US20140110935A1 - Pipe Joint Structure for Exhaust Gas Treatment Device for Industrial Vehicle - Google Patents

Pipe Joint Structure for Exhaust Gas Treatment Device for Industrial Vehicle Download PDF

Info

Publication number
US20140110935A1
US20140110935A1 US14/118,655 US201214118655A US2014110935A1 US 20140110935 A1 US20140110935 A1 US 20140110935A1 US 201214118655 A US201214118655 A US 201214118655A US 2014110935 A1 US2014110935 A1 US 2014110935A1
Authority
US
United States
Prior art keywords
pipe
bracket member
joint structure
pipe joint
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/118,655
Other languages
English (en)
Inventor
Kouji Shiizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Logisnext Unicarriers Co Ltd
Original Assignee
Unicarriers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unicarriers Corp filed Critical Unicarriers Corp
Assigned to UNICARRIERS CORPORATION reassignment UNICARRIERS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHIIZAKI, Kouji
Publication of US20140110935A1 publication Critical patent/US20140110935A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1838Construction facilitating manufacture, assembly, or disassembly characterised by the type of connection between parts of exhaust or silencing apparatus, e.g. between housing and tubes, between tubes and baffles
    • F01N13/1844Mechanical joints
    • F01N13/1855Mechanical joints the connection being realised by using bolts, screws, rivets or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/082Other arrangements or adaptations of exhaust conduits of tailpipe, e.g. with means for mixing air with exhaust for exhaust cooling, dilution or evacuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1805Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body
    • F01N13/1811Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body with means permitting relative movement, e.g. compensation of thermal expansion or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L25/00Constructive types of pipe joints not provided for in groups F16L13/00 - F16L23/00 ; Details of pipe joints not otherwise provided for, e.g. electrically conducting or insulating means
    • F16L25/12Joints for pipes being spaced apart axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L27/00Adjustable joints, Joints allowing movement
    • F16L27/10Adjustable joints, Joints allowing movement comprising a flexible connection only, e.g. for damping vibrations
    • F16L27/1004Adjustable joints, Joints allowing movement comprising a flexible connection only, e.g. for damping vibrations introduced in exhaust pipes for hot gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2270/00Mixing air with exhaust gases
    • F01N2270/08Mixing air with exhaust gases for evacuation of exhaust gases, e.g. in tail-pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates generally to a pipe joint structure for an exhaust gas treatment device for an industrial vehicle, and more particularly to such an improved pipe joint structure that can absorb an external force with a gap for introducing the outside air into a pipe joint part formed and that can facilitate a fine adjustment of the gap.
  • an exhaust gas treatment device such as a diesel particulate filter in an engine exhaust system for collecting particulate matter (PM) included in emissions of a diesel engine and removing it from the emissions so that the industrial vehicles can adapt for the fourth emission regulation.
  • PM particulate matter
  • Particulate matter collected by the diesel particulate filter can be burnt using high temperature exhaust gas introduced into the diesel particulate filter but at this juncture the exhaust gas temperature becomes extremely high (approximately 600° C.). It is thus considered to apply an outside air introduction structure by Venturi effect, which has been utilized in a prior-art exhaust gas device, to an exhaust part of this diesel particulate filter as well to decrease the exhaust gas temperature.
  • a tail pipe is directed upward from an engine, an openable/closable cover is provided to cover an engine room from above, and a lower end of the tail pipe is fitted to the cover.
  • a member e.g. a head guard
  • it is also considered to fix the tail pipe to a member (e.g. a head guard) on a vehicle body side to facilitate opening/closing work of the cover.
  • a connecting part is possibly damaged through oscillation.
  • the present invention has been made in view of these circumstances and its object is to provide a pipe joint structure for an exhaust gas treatment device for an industrial vehicle that can decrease exhaust gas temperature, that can absorb an external force with a gap formed at a pipe joint part, and that can facilitate a fine adjustment of the gap.
  • the exhaust gas treatment device is provided with an exhaust pipe, a distal end portion of the exhaust pipe is inserted into an opening portion of a tail pipe, and the exhaust pipe is elastically supported in a longitudinal direction of the tailpipe such that the exhaust pipe forms a gap of a tapered cross sectional shape relative to the opening portion of the tail pipe.
  • the distal end portion of the exhaust pipe of the exhaust gas treatment device is inserted into the opening portion of the tail pipe and the gap is formed between the distal end portion of the exhaust pipe and the opening portion of the tail pipe, when discharging exhaust gas from the exhaust gas treatment device into the exhaust pipe, the outside air is led into the tail pipe by generating a Venturi effect thus decreasing the exhaust gas temperature.
  • the distal end portion of the exhaust pipe is elastically supported relative to the opening portion of the tail pipe in the longitudinal direction of the tail pipe, an external force imparted to a pipe joint part can be absorbed with a gap formed at the pipe joint part.
  • an exhaust pipe side and a tail pipe side have respective different oscillation systems, it is possible to prevent the distal end portion of the exhaust pipe and the opening portion of the tail pipe from being damaged through oscillation.
  • the extent of an overlap between the distal end portion of the exhaust pipe and the opening portion of the tail pipe can be varied because the exhaust pipe is elastically supported relative to the tail pipe in the longitudinal direction of the tail pipe.
  • the exhaust pipe of the exhaust gas treatment device may have a first bracket member, the tail pipe may have a second bracket member, an attachment bolt may be inserted through the first bracket member and the second bracket member, and a first elastic member may be provided around an outer periphery of the attachment bolt between the first bracket member and the second bracket member, as recited in the invention claimed in claim 2 .
  • the distal end portion of the exhaust pipe is elastically supported relative to the opening portion of the tail pipe in the longitudinal direction of the tail pipe with the first elastic member sandwiched between the first bracket member and the second bracket member.
  • the first elastic member may be formed of a coil spring, as recited in the invention claimed in claim 3 .
  • a headpart of the attachment bolt may be located away from the first bracket member and a second elastic member is provided around the outer periphery of the attachment bolt between the head part of the attachment bolt and the first bracket member, as recited in the invention claimed in claim 4 .
  • the second elastic member is provided in addition to the first elastic member, the supporting rigidity of elastic support between the exhaust pipe and the tail pipe can be enhanced and the exhaust pipe can be elastically supported relative to the tail pipe in both the forward direction and the rearward direction of the longitudinal direction of the tail pipe, thus further improving flexibility relative to the external force.
  • the second elastic member may formed of a coil spring, as recited in the in the invention claimed in claim 5 .
  • the first bracket member and the second bracket member may project in a radial direction, as recited in the invention claimed in claim 6 .
  • the first bracket member may be provided not along the whole circumference of the exhaust pipe but on a part of a circumference of the exhaust pipe, as recited in the invention claimed in claim 7 .
  • the first bracket member can be prevented from obstructing the flow of the outside air.
  • the attachment bolt may be provided not along the whole circumference of the first bracket member and the second bracket member but at two positions of a circumference of each of the first bracket member and the second bracket member, as recited in the invention claimed in claim 8 .
  • an inclination of an axis (i.e. angular displacement) of the exhaust pipe relative to the tail pipe can be permitted not only in the vertical and horizontal planes but also in multiple planes.
  • the distal end portion of the exhaust pipe may have a tapered shape whose diameter becomes gradually small toward a tip end thereof, as recited in the invention claimed in claim 9 .
  • the tail pipe may be fixed to an industrial vehicle body side, as recited in the invention claimed in claim 10 .
  • the distal end portion of the exhaust pipe is elastically supported relative to the opening portion of the tail pipe in the longitudinal direction of the tail pipe, the external force imparted to the pipe joint part can be absorbed and the distal end portion of the exhaust pipe and the opening portion of the tail pipe can be prevented from being damaged through oscillation.
  • the exhaust gas treatment device may be a diesel particulate filter, as recited in the invention claimed in claim 11 .
  • the distal end portion of the exhaust pipe of the exhaust gas treatment device is inserted into the opening portion of the tail pipe and a gap is formed between the distal end portion of the exhaust pipe and the opening portion of the tail pipe, when discharging exhaust gas from the exhaust gas treatment device into the exhaust pipe, the outside air is introduced into the tail pipe by generating a Venturi effect thus decreasing the exhaust gas temperature.
  • the distal end portion of the exhaust pipe is elastically supported relative to the opening portion of the tail pipe in the longitudinal direction of the tail pipe, the external force imparted to the pipe joint part can be absorbed with the gap formed at the pipe joint part.
  • the exhaust pipe side and the tail pipe side have respective different oscillation systems, it is possible to prevent the distal end portion of the exhaust pipe and the opening portion of the tail pipe from being damaged through oscillation.
  • the extent of an overlap between the distal end portion of the exhaust pipe and the opening portion of the tail pipe can be varied because the exhaust pipe is elastically supported relative to the tail pipe in the longitudinal direction of the tail pipe.
  • FIG. 1 is a side schematic view of a diesel particulate filter and its peripheral part for an industrial vehicle employing a pipe joint structure according to an embodiment of the present invention
  • FIG. 2 is an enlarged perspective view of the pipe joint structure of FIG. 1 ;
  • FIG. 3 is an enlarged side view of the pipe joint structure of FIG. 1 ;
  • FIG. 4 is a longitudinal sectional view of FIG. 3 ;
  • FIG. 5 is a side schematic view of the pipe joint structure illustrating the state that the pipe joint structure is offset vertically;
  • FIG. 6 is a top plan schematic view of the pipe joint structure illustrating the state that the pipe joint structure is offset sideways.
  • FIG. 1 illustrates a diesel particulate filter for a forklift employing a pipe joint structure according to an embodiment of the present invention.
  • the diesel particulate filter 1 is installed in an engine room through a frame 2 .
  • the diesel particulate filter 1 is a device that collects particulate matter (PM) included in exhaust gas of a diesel engine and that removes it from exhaust gas.
  • the exhaust gas led-in side of the diesel particulate filter 1 is connected to an exhaust pipe 3 into which exhaust gas discharged from the engine is introduced, and the exhaust gas led-out side of the diesel particulate filter 1 is connected to an exhaust pipe 5 extending toward a tail pipe 4 .
  • the tail pipe 4 extends upwardly. Between the exhaust pipe 5 and the tail pipe 4 is provided a pipe joint structure 10 according to the present embodiment.
  • a distal end portion 5 a of the exhaust pipe 5 of the diesel particulate filter 1 is inserted into an opening portion 4 a of the tail pipe 4 .
  • the distal end portion 5 a of the exhaust pipe 5 forms a gap of a tapered cross sectional shape relative to the opening portion 4 a of the tail pipe 4 (see FIG. 4 ).
  • first bracket members 11 , 11 ′ are attached on an outer circumference of the exhaust pipe 5 in the vicinity of the distal end portion 5 a.
  • Each of the first bracket members 11 , 11 ′ is an L-shaped metal fitting a part of which protrudes radially outwardly.
  • the first bracket members 11 , 11 ′ are disposed at two positions located 180 degrees circumferentially apart from each other.
  • a second bracket member 12 is attached on an outer circumference of the tail pipe 4 in the vicinity of the opening portion 4 a.
  • the second bracket member 12 extends along the whole periphery of an outer circumference of the tail pipe 4 and has respective flanged portions 12 A, 12 A′ that protrude radially outwardly at positions facing the first bracket members 11 , 11 ′.
  • An attachment bolt 13 is inserted through the first bracket member 11 and the flanged portion 12 A, and an attachment bolt 13 ′ is inserted through the first bracket member 11 ′ and the flanged portion 12 A′.
  • the attachment bolts 13 , 13 ′ are stepped bolts whose larger diametric portions 13 A, 13 A′ are inserted through respective through holes that are formed in the first bracket members 11 , 11 ′ respectively and whose smaller diametric portions 13 B, 13 B′ are inserted through respective through holes that are formed in the flanged portions 12 A, 12 A′ respectively.
  • the smaller diametric portions 13 B, 13 B′ are formed with male screw parts, which are screwed into nuts 14 , 14 ′ respectively.
  • head portions 13 H, 13 H′ of the attachment bolts 13 , 13 ′ are disposed away from the first bracket members 11 , 11 ′ respectively.
  • a first coil spring 15 is fitted around an outer periphery of the larger diametric portion 13 A of the attachment bolt 13 between the first bracket member 11 and the flanged portion 12 A.
  • a first coil spring 15 ′ is fitted around an outer periphery of the larger diametric portion 13 A′ of the attachment bolt 13 ′ between the first bracket member 11 ′ and the flanged portion 12 A′.
  • a second coil spring 16 is fitted around the outer periphery of the larger diametric portion 13 A of the attachment bolt 13 between the head portion 13 H of the attachment bolt 13 and the first bracket member 11 .
  • a second coil spring 16 ′ is fitted around the outer periphery of the larger diametric portion 13 A′ of the attachment bolt 13 ′ between the head portion 13 H′ of the attachment bolt 13 ′ and the first bracket member 11 .
  • the larger diametric portion 13 A of the attachment bolt 13 has washers 17 , 18 around the outer periphery thereof on opposite sides of the first bracket members 11 and the head portion 13 H of the attachment bolt 13 has a washer 19 (see FIG. 3 ).
  • the larger diametric portion 13 A′ of the attachment bolt 13 ′ has washers 17 ′, 18 ′ around the outer periphery thereof on opposite sides of the first bracket members 11 ′ and the head portion 13 H′ of the attachment bolt 13 ′ has a washer 19 ′ (see FIG. 3 ).
  • first coil spring 15 presses against the flanged portion 12 A and the other end of the first coil spring 15 presses against the washer 17 .
  • first coil spring 15 ′ presses against the flanged portion 12 A′ and the other end of the first coil spring 15 ′ presses against the washer 17 ′.
  • second coil spring 16 presses against the washer 18 and the other end of the second coil spring 16 presses against the washer 19 .
  • an end of the second coil spring 16 ′ presses against the washer 18 ′ and the other end of the second coil spring 16 ′ presses against the washer 19 ′.
  • the exhaust pipe 5 is elastically supported relative to the opening portion 4 a of the tail pipe 4 in the longitudinal direction of the tail pipe 4 .
  • the distal end portion 5 a of the exhaust pipe 5 of the diesel particulate filter 1 is inserted into the opening portion 4 a of the tail pipe 4 and there is formed a gap between the distal end portion 5 a of the exhaust pipe 5 and the opening portion 4 a of the tail pipe 4 (see FIG. 4 ), when discharging exhaust gas from the exhaust pipe 5 of the diesel particulate filter 1 into the tail pipe 4 , the outside air is led into the tail pipe 4 by generating a Venturi effect (see arrow marks in FIG. 4 ), thus decreasing exhaust gas temperature.
  • particulate matter that has been collected is burnt by high temperature exhaust gas introduced in the diesel particulate filter.
  • exhaust gas temperature becomes extremely high (approximately 600° C.).
  • the outside air can be led into the tail pipe 4 at the time of exhausting from the exhaust pipe 5 to the tail pipe 4 , thereby effectively reducing exhaust gas temperature.
  • the distal end portion 5 a of the exhaust pipe 5 has a tapered shape (i.e. a nozzle-like shape) whose diameter becomes gradually small toward a tip end of the distal end portion 5 a, negative pressure at the pipe joint part can be increased at the time of exhausting from the exhaust pipe 5 , thus increasing the amount of introduction of the outside air into the tail pipe 4 .
  • the first bracket members 11 , 11 ′ attached on the outer periphery of the exhaust pipe 5 are provided not along the whole circumference of the exhaust pipe 5 but at a part of a circumference of the exhaust pipe 5 , the gap between the distal end portion 5 a of the exhaust pipe 5 and the opening portion 4 a of the tail pipe 4 is not closed by the first bracket members 11 , 11 ′ (see FIG. 2 ), and flow of the outside air into the opening portion 4 a of the tail pipe 4 can thus be secured.
  • FIG. 5 is a side schematic view of the pipe joint structure 10 viewed from the side thereof.
  • FIG. 6 is a top plan view of the pipe joint structure 10 viewed from the top thereof.
  • FIG. 5 illustrates the state that an axis 5 C of the exhaust pipe 5 inclines downwardly by the action of the external force and is vertically offset relative to an axis 4 C of the tail pipe 4 .
  • FIG. 6 illustrates the state that an axis 5 C of the exhaust pipe 5 inclines sideways by the action of the external force and is offset to the left/right (i.e. angular-displaced) relative to an axis 4 C of the tail pipe 4 .
  • first bracket members 11 , 11 ′ attached on the exhaust pipe 5 are elastically supported by elastic resilience of the first and second coil springs 15 , 16 ; 15 ′, 16 ′ around the attachment bolts 13 , 13 ′, even when the axis 5 C of the exhaust pipe 5 is displaced in any directions including the vertical direction and the left-right direction relative to the axis 4 C of the tail pipe 4 as shown in FIGS. 5 and 6 , such displacement can be absorbed by expansion and retraction of each of the springs.
  • the distal end portion 5 a of the exhaust pipe 5 and the opening portion 4 a of the tail pipe 4 are capable of avoiding fracture due to oscillation.
  • the second coil springs 16 , 16 ′ in addition to the first coil springs 15 , 15 ′, supporting rigidity in an elastic support between the exhaust pipe 5 and the tail pipe 4 can be enhanced and besides the exhaust pipe 5 can be elastically supported relative to the tail pipe 4 in both the forward direction and the rearward direction of the longitudinal direction of the tail pipe 4 , thus further improving flexibility relative to the external force.
  • the exhaust pipe 5 is elastically supported relative to the tail pipe 4 in the longitudinal direction of the tail pipe 4 at a position where elastic resilience of the first coil springs 15 , 15 ′ balances elastic resilience of the second coil springs 16 , 16 ′ respectively. Therefore, by properly adjusting each spring force of the first and second coil springs 15 , 16 ; 15 ′, 16 ′, the extent of an overlap between the distal end portion 5 a of the exhaust pipe 5 and the opening portion 4 a of the tail pipe 4 can be varied.
  • the gap formed between the distal end portion 5 a of the exhaust pipe 5 and the opening portion 4 a of the tail pipe 4 has a tapered cross sectional shape, the gap between the distal end portion 5 a of the exhaust pipe 5 and the opening portion 4 a of the tail pipe 4 can be easily adjusted and the amount of the outside air introduced into the tail pipe 4 can be regulated with ease.
  • Japanese patent application publication Nos. 2000-291862 and 2002-267062 disclose a structure where in the pipe joint that couples the first conduit to the second conduit the annular seal ring is interposed between the mating faces of the first conduit and the second conduit and the spring force of the coil spring biases the first conduit toward the second conduit side such that the annular seal ring is pressed against the mating faces of the first and second conduits (see FIG. 2 of each of the publications).
  • the exhaust gas treatment device that the pipe joint structure of the present invention can be applied to is not limited to the above-mentioned diesel particulate filter, but other treatment devices as well are applicable.
  • the pipe joint structure according to the present invention also has application to other industrial vehicles other than a forklift.
  • the present invention is suitable to an exhaust gas treatment device for an industrial vehicle such as a diesel particulate filter and the like, and especially to a device that requires absorption of an external force imparted to a pipe joint part with a gap.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Exhaust Silencers (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)
US14/118,655 2011-07-09 2012-05-23 Pipe Joint Structure for Exhaust Gas Treatment Device for Industrial Vehicle Abandoned US20140110935A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011-152390 2011-07-09
JP2011152390A JP2013019291A (ja) 2011-07-09 2011-07-09 産業車両用排気処理装置の管継手構造
PCT/JP2012/063835 WO2013008548A1 (ja) 2011-07-09 2012-05-23 産業車両用排気処理装置の管継手構造

Publications (1)

Publication Number Publication Date
US20140110935A1 true US20140110935A1 (en) 2014-04-24

Family

ID=47505846

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/118,655 Abandoned US20140110935A1 (en) 2011-07-09 2012-05-23 Pipe Joint Structure for Exhaust Gas Treatment Device for Industrial Vehicle

Country Status (4)

Country Link
US (1) US20140110935A1 (ja)
EP (1) EP2730764A4 (ja)
JP (1) JP2013019291A (ja)
WO (1) WO2013008548A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140311148A1 (en) * 2013-04-19 2014-10-23 Kobelco Construction Machinery Co., Ltd. Exhaust apparatus of construction machine
US10240501B2 (en) * 2016-04-12 2019-03-26 Deere & Company Venturi exhaust gas cooler
US20220290604A1 (en) * 2019-08-07 2022-09-15 Kabushiki Kaisha Toyota Jidoshokki Industrial vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104668227B (zh) * 2015-02-05 2017-04-05 新疆克拉玛依市采丰实业有限责任公司 防脱流体高压喷枪
CN106041399B (zh) * 2016-07-14 2017-08-11 苏州事达同泰汽车零部件有限公司 汽车装饰尾管焊接工装
CN113431663B (zh) * 2021-08-25 2021-11-16 宁波开特环保科技有限公司 一种环境保护型汽油机颗粒捕集器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6164067A (en) * 1997-03-07 2000-12-26 Cronje; Jacobus Knuckle joint for an exhaust system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126583Y2 (ja) * 1977-08-18 1986-08-09
JPS5761292U (ja) * 1980-09-29 1982-04-12
JPH0483826U (ja) 1990-11-29 1992-07-21
DE4124204A1 (de) * 1991-07-20 1993-01-21 Deere & Co Verbindung zwischen abgasrohr und endrohr
DE9214001U1 (de) * 1991-10-17 1992-12-24 Fa. J. Eberspächer, 7300 Esslingen Endrohrinjektor
US5683119A (en) * 1996-09-10 1997-11-04 Metex Corporation Pipe joint and seal therefor
JP2000034742A (ja) 1998-07-16 2000-02-02 Hitachi Constr Mach Co Ltd 建設機械の排気装置
JP3077693B1 (ja) 1999-04-12 2000-08-14 国産部品工業株式会社 管継手
JP4374110B2 (ja) * 2000-03-16 2009-12-02 株式会社ユタカ技研 排気管継手
JP2002160536A (ja) * 2000-11-28 2002-06-04 Suzuki Motor Corp 排気系構造
JP4769361B2 (ja) 2001-03-02 2011-09-07 日本ピラー工業株式会社 管継手
JP2007154960A (ja) * 2005-12-02 2007-06-21 Ket & Ket:Kk 管継手
US20080087006A1 (en) * 2006-10-11 2008-04-17 International Engine Intellectual Property Company , Llc Tailpipe exhaust gas mixer and method
CN101610834B (zh) * 2006-11-14 2013-04-24 坦尼科汽车营业公司 降低排气尾管排气温度的装置
DE102009046253A1 (de) * 2009-10-30 2011-05-05 Deere & Company, Moline Vorrichtung zur Kühlung eines Abgasstroms
US20110101683A1 (en) * 2009-11-05 2011-05-05 Daimler Trucks North America Llc Vehicle exhaust decoupler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6164067A (en) * 1997-03-07 2000-12-26 Cronje; Jacobus Knuckle joint for an exhaust system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140311148A1 (en) * 2013-04-19 2014-10-23 Kobelco Construction Machinery Co., Ltd. Exhaust apparatus of construction machine
US9238989B2 (en) * 2013-04-19 2016-01-19 Kobelco Construction Machinery Co., Ltd. Exhaust apparatus of construction machine
US10240501B2 (en) * 2016-04-12 2019-03-26 Deere & Company Venturi exhaust gas cooler
US20220290604A1 (en) * 2019-08-07 2022-09-15 Kabushiki Kaisha Toyota Jidoshokki Industrial vehicle

Also Published As

Publication number Publication date
WO2013008548A1 (ja) 2013-01-17
EP2730764A4 (en) 2015-02-25
EP2730764A1 (en) 2014-05-14
JP2013019291A (ja) 2013-01-31

Similar Documents

Publication Publication Date Title
US20140110935A1 (en) Pipe Joint Structure for Exhaust Gas Treatment Device for Industrial Vehicle
WO2014064853A1 (ja) 作業車両
US9222383B2 (en) Working vehicle including exhaust gas treatment device
JP5526288B1 (ja) ホイールローダ
WO2009142058A1 (ja) 建設機械
JP2003020950A (ja) 内燃機関の排気マニホールドに排気ガスターボ過給器を固定するための装置
US20140124283A1 (en) Horizontal muffler for an agricultural vehicle
JP2014510229A (ja) 排気処理装置のためのポカ繋ぎ部(poka−yoke)搭載システム
KR20160134640A (ko) 엔진 장치
CN103261646B (zh) 气缸盖支架及包括气缸盖支架的农用牵引机和发电机组
CN204419332U (zh) 一种排气管接头
JP2015223991A (ja) 作業車両
JP2004176554A (ja) エンジンのegr装置
US9476386B2 (en) Intake and exhaust system for internal combustion engine
JP6252236B2 (ja) トラクタ
JP2011033394A (ja) 車両用エンジンの排気圧力検出装置
JP2019157789A (ja) フランジの締結構造
JP2013130093A (ja) 内燃機関用エアクリーナ
JP2012077622A (ja) 排気処理装置付きエンジン
KR101831832B1 (ko) 배기 가스를 위한 인서트, 홀더 및 후처리 유닛
JP5223654B2 (ja) エンジンの排気装置
JP6234329B2 (ja) 建設機械
JP5996450B2 (ja) 建設機械
WO2012043137A1 (ja) 排気処理装置付きエンジン
CN214020714U (zh) 一种反应釜变幅杆的快速安装结构

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNICARRIERS CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHIIZAKI, KOUJI;REEL/FRAME:031631/0077

Effective date: 20131113

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION