US20120048422A1 - Dosing device and method for filling a cavity - Google Patents

Dosing device and method for filling a cavity Download PDF

Info

Publication number
US20120048422A1
US20120048422A1 US13/058,580 US200913058580A US2012048422A1 US 20120048422 A1 US20120048422 A1 US 20120048422A1 US 200913058580 A US200913058580 A US 200913058580A US 2012048422 A1 US2012048422 A1 US 2012048422A1
Authority
US
United States
Prior art keywords
particulate material
dosing device
filling
cavity
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/058,580
Other languages
English (en)
Inventor
Allan Dagsland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AstraZeneca AB
Original Assignee
AstraZeneca AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AstraZeneca AB filed Critical AstraZeneca AB
Priority to US13/058,580 priority Critical patent/US20120048422A1/en
Assigned to ASTRAZENECA AB reassignment ASTRAZENECA AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DAGSLAND, ALLAN
Publication of US20120048422A1 publication Critical patent/US20120048422A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B1/00Packaging fluent solid material, e.g. powders, granular or loose fibrous material, loose masses of small articles, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B1/30Devices or methods for controlling or determining the quantity or quality or the material fed or filled
    • B65B1/36Devices or methods for controlling or determining the quantity or quality or the material fed or filled by volumetric devices or methods
    • B65B1/363Devices or methods for controlling or determining the quantity or quality or the material fed or filled by volumetric devices or methods with measuring pockets moving in an endless path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B37/00Supplying or feeding fluent-solid, plastic, or liquid material, or loose masses of small articles, to be packaged
    • B65B37/16Separating measured quantities from supply
    • B65B37/20Separating measured quantities from supply by volume measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F11/00Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
    • G01F11/28Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with stationary measuring chambers having constant volume during measurement
    • G01F11/36Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with stationary measuring chambers having constant volume during measurement with supply or discharge valves of the rectilinearly-moved slide type
    • G01F11/40Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with stationary measuring chambers having constant volume during measurement with supply or discharge valves of the rectilinearly-moved slide type for fluent solid material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F11/00Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
    • G01F11/28Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with stationary measuring chambers having constant volume during measurement
    • G01F11/42Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with stationary measuring chambers having constant volume during measurement with supply or discharge valves of the rotary or oscillatory type
    • G01F11/46Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with stationary measuring chambers having constant volume during measurement with supply or discharge valves of the rotary or oscillatory type for fluent solid material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B1/00Packaging fluent solid material, e.g. powders, granular or loose fibrous material, loose masses of small articles, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B1/20Reducing volume of filled material
    • B65B1/24Reducing volume of filled material by mechanical compression

Definitions

  • the present invention relates to a dosing device comprising a powder hopper and a plate with a surface, wherein said plate is provided with at least one cavity adapted for receiving a particulate material, and filling means being movable along said surface for moving particulate material into said at least one cavity.
  • the present invention also relates to a method for filling a cavity provided in a plate of a dosing device with a quantity of particulate material.
  • the doses of medicament may be provided in packs having several cavities for housing a dose of medicament.
  • the cavities filled with a dose are subsequently sealed by a sealing sheet, for example a foil of aluminium.
  • the packs containing the doses of medicament can be in the form of blister packs or injection moulded discs provided with blisters and cavities, respectively, for housing the powdered medicament, the packs can have various shapes, and the cavities can be distributed in various patterns.
  • the method for filling said cavities should provide an accurate and changeable dosing into the cavities, to provide packs containing accurate doses of medicament of different sizes.
  • a dosing process may be used in which cavities of a dosing device are filled with desired dose of medicament, said cavities of the dosing device having a smaller volume than the cavities of the final packs, and thereafter the medicament is transferred to the final pack.
  • WO 06/118526 discloses a filling element which is provided with a bottom surface comprising several chambers, the amount of which is the same as the amount of cavities in the drug disc.
  • the filling element has scraper means in the form of four rotating scrapers for scrape filling the chambers.
  • particulate material that has limited free-flowing characteristics may be adhered to lumps, which may cause uneven distribution of the material between different cavities, i.e. some of the cavities may not be filled with the desired amount of medicament.
  • An object of the present invention is therefore to provide a method and device for filling at least one cavity with a quantity of particulate material (such as powder), which thereafter can distribute an accurate dose of particulate material having a smaller volume than that of the cavity housing the dose, that can handle cohesive particulate material, i.e. particulate material that does not flow freely, and that gives an accurate distribution of the particulate material in each of the cavities.
  • particulate material such as powder
  • a dosing device of the kind defined in claim 1 comprises a powder hopper and a plate with a surface, wherein said plate is provided with at least one cavity adapted for receiving a particulate material, and filling means being movable along said surface for moving particulate material into said at least one cavity, wherein said filling means is adapted to exert a compressing force on said particulate material in a direction towards said surface so that said particulate material is forced into said at least one cavity.
  • Particulate material that has limited free-flowing abilities has a tendency to adhere to each other, causing small lumps of the material.
  • a lump may be shovelled into a cavity and block e.g. the entry opening of the cavity so that it does not become filled with the desired amount of particulate material.
  • the dosing device according to the present invention will instead press the particulate material into the cavities of the dosing device. This has the advantage that e.g. small lumps formed in the particulate material will be split up by the force exerted onto them. By this, the filling of the cavities will be more reliable, thus ensuring an accurate dose of medicaments in each cavity.
  • the device according to the present invention is not only beneficial for packing particulate material when small lumps have been formed in the material. It also gives accurate packing of material that has limited free-flowing characteristics also when no lumps have been formed in it. Furthermore, the device according to the present invention is also suitable for packing free-flowing particulate material. Experiments have shown that doses of approximately 5 mg of particulate material can be packed with a device according to the present invention with a relative standard deviation of only 3%.
  • the cavities in the dosing device according to the present invention can be arranged in any desirable shape, and, suitably, so that they correspond to the pattern of a drug dispenser.
  • the cavities of the dosing device have a smaller volume than that of the cavity housing the dose in the final pack. Since the particulate material is pressed down into the cavity of the dosing device, a very accurate dosing is achieved. Hence, when the particulate material later is transferred to the cavity in the final pack, it will provide a very accurate dosing even if the cavity in the final housing has a larger volume.
  • the device provides an uncomplicated filling of particulate material in cavities at a low cost.
  • the cavity of the dosing device is exchangeable to adapt to the size of the dose to be dosed in said cavity.
  • Materials that can be filled include powder of organic materials with particle sizes in the range of 0.5-1000 ⁇ m.
  • powders of lactose monohydrate with particle sizes ranging from 1-50 ⁇ m have been successfully filled with the method according to the invention.
  • particle size is here by meant the mass median diameter, MMD, for example measured by a laser diffraction method.
  • the dosing device further comprises scraper means, wherein said scraper means is movable along said surface of the plate.
  • the scraper means When the filling means are moved along the surface of the plate in the dosing device, and exerts a force on the particulate material in the direction towards the plate, some of the particulate material may be compressed on the plate surface located between neighbouring cavities. It is therefore advantageous to have scraper means that is movable along the surface and that can loosen up the compressed material.
  • the scraper means has a geometry that is designed to efficiently turn up the particulate material retained on the surface of the plate.
  • the loosened up particulate material may thereafter be moved and pressed into a cavity by the filling means, or be transferred and reused in another dosing device. Alternatively, the loosened up particulate material may be removed and later reused in the same dosing device.
  • the scraper means may also loosen up material that is compressed over the cavities, i.e. on top of the material that has been pressed into the cavities.
  • the scraper means is prevented from loosen up or removing material that has been pressed into a cavity.
  • the scraper means does not negatively affect the accuracy of the dosing.
  • said filling means may also move in a direction that is perpendicular to the surface of the plate.
  • the filling means may then be moved a short distance away from the surface when they come into contact with more compressed particulate material, e.g. small lumps, and thereafter be moved towards the surface, and hence, exert a force on the particulate material in that direction. By that, it acts to split up the lump and compress the particulate material into a cavity.
  • said filling means is biased towards said surface.
  • said filling means In order for the filling means to exert a force on the particulate material in the direction towards the plate, it is preferred that said filling means is biased towards the plate. This may e.g. be achieved by the filling means being spring-loaded towards the plate.
  • the filling means may be movable a short distance away from the surface, in order to “climb” over e.g. lumps as described above, but at the same time strive to return in a direction towards the plate and compress the particulate material.
  • said scraper means is biased towards said surface.
  • the purpose of the scraper means is that it is movable along the surface and that it can loosen up the compressed material. It is therefore advantageous if it is biased towards said surface so that it during movement along the surface remains in close relationship with the surface.
  • said filling means is biased towards said surface with a lower force than the force biasing said scraper means towards said surface. This is advantageous since the scraper means should follow in close relationship with the surface and the filling means should be able to move a short distance away from said surface, in a direction substantially perpendicular to said surface. However, when moved away from the surface, the filling means should strive to move back into close relationship with the surface.
  • said surface has a circular shape and is provided with several cavities, said cavities being arranged in a circular pattern around said surface.
  • said filling means and said scraper means are provided at a common boss.
  • said common boss is arranged in the centre of said circular pattern of cavities.
  • a circular plate being provided with several cavities and having a centrally arranged boss, on which said filling means and scraper means are arranged has proven to be a beneficial design for a dosing device.
  • the circular boss, and hence the filling and scraper means may be arranged for rotation both clockwise and counter-clockwise. Even though the filling means compresses the particulate material towards the surface, and the scraper means loosens up the particulate material, they also move the particulate material along the surface.
  • the particulate material may be transferred around the surface of the plate without ending up at an end thereof
  • said filling means is constituted of at least one wheel, said wheel being able to rotate on said surface.
  • the wheel may be adapted to rotate on said surface of the plate and compress the particulate material into the cavities. With this design the wheel does not have to enter the cavity in order to compress the material and hence, the portion of the wheel compressing particulate material into a specific cavity may have larger dimensions than the cavity. This is advantageous in terms of production tolerances since no exact match of the filling means and the cavity is necessary.
  • a wheel of one size may be used for filling cavities of different sizes.
  • the dosing device comprises a filling arrangement comprising two wheels and two scrapers being arranged at a common boss.
  • the wheels and scrapers are alternatingly arranged around the common boss so after each wheel a scraper is provided. This is advantageous since if a first wheel compresses the particulate material, a scraper will loosen it up before the second wheel reaches that portion of the particulate material.
  • a method for filling a cavity provided in a plate of a dosing device with a quantity of particulate material comprising the steps of providing particulate material to a powder hopper, moving filling means along a surface of said plate so that said filling means, at the same time as it is being moved along said surface, exerts a compressive force on said particulate material in the direction towards said plate.
  • particulate material that has limited free-flowing abilities has a tendency to adhere to each other, causing lumps in the powdered medicament.
  • the particulate material With the method described above the particulate material will be pressed into the cavities of the dosing device. This has the advantage that e.g. lumps formed in the particulate material will be split up by a force exerted onto them. By this, the filling of the cavities will be more reliable, thus ensuring an accurate dose of medicaments in each cavity.
  • the method according to the present invention is not only beneficial for packing particulate material when small lumps have been formed in the material. It also gives accurate packing of material that has limited free-flowing characteristics also when no lumps have been formed in it. Furthermore, the method according to the present invention is also suitable for packing free-flowing particulate material.
  • the cavities of the dosing device have a smaller volume than that of the cavity housing the dose in the final pack. Since the particulate material is pressed down into the cavity of the dosing device, a very accurate dosing is achieved. Hence, when the particulate material later is transferred to the cavity in the final pack, it still has a very accurate dosing even if the cavity in the final housing has a larger volume.
  • doses of approximately 5 mg of particulate material can be packed with a method according to the present invention with a relative standard deviation of only 3 %. Furthermore, the method provides an uncomplicated filling of particulate material in cavities at a low cost.
  • the cavity of the dosing device is exchangeable to adapt to the size of the dose to be dosed in said cavity.
  • the particulate material handled by the method according to the invention may, for instance, be a powdered medicament in pure form or admixed with a suitable excipient in powder form.
  • micronised medicaments used for asthma treatment e.g. budesonide and beclomethasone dipropionate (BDP) and lactose monohydrate excipient have been successfully filled with the method according to the invention.
  • BDP beclomethasone dipropionate
  • the method further comprises the step of loosen up compressed particulate material on said surface by means of scraper means.
  • said particulate material comprises pharmaceutical powder for use in dry powder inhalers.
  • FIG. 1 is a schematic perspective view of an embodiment of a dosing device, and an embodiment of the filling and scraper means according to the present invention
  • FIG. 2 is a schematic cross sectional view of an embodiment of the dosing device, and an embodiment of the filling and scraper means according to the present invention
  • FIGS. 3 a - 3 c are partial schematic cross sectional side views disclosing a hole structure illustrating the main steps of a dosing and pouring method
  • FIG. 4 is a schematic perspective view of an alternative cavity structure.
  • FIGS. 1 and 2 show a dosing device 1 provided with a powder hopper 2 for housing particulate material, such as powdered medicament (not shown).
  • the powder hopper has a funnel shaped interior and the sloping surfaces 12 thereof are intended to guide the powdered medicament (not shown) towards a plate 11 having a surface 3 , which can be seen as forming the bottom of the powder hopper 2 .
  • the surface 3 is formed as a hole structure 4 with cavities 5 extending into the plate 11 .
  • the cavities are distributed in a circular pattern around the plate 11 .
  • a filling arrangement 13 is rotatably arranged.
  • the filling arrangement 13 comprises two filling means, which in this exemplifying embodiment are two wheels 6 , and two scrapers 14 .
  • the wheels 6 and scrapers 14 are provided at a common boss 15 .
  • a driving axis 16 is connected to the boss 15 so that the boss 15 , and hence the wheels 6 and scrapers 14 , can be rotated.
  • the wheels 6 and scrapers 14 are evenly distributed, i.e. at approximately 90° intervals, around the boss, with each wheel 6 being followed by a scraper 14 .
  • the geometry of the scrapers 14 is designed to turn up compressed particulate material on the surface 3 .
  • the forwardly facing or leading surface of the scrapers may have its most forwardly located portion substantially in contact with the plate surface 3 .
  • the scrapers 14 are illustrated as having inclined surfaces and having e.g. a triangular cross section. This enables turn up of compressed particulate material for both clockwise and counter clockwise travel.
  • the boss 15 is axially spring loaded towards the plate 11 and the scrapers 14 , being fixedly arranged to the boss 15 , are hence also spring loaded towards the plate 11 .
  • a spring 9 is provided in relation to the driving axis 16 and may be connected to an outer casing (not shown) in order to bias the boss towards the surface 3 .
  • the spring load decides the force between the two scrapers 14 and the surface 3 of the plate 11 . It is beneficial that the scrapers 14 are arranged in close proximity to the surface 3 , the reason for this is described in more detail below.
  • Each wheel 6 is independently moveable in an axial relation, i.e. towards and away from the surface 3 of the plate 11 , in relation to the boss 15 .
  • Each wheel is also independently spring-loaded towards the surface 3 , but with a spring load that is lower than the spring load on the boss 15 towards the surface 3 .
  • the reason for this is that the wheels 6 shall be able to move a short distance away from the surface 3 when they encounter e.g. a portion of adhered and/or compressed particulate material, such as a small lump.
  • the wheels 6 may then climb on the lump of compressed material and, due to the spring loading, exert a force on the lump in the direction towards the plate 11 and thus break up the lump.
  • the spring or other means biasing each of the wheels towards the surface may e.g.
  • FIG. 3 a there is shown a shaft 10 , which the wheels 6 is rotatable around.
  • the shaft 10 is arranged to bias the wheels 6 towards the surface 3 , at the same time as it allows a certain movement of the wheels 6 in a direction that is substantially perpendicular in relation to the surface 3 , as is illustrated by the arrow D in FIG. 3 a.
  • the spring load on the boss 15 and the wheels 6 can be adjusted so that an accurate dosing of the particulate material in each cavity is achieved.
  • the wheels 6 are for example made of, or have a surface of, silicone. The reason for this is to avoid that the particulate material adheres to the wheels. However, other materials than silicone may also be used as long as the particulate material does not adhere to it.
  • the dosing device will now be explained in use.
  • particulate material is provided to the hopper 2 .
  • the particulate material is provided in such an amount that it extends from the surface 3 to approximately the centre of the wheels 6 , thereby covering the scrapers 14 .
  • the filling arrangement 13 i.e. the boss 15 , the wheels 6 and the scrapers 14 , are thereafter rotated by the driving axis 16 , bringing the wheels 6 to rotate on the surface 3 .
  • the scrapers 14 Due to the spring-load biasing the boss 15 towards the surface 3 , the scrapers 14 follow in close relation with the surface 3 .
  • the wheels 6 and scrapers 14 each pass the cavities 5 one by one during rotation of the filling arrangement 13 .
  • the wheels 6 rotate, they exert a compressing force on the particulate material and when they pass a cavity 5 they press the particulate material into the cavity.
  • FIG. 3 a illustrates how particulate material 21 is being introduced into a cavity 5 of a hole structure 4 . Due to the rotation of the wheel 6 different portions of the wheel will press the particulate material into the cavity 5 .
  • a layer of compressed particulate material retains on the surface 3 between each cavity 5 after the wheel has passed.
  • the scrapers 14 passes the compressed retained particulate material it turns it up so that the lifted particulate material can be reused.
  • the filling arrangement 13 is rotated one or several turns.
  • the driving axis 16 may also be so arranged that the filling arrangement 13 may rotate both clockwise and counter-clockwise. By this, the filling arrangement may be rotated alternatingly between these two directions in order to fill the cavities with an even amount of particulate material.
  • the excessive particulate material can be moved to another dosing device for use in that system or be returned to a storage system.
  • the particulate material is transferred to a drug disc to be used in a dispensing device such as an inhalation device.
  • a dispensing device such as an inhalation device.
  • Several different methods and devices may be used for transferring the particulate material from the dosing device 1 to the drug disc.
  • ejector means One such method and device that may be used in conjunction with the present invention are ejector means.
  • the cavities 5 may then be formed with a retractable bottom.
  • the bottom of each of the cavities is removed and the ejector means may be inserted into the cavity and push the material out of the cavity and into a final pack of a drug dispenser.
  • the plate 11 of the dosing device 1 is positioned on top of the drug disc, with the cavities 5 positioned opposite corresponding cavities in the drug disc so that the particulate material can be transferred from the cavities 5 of the plate 11 to the cavities of the drug disc.
  • the dosing device may be provided with vibrating means or ultrasonic elements for enabling controlled emptying of the cavities into a corresponding cavity of a drug disc.
  • FIG. 3 a a section of one cavity 5 , of a hole structure 4 , is outlined schematically.
  • the wall structure of said cavities 5 comprises a plurality of movable wall portions 22 , which may be moved in relation to one another.
  • the cavities 5 of the dosing device 1 are in this embodiment formed of holes, which may be closed by a closing arrangement 8 .
  • the closing arrangement 8 is conveniently formed as a plate which, in a first position, is positionable so that it will block the holes 5 entry into or out from the hole from that side.
  • the closing arrangement 8 is thus adapted to form a bottom of the holes 5 when in the first position.
  • the blocking of a hole 5 is in effect during filling of the hole 5 as disclosed in FIG. 3 a .
  • the dosing system 3 comprises a lid arrangement 7 .
  • the lid arrangement 7 has openings, which, in a first position, is positionable in register with the holes 5 of the hole structure 4 .
  • the first position of the lid arrangement openings is disclosed in FIG. 3 a illustrating an initial step in the powder providing sequence. During this step the powder is introducible into the hole 5 , in the manner described above.
  • FIG. 3 b an intermediate condition of the dosing operation is disclosed.
  • the lid arrangement 7 is provided in a closing state and the closing arrangement 8 as well.
  • the movable wall portions of plates piled upon each other define a closed volume together with the lid and closing arrangement 7 , 8 .
  • the hole 5 will be completely filled with particulate material 21 in this intermediate operation condition.
  • FIG. 3 c in which the emptying operation of the hole 5 is illustrated.
  • Sideways of the hole closing arrangement part which is adapted to form the bottom of anyone of said holes 5 , there exist openings with generally the same dimensions as the hole 5 openings.
  • the openings of the hole closing arrangement 8 are positioned in register with the holes 5 as seen from the side.
  • the lid arrangement 7 when emptying of the powder from any one of the holes 5 is due, is positionable in an offset position so as to block the opening of the holes 5 .
  • the relative movement of wall portions in the exemplified embodiment is accomplished by movement of the plates constituting the hole structure 4 .
  • the structure surrounding the hole 5 walls 22 consequently constituting the wall structure for the holes 5 .
  • the plates forming said hole structure may be slidable back and forth in a direction substantially perpendicular relative to the main propagation direction of the hole in question, which main propagation direction substantially coincides with intended path for the powder.
  • the movement of each plate 22 is conveniently, but not exclusively, in the range between ⁇ 2% to ⁇ 50% of the diameter of the hole 5 with reference from the aligned start and stop position.
  • the plate movement is between ⁇ 5% to 25% of the diameter of the hole, for instance, between ⁇ 7% to 15% of the diameter of the hole 5 .
  • the diameter in accordance with the present application should be interpreted in a broad meaning as representing the longest distance across the hole in question, whether it is squared or has another shape that may have different distances between sides thereof.
  • the dosing device 1 has been described in relation to an exemplified embodiment. However, several modifications and adaptations are possible within the scope of the present invention as defined in the appended claims.
  • FIG. 4 shows an embodiment with a rectangular plate 11 ′ having the cavities 5 arranged along a straight line of the plate 11 ′.
  • the wheels 6 and scrapers 14 may be provided at a linearly moving means instead of a rotating boss. The wheels and scrapers may thereafter be moved back and forth over the surface 3 ′ in order to fill the cavities 5 with particulate material in the same manner as described above for the circular plate.
  • the scraper means 14 may be moved away a short distance from the surface 3 ′ of the plate 11 ′. The reason for this is that the filling means and the scrapers during use may move the particulate material along the surface of the plate.
  • Some of the material will therefore during the filling process become positioned at the end of the plate. It is therefore beneficial to be able to lift the scraper means from the plate, over the particulate material provided thereon, and position the scraper means at the outer end of the plate.
  • the particulate material that has been positioned at an outer end of the plate may thereafter be moved towards the other end of the plate, and be filled in cavities.
  • wheels and scrapers do not need to be provided at a common boss or hub. Instead, the movement of the scrapers and wheels may be provided by different means, which are controlled to move the wheels and scrapers in a desired mutual relationship.
  • the filling means has in the exemplified embodiment been described as wheels rotating on the surface 3 , which compresses the particulate material into the cavities 5 by this rotating movement.
  • the filling means may be a substantially planar surface, such as a mat or similar non-rotating means.
  • This non-rotating means may be spring-loaded towards the surface 3 of the plate 11 in order to exert a compressive force on the particulate material when the non-rotating means are moved along the surface 3 .
  • the means with a planar surface may be made of, or have a surface of, silicone in order to prevent particulate material from adhering to it.
  • Filling means having a substantially planar surface may be used both for a circular plate 11 or a plate of any other shape, such as the rectangular plate 11 ′.
  • the filling arrangement 13 has in the exemplified embodiment been described as comprising two filling means, in the described embodiment wheels 6 , and two scrapers 14 .
  • other numbers of filling means and scrapers e.g. one filling means and one scraper, is also conceivable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Quality & Reliability (AREA)
  • Basic Packing Technique (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Supply Of Fluid Materials To The Packaging Location (AREA)
  • Battery Electrode And Active Subsutance (AREA)
US13/058,580 2008-08-14 2009-08-13 Dosing device and method for filling a cavity Abandoned US20120048422A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/058,580 US20120048422A1 (en) 2008-08-14 2009-08-13 Dosing device and method for filling a cavity

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US8875608P 2008-08-14 2008-08-14
PCT/SE2009/050933 WO2010019102A1 (en) 2008-08-14 2009-08-13 Dosing device and method for filling a cavity
US13/058,580 US20120048422A1 (en) 2008-08-14 2009-08-13 Dosing device and method for filling a cavity

Publications (1)

Publication Number Publication Date
US20120048422A1 true US20120048422A1 (en) 2012-03-01

Family

ID=41669087

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/058,580 Abandoned US20120048422A1 (en) 2008-08-14 2009-08-13 Dosing device and method for filling a cavity

Country Status (12)

Country Link
US (1) US20120048422A1 (ru)
EP (1) EP2313750A4 (ru)
JP (1) JP5468074B2 (ru)
KR (1) KR20110044999A (ru)
CN (1) CN102124308B (ru)
AU (1) AU2009282524B2 (ru)
BR (1) BRPI0917827A2 (ru)
CA (1) CA2732166A1 (ru)
MX (1) MX2011001452A (ru)
NZ (1) NZ590618A (ru)
RU (1) RU2521136C2 (ru)
WO (1) WO2010019102A1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110284573A1 (en) * 2008-12-17 2011-11-24 Allan Dagsland Method of providing a target dose, powder provider device and its use
US20130333801A1 (en) * 2012-06-16 2013-12-19 Harro Hofliger Verpackungsmaschinen Gmbh Metering disk and capsule filling device with metering disk
US20160256354A1 (en) * 2013-10-17 2016-09-08 Zhejiang Huashili Machinery Co., Ltd. Uniform-Distribution Filling Mechanism for Medicinal Powder
WO2017216625A1 (en) * 2016-06-16 2017-12-21 Lincoln Global, Inc. Continuous flow sampling apparatus
US20190152627A1 (en) * 2015-09-22 2019-05-23 G. D. Societa' Per Azioni Machine to Manufacture Cartridges for Electronic Cigarettes
US11118954B2 (en) 2016-10-07 2021-09-14 Research Center Pharmaceutical Engineering Gmbh System and a method for constant micro-dosing and feeding of powder material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103085994A (zh) * 2011-11-07 2013-05-08 四川汇利实业有限公司 用于将药片导入塑料板的输出装置
CN105668021A (zh) * 2016-03-15 2016-06-15 王丽 实现老年人智能自动取药提高服药准确性的方法
RU174759U1 (ru) * 2017-02-21 2017-10-31 Общество с ограниченной ответственностью Научно-производственный центр "Лазеры и аппаратура ТМ" Дозатор порошкового материала для устройства послойного изготовления объемных изделий
DE102019219020A1 (de) * 2019-12-06 2021-06-10 Glatt Gesellschaft Mit Beschränkter Haftung Befüllvorrichtung
CN116495243B (zh) * 2023-06-29 2023-09-08 安徽农业大学 一种农业种子包装机用控量输送设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154211A (en) * 1990-12-24 1992-10-13 Monica Gourmet Foods, Inc. Apparatus and method for filling bakery dough into cavity pans

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3042260A (en) * 1958-08-18 1962-07-03 Hansella Werke Albert Henkel A Metering device for packing machines
US3357155A (en) * 1962-07-23 1967-12-12 Eben H Carruthers Machine for packing compressible materials into containers
NL128372C (ru) * 1965-12-01
JPS4721293B1 (ru) * 1966-11-21 1972-06-15
US3554412A (en) 1967-03-13 1971-01-12 Sankyo Co Capsule charging system
US3718164A (en) * 1971-11-17 1973-02-27 Allied Chem Powder feeding device
DE2928521A1 (de) * 1979-07-14 1981-01-15 Adolf Rambold Becher-dosierverfahren und abfuellmaschine zum durchfuehren des verfahrens
SU985713A1 (ru) * 1980-09-19 1982-12-30 Специальное Конструкторское Бюро Всесоюзного Научно-Исследовательского Института Источников Тока Способ объемного дозировани порошкового материала в матрицу и устройство дл его осуществлени
SU1515060A1 (ru) * 1987-02-06 1989-10-15 Институт Торфа Ан Бсср Дисковый питатель
JPH0336393U (ru) * 1989-08-21 1991-04-09
PE56799A1 (es) * 1997-10-10 1999-06-10 Inhale Therapeutic Syst Metodo y aparato para transportar polvo
GB9911770D0 (en) * 1999-05-21 1999-07-21 Glaxo Group Ltd Powder loading method
JP2001072250A (ja) * 1999-09-02 2001-03-21 Ishida Engineering:Kk 定量取出装置
GB0207769D0 (en) * 2002-04-04 2002-05-15 Glaxo Group Ltd Method and apparatus for loading a container with a product
US20080190516A1 (en) 2005-05-02 2008-08-14 Astrazeneca Ab Method for Filing a Cavity with a Quantity of Particulate Material
CN101210840B (zh) * 2006-12-30 2011-08-03 上海恒谊制药设备有限公司 胶囊充填量检测机及其应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154211A (en) * 1990-12-24 1992-10-13 Monica Gourmet Foods, Inc. Apparatus and method for filling bakery dough into cavity pans

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110284573A1 (en) * 2008-12-17 2011-11-24 Allan Dagsland Method of providing a target dose, powder provider device and its use
US20130333801A1 (en) * 2012-06-16 2013-12-19 Harro Hofliger Verpackungsmaschinen Gmbh Metering disk and capsule filling device with metering disk
US20160256354A1 (en) * 2013-10-17 2016-09-08 Zhejiang Huashili Machinery Co., Ltd. Uniform-Distribution Filling Mechanism for Medicinal Powder
US9999571B2 (en) * 2013-10-17 2018-06-19 Zhejiang Huashili Machinery Co., Ltd. Uniform-distribution filling mechanism for medicinal powder
US20190152627A1 (en) * 2015-09-22 2019-05-23 G. D. Societa' Per Azioni Machine to Manufacture Cartridges for Electronic Cigarettes
US10946987B2 (en) * 2015-09-22 2021-03-16 G.D Societa' Per Azioni Machine to manufacture cartridges for electronic cigarettes
WO2017216625A1 (en) * 2016-06-16 2017-12-21 Lincoln Global, Inc. Continuous flow sampling apparatus
US10145764B2 (en) 2016-06-16 2018-12-04 Lincoln Global, Inc. Continuous flow sampling apparatus having an opening and first and second slide doors for closing the opening
US11118954B2 (en) 2016-10-07 2021-09-14 Research Center Pharmaceutical Engineering Gmbh System and a method for constant micro-dosing and feeding of powder material

Also Published As

Publication number Publication date
EP2313750A4 (en) 2013-01-09
WO2010019102A1 (en) 2010-02-18
KR20110044999A (ko) 2011-05-03
MX2011001452A (es) 2011-03-29
AU2009282524A1 (en) 2010-02-18
CN102124308B (zh) 2012-12-26
NZ590618A (en) 2012-10-26
CA2732166A1 (en) 2010-02-18
BRPI0917827A2 (pt) 2017-06-20
RU2011103227A (ru) 2012-09-20
JP5468074B2 (ja) 2014-04-09
AU2009282524B2 (en) 2012-08-02
JP2011530463A (ja) 2011-12-22
CN102124308A (zh) 2011-07-13
EP2313750A1 (en) 2011-04-27
RU2521136C2 (ru) 2014-06-27

Similar Documents

Publication Publication Date Title
AU2009282524B2 (en) Dosing device and method for filling a cavity
ES2207522T3 (es) Procedimiento y aparato para cargar un recipiente con un producto.
US10434267B2 (en) Inhalation device and method
US20110139812A1 (en) Method For Dosing And Providing Powder In A Powder Provider, Such A Powder Provider Device And An Apparatus For Producing Packs
US6065509A (en) Method and apparatus for filling cavities
CZ299632B6 (cs) Zpusob dopravy prášku s jemnými cásticemi a zarízení k provádení zpusobu
CZ235096A3 (en) Process and apparatus for filling cavities with cohesive powders
JP2000503565A (ja) 吸入装置
WO2006118526A1 (en) A method for filling a cavity with a quantity of particulate material
HRP20000200A2 (en) Powder filling apparatus and method
TW201605699A (zh) 分藥裝置及分藥方法
TW202134140A (zh) 散劑收容容器及散劑計量裝置及散劑自動分包機
KR20170016372A (ko) 호흡 작동식 건조 분말 흡입기
KR102056692B1 (ko) 분말 약제 충전장치 및 이에 의해 충전되는 약학조성물

Legal Events

Date Code Title Description
AS Assignment

Owner name: ASTRAZENECA AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DAGSLAND, ALLAN;REEL/FRAME:026726/0412

Effective date: 20110228

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE