US20140134823A1 - High-k perovskite materials and methods of making and using the same - Google Patents
High-k perovskite materials and methods of making and using the same Download PDFInfo
- Publication number
- US20140134823A1 US20140134823A1 US14/128,043 US201214128043A US2014134823A1 US 20140134823 A1 US20140134823 A1 US 20140134823A1 US 201214128043 A US201214128043 A US 201214128043A US 2014134823 A1 US2014134823 A1 US 2014134823A1
- Authority
- US
- United States
- Prior art keywords
- perovskite
- perovskite material
- pbo
- strontium titanate
- metal species
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000463 material Substances 0.000 title claims abstract description 98
- 238000000034 method Methods 0.000 title claims abstract description 71
- 229910052751 metal Inorganic materials 0.000 claims abstract description 49
- 239000002184 metal Substances 0.000 claims abstract description 49
- 239000000203 mixture Substances 0.000 claims abstract description 27
- 239000002243 precursor Substances 0.000 claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 238000005019 vapor deposition process Methods 0.000 claims abstract description 20
- 239000003990 capacitor Substances 0.000 claims abstract description 18
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 17
- 238000002425 crystallisation Methods 0.000 claims abstract description 15
- 230000008025 crystallization Effects 0.000 claims abstract description 15
- 229910052745 lead Inorganic materials 0.000 claims abstract description 14
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 11
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 11
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 11
- 229910052753 mercury Inorganic materials 0.000 claims abstract description 8
- 238000007740 vapor deposition Methods 0.000 claims abstract description 7
- 229910002353 SrRuO3 Inorganic materials 0.000 claims abstract description 5
- 229910002370 SrTiO3 Inorganic materials 0.000 claims abstract description 5
- 238000005275 alloying Methods 0.000 claims abstract description 4
- 238000000151 deposition Methods 0.000 claims description 39
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 claims description 33
- 229910052454 barium strontium titanate Inorganic materials 0.000 claims description 14
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000010936 titanium Substances 0.000 claims description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- 230000006911 nucleation Effects 0.000 claims description 7
- 238000010899 nucleation Methods 0.000 claims description 7
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 229910052797 bismuth Inorganic materials 0.000 claims description 5
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 5
- 230000003247 decreasing effect Effects 0.000 claims description 4
- 238000010926 purge Methods 0.000 claims description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 229910000416 bismuth oxide Inorganic materials 0.000 claims description 2
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 abstract description 6
- 229910010252 TiO3 Inorganic materials 0.000 abstract description 4
- 239000010408 film Substances 0.000 description 38
- 238000000231 atomic layer deposition Methods 0.000 description 14
- 230000008021 deposition Effects 0.000 description 14
- 238000013459 approach Methods 0.000 description 7
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 239000003989 dielectric material Substances 0.000 description 5
- 239000002019 doping agent Substances 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004151 rapid thermal annealing Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910003781 PbTiO3 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000012713 reactive precursor Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
- H01L28/55—Capacitors with a dielectric comprising a perovskite structure material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/409—Oxides of the type ABO3 with A representing alkali, alkaline earth metal or lead and B representing a refractory metal, nickel, scandium or a lanthanide
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45531—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02197—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
-
- H01L27/108—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
Definitions
- the present disclosure relates to relates to high-k materials and devices, and to methods of making and using the same.
- atomic layer deposition of thin film perovskite materials, such as strontium titanate (STO), strontium ruthenate (SRO), and barium strontium titanate (BST), will be a particular focus of all major DRAM manufacturers with high volume manufacturing (HVM) capability in coming years.
- STO strontium titanate
- SRO strontium ruthenate
- BST barium strontium titanate
- a significant problem in the application of ALD processes to the production of DRAM devices incorporating the above-identified perovskite materials is that with ALD, composition ratios between different metals need to be controlled by separate pulses because no two precursors transport in exactly the same way. If a predetermined ratio of precursors is delivered into the gas stream flowed to the deposition chamber, then the chemisorption rate and saturation of the surface will be different at the top and the bottom of the structure.
- the resulting deposited composition can be uniform over all parts of the structure, but fine composition adjustment, e.g., from 50.2 at % to 50.5 at %, is very difficult for a film that might take a few hundred precursor pulses to complete the deposition of the ALD film.
- perovskite films need to be fully crystallized in order to yield the best properties (high conductivity for SRO, high capacitance for STO and BST).
- the high deposition temperatures needed for in-situ deposition of crystalline films can cause self-decomposition of the precursor in areas of the structure in which mass transport is greatest during the period of time that is required to fully saturate all parts of the structure. For this reason, it would be advantageous to provide compositions that crystallize more readily at lower deposition temperatures.
- the grain size should be maximized. This in turn requires maximizing the long-range interactions that yield high k values.
- the dielectric can be deposited on a lattice-matched substrate of a similar structure. The highest order is achieved at the lowest temperature by nucleating and growing the crystals as the film is growing. This is because the metal-containing species have higher mobility on the surface, before they are covered with a capping layer. Nucleating the initial crystalline phase of materials such as SRO on normal plug or bottom electrode material (e.g., TiN, W, TaN, etc.) requires excessive temperatures if the nucleation is performed after deposition of the full thickness of the SRO film.
- Deposition temperature at which crystallization occurs with growth is too high for most ALD precursors to remain intact. Some decomposition occurs in the inert environment of the precursor pulse. Such decomposition leads to thicker films on the regions of the capacitor structure where mass transport of the precursors is higher.
- the present disclosure relates to relates to high-k materials and devices, and processes for making and using the same.
- the disclosure relates to a method of forming a perovskite film, comprising depositing a perovskite material on a substrate by a pulsed vapor deposition process involving contacting of the substrate with perovskite material-forming metal precursors, wherein said process is carried out with doping or alloying of the perovskite material with a higher mobility and/or higher volatility metal species than the metal species in said perovskite material-forming metal precursors.
- the disclosure relates to a perovskite composition
- a perovskite composition comprising (Sr,Pb)RuO 3 .
- the disclosure relates to a perovskite composition
- a perovskite composition comprising a (Sr,Pb)RuO 3 material having deposited thereon a titanium-containing material selected from the group consisting of strontium titanate, barium strontium titanate, and lead strontium titanate.
- a further aspect of the disclosure relates to a perovskite composition comprising (Sr, Pb)TiO 3 .
- a still further aspect of the disclosure relates to a perovskite composition
- a perovskite composition comprising SrRuO 3 or SrTiO 3 , doped with Zn, Cd or Hg.
- Another aspect of the disclosure relates to a perovskite composition
- a perovskite composition comprising Sr(Sn,Ru)O 3 ; and Sr(Sn,Ti)O 3 .
- Yet another aspect of the disclosure relates to a method of forming a crystallized perovskite material, comprising depositing a perovskite material in an amorphous state or a fine crystalline state on a substrate by a pulsed vapor deposition process involving contacting of the substrate with perovskite material-forming metal precursors, purging reactive species from the deposited perovskite material, and exposing the perovskite material to elevated temperature for sufficient time to crystallize or to enhance crystallization of the perovskite material.
- the disclosure relates to a method of fabricating a DRAM capacitor, comprising:
- a bottom electrode depositing a layer of PbO on the bottom electrode; depositing on the layer of PbO a B-site atomic species effective for nucleation of a perovskite material in the presence of PbO; and depositing a perovskite material on the PbO layer having B-site atomic species thereon, by a pulsed vapor deposition process involving contacting of the substrate with perovskite material-forming metal precursors; and depositing a top electrode on the perovskite material.
- a still further aspect of the disclosure relates to a method of fabricating a DRAM capacitor, comprising:
- a bottom electrode depositing a perovskite material on the bottom electrode by a vapor deposition process in which the perovskite material is doped or alloyed with PbO in its lattice structure; increasing temperature and/or decreasing pressure to establish a process condition at which free PbO is volatile and PbO in the perovskite lattice structure is involatile; removing volatile PbO; and depositing a top electrode on the perovskite material.
- FIG. 1 is a schematic cross-sectional view of a memory cell unit for a DRAM device, in which a high-k perovskite film of the present disclosure may be employed.
- the present disclosure relates to relates to high-k materials and devices, and to methods of making and using the same.
- the present disclosure in one aspect relates to doping of perovskite films for increased crystallization, compositional control, and polarizability.
- the disclosure contemplates the use of a higher mobility and/or higher volatility metal ion to alloy or dope a perovskite film in order to achieve a self-limiting process and lower crystallization temperature.
- Pb, Sn, Zn, Cd, Hg can be used for such purpose as dopant species in dielectric or conducting perovskites
- Bi can be used as a dopant species in conducting perovskites.
- Bismuth is preferably avoided in the deposition of crystalline dielectric materials, since it can cause unwanted leakage in crystalline dielectric applications.
- a strontium ruthenate (SRO) film is formed by pulsed vapor deposition
- a Pb precursor is pulsed in place of some of the Sr pulses in the alternating strontium/ruthenium train of vapor pulses utilized to form the high dielectric constant capacitor film.
- Such utilization of the lead precursor to dope the strontium ruthenate film achieves a lower crystallization temperature and reduces deposition temperature to a level at which premature decomposition around the top of the capacitor structure is minimized.
- the increased mobility of the resulting PbO in the film compared to SrO allows the crystallization of (Sr,Pb)RuO 3 , also designated herein as “SPRO,” at a significantly lower temperature than the 400-600° C. temperature range that is characteristic of conventional chemical vapor deposition (CVD) of SRO.
- SPRO crystallization of (Sr,Pb)RuO 3 , also designated herein as “SPRO,” at a significantly lower temperature than the 400-600° C. temperature range that is characteristic of conventional chemical vapor deposition (CVD) of SRO.
- the increased mobility of excess PbO allows the film composition to be controlled by the volatility of the PbO.
- a strontium titanate (STO) film can be deposited directly on the SPRO film with superior crystallization as a consequence of the templating of the STO film from the SPRO substrate layer.
- STO strontium titanate
- excess PbO inclusions can be provided in the SRO film, and these excess PbO inclusions can react with subsequently deposited STO to form a Pb-doped composition with a perfect A:B ratio of the crystal lattice A-sites and B-sites in the film.
- additional Pb can be deposited with the STO to form (SrPb)TiO 3 , also designated herein as “SPTO.”
- STO SrPbTiO 3
- This approach has advantages over STO in three primary aspects: (i) the increased mobility of Pb will aid in crystallization of the lead-doped film material, (ii) the increased Curie point of the lead-doped dielectric film will increase the dielectric constant of the film material, and (iii) by controlling the partial pressure of the PbO in the deposition process or in a subsequent annealing step, the A:B ratio in the film is controlled to achieve a low leakage character.
- A-site dopants such as Zn, Cd, and Hg can be used in the same manner as described above for Pb.
- B-site dopants such as Sn can be utilized to “tune” the lattice parameter relative to Ti or Ru.
- the addition of excess tin dioxide (SnO 2 ) can also be utilized to provide a B-site rich composition having lower leakage than A-site rich compositions of STO and BST.
- rapid thermal annealing is utilized to carry out vapor deposition crystallization with a low thermal budget. More specifically, such aspect of the disclosure relates to vapor deposition processes for forming perovskite films, in which the processes are carried out using ALD and pulsed (digital) CVD processes to separate reactive precursors from each other, as well as from reactive plasmas and other excited species. The precursors are thermally stable at the deposition temperature.
- the reactive species both metal and co-reactant
- the reactive species are purged from the wafer surface.
- a short high temperature exposure that is utilized to crystallize or enhance the crystallization of the deposited layer.
- the duration of the high temperature exposure and the time-temperature profile of such exposure can readily be determined within the skill of the art, based on the disclosure herein, by the simple expedient of varying time and temperature over respective ranges of their combination, to determine empirically a process envelope affording the improved crystallinity of the deposited material.
- Another aspect of the disclosure relates to PbO enhanced nucleation and composition control for perovskite dielectrics deposited by vapor deposition processes such as atomic layer deposition.
- Such aspect of the disclosure addresses the difficulty of compositional control in deep structures, e.g., DRAM capacitors, and concurrently addresses the difficulty of nucleation of perovskite phases of materials such as strontium titanate (STO) at the low temperatures used in atomic layer deposition.
- STO strontium titanate
- a DRAM capacitor is fabricated by a process including deposition of a first layer of PbO on a bottom electrode of the capacitor structure, in a pulsed vapor deposition process such as pulsed CVD or ALD.
- a pulsed vapor deposition process such as pulsed CVD or ALD.
- the temperature and pressure conditions of such PbO deposition are such that the PbO does not evaporate in the inert gas purge portions of the pulsed vapor deposition cycle.
- This first layer of PbO can be deposited to any suitable thickness, e.g., a thickness of from 0.5 ⁇ to 15 ⁇ .
- a layer is deposited of a B-site atomic species such as titanium or zirconium, in order to nucleate the perovskite film utilizing the high mobility PbO. All subsequent pulses in the vapor deposition process can be conventional A-site or B-site oxides, e.g., SrO or TiO 2 if the perovskite is STO.
- a DRAM capacitor is fabricated by a vapor deposition process.
- the temperature can be increased and/or the pressure decreased to a condition at which free PbO is volatile, but PbO in the perovskite lattice is involatile.
- This condition can be readily determined by experiment. For example, conditions including pressure in a pressure region of 1-8 torr region exist in a 400-600° C. temperature region and may be employed to form a lead titanate perovskite material in an MOCVD process.
- FIG. 1 is a schematic cross-sectional view of a memory cell unit for a DRAM device, according to one embodiment of the present disclosure, in which a high-k perovskite dielectric material of the present disclosure may be employed as a capacitor material.
- the DRAM device shown in FIG. 1 includes field oxide layer 11 , poly gate layer 13 , source/drain regions 12 and word line 14 of metal oxide semiconductor transistor 15 .
- the device is fabricated on a substrate 10 , which may be formed of silicon or other suitable substrate material.
- the device structure includes oxide layer 16 , and contact openings 17 filled with conductive plugs 18 of suitable conductive material such as tungsten.
- Conductive layer 19 deposited over the plugs 18 forms a bottom electrode of the capacitor, on which is deposited the dielectric layer 20 of a perovskite material of the present disclosure.
- a conductive layer 21 is deposited over the dielectric layer 20 as the top electrode of the capacitor structure.
- Interlevel dielectric layer 22 is formed over the top electrode layer 21 .
- the disclosure relates to a method of forming a perovskite film, comprising depositing a perovskite material on a substrate by a pulsed vapor deposition process involving contacting of the substrate with perovskite material-forming metal precursors, wherein such process is carried out with doping or alloying of the perovskite material with a higher mobility and/or higher volatility metal species than the metal species in the perovskite material-forming metal precursors.
- the higher mobility and/or higher volatility metal species in such method may comprise a metal species selected from the group consisting of Pb, Sn, Zn, Cd, Hg, Bi, and oxides thereof.
- the perovskite material may comprise a dielectric or conducting perovskite
- the higher mobility and/or higher volatility metal species comprises a metal species selected from the group consisting of Pb, Sn, Zn, Cd, Hg, and oxides thereof.
- the higher mobility and/or higher volatility metal species can comprise bismuth or a bismuth oxide.
- the higher mobility and/or higher volatility metal species may be constituted as not comprising bismuth.
- the perovskite material doped with the higher mobility and/or higher volatility metal species has a lower crystallization temperature than a corresponding perovskite material undoped with the higher mobility and/or higher volatility metal species.
- the perovskite material in such method may be of any suitable type.
- the perovskite material comprises strontium ruthenate and the higher mobility and/or higher volatility metal species comprises Pb.
- the method in such instance may further comprise depositing strontium titanate, barium strontium titanate, or lead strontium titanate on the perovskite material comprising strontium ruthenate and doped or alloyed with Pb.
- the perovskite material comprises strontium titanate and the higher mobility and/or higher volatility metal species comprises Pb.
- the higher mobility and/or higher volatility metal species comprises Zn, Cd, Hg, or Sn.
- the perovskite material can comprise titanium or ruthenium, in specific embodiments.
- the higher mobility and/or higher volatility metal species comprises SnO 2 ; in such instance, the perovskite material may for example comprise strontium titanate, or barium strontium titanate.
- a further aspect of the disclosure relates to a perovskite composition comprising (Sr,Pb)RuO 3 .
- a perovskite composition comprising a (Sr,Pb)RuO 3 material having deposited thereon a titanium-containing material selected from the group consisting of strontium titanate, barium strontium titanate, and lead strontium titanate.
- a further aspect of the disclosure relates to a perovskite composition comprising (Sr, Pb)TiO 3 .
- Another method aspect of the disclosure relates to a method of forming a crystallized perovskite material, comprising depositing a perovskite material in an amorphous state or a fine crystalline state on a substrate by a pulsed vapor deposition process involving contacting of the substrate with perovskite material-forming metal precursors, purging reactive species from the deposited perovskite material, and exposing the perovskite material to elevated temperature for sufficient time to crystallize or to enhance crystallization of the perovskite material.
- the method may further comprise growing the perovskite material under pulsed vapor deposition conditions after such exposing.
- the disclosure relates to a method of fabricating a DRAM capacitor, comprising:
- a bottom electrode depositing a layer of PbO on the bottom electrode; depositing on the layer of PbO a B-site atomic species effective for nucleation of a perovskite material in the presence of PbO; and depositing a perovskite material on the PbO layer having B-site atomic species thereon, by a pulsed vapor deposition process involving contacting of the substrate with perovskite material-forming metal precursors; and depositing a top electrode on the perovskite material.
- the layer of PbO can be formed by a pulsed vapor deposition process, such as chemical vapor deposition or atomic layer deposition.
- the method in another implementation may be carried out so that the PbO layer is deposited to a thickness in a range of from 0.5 ⁇ to 15 ⁇ .
- the B-site atomic species comprises titanium or zirconium.
- the perovskite material in a further embodiment comprises strontium titanate.
- a further aspect of the disclosure relates to a method of fabricating a DRAM capacitor, comprising:
- a bottom electrode depositing a perovskite material on the bottom electrode by a vapor deposition process in which the perovskite material is doped or alloyed with PbO in its lattice structure; increasing temperature and/or decreasing pressure to establish a process condition at which free PbO is volatile and PbO in the perovskite lattice structure is involatile; removing volatile PbO; and depositing a top electrode on the perovskite material.
- the perovskite material doped or alloyed with PbO in its lattice structure comprises lead titanate.
- the process condition at which free PbO is volatile and PbO in the perovskite lattice structure is involatile comprises a pressure in a range of from 1 to 8 torr and a temperature in a range of from 400 to 600° C. Lower temperatures can be used if the pressure is lowered; see Bosak, et al., JPhysIV, 11 Pr3, p93.
- HBM high-volume manufacturing
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Semiconductor Memories (AREA)
- Chemical Vapour Deposition (AREA)
- Semiconductor Integrated Circuits (AREA)
- Formation Of Insulating Films (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/128,043 US20140134823A1 (en) | 2011-06-20 | 2012-06-19 | High-k perovskite materials and methods of making and using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161499168P | 2011-06-20 | 2011-06-20 | |
US14/128,043 US20140134823A1 (en) | 2011-06-20 | 2012-06-19 | High-k perovskite materials and methods of making and using the same |
PCT/US2012/043153 WO2012177642A2 (fr) | 2011-06-20 | 2012-06-19 | Matériau de type pérovskite à constante diélectrique k élevée et ses procédés de fabrication et d'utilisation |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140134823A1 true US20140134823A1 (en) | 2014-05-15 |
Family
ID=47423170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/128,043 Abandoned US20140134823A1 (en) | 2011-06-20 | 2012-06-19 | High-k perovskite materials and methods of making and using the same |
Country Status (4)
Country | Link |
---|---|
US (1) | US20140134823A1 (fr) |
JP (1) | JP2014520404A (fr) |
TW (1) | TW201301352A (fr) |
WO (1) | WO2012177642A2 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10128052B1 (en) | 2017-08-03 | 2018-11-13 | University Of Utah Research Foundation | Methods of thermally induced recrystallization |
US10186570B2 (en) | 2013-02-08 | 2019-01-22 | Entegris, Inc. | ALD processes for low leakage current and low equivalent oxide thickness BiTaO films |
US12009514B2 (en) | 2018-10-11 | 2024-06-11 | Samsung Electronics Co., Ltd. | Perovskite material, method of preparing the same, and secondary battery including the perovskite material |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9373677B2 (en) | 2010-07-07 | 2016-06-21 | Entegris, Inc. | Doping of ZrO2 for DRAM applications |
US9443736B2 (en) | 2012-05-25 | 2016-09-13 | Entegris, Inc. | Silylene compositions and methods of use thereof |
KR101434327B1 (ko) * | 2013-03-29 | 2014-08-27 | (주)알에프트론 | 투명 화합물 반도체 및 그의 p-타입 도핑 방법 |
JP2014218691A (ja) * | 2013-05-07 | 2014-11-20 | エア・ウォーター株式会社 | 層状構造体の製造方法 |
KR102702532B1 (ko) * | 2020-11-27 | 2024-09-03 | 가천대학교 산학협력단 | 강유전성 물질을 포함하는 플렉서블 에너지 하베스팅 소자 및 그의 제조 방법 |
JP6980324B1 (ja) * | 2021-03-08 | 2021-12-15 | 株式会社クリエイティブコーティングス | チタン酸バリウム膜の製造方法 |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5721043A (en) * | 1992-05-29 | 1998-02-24 | Texas Instruments Incorporated | Method of forming improved thin film dielectrics by Pb doping |
US5753934A (en) * | 1995-08-04 | 1998-05-19 | Tok Corporation | Multilayer thin film, substrate for electronic device, electronic device, and preparation of multilayer oxide thin film |
US5810923A (en) * | 1994-08-17 | 1998-09-22 | Tdk Corporation | Method for forming oxide thin film and the treatment of silicon substrate |
US6287965B1 (en) * | 1997-07-28 | 2001-09-11 | Samsung Electronics Co, Ltd. | Method of forming metal layer using atomic layer deposition and semiconductor device having the metal layer as barrier metal layer or upper or lower electrode of capacitor |
US6673646B2 (en) * | 2001-02-28 | 2004-01-06 | Motorola, Inc. | Growth of compound semiconductor structures on patterned oxide films and process for fabricating same |
US20040214069A1 (en) * | 2003-04-28 | 2004-10-28 | Seabaugh Matthew M. | Perovskite electrodes and method of making the same |
US20040214070A1 (en) * | 2003-04-28 | 2004-10-28 | Simner Steven P. | Low sintering lanthanum ferrite materials for use as solid oxide fuel cell cathodes and oxygen reduction electrodes and other electrochemical devices |
US20040238861A1 (en) * | 2003-05-27 | 2004-12-02 | Lucent Technologies Inc. | Oxidation-resistant conducting perovskites |
US20060288928A1 (en) * | 2005-06-10 | 2006-12-28 | Chang-Beom Eom | Perovskite-based thin film structures on miscut semiconductor substrates |
US20070004226A1 (en) * | 2005-07-01 | 2007-01-04 | Sharp Laboratories Of America, Inc. | Strain control of epitaxial oxide films using virtual substrates |
US20070049021A1 (en) * | 2005-08-31 | 2007-03-01 | Micron Technology, Inc. | Atomic layer deposition method |
US20070053139A1 (en) * | 2005-09-02 | 2007-03-08 | Hongmei Zhang | Deposition of perovskite and other compound ceramic films for dielectric applications |
US20080194088A1 (en) * | 2007-02-14 | 2008-08-14 | Micron Technology, Inc. | Vapor deposition methods for forming a metal-containing layer on a substrate |
US20090058953A1 (en) * | 2007-09-05 | 2009-03-05 | Takami Arakawa | Process for forming a ferroelectric film, ferroelectric film, ferroelectric device, and liquid discharge apparatus |
US20110215679A1 (en) * | 2010-03-03 | 2011-09-08 | Takayuki Naono | Piezoelectric film, piezoelectric device, liquid ejection apparatus, and method of producing piezoelectric film |
US20110292134A1 (en) * | 2010-05-27 | 2011-12-01 | Tsutomu Sasaki | Perovskite oxide, oxide composition, oxide body, piezoelectric device, and liquid discharge apparatus |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0571949A1 (fr) * | 1992-05-29 | 1993-12-01 | Texas Instruments Incorporated | Perovskites riches en Pb pour diélectrices à couche mince |
JPH09165676A (ja) * | 1995-12-14 | 1997-06-24 | Mitsubishi Materials Corp | 残留炭素含有量の低い(a、b)o3 型酸化物誘電体薄膜形成用スパッタリング焼結ターゲット材の製造方法 |
JP2000208715A (ja) * | 1999-01-18 | 2000-07-28 | Nissan Motor Co Ltd | 強誘電体薄膜の構造及びその化学的気相成長法 |
JP3730840B2 (ja) * | 1999-08-20 | 2006-01-05 | 松下電器産業株式会社 | 誘電体膜及びその製造方法 |
JP3640342B2 (ja) * | 2000-05-22 | 2005-04-20 | Tdk株式会社 | 誘電体組成物の設計方法 |
JP4573009B2 (ja) * | 2000-08-09 | 2010-11-04 | 日本電気株式会社 | 金属酸化物誘電体膜の気相成長方法 |
JP2002190476A (ja) * | 2000-12-20 | 2002-07-05 | Ulvac Japan Ltd | 誘電体膜の成膜方法 |
JP4011334B2 (ja) * | 2001-12-04 | 2007-11-21 | 富士通株式会社 | 強誘電体キャパシタの製造方法およびターゲット |
US20040023416A1 (en) * | 2002-08-05 | 2004-02-05 | Gilbert Stephen R. | Method for forming a paraelectric semiconductor device |
JP4496380B2 (ja) * | 2004-11-17 | 2010-07-07 | 富士通株式会社 | エアロゾルデポジッション成膜装置 |
US20070190670A1 (en) * | 2006-02-10 | 2007-08-16 | Forest Carl A | Method of making ferroelectric and dielectric layered superlattice materials and memories utilizing same |
JP5260148B2 (ja) * | 2007-06-26 | 2013-08-14 | 株式会社高純度化学研究所 | ストロンチウム含有薄膜の形成方法 |
-
2012
- 2012-06-19 US US14/128,043 patent/US20140134823A1/en not_active Abandoned
- 2012-06-19 JP JP2014517092A patent/JP2014520404A/ja active Pending
- 2012-06-19 WO PCT/US2012/043153 patent/WO2012177642A2/fr active Application Filing
- 2012-06-20 TW TW101122068A patent/TW201301352A/zh unknown
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5721043A (en) * | 1992-05-29 | 1998-02-24 | Texas Instruments Incorporated | Method of forming improved thin film dielectrics by Pb doping |
US5810923A (en) * | 1994-08-17 | 1998-09-22 | Tdk Corporation | Method for forming oxide thin film and the treatment of silicon substrate |
US5753934A (en) * | 1995-08-04 | 1998-05-19 | Tok Corporation | Multilayer thin film, substrate for electronic device, electronic device, and preparation of multilayer oxide thin film |
US6287965B1 (en) * | 1997-07-28 | 2001-09-11 | Samsung Electronics Co, Ltd. | Method of forming metal layer using atomic layer deposition and semiconductor device having the metal layer as barrier metal layer or upper or lower electrode of capacitor |
US6673646B2 (en) * | 2001-02-28 | 2004-01-06 | Motorola, Inc. | Growth of compound semiconductor structures on patterned oxide films and process for fabricating same |
US20040214069A1 (en) * | 2003-04-28 | 2004-10-28 | Seabaugh Matthew M. | Perovskite electrodes and method of making the same |
US20040214070A1 (en) * | 2003-04-28 | 2004-10-28 | Simner Steven P. | Low sintering lanthanum ferrite materials for use as solid oxide fuel cell cathodes and oxygen reduction electrodes and other electrochemical devices |
US20040238861A1 (en) * | 2003-05-27 | 2004-12-02 | Lucent Technologies Inc. | Oxidation-resistant conducting perovskites |
US20060288928A1 (en) * | 2005-06-10 | 2006-12-28 | Chang-Beom Eom | Perovskite-based thin film structures on miscut semiconductor substrates |
US20070004226A1 (en) * | 2005-07-01 | 2007-01-04 | Sharp Laboratories Of America, Inc. | Strain control of epitaxial oxide films using virtual substrates |
US20070049021A1 (en) * | 2005-08-31 | 2007-03-01 | Micron Technology, Inc. | Atomic layer deposition method |
US20070053139A1 (en) * | 2005-09-02 | 2007-03-08 | Hongmei Zhang | Deposition of perovskite and other compound ceramic films for dielectric applications |
US20080194088A1 (en) * | 2007-02-14 | 2008-08-14 | Micron Technology, Inc. | Vapor deposition methods for forming a metal-containing layer on a substrate |
US20090058953A1 (en) * | 2007-09-05 | 2009-03-05 | Takami Arakawa | Process for forming a ferroelectric film, ferroelectric film, ferroelectric device, and liquid discharge apparatus |
US20110215679A1 (en) * | 2010-03-03 | 2011-09-08 | Takayuki Naono | Piezoelectric film, piezoelectric device, liquid ejection apparatus, and method of producing piezoelectric film |
US20110292134A1 (en) * | 2010-05-27 | 2011-12-01 | Tsutomu Sasaki | Perovskite oxide, oxide composition, oxide body, piezoelectric device, and liquid discharge apparatus |
Non-Patent Citations (5)
Title |
---|
Habermeier, Hanns-Ulrich, "Thin films or pervoskite-type complex oxides". Materials Today, October 2007, Volume 10, Number 10, pp.34-43. * |
Ju, Young-Wan, et al., "Growth of Thin-Film Layered Perovskite Cathodes by Pulsed Laser Deposition and their Electrochemical Studies in IT-SOFCs". Journal of The Electrochemical Society, 161 (6) F698-F702 (2014). * |
Marozau, I., et al., "RF-plasma assisted pulsed laser deposition of nitrogen-doped SrTiO3 thin films". Appl Phys A (2008) 93: 721-727. * |
Martynczuk, Julia, et al., "Performance of zinc-doped perovskite-type membranes at intermediate temperatures for long-term oxygen permeation and under a carbon dioxide atmosphere". Journal of Membrane Science 344 (2009) 62-70. * |
Tarascon, J.M., et al., "3d-metal doping of the high-temperature superconducting perovskites La-Sr-Cu-O and Y-Ba-Cu-O". Physical Review B, Volume 36, Number 16, 1 December 1987, pp.8393-8400. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10186570B2 (en) | 2013-02-08 | 2019-01-22 | Entegris, Inc. | ALD processes for low leakage current and low equivalent oxide thickness BiTaO films |
US10128052B1 (en) | 2017-08-03 | 2018-11-13 | University Of Utah Research Foundation | Methods of thermally induced recrystallization |
US12009514B2 (en) | 2018-10-11 | 2024-06-11 | Samsung Electronics Co., Ltd. | Perovskite material, method of preparing the same, and secondary battery including the perovskite material |
Also Published As
Publication number | Publication date |
---|---|
WO2012177642A3 (fr) | 2013-03-21 |
WO2012177642A2 (fr) | 2012-12-27 |
JP2014520404A (ja) | 2014-08-21 |
TW201301352A (zh) | 2013-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140134823A1 (en) | High-k perovskite materials and methods of making and using the same | |
US11043502B2 (en) | Semiconductor devices including ferroelectric materials | |
US6451646B1 (en) | High-k dielectric materials and processes for manufacturing them | |
KR101123433B1 (ko) | 고 유전률을 갖는 구조물을 형성하는 방법 및 고 유전률을 갖는 구조물 | |
US20130324390A1 (en) | Scalable lead zirconium titanate (pzt) thin film material and deposition method, and ferroelectric memory device structures comprising such thin film material | |
US8541868B2 (en) | Top electrode templating for DRAM capacitor | |
US6576928B2 (en) | Semiconductor device capacitor with high permittivity tantalum pentoxide/niobium pentoxide dielectric | |
US8828836B2 (en) | Method for fabricating a DRAM capacitor | |
US20160133691A1 (en) | DRAM MIMCAP Stack with MoO2 Electrode | |
US6544857B1 (en) | Dielectric capacitor manufacturing method and semiconductor storage device manufacturing method | |
US8569819B1 (en) | Doped electrodes for DRAM applications | |
US9318546B1 (en) | Doped electrode for DRAM capacitor stack | |
KR20010040303A (ko) | 절연 재료, 절연막 피복 기판, 그 제조 방법 및 박막 소자 | |
US7153750B2 (en) | Methods of forming capacitors of semiconductor devices including silicon-germanium and metallic electrodes | |
US20030132474A1 (en) | Capacitor for semiconductor memory device and method of manufacturing the same | |
KR100882090B1 (ko) | 반도체소자의 캐패시터 제조방법 | |
JP2018010934A (ja) | 半導体装置及びその製造方法 | |
JP2007281255A (ja) | 強誘電体キャパシタおよびその製造方法、強誘電体メモリおよびその製造方法 | |
KR20040060083A (ko) | 금속 산화물 하부전극을 구비하는 반도체 소자의 캐패시터형성방법 | |
KR20030057622A (ko) | 분극특성을 향상시킨 강유전체 캐패시터 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:ENTEGRIS, INC.;POCO GRAPHITE, INC.;ATMI, INC.;AND OTHERS;REEL/FRAME:032815/0852 Effective date: 20140430 Owner name: GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT, NEW Y Free format text: SECURITY INTEREST;ASSIGNORS:ENTEGRIS, INC.;POCO GRAPHITE, INC.;ATMI, INC.;AND OTHERS;REEL/FRAME:032815/0852 Effective date: 20140430 |
|
AS | Assignment |
Owner name: GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:ENTEGRIS, INC.;POCO GRAPHITE, INC.;ATMI, INC.;AND OTHERS;REEL/FRAME:032812/0192 Effective date: 20140430 Owner name: GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT, NEW Y Free format text: SECURITY INTEREST;ASSIGNORS:ENTEGRIS, INC.;POCO GRAPHITE, INC.;ATMI, INC.;AND OTHERS;REEL/FRAME:032812/0192 Effective date: 20140430 |
|
AS | Assignment |
Owner name: ENTEGRIS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADVANCED TECHNOLOGY MATERIALS, INC.;REEL/FRAME:034894/0025 Effective date: 20150204 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: ATMI, INC., CONNECTICUT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:047477/0032 Effective date: 20181106 Owner name: ATMI PACKAGING, INC., CONNECTICUT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:047477/0032 Effective date: 20181106 Owner name: ENTEGRIS, INC., MASSACHUSETTS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:047477/0032 Effective date: 20181106 Owner name: POCO GRAPHITE, INC., MASSACHUSETTS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:047477/0032 Effective date: 20181106 Owner name: ADVANCED TECHNOLOGY MATERIALS, INC., CONNECTICUT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:047477/0032 Effective date: 20181106 Owner name: ATMI PACKAGING, INC., CONNECTICUT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:047477/0151 Effective date: 20181106 Owner name: ENTEGRIS, INC., MASSACHUSETTS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:047477/0151 Effective date: 20181106 Owner name: POCO GRAPHITE, INC., MASSACHUSETTS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:047477/0151 Effective date: 20181106 Owner name: ATMI, INC., CONNECTICUT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:047477/0151 Effective date: 20181106 Owner name: ADVANCED TECHNOLOGY MATERIALS, INC., CONNECTICUT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT;REEL/FRAME:047477/0151 Effective date: 20181106 |