electricity than the system of FIG. 4 for similar compressor isoentropic efficiencies.
  • FIG. 5B shows essentially the same system as FIG. 5A except that the compressor 511 's refrigerant direction has been reversed as indicated by the arrows on refrigerant lines 514 and 510 .
  • Reversing the direction of refrigerant flow can be achieved by a 4-way reversing valve (not shown) or other convenient means.
  • the desiccant 525 usually has much lower crystallization limit than water vapor.
  • the air stream 523 contains water vapor and if the condenser coil 403 gets too cold, this moisture will condense on the surfaces and create ice formation on those surfaces.
  • the same moisture in the regenerator of FIG. 5B will condense in the liquid desiccant which—when managed properly will not crystallize until ⁇ 60° C. for some desiccants such as LiCl and water.
  • FIG. 6 illustrates an alternate embodiment of a mini-split liquid desiccant system.
  • a 3-way liquid desiccant conditioner 503 receives an air stream 501 (“RA”) moved by fan 502 through the conditioner 503 .
  • RA air stream 501
  • SA supply air stream 504
  • Air stream 601 is usually between 0 and 40% of the flow of air stream 504 .
  • the dry air stream 601 is now directed through the 3-way indirect evaporative cooling module 602 which is constructed similarly to the 3-way conditioner module 503 , except that instead of using a desiccant behind a membrane, the module now has a water film behind such membrane supplied by water source 607 .
  • This water film can be potable water, non-potable water, seawater or waste water or any other convenient water containing substance that is mostly water.
  • the water film evaporates in the dry air stream 601 creating a cooling effect in the heat transfer fluid 604 which is then circulated to the conditioner module as cold heat transfer fluid 605 by pump 603 .
  • the cold water 605 then cools the conditioner module 503 , which in turn creates cooler drier air 504 , which then results in an even stronger cooling effect in the indirect evaporative module 602 .
  • the supply air 504 will ultimately be both dry and cold and is supplied to the space for occupant comfort.
  • Conditioner module 503 also receives a concentrated liquid desiccant 527 that absorbs moisture from the air stream 501 . Dilute liquid desiccant 528 is then returned to the regenerator 522 similar to FIG. 5A . It is of course possible to locate the indirect evaporative cooler 602 outside of the space rather than inside, but for thermal reasons it is probably better to mount the indirect evaporator 602 in close proximity to the conditioner 503 .
  • the indirect evaporative cooling module 602 does not evaporate all of the water (typically 50 to 80%) and thus a drain 608 is employed.
  • the exhaust air stream 606 (“EA 1 ”) from the module evaporative cooling module 602 is brought to the outside since it is warm and very humid.
  • the concentrated liquid desiccant 527 and dilute liquid desiccant 528 pass through a heat exchanger 526 by pump 525 .
  • the 3-way regenerator 522 as before receives an outdoor air stream 523 through fan 524 .
  • a hot heat transfer fluid 518 is applied to the 3-way regenerator module 522 by pump 520 .
  • there is no heat from a compressor to use in the regenerator 522 so an external heat source 609 needs to be provided.
  • This heat source can be a gas water heater, a solar module, a solar thermal/PV hybrid module (a PVT module), it can be heat from a steam loop or other convenient source of heat or hot water.
  • a supplemental heat dump 614 can be employed which can temporarily absorb heat from the heat source 609 .
  • An additional fan 613 and air stream 612 are then necessary as well.
  • the heat source 609 ensures that the excess water is evaporated from the desiccant 528 so that it can be re-used on the conditioner 503 .
  • the exhaust stream 521 (“EA 2 ”) comprises hot, humid air.
  • FIG. 7 illustrates the system of FIG. 6 reconfigured slightly to allow for operation in winter heating mode.
  • the heat source 609 now provides hot heat transfer fluid to the conditioner module 503 through lines 701 .
  • the supply air to the space 504 will be warm and humid.
  • This increases the available heating and humidification capacity of the system since both the conditioner 503 and the indirect evaporative “cooler” 602 (or “heater” may be a better moniker) are operating to provide the same hot humid air and this can be handy since heating capacity in winter typically needs to be larger than cooling capacity in summer.
  • FIG. 8 shows an embodiment of the system of FIG. 5A .
  • the air intake 801 allows for air from space 805 to enter the conditioner unit 503 (not shown).
  • the air supply exits from roster 803 into the space.
  • a flat screen television 802 or painting, or monitor or any other suitable device can be used to visually hide the conditioner 503 .
  • An external wall 804 would be a logical place to mount the conditioner system.
  • a regenerator and chiller system 807 can be mounted in a convenient outside location 806 .
  • Desiccant supply and return lines 809 and cold heat transfer fluid supply and return lines 808 connect the two sides of the system.
  • FIG. 9A shows a cut-away view of the rear side of the system in FIG. 8 .
  • the regenerator module 522 receives liquid desiccant from lines 809 .
  • a compressor 511 an expansion valve 516 and two refrigerant to liquid heat exchangers 507 and 515 are also shown. Other components have not been shown for convenience.
  • FIG. 9B shows a cut-away view of the front side of the system in FIG. 8 .
  • the flat screen TV 802 has been omitted to allow a view of the conditioner module 503 .
  • FIG. 10 shows an aspect of an embodiment of the system of FIG. 6 .
  • the system has an air intake 801 and a supply roster 803 similar to the system of FIG. 8 .
  • a TV 802 or something similar can be used to cover the conditioner module 503 .
  • the unit can be mounted to wall 804 and provide conditioning of the space 805 .
  • the system also has an exhaust 606 that penetrates the wall 804 .
  • the regenerator module 902 provides concentrated liquid desiccant to the conditioner section (not shown) through desiccant supply and return lines 809 .
  • a water supply line 901 is also shown.
  • a source of hot heat transfer fluid can be the solar PVT module 903 which provides hot water through line 905 which after being cooled through the regenerator returns heat transfer fluid to the PVT module 903 through line 904 .
  • An integrated hot water storage tank 906 can provide both a hot water buffer as well as a ballast for the PVT module 903 .
  • FIG. 11 shows a cut-away view of the system of FIG. 10 .
  • the conditioner module 503 can be clearly seen as can the indirect evaporator module 602 .
  • Inside the regenerator module 902 one can see the regenerator module 522 as well as the optional heat dump 614 and fan 612 .
  • FIG. 12 illustrates a structure 809 for the supply and return of the liquid desiccant to the indoor conditioning unit.
  • the structure comprises a polymer material such as for example an extruded High Density Polypropylene or High Density Polyethylene material the comprises two passages 1201 and 1202 for the supply and return of desiccant respectively.
  • the wall 1203 between the two passages could be manufactured from a thermally conductive polymer, but in many cases that may not be necessary because the length of the structure 809 is by itself sufficient to provide adequate heat exchange capacity between the supply and return liquids.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Humidification (AREA)
US14/212,097 2013-03-14 2014-03-14 Methods and systems for mini-split liquid desiccant air conditioning Abandoned US20140260399A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/212,097 US20140260399A1 (en) 2013-03-14 2014-03-14 Methods and systems for mini-split liquid desiccant air conditioning
US15/880,275 US10619867B2 (en) 2013-03-14 2018-01-25 Methods and systems for mini-split liquid desiccant air conditioning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361783176P 2013-03-14 2013-03-14
US14/212,097 US20140260399A1 (en) 2013-03-14 2014-03-14 Methods and systems for mini-split liquid desiccant air conditioning

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/880,275 Division US10619867B2 (en) 2013-03-14 2018-01-25 Methods and systems for mini-split liquid desiccant air conditioning

Publications (1)

Publication Number Publication Date
US20140260399A1 true US20140260399A1 (en) 2014-09-18

Family

ID=51521130

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/212,097 Abandoned US20140260399A1 (en) 2013-03-14 2014-03-14 Methods and systems for mini-split liquid desiccant air conditioning
US15/880,275 Active 2034-07-10 US10619867B2 (en) 2013-03-14 2018-01-25 Methods and systems for mini-split liquid desiccant air conditioning

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/880,275 Active 2034-07-10 US10619867B2 (en) 2013-03-14 2018-01-25 Methods and systems for mini-split liquid desiccant air conditioning

Country Status (8)

Country Link
US (2) US20140260399A1 (de)
EP (2) EP2972009B1 (de)
JP (2) JP6568516B2 (de)
KR (2) KR102099693B1 (de)
CN (1) CN105121979B (de)
ES (1) ES2761585T3 (de)
SA (1) SA515361072B1 (de)
WO (1) WO2014152905A1 (de)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9308490B2 (en) 2012-06-11 2016-04-12 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
WO2016081933A1 (en) * 2014-11-21 2016-05-26 7Ac Technologies, Inc. Methods and systems for mini-split liquid desiccant air conditioning
WO2016100084A1 (en) * 2014-12-15 2016-06-23 3M Innovative Properties Company Heat and mass transfer devices with wettable layers for forming falling films
US9429332B2 (en) 2010-05-25 2016-08-30 7Ac Technologies, Inc. Desiccant air conditioning methods and systems using evaporative chiller
CN106016858A (zh) * 2016-05-12 2016-10-12 上海交通大学 空气调节装置
US9470426B2 (en) 2013-06-12 2016-10-18 7Ac Technologies, Inc. In-ceiling liquid desiccant air conditioning system
US9506697B2 (en) 2012-12-04 2016-11-29 7Ac Technologies, Inc. Methods and systems for cooling buildings with large heat loads using desiccant chillers
US9631848B2 (en) 2013-03-01 2017-04-25 7Ac Technologies, Inc. Desiccant air conditioning systems with conditioner and regenerator heat transfer fluid loops
CN106642308A (zh) * 2015-11-03 2017-05-10 青岛海尔空调电子有限公司 一种温湿度独立控制的超薄型空调室内机
CN106642442A (zh) * 2015-11-03 2017-05-10 青岛海尔空调电子有限公司 一种湿度可调的新风空调系统
CN106642421A (zh) * 2015-11-03 2017-05-10 青岛海尔空调电子有限公司 新型一拖多空调除湿系统
US9709285B2 (en) 2013-03-14 2017-07-18 7Ac Technologies, Inc. Methods and systems for liquid desiccant air conditioning system retrofit
US9810439B2 (en) 2011-09-02 2017-11-07 Nortek Air Solutions Canada, Inc. Energy exchange system for conditioning air in an enclosed structure
US9816760B2 (en) 2012-08-24 2017-11-14 Nortek Air Solutions Canada, Inc. Liquid panel assembly
US9909768B2 (en) 2013-03-13 2018-03-06 Nortek Air Solutions Canada, Inc. Variable desiccant control energy exchange system and method
US9920960B2 (en) 2011-01-19 2018-03-20 Nortek Air Solutions Canada, Inc. Heat pump system having a pre-processing module
WO2019089980A1 (en) * 2017-11-01 2019-05-09 7Ac Technologies, Inc. Methods and systems for liquid desiccant air conditioning
US10302317B2 (en) 2010-06-24 2019-05-28 Nortek Air Solutions Canada, Inc. Liquid-to-air membrane energy exchanger
US10323867B2 (en) 2014-03-20 2019-06-18 7Ac Technologies, Inc. Rooftop liquid desiccant systems and methods
US10352574B2 (en) 2014-12-15 2019-07-16 3M Innovative Properties Company Heat and mass transfer devices with wettable layers for forming falling films
US10352628B2 (en) 2013-03-14 2019-07-16 Nortek Air Solutions Canada, Inc. Membrane-integrated energy exchange assembly
US10584884B2 (en) 2013-03-15 2020-03-10 Nortek Air Solutions Canada, Inc. Control system and method for a liquid desiccant air delivery system
US10619867B2 (en) 2013-03-14 2020-04-14 7Ac Technologies, Inc. Methods and systems for mini-split liquid desiccant air conditioning
US10634392B2 (en) 2013-03-13 2020-04-28 Nortek Air Solutions Canada, Inc. Heat pump defrosting system and method
US10712024B2 (en) 2014-08-19 2020-07-14 Nortek Air Solutions Canada, Inc. Liquid to air membrane energy exchangers
US10782045B2 (en) 2015-05-15 2020-09-22 Nortek Air Solutions Canada, Inc. Systems and methods for managing conditions in enclosed space
US10808951B2 (en) 2015-05-15 2020-10-20 Nortek Air Solutions Canada, Inc. Systems and methods for providing cooling to a heat load
US10921001B2 (en) 2017-11-01 2021-02-16 7Ac Technologies, Inc. Methods and apparatus for uniform distribution of liquid desiccant in membrane modules in liquid desiccant air-conditioning systems
US10941948B2 (en) * 2017-11-01 2021-03-09 7Ac Technologies, Inc. Tank system for liquid desiccant air conditioning system
US10962252B2 (en) 2015-06-26 2021-03-30 Nortek Air Solutions Canada, Inc. Three-fluid liquid to air membrane energy exchanger
CN112639364A (zh) * 2018-07-31 2021-04-09 阿卜杜拉国王科技大学 液体干燥剂冷却系统和方法
US11022330B2 (en) 2018-05-18 2021-06-01 Emerson Climate Technologies, Inc. Three-way heat exchangers for liquid desiccant air-conditioning systems and methods of manufacture
US11092349B2 (en) 2015-05-15 2021-08-17 Nortek Air Solutions Canada, Inc. Systems and methods for providing cooling to a heat load
US11267675B2 (en) * 2019-10-04 2022-03-08 Otis Elevator Company Cooling system for elevator with electronic visual displays
CN114440356A (zh) * 2022-02-28 2022-05-06 上海电机学院 一种风能辅助制冷及加热的间接式海水源热泵空调系统
US11408681B2 (en) 2013-03-15 2022-08-09 Nortek Air Solations Canada, Iac. Evaporative cooling system with liquid-to-air membrane energy exchanger
WO2022235225A1 (en) * 2021-05-05 2022-11-10 Enerama Çevre Teknoloji̇leri̇ Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ The usage of the waste heat in liquid desiccant dehumidification system
US11892193B2 (en) 2017-04-18 2024-02-06 Nortek Air Solutions Canada, Inc. Desiccant enhanced evaporative cooling systems and methods

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106642420A (zh) * 2015-11-03 2017-05-10 青岛海尔空调电子有限公司 新型空调除湿系统
CN106839494B (zh) * 2016-12-26 2019-04-19 南京航空航天大学 热泵双热质耦合加湿脱湿蒸发系统及方法
CN108954527A (zh) * 2018-08-16 2018-12-07 中山路得斯空调有限公司 一种用于小型分体式液体除湿空调的系统及其使用方法
US11333412B2 (en) 2019-03-07 2022-05-17 Emerson Climate Technologies, Inc. Climate-control system with absorption chiller
CN114126734B (zh) * 2019-06-10 2024-03-29 可持续能源联合有限责任公司 集成的基于干燥剂的冷却和除湿
CN112032865B (zh) * 2020-07-30 2021-12-24 东南大学 基于高压静电场极化效应的降膜式液体调湿器及方法
DE102021114840A1 (de) 2021-06-09 2022-12-15 Rheinmetall Invent GmbH Heiz- und kühlmodul und verfahren
GB2594617B (en) * 2021-06-18 2022-04-13 Gulf Organisation For Res And Development Air treatment system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4984434A (en) * 1989-09-12 1991-01-15 Peterson John L Hybrid vapor-compression/liquid desiccant air conditioner
US5005371A (en) * 1989-09-04 1991-04-09 Nishiyodo Air Conditioner Co., Ltd. Adsorption thermal storage apparatus and adsorption thermal storage system including the same
US5182921A (en) * 1992-04-10 1993-02-02 Industrial Technology Research Institute Solar dehumidifier
US20030000230A1 (en) * 1999-06-25 2003-01-02 Kopko William L. High-efficiency air handler
US20090238685A1 (en) * 2006-05-08 2009-09-24 Roland Santa Ana Disguised air displacement device
US20100319370A1 (en) * 2008-01-25 2010-12-23 Alliance For Sustainable Energy, Llc Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification
US20110101117A1 (en) * 2008-05-22 2011-05-05 Dyna-Air Co., Ltd. Humidity control device
US20150338140A1 (en) * 2014-03-20 2015-11-26 7Ac Technologies, Inc. Rooftop liquid desiccant systems and methods

Family Cites Families (276)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1791086A (en) 1926-10-11 1931-02-03 Koppers Co Inc Process for dehydrating gas
US2221787A (en) 1936-08-31 1940-11-19 Calorider Corp Method and apparatus for conditioning air and other gases
US2235322A (en) 1940-01-29 1941-03-18 J F Pritchard & Company Air drying
US2433741A (en) 1943-02-13 1947-12-30 Robert B P Crawford Chemical dehumidifying method and means
US2634958A (en) 1948-12-03 1953-04-14 Modine Mfg Co Heat exchanger
US2660159A (en) 1950-06-30 1953-11-24 Surface Combustion Corp Unit heater with draft hood
US2708915A (en) 1952-11-13 1955-05-24 Manville Boiler Co Inc Crossed duct vertical boiler construction
US2939686A (en) 1955-02-04 1960-06-07 Cherry Burrell Corp Double port heat exchanger plate
US2988171A (en) 1959-01-29 1961-06-13 Dow Chemical Co Salt-alkylene glycol dew point depressant
US3119446A (en) 1959-09-17 1964-01-28 American Thermocatalytic Corp Heat exchangers
GB990459A (en) 1960-06-24 1965-04-28 Arnot Alfred E R Improvements in or relating to water dispensers
US3193001A (en) 1963-02-05 1965-07-06 Lithonia Lighting Inc Comfort conditioning system
US3409969A (en) 1965-06-28 1968-11-12 Westinghouse Electric Corp Method of explosively welding tubes to tube plates
GB1172247A (en) 1966-04-20 1969-11-26 Apv Co Ltd Improvements in or relating to Plate Heat Exchangers
US3410581A (en) 1967-01-26 1968-11-12 Young Radiator Co Shell-and-tube type heat-exchanger
US3455338A (en) 1967-06-19 1969-07-15 Walter M Pollit Composite pipe composition
US3718181A (en) 1970-08-17 1973-02-27 Du Pont Plastic heat exchange apparatus
US4100331A (en) 1977-02-03 1978-07-11 Nasa Dual membrane, hollow fiber fuel cell and method of operating same
FR2405081A1 (fr) 1977-10-06 1979-05-04 Commissariat Energie Atomique Procede de separation de gaz dans un melange
US4164125A (en) 1977-10-17 1979-08-14 Midland-Ross Corporation Solar energy assisted air-conditioning apparatus and method
US4176523A (en) 1978-02-17 1979-12-04 The Garrett Corporation Adsorption air conditioner
US4209368A (en) 1978-08-07 1980-06-24 General Electric Company Production of halogens by electrolysis of alkali metal halides in a cell having catalytic electrodes bonded to the surface of a porous membrane/separator
US4222244A (en) 1978-11-07 1980-09-16 Gershon Meckler Associates, P.C. Air conditioning apparatus utilizing solar energy and method
US4205529A (en) 1978-12-04 1980-06-03 The United States Of America As Represented By The United States Department Of Energy LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery
US4259849A (en) 1979-02-15 1981-04-07 Midland-Ross Corporation Chemical dehumidification system which utilizes a refrigeration unit for supplying energy to the system
US4324947A (en) 1979-05-16 1982-04-13 Dumbeck Robert F Solar energy collector system
US4435339A (en) 1979-08-06 1984-03-06 Tower Systems, Inc. Falling film heat exchanger
US4235221A (en) 1979-08-23 1980-11-25 Murphy Gerald G Solar energy system and apparatus
US4882907A (en) 1980-02-14 1989-11-28 Brown Ii William G Solar power generation
US4444992A (en) 1980-11-12 1984-04-24 Massachusetts Institute Of Technology Photovoltaic-thermal collectors
US4429545A (en) 1981-08-03 1984-02-07 Ocean & Atmospheric Science, Inc. Solar heating system
US4399862A (en) 1981-08-17 1983-08-23 Carrier Corporation Method and apparatus for proven demand air conditioning control
US4730600A (en) 1981-12-16 1988-03-15 The Coleman Company, Inc. Condensing furnace
US4612019A (en) 1982-07-22 1986-09-16 The Dow Chemical Company Method and device for separating water vapor from air
JPS6099328A (ja) 1983-11-04 1985-06-03 Toyota Central Res & Dev Lab Inc 凝縮性ガス分離装置
US5181387A (en) 1985-04-03 1993-01-26 Gershon Meckler Air conditioning apparatus
US4786301A (en) 1985-07-01 1988-11-22 Rhodes Barry V Desiccant air conditioning system
US4649899A (en) 1985-07-24 1987-03-17 Moore Roy A Solar tracker
US4607132A (en) 1985-08-13 1986-08-19 Jarnagin William S Integrated PV-thermal panel and process for production
US4766952A (en) 1985-11-15 1988-08-30 The Furukawa Electric Co., Ltd. Waste heat recovery apparatus
US4660390A (en) 1986-03-25 1987-04-28 Worthington Mark N Air conditioner with three stages of indirect regeneration
JPS62297647A (ja) 1986-06-18 1987-12-24 Ohbayashigumi Ltd 建築物の除湿システム
US4987750A (en) 1986-07-08 1991-01-29 Gershon Meckler Air conditioning apparatus
US4832115A (en) 1986-07-09 1989-05-23 Albers Technologies Corporation Method and apparatus for simultaneous heat and mass transfer
US4744414A (en) 1986-09-02 1988-05-17 Arco Chemical Company Plastic film plate-type heat exchanger
US4691530A (en) 1986-09-05 1987-09-08 Milton Meckler Cogeneration and central regeneration multi-contactor air conditioning system
DE3789622T2 (de) 1986-10-22 1994-07-21 Alfa Laval Thermal Ab Plattenwärmeaustauscher mit doppelwandstruktur.
US4703629A (en) 1986-12-15 1987-11-03 Moore Roy A Solar cooling apparatus
US4910971A (en) 1988-02-05 1990-03-27 Hydro Thermal Engineering Pty. Ltd. Indirect air conditioning system
US4900448A (en) 1988-03-29 1990-02-13 Honeywell Inc. Membrane dehumidification
US5605628A (en) 1988-05-24 1997-02-25 North West Water Group Plc Composite membranes
US4872578A (en) 1988-06-20 1989-10-10 Itt Standard Of Itt Corporation Plate type heat exchanger
SE464853B (sv) 1988-08-01 1991-06-24 Ahlstroem Foeretagen Foerfarande foer avfuktning av en gas, speciellt luft
US4971142A (en) 1989-01-03 1990-11-20 The Air Preheater Company, Inc. Heat exchanger and heat pipe therefor
US4955205A (en) * 1989-01-27 1990-09-11 Gas Research Institute Method of conditioning building air
US4887438A (en) 1989-02-27 1989-12-19 Milton Meckler Desiccant assisted air conditioner
US4966007A (en) 1989-05-12 1990-10-30 Baltimore Aircoil Company, Inc. Absorption refrigeration method and apparatus
US4939906A (en) 1989-06-09 1990-07-10 Gas Research Institute Multi-stage boiler/regenerator for liquid desiccant dehumidifiers
US4941324A (en) 1989-09-12 1990-07-17 Peterson John L Hybrid vapor-compression/liquid desiccant air conditioner
JPH0759996B2 (ja) * 1989-10-09 1995-06-28 ダイキン工業株式会社 湿度調節機
JPH03213921A (ja) * 1990-01-18 1991-09-19 Mitsubishi Electric Corp 表示画面付空気調和装置
JPH04273555A (ja) 1991-02-28 1992-09-29 Nec Corp コミットメント方式
US5191771A (en) 1991-07-05 1993-03-09 Milton Meckler Polymer desiccant and system for dehumidified air conditioning
US5471852A (en) 1991-07-05 1995-12-05 Meckler; Milton Polymer enhanced glycol desiccant heat-pipe air dehumidifier preconditioning system
US5221520A (en) 1991-09-27 1993-06-22 North Carolina Center For Scientific Research, Inc. Apparatus for treating indoor air
US5186903A (en) 1991-09-27 1993-02-16 North Carolina Center For Scientific Research, Inc. Apparatus for treating indoor air
JPH0674522A (ja) 1992-06-26 1994-03-15 Sanyo Electric Co Ltd 空気調和機の制御方法
US5582026A (en) 1992-07-07 1996-12-10 Barto, Sr.; Stephen W. Air conditioning system
US5351497A (en) 1992-12-17 1994-10-04 Gas Research Institute Low-flow internally-cooled liquid-desiccant absorber
US5448895A (en) 1993-01-08 1995-09-12 Engelhard/Icc Hybrid heat pump and desiccant space conditioning system and control method
US5361828A (en) 1993-02-17 1994-11-08 General Electric Company Scaled heat transfer surface with protruding ramp surface turbulators
US5534186A (en) 1993-12-15 1996-07-09 Gel Sciences, Inc. Gel-based vapor extractor and methods
GB9405249D0 (en) 1994-03-17 1994-04-27 Smithkline Beecham Plc Container
DE4409848A1 (de) 1994-03-22 1995-10-19 Siemens Ag Vorrichtung zur Zumessung und Zerstäubung von Fluiden
US5528905A (en) 1994-03-25 1996-06-25 Essex Invention S.A. Contactor, particularly a vapour exchanger for the control of the air hygrometric content, and a device for air handling
AUPM592694A0 (en) 1994-05-30 1994-06-23 F F Seeley Nominees Pty Ltd Vacuum dewatering of desiccant brines
US5462113A (en) 1994-06-20 1995-10-31 Flatplate, Inc. Three-circuit stacked plate heat exchanger
CA2127525A1 (en) * 1994-07-06 1996-01-07 Leofred Caron Portable air cooler
JPH08105669A (ja) 1994-10-04 1996-04-23 Tokyo Gas Co Ltd 吸収冷凍機用再生器
US5638900A (en) 1995-01-27 1997-06-17 Ail Research, Inc. Heat exchange assembly
US5685152A (en) 1995-04-19 1997-11-11 Sterling; Jeffrey S. Apparatus and method for converting thermal energy to mechanical energy
US6018954A (en) 1995-04-20 2000-02-01 Assaf; Gad Heat pump system and method for air-conditioning
US5661983A (en) 1995-06-02 1997-09-02 Energy International, Inc. Fluidized bed desiccant cooling system
AU712976B2 (en) 1995-09-06 1999-11-18 Universal Air Technology, Inc. Photocatalytic air disinfection
US5901783A (en) 1995-10-12 1999-05-11 Croyogen, Inc. Cryogenic heat exchanger
US6004691A (en) 1995-10-30 1999-12-21 Eshraghi; Ray R. Fibrous battery cells
NL1001834C2 (nl) 1995-12-06 1997-06-10 Indupal B V Doorstroom-warmtewisselaar, inrichting die deze omvat en indamp- inrichting.
US5641337A (en) 1995-12-08 1997-06-24 Permea, Inc. Process for the dehydration of a gas
US5595690A (en) 1995-12-11 1997-01-21 Hamilton Standard Method for improving water transport and reducing shrinkage stress in membrane humidifying devices and membrane humidifying devices
JPH09184692A (ja) 1995-12-28 1997-07-15 Ebara Corp 熱交換エレメント
US5816065A (en) * 1996-01-12 1998-10-06 Ebara Corporation Desiccant assisted air conditioning system
US5950442A (en) * 1996-05-24 1999-09-14 Ebara Corporation Air conditioning system
US6083387A (en) 1996-06-20 2000-07-04 Burnham Technologies Ltd. Apparatus for the disinfection of fluids
US5860284A (en) 1996-07-19 1999-01-19 Novel Aire Technologies, L.L.C. Thermally regenerated desiccant air conditioner with indirect evaporative cooler
JPH10220914A (ja) 1997-02-07 1998-08-21 Osaka Gas Co Ltd 吸収式冷凍機のプレート型蒸発器及び吸収器
US5860285A (en) 1997-06-06 1999-01-19 Carrier Corporation System for monitoring outdoor heat exchanger coil
US6012296A (en) 1997-08-28 2000-01-11 Honeywell Inc. Auctioneering temperature and humidity controller with reheat
JP3394521B2 (ja) 1997-09-19 2003-04-07 ミリポア・コーポレイション 熱交換装置
IL122065A (en) 1997-10-29 2000-12-06 Agam Energy Systems Ltd Heat pump/engine system and a method utilizing same
JPH11137948A (ja) 1997-11-07 1999-05-25 Daikin Ind Ltd 除湿装置
IL141579A0 (en) 2001-02-21 2002-03-10 Drykor Ltd Dehumidifier/air-conditioning system
WO1999026025A1 (en) 1997-11-16 1999-05-27 Drykor Ltd. Dehumidifier system
US6138470A (en) * 1997-12-04 2000-10-31 Fedders Corporation Portable liquid desiccant dehumidifier
US6216483B1 (en) 1997-12-04 2001-04-17 Fedders Corporation Liquid desiccant air conditioner
US6134903A (en) * 1997-12-04 2000-10-24 Fedders Corporation Portable liquid desiccant dehumidifier
US6216489B1 (en) 1997-12-04 2001-04-17 Fedders Corporation Liquid desiccant air conditioner
JPH11197439A (ja) 1998-01-14 1999-07-27 Ebara Corp 除湿空調装置
US6171374B1 (en) 1998-05-29 2001-01-09 Ballard Power Systems Inc. Plate and frame fluid exchanging assembly with unitary plates and seals
JP3305653B2 (ja) 1998-06-08 2002-07-24 大阪瓦斯株式会社 吸収式冷凍機のプレート型蒸発器及び吸収器
US6442951B1 (en) 1998-06-30 2002-09-03 Ebara Corporation Heat exchanger, heat pump, dehumidifier, and dehumidifying method
IL125927A0 (en) 1998-08-25 1999-04-11 Agam Energy Systems Ltd An evaporative media and a cooling tower utilizing same
US6417423B1 (en) 1998-09-15 2002-07-09 Nanoscale Materials, Inc. Reactive nanoparticles as destructive adsorbents for biological and chemical contamination
US6488900B1 (en) 1998-10-20 2002-12-03 Mesosystems Technology, Inc. Method and apparatus for air purification
US6156102A (en) 1998-11-10 2000-12-05 Fantom Technologies Inc. Method and apparatus for recovering water from air
JP4273555B2 (ja) 1999-02-08 2009-06-03 ダイキン工業株式会社 空気調和システム
BR0008997A (pt) 1999-03-14 2002-01-08 Drykor Ltd Sistema de condicionamento de ar e desumidificador para controlar o ambiente de uma área controlada e sistema desumidificador
US6513339B1 (en) 1999-04-16 2003-02-04 Work Smart Energy Enterprises, Inc. Solar air conditioner
KR100338794B1 (ko) 1999-08-16 2002-05-31 김병주 모세관력을 이용한 유하액막식 열 및 물질교환기
US6723441B1 (en) 1999-09-22 2004-04-20 Nkk Corporation Resin film laminated metal sheet for can and method for fabricating the same
US6684649B1 (en) 1999-11-05 2004-02-03 David A. Thompson Enthalpy pump
US6244062B1 (en) 1999-11-29 2001-06-12 David Prado Solar collector system
US6103969A (en) 1999-11-29 2000-08-15 Bussey; Clifford Solar energy collector
US6926068B2 (en) 2000-01-13 2005-08-09 Denso Corporation Air passage switching device and vehicle air conditioner
JP3927344B2 (ja) 2000-01-19 2007-06-06 本田技研工業株式会社 加湿装置
IL134196A (en) 2000-01-24 2003-06-24 Agam Energy Systems Ltd System for dehumidification of air in an enclosure
DE10026344A1 (de) 2000-04-01 2001-10-04 Membraflow Gmbh & Co Kg Filter Filtermodul
US6568466B2 (en) 2000-06-23 2003-05-27 Andrew Lowenstein Heat exchange assembly
US6497107B2 (en) 2000-07-27 2002-12-24 Idalex Technologies, Inc. Method and apparatus of indirect-evaporation cooling
US6453678B1 (en) 2000-09-05 2002-09-24 Kabin Komfort Inc Direct current mini air conditioning system
US6592515B2 (en) 2000-09-07 2003-07-15 Ams Research Corporation Implantable article and method
US7197887B2 (en) * 2000-09-27 2007-04-03 Idalex Technologies, Inc. Method and plate apparatus for dew point evaporative cooler
US6514321B1 (en) 2000-10-18 2003-02-04 Powermax, Inc. Dehumidification using desiccants and multiple effect evaporators
WO2002038257A2 (en) 2000-11-13 2002-05-16 Mcmaster University Gas separation device
US6739142B2 (en) 2000-12-04 2004-05-25 Amos Korin Membrane desiccation heat pump
JP3348848B2 (ja) 2000-12-28 2002-11-20 株式会社西部技研 間接気化冷却装置
JP5189719B2 (ja) 2001-01-22 2013-04-24 本田技研工業株式会社 燃料電池システム
US6711907B2 (en) 2001-02-28 2004-03-30 Munters Corporation Desiccant refrigerant dehumidifier systems
US6557365B2 (en) 2001-02-28 2003-05-06 Munters Corporation Desiccant refrigerant dehumidifier
US20030106680A1 (en) 2001-03-13 2003-06-12 Dais Analytic Corporation Heat and moisture exchange device
US6539731B2 (en) 2001-03-30 2003-04-01 Arthus S. Kesten Dehumidification process and apparatus
JP3765531B2 (ja) 2001-03-30 2006-04-12 本田技研工業株式会社 加湿モジュール
US6497749B2 (en) 2001-03-30 2002-12-24 United Technologies Corporation Dehumidification process and apparatus using collodion membrane
JP4732609B2 (ja) 2001-04-11 2011-07-27 株式会社ティラド 熱交換器コア
MXPA03009675A (es) 2001-04-23 2004-05-24 Drykor Ltd Aparato para acondicionamiento de aire.
FR2823995B1 (fr) 2001-04-25 2008-06-06 Alfa Laval Vicarb Dispositif perfectionne d'echange et/ou de reaction entre fluides
IL144119A (en) 2001-07-03 2006-07-05 Gad Assaf Air conditioning system
US6660069B2 (en) 2001-07-23 2003-12-09 Toyota Jidosha Kabushiki Kaisha Hydrogen extraction unit
US6766817B2 (en) 2001-07-25 2004-07-27 Tubarc Technologies, Llc Fluid conduction utilizing a reversible unsaturated siphon with tubarc porosity action
US6854278B2 (en) 2001-08-20 2005-02-15 Valeriy Maisotsenko Method of evaporative cooling of a fluid and apparatus therefor
US6595020B2 (en) 2001-09-17 2003-07-22 David I. Sanford Hybrid powered evaporative cooler and method therefor
JP2003161465A (ja) 2001-11-26 2003-06-06 Daikin Ind Ltd 調湿装置
WO2003056249A1 (en) 2001-12-27 2003-07-10 Drykor Ltd. High efficiency dehumidifiers and combined dehumidifying/air-conditioning systems
US6938434B1 (en) 2002-01-28 2005-09-06 Shields Fair Cooling system
US6848265B2 (en) 2002-04-24 2005-02-01 Ail Research, Inc. Air conditioning system
CA2384712A1 (en) 2002-05-03 2003-11-03 Michel St. Pierre Heat exchanger with nest flange-formed passageway
US20040061245A1 (en) 2002-08-05 2004-04-01 Valeriy Maisotsenko Indirect evaporative cooling mechanism
US20050218535A1 (en) 2002-08-05 2005-10-06 Valeriy Maisotsenko Indirect evaporative cooling mechanism
SE523674C2 (sv) 2002-09-10 2004-05-11 Alfa Laval Corp Ab Plattvärmeväxlare med två separata dragplåtar samt förfarande för tillverkning av densamma
AU2002334664A1 (en) 2002-09-17 2004-04-08 Midwest Research Institute Carbon nanotube heat-exchange systems
KR20040026242A (ko) * 2002-09-23 2004-03-31 주식회사 에어필 열펌프를 이용한 액체 제습식 냉방장치
NL1022794C2 (nl) 2002-10-31 2004-09-06 Oxycell Holding Bv Werkwijze voor het vervaardigen van een warmtewisselaar, alsmede met de werkwijze verkregen warmtewisselaar.
IL152885A0 (en) 2002-11-17 2003-06-24 Agam Energy Systems Ltd Air conditioning systems and methods
WO2004051172A2 (en) 2002-12-02 2004-06-17 Lg Electronics Inc. Heat exchanger of ventilating system
US6837056B2 (en) 2002-12-19 2005-01-04 General Electric Company Turbine inlet air-cooling system and method
KR100463550B1 (ko) 2003-01-14 2004-12-29 엘지전자 주식회사 냉난방시스템
US7306650B2 (en) 2003-02-28 2007-12-11 Midwest Research Institute Using liquid desiccant as a regenerable filter for capturing and deactivating contaminants
WO2004094317A2 (en) 2003-04-16 2004-11-04 Reidy James J Thermoelectric, high-efficiency, water generating device
US6986428B2 (en) 2003-05-14 2006-01-17 3M Innovative Properties Company Fluid separation membrane module
DE10324300B4 (de) 2003-05-21 2006-06-14 Thomas Dr. Weimer Thermodynamische Maschine und Verfahren zur Aufnahme von Wärme
WO2004106649A1 (de) 2003-05-26 2004-12-09 Logos-Innovationen Gmbh Vorrichtung zur gewinnung von wasser aus atmosphärischer luft
KR100510774B1 (ko) 2003-05-26 2005-08-30 한국생산기술연구원 복합식 제습냉방시스템
US6854279B1 (en) 2003-06-09 2005-02-15 The United States Of America As Represented By The Secretary Of The Navy Dynamic desiccation cooling system for ships
ITTO20030547A1 (it) 2003-07-15 2005-01-16 Fiat Ricerche Sistema di climatizzazione con un circuito a compressione
US20050109052A1 (en) 2003-09-30 2005-05-26 Albers Walter F. Systems and methods for conditioning air and transferring heat and mass between airflows
US7258923B2 (en) 2003-10-31 2007-08-21 General Electric Company Multilayered articles and method of manufacture thereof
JP4341373B2 (ja) 2003-10-31 2009-10-07 ダイキン工業株式会社 調湿装置
US7186084B2 (en) 2003-11-19 2007-03-06 General Electric Company Hot gas path component with mesh and dimpled cooling
US7279215B2 (en) 2003-12-03 2007-10-09 3M Innovative Properties Company Membrane modules and integrated membrane cassettes
JP3668786B2 (ja) 2003-12-04 2005-07-06 ダイキン工業株式会社 空気調和装置
US20050133082A1 (en) 2003-12-20 2005-06-23 Konold Annemarie H. Integrated solar energy roofing construction panel
WO2005090870A1 (en) 2004-03-17 2005-09-29 Idalex Technologies, Inc. Indirect evaporative cooling of a gas using common product and working gas in a partial counterflow configuration
JP2007532855A (ja) 2004-04-09 2007-11-15 エイアイエル リサーチ インク 熱物質交換機
WO2005114072A2 (en) 2004-05-22 2005-12-01 Gerald Landry Desiccant-assisted air conditioning system and process
US7143597B2 (en) 2004-06-30 2006-12-05 Speakman Company Indirect-direct evaporative cooling system operable from sustainable energy source
IL163015A (en) 2004-07-14 2009-07-20 Gad Assaf Systems and methods for dehumidification
CN101076701A (zh) 2004-10-12 2007-11-21 Gpm股份有限公司 冷却组件
JP2006263508A (ja) 2005-03-22 2006-10-05 Seiichiro Deguchi 吸湿器、乾燥箱、空気乾燥装置及び空調装置
NL1030538C1 (nl) 2005-11-28 2007-05-30 Eurocore Trading & Consultancy Inrichting voor het indirect door verdamping koelen van een luchtstroom.
SE530820C2 (sv) 2005-12-22 2008-09-16 Alfa Laval Corp Ab Ett mixningssystem för värmeväxlare
RU2423656C2 (ru) 2005-12-22 2011-07-10 Оксиком Бехер Б.В. Устройство испарительного охлаждения
US8648209B1 (en) 2005-12-31 2014-02-11 Joseph P. Lastella Loop reactor for making biodiesel fuel
US20090000732A1 (en) 2006-01-17 2009-01-01 Henkel Corporation Bonded Fuel Cell Assembly, Methods, Systems and Sealant Compositions for Producing the Same
US20070169916A1 (en) 2006-01-20 2007-07-26 Wand Steven M Double-wall, vented heat exchanger
WO2007102427A1 (ja) 2006-03-02 2007-09-13 Sei-Ichi Manabe 孔拡散式平膜分離装置・平膜濃縮装置・孔拡散用再生セルロース多孔膜および非破壊式の平膜検査方法
NL2000079C2 (nl) 2006-05-22 2007-11-23 Statiqcooling B V Enthalpie-uitwisselaar.
JP2008020138A (ja) 2006-07-13 2008-01-31 Daikin Ind Ltd 湿度調節装置
US7758671B2 (en) 2006-08-14 2010-07-20 Nanocap Technologies, Llc Versatile dehumidification process and apparatus
WO2008037079A1 (en) 2006-09-29 2008-04-03 Dpoint Technologies Inc. Pleated heat and humidity exchanger with flow field elements
GB0622355D0 (en) 2006-11-09 2006-12-20 Oxycell Holding Bv High efficiency heat exchanger and dehumidifier
US20080127965A1 (en) 2006-12-05 2008-06-05 Andy Burton Method and apparatus for solar heating air in a forced draft heating system
US20080196758A1 (en) 2006-12-27 2008-08-21 Mcguire Dennis Portable, self-sustaining power station
KR100826023B1 (ko) 2006-12-28 2008-04-28 엘지전자 주식회사 환기 장치의 열교환기
CN103203185B (zh) 2007-01-20 2016-01-13 戴斯分析公司 具有包含经加热空气的干燥腔室的干燥器
US20080203866A1 (en) 2007-01-26 2008-08-28 Chamberlain Cliff S Rooftop modular fan coil unit
US20080302357A1 (en) 2007-06-05 2008-12-11 Denault Roger Solar photovoltaic collector hybrid
US20090056919A1 (en) 2007-08-14 2009-03-05 Prodigy Energy Recovery Systems Inc. Heat exchanger
US8268060B2 (en) 2007-10-15 2012-09-18 Green Comfort Systems, Inc. Dehumidifier system
WO2009052042A1 (en) 2007-10-19 2009-04-23 Shell Oil Company Cryogenic treatment of gas
GB0720627D0 (en) 2007-10-19 2007-11-28 Applied Cooling Technology Ltd Turbulator for heat exchanger tube and method of manufacture
US20090126913A1 (en) 2007-11-16 2009-05-21 Davis Energy Group, Inc. Vertical counterflow evaporative cooler
US8353175B2 (en) 2008-01-08 2013-01-15 Calvin Wade Wohlert Roof top air conditioning units having a centralized refrigeration system
JP5294191B2 (ja) 2008-01-31 2013-09-18 国立大学法人東北大学 湿式デシカント空調機
FR2927422B1 (fr) 2008-02-08 2014-10-10 R & I Alliance Dispositif de prelevement d'un echantillon de gaz,et procede pour la restitution d'un echantillon preleve.
JP5183236B2 (ja) 2008-02-12 2013-04-17 国立大学法人 東京大学 置換空調システム
DE102008022504B4 (de) 2008-05-07 2012-11-29 Airbus Operations Gmbh Schaltbarer Vortexgenerator und damit gebildetes Array sowie Verwendungen derselben
JP4374393B1 (ja) 2008-05-27 2009-12-02 ダイナエアー株式会社 調湿装置
JP2009293831A (ja) * 2008-06-03 2009-12-17 Dyna-Air Co Ltd 調湿装置
JP2010002162A (ja) 2008-06-22 2010-01-07 Kiyoshi Yanagimachi 空気調和設備
US20100000247A1 (en) 2008-07-07 2010-01-07 Bhatti Mohinder S Solar-assisted climate control system
US8283555B2 (en) 2008-07-30 2012-10-09 Solaris Synergy Ltd. Photovoltaic solar power generation system with sealed evaporative cooling
CN102149980B (zh) 2008-08-08 2015-08-19 技术研究及发展基金有限公司 液体干燥剂除湿系统及用于其的热/质量的交换器
JP2010054136A (ja) 2008-08-28 2010-03-11 Univ Of Tokyo 湿式デシカント装置及び空気熱源ヒートポンプ装置
US20100051083A1 (en) 2008-09-03 2010-03-04 Boyk Bill Solar tracking platform with rotating truss
US20100077783A1 (en) 2008-09-30 2010-04-01 Bhatti Mohinder S Solid oxide fuel cell assisted air conditioning system
US8550153B2 (en) 2008-10-03 2013-10-08 Modine Manufacturing Company Heat exchanger and method of operating the same
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
JP4502065B1 (ja) 2009-01-30 2010-07-14 ダイキン工業株式会社 ドレンレス空気調和装置
ITMI20090563A1 (it) 2009-04-08 2010-10-09 Donato Alfonso Di Riscaldamento e/o condizionamento e/o trattamento aria con sostanze fotocatalitiche utilizzando impianti fotovoltaici a concentrazione con raffreddamento con pompa di calore e/o essicamento dell'aria
JP4799635B2 (ja) * 2009-04-13 2011-10-26 三菱電機株式会社 液体デシカント再生装置及びデシカント除湿空調装置
SE534745C2 (sv) 2009-04-15 2011-12-06 Alfa Laval Corp Ab Flödesmodul
KR101018475B1 (ko) 2009-08-28 2011-03-02 기재권 발전기능을 갖는 물탱크
WO2011031333A1 (en) 2009-09-14 2011-03-17 Random Technologies Llc Apparatus and methods for changing the concentration of gases in liquids
JP4536147B1 (ja) 2009-09-15 2010-09-01 ダイナエアー株式会社 調湿装置
KR101184925B1 (ko) 2009-09-30 2012-09-20 한국과학기술연구원 액체식 제습장치용 열물질교환기 및 그를 이용한 액체식 제습장치
JP5089672B2 (ja) 2009-10-27 2012-12-05 ダイナエアー株式会社 除湿装置
US8286442B2 (en) 2009-11-02 2012-10-16 Exaflop Llc Data center with low power usage effectiveness
WO2011062808A1 (en) 2009-11-23 2011-05-26 Carrier Corporation Method and device for air conditioning with humidity control
JP5417213B2 (ja) 2010-02-10 2014-02-12 株式会社朝日工業社 間接蒸発冷却型外調機システム
JP5697481B2 (ja) 2010-02-23 2015-04-08 中部電力株式会社 加熱冷却装置
US9377207B2 (en) 2010-05-25 2016-06-28 7Ac Technologies, Inc. Water recovery methods and systems
CN103069246B (zh) 2010-06-24 2016-02-03 北狄空气应对加拿大公司 液体-空气膜能量交换器
JP5621413B2 (ja) 2010-08-25 2014-11-12 富士通株式会社 冷却システム、及び冷却方法
WO2012065138A2 (en) 2010-11-12 2012-05-18 The Texas A&M University System Systems and methods for air dehumidification and sensible cooling using a multiple stage pump
SG190387A1 (en) 2010-11-23 2013-06-28 Ducool Ltd Air conditioning system
US8141379B2 (en) * 2010-12-02 2012-03-27 King Fahd University Of Petroleum & Minerals Hybrid solar air-conditioning system
SG191126A1 (en) 2010-12-13 2013-07-31 Ducool Ltd Method and apparatus for conditioning air
US8695363B2 (en) 2011-03-24 2014-04-15 General Electric Company Thermal energy management system and method
KR20120113608A (ko) 2011-04-05 2012-10-15 한국과학기술연구원 확장표면판을 갖는 열물질 교환기 및 이를 갖는 액체식 제습 장치
CN202229469U (zh) * 2011-08-30 2012-05-23 福建成信绿集成有限公司 一种具液体除湿功能的压缩式热泵系统
US9810439B2 (en) 2011-09-02 2017-11-07 Nortek Air Solutions Canada, Inc. Energy exchange system for conditioning air in an enclosed structure
JP2013064549A (ja) 2011-09-16 2013-04-11 Daikin Industries Ltd 空調システム
DE102012019541A1 (de) 2011-10-24 2013-04-25 Mann+Hummel Gmbh Befeuchtungseinrichtung für eine Brennstoffzelle
SG11201405212UA (en) 2012-05-16 2014-09-26 Univ Nanyang Tech A dehumidifying system, a method of dehumidifying and a cooling system
ES2755800T3 (es) 2012-06-11 2020-04-23 7Ac Tech Inc Métodos y sistemas para intercambiadores de calor turbulentos y resistentes a la corrosión
US20130340449A1 (en) 2012-06-20 2013-12-26 Alliance For Sustainable Energy, Llc Indirect evaporative cooler using membrane-contained liquid desiccant for dehumidification and flocked surfaces to provide coolant flow
US9816760B2 (en) 2012-08-24 2017-11-14 Nortek Air Solutions Canada, Inc. Liquid panel assembly
US20140054004A1 (en) 2012-08-24 2014-02-27 Venmar Ces, Inc. Membrane support assembly for an energy exchanger
SE538217C2 (sv) 2012-11-07 2016-04-05 Andri Engineering Ab Värmeväxlare och ventilationsaggregat innefattande denna
WO2014089164A1 (en) 2012-12-04 2014-06-12 7Ac Technologies, Inc. Methods and systems for cooling buildings with large heat loads using desiccant chillers
US9511322B2 (en) 2013-02-13 2016-12-06 Carrier Corporation Dehumidification system for air conditioning
KR20150122167A (ko) 2013-03-01 2015-10-30 7에이씨 테크놀로지스, 아이엔씨. 흡습제 공기 조화 방법 및 시스템
US9267696B2 (en) 2013-03-04 2016-02-23 Carrier Corporation Integrated membrane dehumidification system
US9523537B2 (en) 2013-03-11 2016-12-20 General Electric Company Desiccant based chilling system
US9140471B2 (en) 2013-03-13 2015-09-22 Alliance For Sustainable Energy, Llc Indirect evaporative coolers with enhanced heat transfer
US20140262125A1 (en) 2013-03-14 2014-09-18 Venmar Ces, Inc. Energy exchange assembly with microporous membrane
US9709285B2 (en) 2013-03-14 2017-07-18 7Ac Technologies, Inc. Methods and systems for liquid desiccant air conditioning system retrofit
KR102099693B1 (ko) 2013-03-14 2020-05-15 7에이씨 테크놀로지스, 아이엔씨. 소형-분할형 액체 흡수제 공조 방법 및 시스템
US10352628B2 (en) 2013-03-14 2019-07-16 Nortek Air Solutions Canada, Inc. Membrane-integrated energy exchange assembly
US9279598B2 (en) 2013-03-15 2016-03-08 Nortek Air Solutions Canada, Inc. System and method for forming an energy exchange assembly
US11408681B2 (en) 2013-03-15 2022-08-09 Nortek Air Solations Canada, Iac. Evaporative cooling system with liquid-to-air membrane energy exchanger
US10584884B2 (en) 2013-03-15 2020-03-10 Nortek Air Solutions Canada, Inc. Control system and method for a liquid desiccant air delivery system
US20140360373A1 (en) 2013-06-11 2014-12-11 Hamilton Sundstrand Corporation Air separation module with removable core
KR102223241B1 (ko) 2013-06-12 2021-03-05 7에이씨 테크놀로지스, 아이엔씨. 천장형 액체 흡습제 공조 시스템
CN105765309B (zh) 2013-11-19 2019-07-26 7Ac技术公司 用于湍流式耐腐蚀换热器的方法和系统
EP3667190A1 (de) 2014-11-21 2020-06-17 7AC Technologies, Inc. Verfahren und systeme für eine mini-split-klimaanlage mit einem flüssigen trocknungsmittel
WO2017070173A1 (en) 2015-10-20 2017-04-27 7Ac Technologies, Inc. Methods and systems for thermoforming two and three way heat exchangers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5005371A (en) * 1989-09-04 1991-04-09 Nishiyodo Air Conditioner Co., Ltd. Adsorption thermal storage apparatus and adsorption thermal storage system including the same
US4984434A (en) * 1989-09-12 1991-01-15 Peterson John L Hybrid vapor-compression/liquid desiccant air conditioner
US5182921A (en) * 1992-04-10 1993-02-02 Industrial Technology Research Institute Solar dehumidifier
US20030000230A1 (en) * 1999-06-25 2003-01-02 Kopko William L. High-efficiency air handler
US20090238685A1 (en) * 2006-05-08 2009-09-24 Roland Santa Ana Disguised air displacement device
US20100319370A1 (en) * 2008-01-25 2010-12-23 Alliance For Sustainable Energy, Llc Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification
US20110101117A1 (en) * 2008-05-22 2011-05-05 Dyna-Air Co., Ltd. Humidity control device
US20150338140A1 (en) * 2014-03-20 2015-11-26 7Ac Technologies, Inc. Rooftop liquid desiccant systems and methods

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9709286B2 (en) 2010-05-25 2017-07-18 7Ac Technologies, Inc. Methods and systems for desiccant air conditioning
US9429332B2 (en) 2010-05-25 2016-08-30 7Ac Technologies, Inc. Desiccant air conditioning methods and systems using evaporative chiller
US11624517B2 (en) 2010-05-25 2023-04-11 Emerson Climate Technologies, Inc. Liquid desiccant air conditioning systems and methods
US10006648B2 (en) 2010-05-25 2018-06-26 7Ac Technologies, Inc. Methods and systems for desiccant air conditioning
US9631823B2 (en) 2010-05-25 2017-04-25 7Ac Technologies, Inc. Methods and systems for desiccant air conditioning
US10753624B2 (en) 2010-05-25 2020-08-25 7Ac Technologies, Inc. Desiccant air conditioning methods and systems using evaporative chiller
US10168056B2 (en) 2010-05-25 2019-01-01 7Ac Technologies, Inc. Desiccant air conditioning methods and systems using evaporative chiller
US10302317B2 (en) 2010-06-24 2019-05-28 Nortek Air Solutions Canada, Inc. Liquid-to-air membrane energy exchanger
US9920960B2 (en) 2011-01-19 2018-03-20 Nortek Air Solutions Canada, Inc. Heat pump system having a pre-processing module
US11761645B2 (en) 2011-09-02 2023-09-19 Nortek Air Solutions Canada, Inc. Energy exchange system for conditioning air in an enclosed structure
US9810439B2 (en) 2011-09-02 2017-11-07 Nortek Air Solutions Canada, Inc. Energy exchange system for conditioning air in an enclosed structure
US10928082B2 (en) 2011-09-02 2021-02-23 Nortek Air Solutions Canada, Inc. Energy exchange system for conditioning air in an enclosed structure
US10443868B2 (en) 2012-06-11 2019-10-15 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
US9308490B2 (en) 2012-06-11 2016-04-12 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
US11098909B2 (en) 2012-06-11 2021-08-24 Emerson Climate Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
US9835340B2 (en) 2012-06-11 2017-12-05 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
US11035618B2 (en) 2012-08-24 2021-06-15 Nortek Air Solutions Canada, Inc. Liquid panel assembly
US9816760B2 (en) 2012-08-24 2017-11-14 Nortek Air Solutions Canada, Inc. Liquid panel assembly
US11732972B2 (en) 2012-08-24 2023-08-22 Nortek Air Solutions Canada, Inc. Liquid panel assembly
US9506697B2 (en) 2012-12-04 2016-11-29 7Ac Technologies, Inc. Methods and systems for cooling buildings with large heat loads using desiccant chillers
US10024601B2 (en) 2012-12-04 2018-07-17 7Ac Technologies, Inc. Methods and systems for cooling buildings with large heat loads using desiccant chillers
US9631848B2 (en) 2013-03-01 2017-04-25 7Ac Technologies, Inc. Desiccant air conditioning systems with conditioner and regenerator heat transfer fluid loops
US10760830B2 (en) 2013-03-01 2020-09-01 7Ac Technologies, Inc. Desiccant air conditioning methods and systems
US10634392B2 (en) 2013-03-13 2020-04-28 Nortek Air Solutions Canada, Inc. Heat pump defrosting system and method
US9909768B2 (en) 2013-03-13 2018-03-06 Nortek Air Solutions Canada, Inc. Variable desiccant control energy exchange system and method
US10480801B2 (en) 2013-03-13 2019-11-19 Nortek Air Solutions Canada, Inc. Variable desiccant control energy exchange system and method
US10619867B2 (en) 2013-03-14 2020-04-14 7Ac Technologies, Inc. Methods and systems for mini-split liquid desiccant air conditioning
US9709285B2 (en) 2013-03-14 2017-07-18 7Ac Technologies, Inc. Methods and systems for liquid desiccant air conditioning system retrofit
US10352628B2 (en) 2013-03-14 2019-07-16 Nortek Air Solutions Canada, Inc. Membrane-integrated energy exchange assembly
US11300364B2 (en) 2013-03-14 2022-04-12 Nortek Air Solutions Canada, Ine. Membrane-integrated energy exchange assembly
US10584884B2 (en) 2013-03-15 2020-03-10 Nortek Air Solutions Canada, Inc. Control system and method for a liquid desiccant air delivery system
US11598534B2 (en) 2013-03-15 2023-03-07 Nortek Air Solutions Canada, Inc. Control system and method for a liquid desiccant air delivery system
US11408681B2 (en) 2013-03-15 2022-08-09 Nortek Air Solations Canada, Iac. Evaporative cooling system with liquid-to-air membrane energy exchanger
US9470426B2 (en) 2013-06-12 2016-10-18 7Ac Technologies, Inc. In-ceiling liquid desiccant air conditioning system
US10619868B2 (en) 2013-06-12 2020-04-14 7Ac Technologies, Inc. In-ceiling liquid desiccant air conditioning system
US10619895B1 (en) 2014-03-20 2020-04-14 7Ac Technologies, Inc. Rooftop liquid desiccant systems and methods
US10323867B2 (en) 2014-03-20 2019-06-18 7Ac Technologies, Inc. Rooftop liquid desiccant systems and methods
US10712024B2 (en) 2014-08-19 2020-07-14 Nortek Air Solutions Canada, Inc. Liquid to air membrane energy exchangers
WO2016081933A1 (en) * 2014-11-21 2016-05-26 7Ac Technologies, Inc. Methods and systems for mini-split liquid desiccant air conditioning
EP3667190A1 (de) 2014-11-21 2020-06-17 7AC Technologies, Inc. Verfahren und systeme für eine mini-split-klimaanlage mit einem flüssigen trocknungsmittel
EP3221648A4 (de) * 2014-11-21 2018-06-27 7AC Technologies, Inc. Verfahren und systeme für eine mini-split-klimaanlage mit einem flüssigen trocknungsmittel
US10731876B2 (en) 2014-11-21 2020-08-04 7Ac Technologies, Inc. Methods and systems for mini-split liquid desiccant air conditioning
US10024558B2 (en) 2014-11-21 2018-07-17 7Ac Technologies, Inc. Methods and systems for mini-split liquid desiccant air conditioning
CN107110525A (zh) * 2014-11-21 2017-08-29 7Ac技术公司 用于微分体液体干燥剂空气调节的方法和系统
CN110579044A (zh) * 2014-11-21 2019-12-17 7Ac技术公司 用于微分体液体干燥剂空气调节的方法和系统
CN107208909A (zh) * 2014-12-15 2017-09-26 3M创新有限公司 具有形成降膜的可湿层的热质传递装置
WO2016100084A1 (en) * 2014-12-15 2016-06-23 3M Innovative Properties Company Heat and mass transfer devices with wettable layers for forming falling films
US10352574B2 (en) 2014-12-15 2019-07-16 3M Innovative Properties Company Heat and mass transfer devices with wettable layers for forming falling films
CN107208909B (zh) * 2014-12-15 2021-08-10 3M创新有限公司 具有形成降膜的可湿层的热质传递装置
US11815283B2 (en) 2015-05-15 2023-11-14 Nortek Air Solutions Canada, Inc. Using liquid to air membrane energy exchanger for liquid cooling
US10808951B2 (en) 2015-05-15 2020-10-20 Nortek Air Solutions Canada, Inc. Systems and methods for providing cooling to a heat load
US10782045B2 (en) 2015-05-15 2020-09-22 Nortek Air Solutions Canada, Inc. Systems and methods for managing conditions in enclosed space
US11143430B2 (en) 2015-05-15 2021-10-12 Nortek Air Solutions Canada, Inc. Using liquid to air membrane energy exchanger for liquid cooling
US11092349B2 (en) 2015-05-15 2021-08-17 Nortek Air Solutions Canada, Inc. Systems and methods for providing cooling to a heat load
US10962252B2 (en) 2015-06-26 2021-03-30 Nortek Air Solutions Canada, Inc. Three-fluid liquid to air membrane energy exchanger
CN106642442A (zh) * 2015-11-03 2017-05-10 青岛海尔空调电子有限公司 一种湿度可调的新风空调系统
CN106642308A (zh) * 2015-11-03 2017-05-10 青岛海尔空调电子有限公司 一种温湿度独立控制的超薄型空调室内机
CN106642421A (zh) * 2015-11-03 2017-05-10 青岛海尔空调电子有限公司 新型一拖多空调除湿系统
CN106016858A (zh) * 2016-05-12 2016-10-12 上海交通大学 空气调节装置
US11892193B2 (en) 2017-04-18 2024-02-06 Nortek Air Solutions Canada, Inc. Desiccant enhanced evaporative cooling systems and methods
WO2019089980A1 (en) * 2017-11-01 2019-05-09 7Ac Technologies, Inc. Methods and systems for liquid desiccant air conditioning
US10941948B2 (en) * 2017-11-01 2021-03-09 7Ac Technologies, Inc. Tank system for liquid desiccant air conditioning system
US10921001B2 (en) 2017-11-01 2021-02-16 7Ac Technologies, Inc. Methods and apparatus for uniform distribution of liquid desiccant in membrane modules in liquid desiccant air-conditioning systems
US11022330B2 (en) 2018-05-18 2021-06-01 Emerson Climate Technologies, Inc. Three-way heat exchangers for liquid desiccant air-conditioning systems and methods of manufacture
CN112639364A (zh) * 2018-07-31 2021-04-09 阿卜杜拉国王科技大学 液体干燥剂冷却系统和方法
US11267675B2 (en) * 2019-10-04 2022-03-08 Otis Elevator Company Cooling system for elevator with electronic visual displays
WO2022235225A1 (en) * 2021-05-05 2022-11-10 Enerama Çevre Teknoloji̇leri̇ Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ The usage of the waste heat in liquid desiccant dehumidification system
CN114440356A (zh) * 2022-02-28 2022-05-06 上海电机学院 一种风能辅助制冷及加热的间接式海水源热泵空调系统

Also Published As

Publication number Publication date
EP2972009A1 (de) 2016-01-20
KR20150119344A (ko) 2015-10-23
JP2016514245A (ja) 2016-05-19
US10619867B2 (en) 2020-04-14
SA515361072B1 (ar) 2019-04-10
JP6568516B2 (ja) 2019-08-28
KR20170133519A (ko) 2017-12-05
EP2972009B1 (de) 2019-09-18
CN105121979A (zh) 2015-12-02
CN105121979B (zh) 2017-06-16
KR102099693B1 (ko) 2020-05-15
WO2014152905A1 (en) 2014-09-25
US20180163977A1 (en) 2018-06-14
EP3614072B1 (de) 2022-06-22
EP2972009A4 (de) 2017-01-04
ES2761585T3 (es) 2020-05-20
JP2019215156A (ja) 2019-12-19
EP3614072A1 (de) 2020-02-26

Similar Documents

Publication Publication Date Title
US10619867B2 (en) Methods and systems for mini-split liquid desiccant air conditioning
US10731876B2 (en) Methods and systems for mini-split liquid desiccant air conditioning
US10619868B2 (en) In-ceiling liquid desiccant air conditioning system
US20170292722A1 (en) Methods and systems for liquid desiccant air conditioning system retrofit
CN114935180A (zh) 空气调节系统、冷却和除湿的方法和加热和加湿的方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: 7AC TECHNOLOGIES, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VANDERMEULEN, PETER F.;REEL/FRAME:034385/0798

Effective date: 20131104

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION