US20110308604A1 - Photovoltaic cell with mesh electrode - Google Patents

Photovoltaic cell with mesh electrode Download PDF

Info

Publication number
US20110308604A1
US20110308604A1 US13/214,585 US201113214585A US2011308604A1 US 20110308604 A1 US20110308604 A1 US 20110308604A1 US 201113214585 A US201113214585 A US 201113214585A US 2011308604 A1 US2011308604 A1 US 2011308604A1
Authority
US
United States
Prior art keywords
photovoltaic cell
mesh
electrically conductive
electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/214,585
Inventor
Russell Gaudiana
Alan Montello
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Konarka Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konarka Technologies Inc filed Critical Konarka Technologies Inc
Priority to US13/214,585 priority Critical patent/US20110308604A1/en
Assigned to KONARKA TECHNOLOGIES, INC. reassignment KONARKA TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GAUDIANA, RUSSELL, MONTELLO, ALAN
Assigned to TOTAL GAS & POWER USA (SAS) reassignment TOTAL GAS & POWER USA (SAS) SECURITY AGREEMENT Assignors: KONARKA TECHNOLOGIES, INC.
Publication of US20110308604A1 publication Critical patent/US20110308604A1/en
Assigned to MERCK KGAA reassignment MERCK KGAA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KONARKA TECHNOLOGIES, INC.
Assigned to MERCK PATENT GMBH reassignment MERCK PATENT GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MERCK KGAA
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2081Serial interconnection of cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2013Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte the electrolyte comprising ionic liquids, e.g. alkyl imidazolium iodide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/83Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising arrangements for extracting the current from the cell, e.g. metal finger grid systems to reduce the serial resistance of transparent electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to photovoltaic cells that have a mesh electrode, as well as related systems, methods and components.
  • Photovoltaic cells are commonly used to transfer energy in the form of light into energy in the form of electricity.
  • a typical photovoltaic cell includes a photoactive material disposed between two electrodes. Generally, light passes through one or both of the electrodes to interact with the photoactive material. As a result, the ability of one or both of the electrodes to transmit light (e.g., light at one or more wavelengths absorbed by a photoactive material) can limit the overall efficiency of a photovoltaic cell.
  • a film of semiconductive material e.g., indium tin oxide
  • the semiconductive material can transmit more light than many electrically conductive materials.
  • Photovoltaic technology is also viewed by many as being an environmentally friendly energy technology.
  • the material and manufacturing costs of a photovoltaic system should be recoverable over some reasonable time frame. But, in some instances the costs (e.g., due to materials and/or manufacture) associated with practically designed photovoltaic systems have restricted their availability and use.
  • the invention relates to photovoltaic cells that have a mesh electrode, as well as related systems, methods and components.
  • the mesh electrode is formed of a material that provides good electrical conductivity (typically an electrically conductive material, but semiconductive materials may also be used), and the mesh electrode has an open area that is large enough to transmit enough light so that the photovoltaic cell is relatively efficient at transferring the light to electrical energy.
  • the invention features a photovoltaic cell that includes two electrodes and an active layer between the electrodes. At least one of the electrodes is in the form of a mesh.
  • the active layer includes an electron acceptor material and an electron donor material.
  • the invention features a system that includes a plurality of photovoltaic cells, with each of the photovoltaic cells including two electrodes and an active layer between the electrodes. At least one of the electrodes is in the form of a mesh.
  • the active layer includes an electron acceptor material and an electron donor material.
  • two or more of the photovoltaic cells are electrically connected in parallel. In certain embodiments, two or more of the photovoltaic cells are electrically connected in series. In certain embodiments, two or more of the photovoltaic cells are electrically connected in parallel, and two or more different photovoltaic cells are electrically connected in series.
  • the invention features a photovoltaic cell that includes first and second electrodes, an active layer between the first and second electrodes, a hole blocking layer between the first electrode and the active layer, and a hole carrier layer between the mesh electrode and the active layer. At least one of the electrodes is in the form of a mesh.
  • the active layer includes an electron acceptor material and an electron donor material.
  • the invention features a system that includes a plurality of photovoltaic cells, with each of the photovoltaic cells including first and second electrodes, an active layer between the first and second electrodes, a hole blocking layer between the first electrode and the active layer, and a hole carrier layer between the second electrode and the active layer. At least one of the electrodes is in the form of a mesh.
  • the active layer includes an electron acceptor material and an electron donor material.
  • two or more of the photovoltaic cells are electrically connected in parallel.
  • two or more of the photovoltaic cells are electrically connected in series.
  • two or more of the photovoltaic cells are electrically connected in parallel, and two or more different photovoltaic cells are electrically connected in series.
  • Embodiments can include one or more of the following aspects.
  • the mesh electrode can be a cathode or an anode.
  • a photovoltaic cell has a mesh cathode and a mesh anode.
  • the mesh electrode can be formed of wires.
  • the wires can be formed of an electrically conductive material, such as an electrically conductive metal, an electrically conductive alloy, or an electrically conductive polymer.
  • the wires can include a coating of an electrically conductive material (an electrically conductive metal, an electrically conductive alloy, or an electrically conductive polymer).
  • the mesh electrode can be, for example, an expanded mesh or a woven mesh.
  • the mesh can be formed of an electrically conductive material (an electrically conductive metal, an electrically conductive alloy, or an electrically conductive polymer).
  • the mesh can include a coating of an electrically conductive material (an electrically conductive metal, an electrically conductive alloy, or an electrically conductive polymer).
  • the electron acceptor material can be, for example, formed of fullerenes, inorganic nanoparticles, discotic liquid crystals, carbon nanorods, inorganic nanorods, oxadiazoles, or polymers containing moieties capable of accepting electrons or forming stable anions (e.g., polymers containing CN groups, polymers containing CF 3 groups).
  • the electron acceptor material is a substituted fullerene.
  • the electron donor material can be formed of discotic liquid crystals, polythiophenes, polyphenylenes, polyphenylvinylenes, polysilanes, polythienylvinylenes and/or polyisothianaphthalenes. In some embodiments, the electron donor material is poly(3-hexylthiophene).
  • a photovoltaic cell can further include a hole blocking layer between the active layer and an anode (e.g., a mesh anode or a non-mesh anode).
  • the hole blocking layer can be formed of, for example, LiF or metal oxides.
  • a photovoltaic cell can also include a hole carrier layer between the active layer and the cathode (e.g., a mesh cathode or non-mesh cathode).
  • the hole carrier layer can be formed of, for example, polythiophenes, polyanilines, and/or polyvinylcarbazoles, or polyions of one or more of these polymers.
  • the hole carrier layer is in contact with a substrate that supports that cathode.
  • the photovoltaic cell further includes an adhesive material between the substrate that supports the cathode and the hole carrier layer.
  • an adhesive material can adhere material layers in contact with the adhesive during standard operating conditions of a photovoltaic cell.
  • an adhesive includes one or more thermoplastics, thermosets, or pressure sensitive adhesives.
  • the photovoltaic cell or photovoltaic system is electrically connected to an external load.
  • Embodiments can provide one or more of the following advantages.
  • a mesh electrode can provide good electrical conductivity because it is formed of an electrically conductive material (as opposed to a semiconductor material), while at the same time having a structure (e.g., a mesh structure) that allows a sufficient amount of light therethrough so that the photovoltaic cell is more efficient at converting light into electrical energy.
  • a structure e.g., a mesh structure
  • a mesh electrode can be sufficiently flexible to allow the mesh electrode to be incorporated in the photovoltaic cell using a continuous, roll-to-roll manufacturing process, thereby allowing manufacture of the photovoltaic cell at relatively high throughput.
  • Using one or more mesh electrodes can reduce the cost and/or complexity associated with manufacturing a photovoltaic cell.
  • a photovoltaic cell having one or more mesh electrodes can transfer energy in the form of light to energy in the form of electricity in a more efficient manner compared to certain semiconductive electrodes.
  • FIG. 1 is a cross-sectional view of an embodiment of a photovoltaic cell
  • FIG. 2 is an elevational view of an embodiment of a mesh electrode
  • FIG. 3 is a cross-sectional view of the mesh electrode of 2;
  • FIG. 4 is a cross-sectional view of a portion of a mesh electrode
  • FIG. 5 is a cross-sectional view of another embodiment of a photovoltaic cell
  • FIG. 6 is a schematic of a system containing multiple photovoltaic cells electrically connected in series.
  • FIG. 7 is a schematic of a system containing multiple photovoltaic cells electrically connected in parallel.
  • FIG. 1 shows a cross-sectional view of a photovoltaic cell 100 that includes a transparent substrate 110 , a mesh cathode 120 , a hole carrier layer 130 , a photoactive layer (containing an electron acceptor material and an electron donor material) 140 , a hole blocking layer 150 , an anode 160 , and a substrate 170 .
  • light impinges on the surface of substrate 110 , and passes through substrate 110 , the openings in cathode 120 and hole carrier layer 130 .
  • the light then interacts with photoactive layer 140 , causing electrons to be transferred from the electron donor material in layer 140 to the electron acceptor material in layer 140 .
  • the electron acceptor material then transmits the electrons through hole blocking layer 150 to anode 160 , and the electron donor material transfers holes through hole carrier layer 130 to mesh cathode 120 .
  • Anode 160 and mesh cathode 120 are in electrical connection via an external load so that electrons pass from anode 160 , through the load, and to cathode 120 .
  • mesh cathode 120 includes solid regions 122 and open regions 124 .
  • regions 122 are formed of electrically conducting material so that mesh cathode 120 can allow light to pass therethrough via regions 124 and conduct electrons via regions 122 .
  • the area of mesh cathode 120 occupied by open regions 124 can be selected as desired.
  • the open area of mesh cathode 120 is at least about 10% (e.g., at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%) and/or at most about 99% (e.g., at most about 95%, at most about 90%, at most about 85%) of the total area of mesh cathode 120 .
  • Mesh cathode 120 can be prepared in various ways.
  • mesh cathode 120 is a woven mesh formed by weaving wires of material that form solid regions 122 .
  • the wires can be woven using, for example, a plain weave, a Dutch, weave, a twill weave, a Dutch twill weave, or combinations thereof.
  • mesh cathode 120 is formed of a welded wire mesh.
  • mesh cathode 120 is an expanded mesh formed.
  • An expanded metal mesh can be prepared, for example, by removing regions 124 (e.g., via laser removal, via chemical etching, via puncturing) from a sheet of material (e.g., an electrically conductive material, such as a metal), followed by stretching the sheet (e.g., stretching the sheet in two dimensions).
  • mesh cathode 120 is a metal sheet formed by removing regions 124 (e.g., via laser removal, via chemical etching, via puncturing) without subsequently stretching the sheet.
  • solid regions 122 are formed entirely of an electrically conductive material (e.g., regions 122 are formed of a substantially homogeneous material that is electrically conductive).
  • electrically conductive materials that can be used in regions 122 include electrically conductive metals, electrically conductive alloys and electrically conductive polymers.
  • Exemplary electrically conductive metals include gold, silver, copper, nickel, palladium, platinum and titanium.
  • Exemplary electrically conductive alloys include stainless steel (e.g., 332 stainless steel, 316 stainless steel), alloys of gold, alloys of silver, alloys of copper, alloys of nickel, alloys of palladium, alloys of platinum and alloys of titanium.
  • Exemplary electrically conducting polymers include polythiophenes (e.g., poly(3,4-ethelynedioxythiophene) (PEDOT)), polyanilines (e.g., doped polyanilines), polypyrroles (e.g., doped polypyrroles). In some embodiments, combinations of electrically conductive materials are used.
  • PEDOT poly(3,4-ethelynedioxythiophene)
  • PEDOT poly(3,4-ethelynedioxythiophene)
  • polyanilines e.g., doped polyanilines
  • polypyrroles e.g., doped polypyrroles.
  • combinations of electrically conductive materials are used.
  • solid regions 122 are formed of a material 302 that is coated with a different material 304 (e.g., using metallization, using vapor deposition).
  • material 302 can be formed of any desired material (e.g., an electrically insulative material, an electrically conductive material, or a semiconductive material), and material 304 is an electrically conductive material.
  • electrically insulative material from which material 302 can be formed include textiles, optical fiber materials, polymeric materials (e.g., a nylon) and natural materials (e.g., flax, cotton, wool, silk).
  • electrically conductive materials from which material 302 can be formed include the electrically conductive materials disclosed above.
  • semiconductive materials from which material 302 can be formed include indium tin oxide, fluorinated tin oxide, tin oxide and zinc oxide.
  • material 302 is in the form of a fiber
  • material 304 is an electrically conductive material that is coated on material 302 .
  • material 302 is in the form of a mesh (see discussion above) that, after being formed into a mesh, is coated with material 304 .
  • material 302 can be an expanded metal mesh
  • material 304 can be PEDOT that is coated on the expanded metal mesh.
  • the maximum thickness of mesh cathode 120 (i.e., the maximum thickness of mesh cathode 120 in a direction substantially perpendicular to the surface of substrate 110 in contact with mesh cathode 120 ) should be less than the total thickness of hole carrier layer 130 .
  • the maximum thickness of mesh cathode 120 is at least 0.1 micron (e.g., at least about 0.2 micron, at least about 0.3 micron, at least about 0.4 micron, at least about 0.5 micron, at least about 0.6 micron, at least about 0.7 micron, at least about 0.8 micron, at least about 0.9 micron, at least about one micron) and/or at most about 10 microns (e.g., at most about nine microns, at most about eight microns, at most about seven microns, at most about six microns, at most about five microns, at most about four microns, at most about three microns, at most about two microns).
  • microns e.g., at least about 0.2 micron, at least about 0.3 micron, at least about 0.4 micron, at least about 0.5 micron, at least about 0.6 micron, at least about 0.7 micron, at least about 0.8 micron, at least about 0.9 micron, at least about one micro
  • open regions 124 can generally have any desired shape (e.g., square, circle, semicircle, triangle, diamond, ellipse, trapezoid, irregular shape). In some embodiments, different open regions 124 in mesh cathode 120 can have different shapes.
  • solid regions 122 can generally have any desired shape (e.g., rectangle, circle, semicircle, triangle, diamond, ellipse, trapezoid, irregular shape). In some embodiments, different solid regions 122 in mesh cathode 120 can have different shapes.
  • mesh cathode 120 is flexible (e.g., sufficiently flexible to be incorporated in photovoltaic cell 100 using a continuous, roll-to-roll manufacturing process). In certain embodiments, mesh cathode 120 is semi-rigid or inflexible. In some embodiments, different regions of mesh cathode 120 can be flexible, semi-rigid or inflexible (e.g., one or more regions flexible and one or more different regions semi-rigid, one or more regions flexible and one or more different regions inflexible).
  • Substrate 110 is generally formed of a transparent material.
  • a transparent material is a material which, at the thickness used in a photovoltaic cell 100 , transmits at least about 60% (e.g., at least about 70%, at least about 75%, at least about 80%, at least about 85%) of incident light at a wavelength or a range of wavelengths used during operation of the photovoltaic cell.
  • Exemplary materials from which substrate 110 can be formed include polyethylene terephthalates, polyimides, polyethylene naphthalates, polymeric hydrocarbons, cellulosic polymers, polycarbonates, polyamides, polyethers and polyether ketones.
  • the polymer can be a fluorinated polymer.
  • combinations of polymeric materials are used.
  • different regions of substrate 110 can be formed of different materials.
  • substrate 110 can be flexible, semi-rigid or rigid (e.g., glass). In some embodiments, substrate 110 has a flexural modulus of less than about 5,000 megaPascals. In certain embodiments, different regions of substrate 110 can be flexible, semi-rigid or inflexible (e.g., one or more regions flexible and one or more different regions semi-rigid, one or more regions flexible and one or more different regions inflexible).
  • substrate 110 is at least about one micron (e.g., at least about five microns, at least about 10 microns) thick and/or at most about 1,000 microns (e.g., at most about 500 microns thick, at most about 300 microns thick, at most about 200 microns thick, at most about 100 microns, at most about 50 microns) thick.
  • microns e.g., at least about five microns, at least about 10 microns
  • 1,000 microns e.g., at most about 500 microns thick, at most about 300 microns thick, at most about 200 microns thick, at most about 100 microns, at most about 50 microns
  • substrate 110 can be colored or non-colored. In some embodiments, one or more portions of substrate 110 is/are colored while one or more different portions of substrate 110 is/are non-colored.
  • Substrate 110 can have one planar surface (e.g., the surface on which light impinges), two planar surfaces (e.g., the surface on which light impinges and the opposite surface), or no planar surfaces.
  • a non-planar surface of substrate 110 can, for example, be curved or stepped.
  • a non-planar surface of substrate 110 is patterned (e.g., having patterned steps to form a Fresnel lens, a lenticular lens or a lenticular prism).
  • Hole carrier layer 130 is generally formed of a material that, at the thickness used in photovoltaic cell 100 , transports holes to mesh cathode 120 and substantially blocks the transport of electrons to mesh cathode 120 .
  • materials from which layer 130 can be formed include polythiophenes (e.g., PEDOT), polyanilines, polyvinylcarbazoles, polyphenylenes, polyphenylvinylenes, polysilanes, polythienylenevinylenes and/or polyisothianaphthanenes.
  • hole carrier layer 130 can include combinations of hole carrier materials.
  • the distance between the upper surface of hole carrier layer 130 (i.e., the surface of hole carrier layer 130 in contact with active layer 140 ) and the upper surface of substrate 110 (i.e., the surface of substrate 110 in contact with mesh electrode 120 ) can be varied as desired.
  • the distance between the upper surface of hole carrier layer 130 and the upper surface of mesh cathode 120 is at least 0.01 micron (e.g., at least about 0.05 micron, at least about 0.1 micron, at least about 0.2 micron, at least about 0.3 micron, at least about 0.5 micron) and/or at most about five microns (e.g., at most about three microns, at most about two microns, at most about one micron).
  • the distance between the upper surface of hole carrier layer 130 and the upper surface of mesh cathode 120 is from about 0.01 micron to about 0.5 micron.
  • Active layer 140 generally contains an electron acceptor material and an electron donor material.
  • electron acceptor materials include formed of fullerenes, oxadiazoles, carbon nanorods, discotic liquid crystals, inorganic nanoparticles (e.g., nanoparticles formed of zinc oxide, tungsten oxide, indium phosphide, cadmium selenide and/or lead sulphide), inorganic nanorods (e.g., nanorods formed of zinc oxide, tungsten oxide, indium phosphide, cadmium selenide and/or lead sulphide), or polymers containing moieties capable of accepting electrons or forming stable anions (e.g., polymers containing CN groups, polymers containing CF 3 groups).
  • the electron acceptor material is a substituted fullerene (e.g., PCBM).
  • active layer 140 can include a combination of electron acceptor materials.
  • electron donor materials include discotic liquid crystals, polythiophenes, polyphenylenes, polyphenylvinylenes, polysilanes, polythienylvinylenes, and polyisothianaphthalenes.
  • the electron donor material is poly(3-hexylthiophene).
  • active layer 140 can include a combination of electron donor materials.
  • active layer 140 is sufficiently thick to be relatively efficient at absorbing photons impinging thereon to form corresponding electrons and holes, and sufficiently thin to be relatively efficient at transporting the holes and electrons to layers 130 and 150 , respectively.
  • layer 140 is at least 0.05 micron (e.g., at least about 0.1 micron, at least about 0.2 micron, at least about 0.3 micron) thick and/or at most about one micron (e.g., at most about 0.5 micron, at most about 0.4 micron) thick. In some embodiments, layer 140 is from about 0.1 micron to about 0.2 micron thick.
  • Hole blocking layer 150 is general formed of a material that, at the thickness used in photovoltaic cell 100 , transports electrons to anode 160 and substantially blocks the transport of holes to anode 160 .
  • materials from which layer 150 can be formed include LiF and metal oxides (e.g., zinc oxide, titanium oxide).
  • hole blocking layer 150 is at least 0.02 micron (e.g., at least about 0.03 micron, at least about 0.04 micron, at least about 0.05 micron) thick and/or at most about 0.5 micron (e.g., at most about 0.4 micron, at most about 0.3 micron, at most about 0.2 micron, at most about 0.1 micron) thick.
  • Anode 160 is generally formed of an electrically conductive material, such as one or more of the electrically conductive materials noted above. In some embodiments, anode 160 is formed of a combination of electrically conductive materials.
  • Substrate 170 can be formed of a transparent material or a non-transparent material.
  • substrate 170 is desirably formed of a transparent material.
  • Exemplary materials from which substrate 170 can be formed include polyethylene terephthalates, polyimides, polyethylene naphthalates, polymeric hydrocarbons, cellulosic polymers, polycarbonates, polyamides, polyethers and polyether ketones.
  • the polymer can be a fluorinated polymer.
  • combinations of polymeric materials are used.
  • different regions of substrate 110 can be formed of different materials.
  • substrate 170 can be flexible, semi-rigid or rigid. In some embodiments, substrate 170 has a flexural modulus of less than about 5,000 megaPascals. In certain embodiments, different regions of substrate 170 can be flexible, semi-rigid or inflexible (e.g., one or more regions flexible and one or more different regions semi-rigid, one or more regions flexible and one or more different regions inflexible). Generally, substrate 170 is substantially non-scattering.
  • substrate 170 is at least about one micron (e.g., at least about five microns, at least about 10 microns) thick and/or at most about 200 microns (e.g., at most about 100 microns, at most about 50 microns) thick.
  • substrate 170 can be colored or non-colored. In some embodiments, one or more portions of substrate 170 is/are colored while one or more different portions of substrate 170 is/are non-colored.
  • Substrate 170 can have one planar surface (e.g., the surface of substrate 170 on which light impinges in embodiments in which during use photovoltaic cell 100 uses light that passes through anode 160 ), two planar surfaces (e.g., the surface of substrate 170 on which light impinges in embodiments in which during use photovoltaic cell 100 uses light that passes through anode 160 and the opposite surface of substrate 170 ), or no planar surfaces.
  • a non-planar surface of substrate 170 can, for example, be curved or stepped.
  • a non-planar surface of substrate 170 is patterned (e.g., having patterned steps to form a Fresnel lens, a lenticular lens or a lenticular prism).
  • FIG. 5 shows a cross-sectional view of a photovoltaic cell 400 that includes an adhesive layer 410 between substrate 110 and hole carrier layer 130 .
  • adhesive layer 410 is formed of a material that is transparent at the thickness used in photovoltaic cell 400 .
  • adhesives include epoxies and urethanes.
  • commercially available materials that can be used in adhesive layer 410 include BynelTM adhesive (DuPont) and 615 adhesive (3M).
  • layer 410 can include a fluorinated adhesive.
  • layer 410 contains an electrically conductive adhesive.
  • An electrically conductive adhesive can be formed of, for example, an inherently electrically conductive polymer, such as the electrically conductive polymers disclosed above (e.g., PEDOT).
  • An electrically conductive adhesive can be also formed of a polymer (e.g., a polymer that is not inherently electrically conductive) that contains one or more electrically conductive materials (e.g., electrically conductive particles).
  • layer 410 contains an inherently electrically conductive polymer that contains one or more electrically conductive materials.
  • the thickness of layer 410 (i.e., the thickness of layer 410 in a direction substantially perpendicular to the surface of substrate 110 in contact with layer 410 ) is less thick than the maximum thickness of mesh cathode 120 .
  • the thickness of layer 410 is at most about 90% (e.g., at most about 80%, at most about 70%, at most about 60%, at most about 50%, at most about 40%, at most about 30%, at most about 20%) of the maximum thickness of mesh cathode 120 . In certain embodiments, however, the thickness of layer 410 is about the same as, or greater than, the maximum thickness of mesh cathode 130 .
  • a photovoltaic cell having a mesh cathode can be manufactured as desired.
  • a photovoltaic cell can be prepared as follows. Electrode 160 is formed on substrate 170 using conventional techniques, and hole-blocking layer 150 is formed on electrode 160 (e.g., using a vacuum deposition process or a solution coating process). Active layer 140 is formed on hole-blocking layer 150 (e.g., using a solution coating process, such as slot coating, spin coating or gravure coating). Hole carrier layer 130 is formed on active layer 140 (e.g., using a solution coating process, such as slot coating, spin coating or gravure coating). Mesh cathode 120 is partially disposed in hole carrier layer 130 (e.g., by disposing mesh cathode 120 on the surface of hole carrier layer 130 , and pressing mesh cathode 120 ). Substrate 110 is then formed on mesh cathode 120 and hole carrier layer 130 using conventional methods.
  • a photovoltaic cell can be prepared as follows. Electrode 160 is formed on substrate 170 using conventional techniques, and hole-blocking layer 150 is formed on electrode 160 (e.g., using a vacuum deposition or a solution coating process). Active layer 140 is formed on hole-blocking layer 150 (e.g., using a solution coating process, such as slot coating, spin coating or gravure coating). Hole carrier layer 130 is formed on active layer 140 (e.g., using a solution coating process, such as slot coating, spin coating or gravure coating). Adhesive layer 410 is disposed on hole carrier layer 130 using conventional methods.
  • Mesh cathode 120 is partially disposed in adhesive layer 410 and hole carrier layer 130 (e.g., by disposing mesh cathode 120 on the surface of adhesive layer 410 , and pressing mesh cathode 120 ). Substrate 110 is then formed on mesh cathode 120 and adhesive layer 410 using conventional methods.
  • mesh cathode 120 is formed by printing the cathode material on the surface of carrier layer 130 or adhesive layer 410 to provide an electrode having the open structure shown in the figures.
  • mesh cathode 120 can be printed using an inkjet printer, a screen printer, or gravure printer.
  • the cathode material can be disposed in a paste which solidifies upon heating or radiation (e.g., UV radiation, visible radiation, IR radiation, electron beam radiation).
  • the cathode material can be, for example, vacuum deposited in a mesh pattern through a screen or after deposition it may be patterned by photolithography.
  • FIG. 6 is a schematic of a photovoltaic system 500 having a module 510 containing photovoltaic cells 520 . Cells 520 are electrically connected in series, and system 500 is electrically connected to a load.
  • FIG. 7 is a schematic of a photovoltaic system 600 having a module 610 that contains photovoltaic cells 620 . Cells 620 are electrically connected in parallel, and system 600 is electrically connected to a load.
  • some (e.g., all) of the photovoltaic cells in a photovoltaic system can have one or more common substrates.
  • some photovoltaic cells in a photovoltaic system are electrically connected in series, and some of the photovoltaic cells in the photovoltaic system are electrically connected in parallel.
  • a mesh anode can be used. This can be desirable, for example, when light transmitted by the anode is used. In certain embodiments, both a mesh cathode and a mesh anode are used. This can be desirable, for example, when light transmitted by both the cathode and the anode is used.
  • light transmitted by the anode side of the cell is used (e.g., when a mesh anode is used).
  • light transmitted by both the cathode and anode sides of the cell is used (when a mesh cathode and a mesh anode are used).
  • a photovoltaic cell may include one or more electrodes (e.g., one or more mesh electrodes, one or more non-mesh electrodes) formed of a semiconductive material.
  • semiconductive materials include indium tin oxide, fluorinated tin oxide, tin oxide and zinc oxide.
  • one or more semiconductive materials can be disposed in the open regions of a mesh electrode (e.g., in the open regions of a mesh cathode, in the open regions of a mesh anode, in the open regions of a mesh cathode and the open regions of a mesh anode).
  • semiconductive materials include tin oxide, fluorinated tin oxide, tin oxide and zinc oxide.
  • the semiconductive material disposed in an open region of a mesh electrode is transparent at the thickness used in the photovoltaic cell.
  • a protective layer can be applied to one or both of the substrates.
  • a protective layer can be used to, for example, keep contaminants (e.g., dirt, water, oxygen, chemicals) out of a photovoltaic cell and/or to ruggedize the cell.
  • a protective layer can be formed of a polymer (e.g., a fluorinated polymer).
  • photovoltaic cells that have one or more mesh electrodes
  • one or more mesh electrodes can be used in other types of photovoltaic cells as well.
  • photovoltaic cells include photoactive cells with an active material formed of amorphous silicon, cadmium selenide, cadmium telluride, copper indium sulfide, and copper indium gallium arsenide.
  • materials 302 and 304 are formed of the same material.
  • solid regions 122 can be formed of more than two coated materials (e.g., three coated materials, four coated materials, five coated materials, six coated materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

Photovoltaic cells that have a mesh electrode, as well as related systems, methods and components, are disclosed.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of and claims priority to U.S. patent application Ser. No. 10/723,554, filed Nov. 26, 2003, which in turn is a continuation-in-part of and claims priority to U.S. patent application Ser. No. 10/395,823, filed Mar. 24, 2003, now U.S. Pat. No. 7,022,910. The entire contents of the parent applications are hereby incorporated by reference.
  • TECHNICAL FIELD
  • The invention relates to photovoltaic cells that have a mesh electrode, as well as related systems, methods and components.
  • BACKGROUND
  • Photovoltaic cells are commonly used to transfer energy in the form of light into energy in the form of electricity. A typical photovoltaic cell includes a photoactive material disposed between two electrodes. Generally, light passes through one or both of the electrodes to interact with the photoactive material. As a result, the ability of one or both of the electrodes to transmit light (e.g., light at one or more wavelengths absorbed by a photoactive material) can limit the overall efficiency of a photovoltaic cell. In many photovoltaic cells, a film of semiconductive material (e.g., indium tin oxide) is used to form the electrode(s) through which light passes because, although the semiconductive material may have a lower electrical conductivity than electrically conductive materials, the semiconductive material can transmit more light than many electrically conductive materials.
  • There is an increasing interest in the development of photovoltaic technology due primarily to a desire to reduce consumption of and dependency on fossil fuel-based energy sources. Photovoltaic technology is also viewed by many as being an environmentally friendly energy technology. However, for photovoltaic technology to be a commercially feasible energy technology, the material and manufacturing costs of a photovoltaic system (a system that uses one or more photovoltaic cells to convert light to electrical energy) should be recoverable over some reasonable time frame. But, in some instances the costs (e.g., due to materials and/or manufacture) associated with practically designed photovoltaic systems have restricted their availability and use.
  • SUMMARY
  • The invention relates to photovoltaic cells that have a mesh electrode, as well as related systems, methods and components. The mesh electrode is formed of a material that provides good electrical conductivity (typically an electrically conductive material, but semiconductive materials may also be used), and the mesh electrode has an open area that is large enough to transmit enough light so that the photovoltaic cell is relatively efficient at transferring the light to electrical energy.
  • In one aspect, the invention features a photovoltaic cell that includes two electrodes and an active layer between the electrodes. At least one of the electrodes is in the form of a mesh. The active layer includes an electron acceptor material and an electron donor material.
  • In another aspect, the invention features a system that includes a plurality of photovoltaic cells, with each of the photovoltaic cells including two electrodes and an active layer between the electrodes. At least one of the electrodes is in the form of a mesh. The active layer includes an electron acceptor material and an electron donor material. In some embodiments, two or more of the photovoltaic cells are electrically connected in parallel. In certain embodiments, two or more of the photovoltaic cells are electrically connected in series. In certain embodiments, two or more of the photovoltaic cells are electrically connected in parallel, and two or more different photovoltaic cells are electrically connected in series.
  • In a further aspect, the invention features a photovoltaic cell that includes first and second electrodes, an active layer between the first and second electrodes, a hole blocking layer between the first electrode and the active layer, and a hole carrier layer between the mesh electrode and the active layer. At least one of the electrodes is in the form of a mesh. The active layer includes an electron acceptor material and an electron donor material.
  • In another aspect, the invention features a system that includes a plurality of photovoltaic cells, with each of the photovoltaic cells including first and second electrodes, an active layer between the first and second electrodes, a hole blocking layer between the first electrode and the active layer, and a hole carrier layer between the second electrode and the active layer. At least one of the electrodes is in the form of a mesh. The active layer includes an electron acceptor material and an electron donor material. In some embodiments, two or more of the photovoltaic cells are electrically connected in parallel. In certain embodiments, two or more of the photovoltaic cells are electrically connected in series. In certain embodiments, two or more of the photovoltaic cells are electrically connected in parallel, and two or more different photovoltaic cells are electrically connected in series.
  • Embodiments can include one or more of the following aspects.
  • The mesh electrode can be a cathode or an anode. In some embodiments, a photovoltaic cell has a mesh cathode and a mesh anode.
  • The mesh electrode can be formed of wires. The wires can be formed of an electrically conductive material, such as an electrically conductive metal, an electrically conductive alloy, or an electrically conductive polymer. The wires can include a coating of an electrically conductive material (an electrically conductive metal, an electrically conductive alloy, or an electrically conductive polymer).
  • The mesh electrode can be, for example, an expanded mesh or a woven mesh. The mesh can be formed of an electrically conductive material (an electrically conductive metal, an electrically conductive alloy, or an electrically conductive polymer). The mesh can include a coating of an electrically conductive material (an electrically conductive metal, an electrically conductive alloy, or an electrically conductive polymer).
  • The electron acceptor material can be, for example, formed of fullerenes, inorganic nanoparticles, discotic liquid crystals, carbon nanorods, inorganic nanorods, oxadiazoles, or polymers containing moieties capable of accepting electrons or forming stable anions (e.g., polymers containing CN groups, polymers containing CF3 groups). In some embodiments, the electron acceptor material is a substituted fullerene.
  • The electron donor material can be formed of discotic liquid crystals, polythiophenes, polyphenylenes, polyphenylvinylenes, polysilanes, polythienylvinylenes and/or polyisothianaphthalenes. In some embodiments, the electron donor material is poly(3-hexylthiophene).
  • A photovoltaic cell can further include a hole blocking layer between the active layer and an anode (e.g., a mesh anode or a non-mesh anode). The hole blocking layer can be formed of, for example, LiF or metal oxides.
  • A photovoltaic cell can also include a hole carrier layer between the active layer and the cathode (e.g., a mesh cathode or non-mesh cathode). The hole carrier layer can be formed of, for example, polythiophenes, polyanilines, and/or polyvinylcarbazoles, or polyions of one or more of these polymers.
  • In some embodiments, the hole carrier layer is in contact with a substrate that supports that cathode.
  • In certain embodiments, the photovoltaic cell further includes an adhesive material between the substrate that supports the cathode and the hole carrier layer. In general, an adhesive material can adhere material layers in contact with the adhesive during standard operating conditions of a photovoltaic cell. In some embodiments, an adhesive includes one or more thermoplastics, thermosets, or pressure sensitive adhesives.
  • In some embodiments, the photovoltaic cell or photovoltaic system is electrically connected to an external load.
  • Embodiments can provide one or more of the following advantages.
  • In some embodiments, a mesh electrode can provide good electrical conductivity because it is formed of an electrically conductive material (as opposed to a semiconductor material), while at the same time having a structure (e.g., a mesh structure) that allows a sufficient amount of light therethrough so that the photovoltaic cell is more efficient at converting light into electrical energy.
  • In certain embodiments, a mesh electrode can be sufficiently flexible to allow the mesh electrode to be incorporated in the photovoltaic cell using a continuous, roll-to-roll manufacturing process, thereby allowing manufacture of the photovoltaic cell at relatively high throughput.
  • Using one or more mesh electrodes can reduce the cost and/or complexity associated with manufacturing a photovoltaic cell.
  • A photovoltaic cell having one or more mesh electrodes can transfer energy in the form of light to energy in the form of electricity in a more efficient manner compared to certain semiconductive electrodes.
  • Other features and advantages will be apparent from the description, drawings and from the claims.
  • DESCRIPTION OF DRAWINGS
  • FIG. 1 is a cross-sectional view of an embodiment of a photovoltaic cell;
  • FIG. 2 is an elevational view of an embodiment of a mesh electrode;
  • FIG. 3 is a cross-sectional view of the mesh electrode of 2;
  • FIG. 4 is a cross-sectional view of a portion of a mesh electrode;
  • FIG. 5 is a cross-sectional view of another embodiment of a photovoltaic cell;
  • FIG. 6 is a schematic of a system containing multiple photovoltaic cells electrically connected in series; and
  • FIG. 7 is a schematic of a system containing multiple photovoltaic cells electrically connected in parallel.
  • DETAILED DESCRIPTION
  • FIG. 1 shows a cross-sectional view of a photovoltaic cell 100 that includes a transparent substrate 110, a mesh cathode 120, a hole carrier layer 130, a photoactive layer (containing an electron acceptor material and an electron donor material) 140, a hole blocking layer 150, an anode 160, and a substrate 170.
  • In general, during use, light impinges on the surface of substrate 110, and passes through substrate 110, the openings in cathode 120 and hole carrier layer 130. The light then interacts with photoactive layer 140, causing electrons to be transferred from the electron donor material in layer 140 to the electron acceptor material in layer 140. The electron acceptor material then transmits the electrons through hole blocking layer 150 to anode 160, and the electron donor material transfers holes through hole carrier layer 130 to mesh cathode 120. Anode 160 and mesh cathode 120 are in electrical connection via an external load so that electrons pass from anode 160, through the load, and to cathode 120.
  • As shown in FIGS. 2 and 3, mesh cathode 120 includes solid regions 122 and open regions 124. In general, regions 122 are formed of electrically conducting material so that mesh cathode 120 can allow light to pass therethrough via regions 124 and conduct electrons via regions 122.
  • The area of mesh cathode 120 occupied by open regions 124 (the open area of mesh cathode 120) can be selected as desired. Generally, the open area of mesh cathode 120 is at least about 10% (e.g., at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%) and/or at most about 99% (e.g., at most about 95%, at most about 90%, at most about 85%) of the total area of mesh cathode 120.
  • Mesh cathode 120 can be prepared in various ways. In some embodiments, mesh cathode 120 is a woven mesh formed by weaving wires of material that form solid regions 122. The wires can be woven using, for example, a plain weave, a Dutch, weave, a twill weave, a Dutch twill weave, or combinations thereof. In certain embodiments, mesh cathode 120 is formed of a welded wire mesh. In some embodiments, mesh cathode 120 is an expanded mesh formed. An expanded metal mesh can be prepared, for example, by removing regions 124 (e.g., via laser removal, via chemical etching, via puncturing) from a sheet of material (e.g., an electrically conductive material, such as a metal), followed by stretching the sheet (e.g., stretching the sheet in two dimensions). In certain embodiments, mesh cathode 120 is a metal sheet formed by removing regions 124 (e.g., via laser removal, via chemical etching, via puncturing) without subsequently stretching the sheet.
  • In certain embodiments, solid regions 122 are formed entirely of an electrically conductive material (e.g., regions 122 are formed of a substantially homogeneous material that is electrically conductive). Examples of electrically conductive materials that can be used in regions 122 include electrically conductive metals, electrically conductive alloys and electrically conductive polymers. Exemplary electrically conductive metals include gold, silver, copper, nickel, palladium, platinum and titanium. Exemplary electrically conductive alloys include stainless steel (e.g., 332 stainless steel, 316 stainless steel), alloys of gold, alloys of silver, alloys of copper, alloys of nickel, alloys of palladium, alloys of platinum and alloys of titanium. Exemplary electrically conducting polymers include polythiophenes (e.g., poly(3,4-ethelynedioxythiophene) (PEDOT)), polyanilines (e.g., doped polyanilines), polypyrroles (e.g., doped polypyrroles). In some embodiments, combinations of electrically conductive materials are used.
  • As shown in FIG. 4, in some embodiments, solid regions 122 are formed of a material 302 that is coated with a different material 304 (e.g., using metallization, using vapor deposition). In general, material 302 can be formed of any desired material (e.g., an electrically insulative material, an electrically conductive material, or a semiconductive material), and material 304 is an electrically conductive material. Examples of electrically insulative material from which material 302 can be formed include textiles, optical fiber materials, polymeric materials (e.g., a nylon) and natural materials (e.g., flax, cotton, wool, silk). Examples of electrically conductive materials from which material 302 can be formed include the electrically conductive materials disclosed above. Examples of semiconductive materials from which material 302 can be formed include indium tin oxide, fluorinated tin oxide, tin oxide and zinc oxide. In some embodiments, material 302 is in the form of a fiber, and material 304 is an electrically conductive material that is coated on material 302. In certain embodiments, material 302 is in the form of a mesh (see discussion above) that, after being formed into a mesh, is coated with material 304. As an example, material 302 can be an expanded metal mesh, and material 304 can be PEDOT that is coated on the expanded metal mesh.
  • Generally, the maximum thickness of mesh cathode 120 (i.e., the maximum thickness of mesh cathode 120 in a direction substantially perpendicular to the surface of substrate 110 in contact with mesh cathode 120) should be less than the total thickness of hole carrier layer 130. Typically, the maximum thickness of mesh cathode 120 is at least 0.1 micron (e.g., at least about 0.2 micron, at least about 0.3 micron, at least about 0.4 micron, at least about 0.5 micron, at least about 0.6 micron, at least about 0.7 micron, at least about 0.8 micron, at least about 0.9 micron, at least about one micron) and/or at most about 10 microns (e.g., at most about nine microns, at most about eight microns, at most about seven microns, at most about six microns, at most about five microns, at most about four microns, at most about three microns, at most about two microns).
  • While shown in FIG. 2 as having a rectangular shape, open regions 124 can generally have any desired shape (e.g., square, circle, semicircle, triangle, diamond, ellipse, trapezoid, irregular shape). In some embodiments, different open regions 124 in mesh cathode 120 can have different shapes.
  • Although shown in FIG. 3 as having square cross-sectional shape, solid regions 122 can generally have any desired shape (e.g., rectangle, circle, semicircle, triangle, diamond, ellipse, trapezoid, irregular shape). In some embodiments, different solid regions 122 in mesh cathode 120 can have different shapes.
  • In some embodiments, mesh cathode 120 is flexible (e.g., sufficiently flexible to be incorporated in photovoltaic cell 100 using a continuous, roll-to-roll manufacturing process). In certain embodiments, mesh cathode 120 is semi-rigid or inflexible. In some embodiments, different regions of mesh cathode 120 can be flexible, semi-rigid or inflexible (e.g., one or more regions flexible and one or more different regions semi-rigid, one or more regions flexible and one or more different regions inflexible).
  • Substrate 110 is generally formed of a transparent material. As referred to herein, a transparent material is a material which, at the thickness used in a photovoltaic cell 100, transmits at least about 60% (e.g., at least about 70%, at least about 75%, at least about 80%, at least about 85%) of incident light at a wavelength or a range of wavelengths used during operation of the photovoltaic cell. Exemplary materials from which substrate 110 can be formed include polyethylene terephthalates, polyimides, polyethylene naphthalates, polymeric hydrocarbons, cellulosic polymers, polycarbonates, polyamides, polyethers and polyether ketones. In certain embodiments, the polymer can be a fluorinated polymer. In some embodiments, combinations of polymeric materials are used. In certain embodiments, different regions of substrate 110 can be formed of different materials.
  • In general, substrate 110 can be flexible, semi-rigid or rigid (e.g., glass). In some embodiments, substrate 110 has a flexural modulus of less than about 5,000 megaPascals. In certain embodiments, different regions of substrate 110 can be flexible, semi-rigid or inflexible (e.g., one or more regions flexible and one or more different regions semi-rigid, one or more regions flexible and one or more different regions inflexible).
  • Typically, substrate 110 is at least about one micron (e.g., at least about five microns, at least about 10 microns) thick and/or at most about 1,000 microns (e.g., at most about 500 microns thick, at most about 300 microns thick, at most about 200 microns thick, at most about 100 microns, at most about 50 microns) thick.
  • Generally, substrate 110 can be colored or non-colored. In some embodiments, one or more portions of substrate 110 is/are colored while one or more different portions of substrate 110 is/are non-colored.
  • Substrate 110 can have one planar surface (e.g., the surface on which light impinges), two planar surfaces (e.g., the surface on which light impinges and the opposite surface), or no planar surfaces. A non-planar surface of substrate 110 can, for example, be curved or stepped. In some embodiments, a non-planar surface of substrate 110 is patterned (e.g., having patterned steps to form a Fresnel lens, a lenticular lens or a lenticular prism).
  • Hole carrier layer 130 is generally formed of a material that, at the thickness used in photovoltaic cell 100, transports holes to mesh cathode 120 and substantially blocks the transport of electrons to mesh cathode 120. Examples of materials from which layer 130 can be formed include polythiophenes (e.g., PEDOT), polyanilines, polyvinylcarbazoles, polyphenylenes, polyphenylvinylenes, polysilanes, polythienylenevinylenes and/or polyisothianaphthanenes. In some embodiments, hole carrier layer 130 can include combinations of hole carrier materials.
  • In general, the distance between the upper surface of hole carrier layer 130 (i.e., the surface of hole carrier layer 130 in contact with active layer 140) and the upper surface of substrate 110 (i.e., the surface of substrate 110 in contact with mesh electrode 120) can be varied as desired. Typically, the distance between the upper surface of hole carrier layer 130 and the upper surface of mesh cathode 120 is at least 0.01 micron (e.g., at least about 0.05 micron, at least about 0.1 micron, at least about 0.2 micron, at least about 0.3 micron, at least about 0.5 micron) and/or at most about five microns (e.g., at most about three microns, at most about two microns, at most about one micron). In some embodiments, the distance between the upper surface of hole carrier layer 130 and the upper surface of mesh cathode 120 is from about 0.01 micron to about 0.5 micron.
  • Active layer 140 generally contains an electron acceptor material and an electron donor material.
  • Examples of electron acceptor materials include formed of fullerenes, oxadiazoles, carbon nanorods, discotic liquid crystals, inorganic nanoparticles (e.g., nanoparticles formed of zinc oxide, tungsten oxide, indium phosphide, cadmium selenide and/or lead sulphide), inorganic nanorods (e.g., nanorods formed of zinc oxide, tungsten oxide, indium phosphide, cadmium selenide and/or lead sulphide), or polymers containing moieties capable of accepting electrons or forming stable anions (e.g., polymers containing CN groups, polymers containing CF3 groups). In some embodiments, the electron acceptor material is a substituted fullerene (e.g., PCBM). In some embodiments, active layer 140 can include a combination of electron acceptor materials.
  • Examples of electron donor materials include discotic liquid crystals, polythiophenes, polyphenylenes, polyphenylvinylenes, polysilanes, polythienylvinylenes, and polyisothianaphthalenes. In some embodiments, the electron donor material is poly(3-hexylthiophene). In certain embodiments, active layer 140 can include a combination of electron donor materials.
  • Generally, active layer 140 is sufficiently thick to be relatively efficient at absorbing photons impinging thereon to form corresponding electrons and holes, and sufficiently thin to be relatively efficient at transporting the holes and electrons to layers 130 and 150, respectively. In certain embodiments, layer 140 is at least 0.05 micron (e.g., at least about 0.1 micron, at least about 0.2 micron, at least about 0.3 micron) thick and/or at most about one micron (e.g., at most about 0.5 micron, at most about 0.4 micron) thick. In some embodiments, layer 140 is from about 0.1 micron to about 0.2 micron thick.
  • Hole blocking layer 150 is general formed of a material that, at the thickness used in photovoltaic cell 100, transports electrons to anode 160 and substantially blocks the transport of holes to anode 160. Examples of materials from which layer 150 can be formed include LiF and metal oxides (e.g., zinc oxide, titanium oxide).
  • Typically, hole blocking layer 150 is at least 0.02 micron (e.g., at least about 0.03 micron, at least about 0.04 micron, at least about 0.05 micron) thick and/or at most about 0.5 micron (e.g., at most about 0.4 micron, at most about 0.3 micron, at most about 0.2 micron, at most about 0.1 micron) thick.
  • Anode 160 is generally formed of an electrically conductive material, such as one or more of the electrically conductive materials noted above. In some embodiments, anode 160 is formed of a combination of electrically conductive materials.
  • Substrate 170 can be formed of a transparent material or a non-transparent material. For example, in embodiments in which photovoltaic cell uses light that passes through anode 160 during use, substrate 170 is desirably formed of a transparent material.
  • Exemplary materials from which substrate 170 can be formed include polyethylene terephthalates, polyimides, polyethylene naphthalates, polymeric hydrocarbons, cellulosic polymers, polycarbonates, polyamides, polyethers and polyether ketones. In certain embodiments, the polymer can be a fluorinated polymer. In some embodiments, combinations of polymeric materials are used. In certain embodiments, different regions of substrate 110 can be formed of different materials.
  • In general, substrate 170 can be flexible, semi-rigid or rigid. In some embodiments, substrate 170 has a flexural modulus of less than about 5,000 megaPascals. In certain embodiments, different regions of substrate 170 can be flexible, semi-rigid or inflexible (e.g., one or more regions flexible and one or more different regions semi-rigid, one or more regions flexible and one or more different regions inflexible). Generally, substrate 170 is substantially non-scattering.
  • Typically, substrate 170 is at least about one micron (e.g., at least about five microns, at least about 10 microns) thick and/or at most about 200 microns (e.g., at most about 100 microns, at most about 50 microns) thick.
  • Generally, substrate 170 can be colored or non-colored. In some embodiments, one or more portions of substrate 170 is/are colored while one or more different portions of substrate 170 is/are non-colored.
  • Substrate 170 can have one planar surface (e.g., the surface of substrate 170 on which light impinges in embodiments in which during use photovoltaic cell 100 uses light that passes through anode 160), two planar surfaces (e.g., the surface of substrate 170 on which light impinges in embodiments in which during use photovoltaic cell 100 uses light that passes through anode 160 and the opposite surface of substrate 170), or no planar surfaces. A non-planar surface of substrate 170 can, for example, be curved or stepped. In some embodiments, a non-planar surface of substrate 170 is patterned (e.g., having patterned steps to form a Fresnel lens, a lenticular lens or a lenticular prism).
  • FIG. 5 shows a cross-sectional view of a photovoltaic cell 400 that includes an adhesive layer 410 between substrate 110 and hole carrier layer 130.
  • Generally, any material capable of holding mesh cathode 130 in place can be used in adhesive layer 410. In general, adhesive layer 410 is formed of a material that is transparent at the thickness used in photovoltaic cell 400. Examples of adhesives include epoxies and urethanes. Examples of commercially available materials that can be used in adhesive layer 410 include Bynel™ adhesive (DuPont) and 615 adhesive (3M). In some embodiments, layer 410 can include a fluorinated adhesive. In certain embodiments, layer 410 contains an electrically conductive adhesive. An electrically conductive adhesive can be formed of, for example, an inherently electrically conductive polymer, such as the electrically conductive polymers disclosed above (e.g., PEDOT). An electrically conductive adhesive can be also formed of a polymer (e.g., a polymer that is not inherently electrically conductive) that contains one or more electrically conductive materials (e.g., electrically conductive particles). In some embodiments, layer 410 contains an inherently electrically conductive polymer that contains one or more electrically conductive materials.
  • In some embodiments, the thickness of layer 410 (i.e., the thickness of layer 410 in a direction substantially perpendicular to the surface of substrate 110 in contact with layer 410) is less thick than the maximum thickness of mesh cathode 120. In some embodiments, the thickness of layer 410 is at most about 90% (e.g., at most about 80%, at most about 70%, at most about 60%, at most about 50%, at most about 40%, at most about 30%, at most about 20%) of the maximum thickness of mesh cathode 120. In certain embodiments, however, the thickness of layer 410 is about the same as, or greater than, the maximum thickness of mesh cathode 130.
  • In general, a photovoltaic cell having a mesh cathode can be manufactured as desired.
  • In some embodiments, a photovoltaic cell can be prepared as follows. Electrode 160 is formed on substrate 170 using conventional techniques, and hole-blocking layer 150 is formed on electrode 160 (e.g., using a vacuum deposition process or a solution coating process). Active layer 140 is formed on hole-blocking layer 150 (e.g., using a solution coating process, such as slot coating, spin coating or gravure coating). Hole carrier layer 130 is formed on active layer 140 (e.g., using a solution coating process, such as slot coating, spin coating or gravure coating). Mesh cathode 120 is partially disposed in hole carrier layer 130 (e.g., by disposing mesh cathode 120 on the surface of hole carrier layer 130, and pressing mesh cathode 120). Substrate 110 is then formed on mesh cathode 120 and hole carrier layer 130 using conventional methods.
  • In certain embodiments, a photovoltaic cell can be prepared as follows. Electrode 160 is formed on substrate 170 using conventional techniques, and hole-blocking layer 150 is formed on electrode 160 (e.g., using a vacuum deposition or a solution coating process). Active layer 140 is formed on hole-blocking layer 150 (e.g., using a solution coating process, such as slot coating, spin coating or gravure coating). Hole carrier layer 130 is formed on active layer 140 (e.g., using a solution coating process, such as slot coating, spin coating or gravure coating). Adhesive layer 410 is disposed on hole carrier layer 130 using conventional methods. Mesh cathode 120 is partially disposed in adhesive layer 410 and hole carrier layer 130 (e.g., by disposing mesh cathode 120 on the surface of adhesive layer 410, and pressing mesh cathode 120). Substrate 110 is then formed on mesh cathode 120 and adhesive layer 410 using conventional methods.
  • While the foregoing processes involve partially disposing mesh cathode 120 in hole carrier layer 130, in some embodiments, mesh cathode 120 is formed by printing the cathode material on the surface of carrier layer 130 or adhesive layer 410 to provide an electrode having the open structure shown in the figures. For example, mesh cathode 120 can be printed using an inkjet printer, a screen printer, or gravure printer. The cathode material can be disposed in a paste which solidifies upon heating or radiation (e.g., UV radiation, visible radiation, IR radiation, electron beam radiation). The cathode material can be, for example, vacuum deposited in a mesh pattern through a screen or after deposition it may be patterned by photolithography.
  • Multiple photovoltaic cells can be electrically connected to form a photovoltaic system. As an example, FIG. 6 is a schematic of a photovoltaic system 500 having a module 510 containing photovoltaic cells 520. Cells 520 are electrically connected in series, and system 500 is electrically connected to a load. As another example, FIG. 7 is a schematic of a photovoltaic system 600 having a module 610 that contains photovoltaic cells 620. Cells 620 are electrically connected in parallel, and system 600 is electrically connected to a load. In some embodiments, some (e.g., all) of the photovoltaic cells in a photovoltaic system can have one or more common substrates. In certain embodiments, some photovoltaic cells in a photovoltaic system are electrically connected in series, and some of the photovoltaic cells in the photovoltaic system are electrically connected in parallel.
  • While certain embodiments have been disclosed, other embodiments are also possible.
  • As another example, while cathodes formed of mesh have been described, in some embodiments a mesh anode can be used. This can be desirable, for example, when light transmitted by the anode is used. In certain embodiments, both a mesh cathode and a mesh anode are used. This can be desirable, for example, when light transmitted by both the cathode and the anode is used.
  • As an example, while embodiments have generally been described in which light that is transmitted via the cathode side of the cell is used, in certain embodiments light transmitted by the anode side of the cell is used (e.g., when a mesh anode is used). In some embodiments, light transmitted by both the cathode and anode sides of the cell is used (when a mesh cathode and a mesh anode are used).
  • As a further example, while electrodes (e.g., mesh electrodes, non-mesh electrodes) have been described as being formed of electrically conductive materials, in some embodiments a photovoltaic cell may include one or more electrodes (e.g., one or more mesh electrodes, one or more non-mesh electrodes) formed of a semiconductive material. Examples of semiconductive materials include indium tin oxide, fluorinated tin oxide, tin oxide and zinc oxide.
  • As an additional example, in some embodiments, one or more semiconductive materials can be disposed in the open regions of a mesh electrode (e.g., in the open regions of a mesh cathode, in the open regions of a mesh anode, in the open regions of a mesh cathode and the open regions of a mesh anode). Examples of semiconductive materials include tin oxide, fluorinated tin oxide, tin oxide and zinc oxide. Typically, the semiconductive material disposed in an open region of a mesh electrode is transparent at the thickness used in the photovoltaic cell.
  • As another example, in certain embodiments, a protective layer can be applied to one or both of the substrates. A protective layer can be used to, for example, keep contaminants (e.g., dirt, water, oxygen, chemicals) out of a photovoltaic cell and/or to ruggedize the cell. In certain embodiments, a protective layer can be formed of a polymer (e.g., a fluorinated polymer).
  • As a further example, while certain types of photovoltaic cells have been described that have one or more mesh electrodes, one or more mesh electrodes (mesh cathode, mesh anode, mesh cathode and mesh anode) can be used in other types of photovoltaic cells as well. Examples of such photovoltaic cells include photoactive cells with an active material formed of amorphous silicon, cadmium selenide, cadmium telluride, copper indium sulfide, and copper indium gallium arsenide.
  • As an additional example, while described as being formed of different materials, in some embodiments, materials 302 and 304 are formed of the same material.
  • As another example, although shown in FIG. 4 as being formed of one material coated on a different material, in some embodiments solid regions 122 can be formed of more than two coated materials (e.g., three coated materials, four coated materials, five coated materials, six coated materials.
  • Other embodiments are in the claims.

Claims (22)

1. A photovoltaic cell, comprising:
a first electrode;
a mesh electrode having open regions;
a semiconductive material disposed in the open regions of the mesh electrode; and
a photoactive layer between the first and mesh electrodes, the photoactive layer comprising:
an electron acceptor material comprising a fullerene; and
an electron donor material comprising a polymer;
wherein the mesh electrode is in contact with the photoactive layer.
2. The photovoltaic cell of claim 1, wherein the semiconductive material comprises a metal oxide.
3. The photovoltaic cell of claim 2, wherein the metal oxide comprises a tin oxide or zinc oxide.
4. The photovoltaic cell of claim 3, wherein the tin oxide comprises a fluorinated tin oxide.
5. The photovoltaic cell of claim 3, wherein the tin oxide comprises an indium tin oxide.
6. The photovoltaic cell of claim 1, wherein the mesh electrode comprises an electrically conductive material.
7. The photovoltaic cell of claim 6, wherein the electrically conductive material is selected from the group consisting of metals, alloys, polymers and combinations thereof.
8. The photovoltaic cell of claim 1, wherein the mesh electrode comprises wires.
9. The photovoltaic cell of claim 8, wherein the wires comprise an electrically conductive material.
10. The photovoltaic cell of claim 9, wherein the electrically conductive material is selected from the group consisting of metals, alloys, polymers and combinations thereof.
11. The photovoltaic cell of claim 10, wherein the wires comprise a coating including an electrically conductive material.
12. The photovoltaic cell of claim 11, wherein the electrically conductive material is selected from the group consisting of metals, alloys, polymers and combinations thereof.
13. The photovoltaic cell of claim 1, wherein the mesh electrode comprises an expanded mesh.
14. The photovoltaic cell of claim 1, wherein the mesh electrode comprises a woven mesh.
15. The photovoltaic cell of claim 1, wherein the electron acceptor material comprises a substituted fullerene.
16. The photovoltaic cell of claim 1, wherein the polymer comprises a material selected from the group consisting of polythiophenes, polyphenylenes, polyphenylvinylenes, polysilanes, polythienylvinylenes and polyisothianaphthalenes.
17. The photovoltaic cell of claim 1, wherein the polymer comprises poly(3-hexylthiophene).
18. The photovoltaic cell of claim 1, further comprising a hole blocking layer between the photoactive layer and the first electrode or between the photoactive layer and the mesh electrode.
19. The photovoltaic cell of claim 18, wherein the hole blocking layer comprises a material selected from the group consisting of LiF, metal oxides and combinations thereof.
20. The photovoltaic cell of claim 1, further comprising a hole carrier layer between the photoactive layer and the first electrode or between the photoactive layer and the mesh electrode.
21. The photovoltaic cell of claim 20, wherein the hole carrier layer comprises a material selected from the group consisting of polythiophenes, polyanilines, polyvinylcarbazoles, polyphenylenes, polyphenylvinylenes, polysilanes, polythienylenevinylenes, polyisothianaphthanenes and combinations thereof.
22. The photovoltaic cell of claim 1, wherein the first electrode comprises a mesh electrode.
US13/214,585 2003-03-24 2011-08-22 Photovoltaic cell with mesh electrode Abandoned US20110308604A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/214,585 US20110308604A1 (en) 2003-03-24 2011-08-22 Photovoltaic cell with mesh electrode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/395,823 US7022910B2 (en) 2002-03-29 2003-03-24 Photovoltaic cells utilizing mesh electrodes
US10/723,554 US20040187911A1 (en) 2003-03-24 2003-11-26 Photovoltaic cell with mesh electrode
US13/214,585 US20110308604A1 (en) 2003-03-24 2011-08-22 Photovoltaic cell with mesh electrode

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/723,554 Continuation US20040187911A1 (en) 2000-04-27 2003-11-26 Photovoltaic cell with mesh electrode

Publications (1)

Publication Number Publication Date
US20110308604A1 true US20110308604A1 (en) 2011-12-22

Family

ID=32988660

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/395,823 Expired - Lifetime US7022910B2 (en) 2000-04-27 2003-03-24 Photovoltaic cells utilizing mesh electrodes
US10/723,554 Abandoned US20040187911A1 (en) 2000-04-27 2003-11-26 Photovoltaic cell with mesh electrode
US13/214,585 Abandoned US20110308604A1 (en) 2003-03-24 2011-08-22 Photovoltaic cell with mesh electrode

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/395,823 Expired - Lifetime US7022910B2 (en) 2000-04-27 2003-03-24 Photovoltaic cells utilizing mesh electrodes
US10/723,554 Abandoned US20040187911A1 (en) 2000-04-27 2003-11-26 Photovoltaic cell with mesh electrode

Country Status (7)

Country Link
US (3) US7022910B2 (en)
EP (1) EP1606845B1 (en)
JP (3) JP5248770B2 (en)
KR (1) KR101024876B1 (en)
AT (1) ATE486378T1 (en)
DE (1) DE602004029770D1 (en)
WO (1) WO2004086464A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8987036B2 (en) 2008-07-02 2015-03-24 Sharp Kabushiki Kaisha Solar battery module and solar battery array

Families Citing this family (249)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070084506A1 (en) * 2005-07-15 2007-04-19 James Ryan Diffraction foils
US8664030B2 (en) 1999-03-30 2014-03-04 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US20100108118A1 (en) * 2008-06-02 2010-05-06 Daniel Luch Photovoltaic power farm structure and installation
US8222513B2 (en) 2006-04-13 2012-07-17 Daniel Luch Collector grid, electrode structures and interconnect structures for photovoltaic arrays and methods of manufacture
US7507903B2 (en) 1999-03-30 2009-03-24 Daniel Luch Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US8138413B2 (en) 2006-04-13 2012-03-20 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8076568B2 (en) * 2006-04-13 2011-12-13 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US20090111206A1 (en) * 1999-03-30 2009-04-30 Daniel Luch Collector grid, electrode structures and interrconnect structures for photovoltaic arrays and methods of manufacture
US8198696B2 (en) 2000-02-04 2012-06-12 Daniel Luch Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US7898054B2 (en) * 2000-02-04 2011-03-01 Daniel Luch Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US20110067754A1 (en) * 2000-02-04 2011-03-24 Daniel Luch Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US7898053B2 (en) * 2000-02-04 2011-03-01 Daniel Luch Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US7186911B2 (en) * 2002-01-25 2007-03-06 Konarka Technologies, Inc. Methods of scoring for fabricating interconnected photovoltaic cells
US6900382B2 (en) 2002-01-25 2005-05-31 Konarka Technologies, Inc. Gel electrolytes for dye sensitized solar cells
US6706963B2 (en) * 2002-01-25 2004-03-16 Konarka Technologies, Inc. Photovoltaic cell interconnection
US7351907B2 (en) * 2002-01-25 2008-04-01 Konarka Technologies, Inc. Displays with integrated photovoltaic cells
US7205473B2 (en) * 2002-01-25 2007-04-17 Konarka Technologies, Inc. Photovoltaic powered multimedia greeting cards and smart cards
US6949400B2 (en) 2002-01-25 2005-09-27 Konarka Technologies, Inc. Ultrasonic slitting of photovoltaic cells and modules
US20030192584A1 (en) * 2002-01-25 2003-10-16 Konarka Technologies, Inc. Flexible photovoltaic cells and modules formed using foils
US7022910B2 (en) * 2002-03-29 2006-04-04 Konarka Technologies, Inc. Photovoltaic cells utilizing mesh electrodes
US6913713B2 (en) * 2002-01-25 2005-07-05 Konarka Technologies, Inc. Photovoltaic fibers
US6858158B2 (en) * 2002-01-25 2005-02-22 Konarka Technologies, Inc. Low temperature interconnection of nanoparticles
US20050284513A1 (en) * 2002-08-08 2005-12-29 Christoph Brabec Chip card comprising an integrated energy converter
US20030192585A1 (en) * 2002-01-25 2003-10-16 Konarka Technologies, Inc. Photovoltaic cells incorporating rigid substrates
US7414188B2 (en) * 2002-01-25 2008-08-19 Konarka Technologies, Inc. Co-sensitizers for dye sensitized solar cells
US7323635B2 (en) * 2001-06-15 2008-01-29 University Of Massachusetts Photovoltaic cell
WO2003065472A2 (en) * 2002-01-25 2003-08-07 Konarka Technologies, Inc. Structures and materials for dye sensitized solar cells
US20070251570A1 (en) * 2002-03-29 2007-11-01 Konarka Technologies, Inc. Photovoltaic cells utilizing mesh electrodes
US8507253B2 (en) 2002-05-13 2013-08-13 Algae Systems, LLC Photobioreactor cell culture systems, methods for preconditioning photosynthetic organisms, and cultures of photosynthetic organisms produced thereby
US20050194038A1 (en) * 2002-06-13 2005-09-08 Christoph Brabec Electrodes for optoelectronic components and the use thereof
JP4085421B2 (en) * 2002-08-23 2008-05-14 ソニー株式会社 Dye-sensitized photoelectric conversion device and manufacturing method thereof
JP2005538556A (en) * 2002-09-05 2005-12-15 コナルカ テクノロジーズ インコーポレイテッド Organic photovoltaic device and method for producing the same
JP2004207012A (en) * 2002-12-25 2004-07-22 Sony Corp Dye-sensitized photoelectric transducing device and its manufacturing method
IL153895A (en) * 2003-01-12 2013-01-31 Orion Solar Systems Ltd Solar cell device
JP4674435B2 (en) * 2003-01-15 2011-04-20 ソニー株式会社 Photoelectric conversion element
JP2004234988A (en) * 2003-01-30 2004-08-19 Sony Corp Photoelectric conversion element and its manufacturing method, electronic device and its manufacturing method, and semiconductor layer and its manufacturing method
WO2004085305A2 (en) * 2003-03-21 2004-10-07 Wayne State University Metal oxide-containing nanoparticles
WO2004086462A2 (en) * 2003-03-24 2004-10-07 Konarka Technologies, Inc. Photovoltaic cell with mesh electrode
CN100411195C (en) * 2003-04-11 2008-08-13 索尼株式会社 Photoelectric conversion device, electronic apparatus and electronic apparatus manufacturing method, metal film formation method and layer structure
EP1513171A1 (en) * 2003-09-05 2005-03-09 Sony International (Europe) GmbH Tandem dye-sensitised solar cell and method of its production
KR101056440B1 (en) * 2003-09-26 2011-08-11 삼성에스디아이 주식회사 Dye-Sensitized Solar Cell
JP4197637B2 (en) * 2003-09-29 2008-12-17 株式会社東芝 Photosensitized solar cell and manufacturing method thereof
WO2005045984A1 (en) * 2003-10-06 2005-05-19 Ngk Spark Plug Co., Ltd. Dye-sensitized solar cell
KR100578798B1 (en) * 2003-12-12 2006-05-11 삼성에스디아이 주식회사 Dye-sensitized solar cell and fabrication method thereof
JP3717506B2 (en) * 2004-01-20 2005-11-16 シャープ株式会社 Dye-sensitized solar cell module
KR100589322B1 (en) * 2004-02-03 2006-06-14 삼성에스디아이 주식회사 High efficient dye-sensitized solar cell and fabrication method thereof
KR100589323B1 (en) * 2004-02-03 2006-06-14 삼성에스디아이 주식회사 Dye-sensitized solar cell having enlarged wavelength range of absorbed light and fabrication method thereof
US20080223428A1 (en) * 2004-04-19 2008-09-18 Zeira Eitan C All printed solar cell array
DE102004024461A1 (en) * 2004-05-14 2005-12-01 Konarka Technologies, Inc., Lowell Device and method for producing an electronic component with at least one active organic layer
US7772484B2 (en) * 2004-06-01 2010-08-10 Konarka Technologies, Inc. Photovoltaic module architecture
DE112005001297T5 (en) * 2004-06-08 2007-05-03 SFC Co., Ltd., Yokohama Dye solar cell and manufacturing method therefor
WO2005122321A1 (en) * 2004-06-08 2005-12-22 Sfc Co., Ltd. Dye sensitized solar cell and process for producing the same
KR101001548B1 (en) * 2004-06-29 2010-12-17 삼성에스디아이 주식회사 Dye-sensitive solar cell using photoelectric transformation electrode
JP2006147261A (en) * 2004-11-17 2006-06-08 Enplas Corp Counter electrode of dye-sensitized solar cell and dye-sensitized solar cell
US20060147616A1 (en) * 2004-12-20 2006-07-06 Russell Gaudiana Polymer catalyst for photovoltaic cell
EP1672653B1 (en) * 2004-12-20 2019-07-17 Merck Patent GmbH Patterned photovoltaic cell
US20070121113A1 (en) * 2004-12-22 2007-05-31 Cohen David S Transmission-based optical detection systems
US20060177567A1 (en) * 2005-02-05 2006-08-10 Winarski Tyson Y Window that Generates Solar-powered Electricity via a Plurality of Noncontiguous Solar Cells
GB2424121A (en) * 2005-02-11 2006-09-13 Risoe Nat Lab Solar cell using electrode formed from cotton fabric coated with conductive polymer
JP4752283B2 (en) * 2005-02-24 2011-08-17 富士ゼロックス株式会社 Solar cell using carbon nanotubes
JP4856883B2 (en) * 2005-03-03 2012-01-18 富士フイルム株式会社 Functional element, electrochromic element, optical device and photographing unit
US20070224464A1 (en) * 2005-03-21 2007-09-27 Srini Balasubramanian Dye-sensitized photovoltaic cells
JP2006286534A (en) * 2005-04-04 2006-10-19 Nippon Oil Corp Flexible dye sensitized solar cell
JP4915544B2 (en) * 2005-05-11 2012-04-11 パナソニック株式会社 Organic electroluminescence device
JP2006324111A (en) * 2005-05-18 2006-11-30 Nippon Oil Corp Flexible dye-sensitized solar cell
US20070017566A1 (en) * 2005-06-13 2007-01-25 Russell Gaudiana Flexible photovoltaic modules
US20090050204A1 (en) * 2007-08-03 2009-02-26 Illuminex Corporation. Photovoltaic device using nanostructured material
US20100193768A1 (en) * 2005-06-20 2010-08-05 Illuminex Corporation Semiconducting nanowire arrays for photovoltaic applications
WO2007002376A2 (en) * 2005-06-24 2007-01-04 Konarka Technologies, Inc. Method of preparing electrode
JP2009501448A (en) * 2005-07-12 2009-01-15 コナルカ テクノロジーズ インコーポレイテッド Photovoltaic transfer method
US7781673B2 (en) * 2005-07-14 2010-08-24 Konarka Technologies, Inc. Polymers with low band gaps and high charge mobility
US8158881B2 (en) * 2005-07-14 2012-04-17 Konarka Technologies, Inc. Tandem photovoltaic cells
EP1902297A4 (en) * 2005-07-14 2009-07-15 Konarka Technologies Inc Stable organic devices
US20070181179A1 (en) * 2005-12-21 2007-08-09 Konarka Technologies, Inc. Tandem photovoltaic cells
WO2007011742A2 (en) * 2005-07-14 2007-01-25 Konarka Technologies, Inc. Cigs photovoltaic cells
US20080006324A1 (en) * 2005-07-14 2008-01-10 Konarka Technologies, Inc. Tandem Photovoltaic Cells
US20070267055A1 (en) * 2005-07-14 2007-11-22 Konarka Technologies, Inc. Tandem Photovoltaic Cells
US7772485B2 (en) * 2005-07-14 2010-08-10 Konarka Technologies, Inc. Polymers with low band gaps and high charge mobility
EP1915785B1 (en) * 2005-08-15 2016-04-20 Merck Patent GmbH Photovoltaic cells with interconnects to external circuit
JP4849844B2 (en) * 2005-08-22 2012-01-11 Jx日鉱日石エネルギー株式会社 Dye-sensitized solar cell
EP1917558B1 (en) * 2005-08-22 2018-07-25 Merck Patent GmbH Displays with integrated photovoltaic cells
EP1920468B1 (en) * 2005-09-01 2014-02-26 Merck Patent GmbH Photovoltaic cells integrated with bypass diode
JP5298308B2 (en) * 2005-09-06 2013-09-25 国立大学法人京都大学 Organic thin film photoelectric conversion device and method for producing the same
US8012530B2 (en) * 2005-09-06 2011-09-06 Kyoto University Organic thin-film photoelectric conversion element and method of manufacturing the same
KR100658263B1 (en) * 2005-09-29 2006-12-14 삼성전자주식회사 Tandem structured photovoltaic cell and preparation method thereof
US20070079867A1 (en) * 2005-10-12 2007-04-12 Kethinni Chittibabu Photovoltaic fibers
KR100764362B1 (en) * 2005-11-01 2007-10-08 삼성전자주식회사 Transparent electrode for a solar cell, preparaton method thereof and a semiconductor electrode comprising the same
US7635600B2 (en) 2005-11-16 2009-12-22 Sharp Laboratories Of America, Inc. Photovoltaic structure with a conductive nanowire array electrode
GB2432723B (en) * 2005-11-25 2010-12-08 Seiko Epson Corp Electrochemical cell and method of manufacture
GB2432721B (en) * 2005-11-25 2011-06-22 Seiko Epson Corp Electrochemical cell structure and method of fabrication
US8166649B2 (en) 2005-12-12 2012-05-01 Nupix, LLC Method of forming an electroded sheet
US8106853B2 (en) 2005-12-12 2012-01-31 Nupix, LLC Wire-based flat panel displays
US8089434B2 (en) * 2005-12-12 2012-01-03 Nupix, LLC Electroded polymer substrate with embedded wires for an electronic display
US20070193621A1 (en) * 2005-12-21 2007-08-23 Konarka Technologies, Inc. Photovoltaic cells
JP2009529792A (en) * 2006-03-09 2009-08-20 コナルカ テクノロジーズ インコーポレイテッド Photocell
EP2261980B1 (en) 2006-04-11 2013-06-12 Merck Patent GmbH Tandem photovoltaic cells
US9865758B2 (en) 2006-04-13 2018-01-09 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US9236512B2 (en) 2006-04-13 2016-01-12 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US9006563B2 (en) 2006-04-13 2015-04-14 Solannex, Inc. Collector grid and interconnect structures for photovoltaic arrays and modules
US8884155B2 (en) 2006-04-13 2014-11-11 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8729385B2 (en) 2006-04-13 2014-05-20 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8822810B2 (en) 2006-04-13 2014-09-02 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
PL2022108T3 (en) * 2006-05-01 2009-10-30 Univ Wake Forest Organic optoelectronic devices and applications thereof
WO2007130972A2 (en) 2006-05-01 2007-11-15 Wake Forest University Fiber photovoltaic devices and applications thereof
DE102006023638A1 (en) * 2006-05-18 2007-11-22 Sefar Ag Photovoltaic cell
US20070289626A1 (en) * 2006-06-20 2007-12-20 Konarka Technologies, Inc. Photovoltaic cells
US20080149178A1 (en) * 2006-06-27 2008-06-26 Marisol Reyes-Reyes Composite organic materials and applications thereof
US8754323B2 (en) * 2006-06-29 2014-06-17 National University Corporation Kyushu Institute Of Technology Dye-sensitized solar cell and process for producing the same
US8933328B2 (en) * 2006-07-06 2015-01-13 Sharp Kabushiki Kaisha Dye-sensitized solar cell module and method of producing the same
US8110395B2 (en) 2006-07-10 2012-02-07 Algae Systems, LLC Photobioreactor systems and methods for treating CO2-enriched gas and producing biomass
TW200805687A (en) * 2006-07-11 2008-01-16 Rich Power Technologies Ltd Dye-sensitized solar cell and method of manufacturing the same
TWI458103B (en) * 2006-07-17 2014-10-21 Teijin Dupont Films Japan Ltd Pigment sensitized solar cells and used electrodes and laminated films
ATE528803T1 (en) 2006-08-07 2011-10-15 Univ Wake Forest PRODUCTION OF ORGANIC COMPOSITE MATERIALS
DE102006045514B4 (en) * 2006-08-16 2012-04-05 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Transparent surface electrode
JP2008085323A (en) * 2006-08-31 2008-04-10 National Institute Of Advanced Industrial & Technology Transparent electrode substrate for solar cell
WO2008088595A2 (en) 2006-10-11 2008-07-24 Konarka Technologies, Inc. Photovoltaic cell with silole-containing polymer
US8008421B2 (en) 2006-10-11 2011-08-30 Konarka Technologies, Inc. Photovoltaic cell with silole-containing polymer
US8008424B2 (en) 2006-10-11 2011-08-30 Konarka Technologies, Inc. Photovoltaic cell with thiazole-containing polymer
US20080092947A1 (en) * 2006-10-24 2008-04-24 Applied Materials, Inc. Pulse plating of a low stress film on a solar cell substrate
US20100096004A1 (en) * 2006-10-25 2010-04-22 Unidym, Inc. Solar cell with nanostructure electrode(s)
US9112447B2 (en) * 2006-11-03 2015-08-18 Solera Laboratories, Inc. Nano power cell and method of use
US8319092B1 (en) 2006-11-03 2012-11-27 Solera Laboratories, Inc. Nano power cell and method of use
CN100505325C (en) * 2006-11-10 2009-06-24 北京大学 Dye sensitization solar cell and working electrode thereof
US7799182B2 (en) 2006-12-01 2010-09-21 Applied Materials, Inc. Electroplating on roll-to-roll flexible solar cell substrates
US20080128019A1 (en) * 2006-12-01 2008-06-05 Applied Materials, Inc. Method of metallizing a solar cell substrate
US7736928B2 (en) * 2006-12-01 2010-06-15 Applied Materials, Inc. Precision printing electroplating through plating mask on a solar cell substrate
US7704352B2 (en) * 2006-12-01 2010-04-27 Applied Materials, Inc. High-aspect ratio anode and apparatus for high-speed electroplating on a solar cell substrate
JP5172166B2 (en) * 2007-02-13 2013-03-27 学校法人桐蔭学園 Dye-sensitized solar cell production kit
JP2008235521A (en) * 2007-03-20 2008-10-02 Sanyo Electric Co Ltd Method of fracturing semiconductor substrate, method of fracturing solar cell, and the solar cell
JP5649954B2 (en) * 2007-04-02 2015-01-07 メルク パテント ゲーエムベーハー Articles configured as photovoltaic cells
EP2134643A4 (en) * 2007-04-13 2013-08-21 Rice University Synthesis of uniform nanoparticle shapes with high selectivity
EP2152848A2 (en) 2007-04-27 2010-02-17 Greenfuel Technologies Corporation Photobioreactor systems positioned on bodies of water
WO2008134492A1 (en) 2007-04-27 2008-11-06 Konarka Technologies, Inc. Organic photovoltaic cells
EP2158612A4 (en) * 2007-05-15 2017-04-19 3GSolar Photovoltaics Ltd. Photovoltaic cell
DE102007050680A1 (en) 2007-10-22 2009-05-28 Leonhard Kurz Gmbh & Co. Kg Sheet structure, especially polymer-based photovoltaic element, e.g. for solar cell, comprises supporting grating with lattice openings covered by skin of viscous coating material
EP2210292A2 (en) * 2007-11-01 2010-07-28 Wake Forest University Lateral organic optoelectronic devices and applications thereof
TWI438906B (en) * 2007-12-20 2014-05-21 Cima Nanotech Israel Ltd Photovoltaic device having transparent electrode formed with nanoparticles
JP4951497B2 (en) * 2007-12-27 2012-06-13 株式会社日立製作所 Organic thin film solar cell and method for producing the same
JP2009182095A (en) * 2008-01-30 2009-08-13 Fujifilm Corp Photoelectric converting element and solid-state image pickup element
WO2009137141A2 (en) * 2008-02-21 2009-11-12 Konarka Technologies, Inc. Tandem photovoltaic cells
US20090211623A1 (en) * 2008-02-25 2009-08-27 Suniva, Inc. Solar module with solar cell having crystalline silicon p-n homojunction and amorphous silicon heterojunctions for surface passivation
US8076175B2 (en) * 2008-02-25 2011-12-13 Suniva, Inc. Method for making solar cell having crystalline silicon P-N homojunction and amorphous silicon heterojunctions for surface passivation
CN101983410A (en) * 2008-02-26 2011-03-02 戴索有限公司 A sub-assembly for use in fabricating photo- electrochemical devices and a method of producing a sub-assembly
US20090218651A1 (en) * 2008-02-28 2009-09-03 Sunlight Photonics Inc. Composite substrates for thin film electro-optical devices
US20090229667A1 (en) * 2008-03-14 2009-09-17 Solarmer Energy, Inc. Translucent solar cell
US20100175749A1 (en) * 2008-03-24 2010-07-15 Tsutsumi Eishi Solar cell and method for manufacturing metal electrode layer to be used in the solar cell
DE102008021655B4 (en) * 2008-04-30 2012-06-06 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Radiation source and solar cell
US8455606B2 (en) * 2008-08-07 2013-06-04 Merck Patent Gmbh Photoactive polymers
WO2010017590A1 (en) * 2008-08-12 2010-02-18 Dyesol Ltd Current collector systems for use in flexible photoelectrical and display devices and methods of fabrication
WO2010023860A1 (en) * 2008-08-29 2010-03-04 新日鐵化学株式会社 Dye-sensitized solar cell and method for manufacturing same
US20100065113A1 (en) * 2008-09-18 2010-03-18 Diau Eric Wei-Guang Grooved dye-sensitized solar cell structure and method for fabricating the same
US20100065114A1 (en) * 2008-09-18 2010-03-18 Diau Eric Wei-Guang Dye-sensitized solar cell structure and method for fabricating the same
US8367798B2 (en) * 2008-09-29 2013-02-05 The Regents Of The University Of California Active materials for photoelectric devices and devices that use the materials
JP2010087339A (en) * 2008-10-01 2010-04-15 Fujifilm Corp Organic solar cell element
DE102008055969A1 (en) * 2008-11-05 2010-06-10 Sefar Ag Substrate for an optoelectronic device
WO2010059498A2 (en) * 2008-11-18 2010-05-27 Konarka Technologies, Inc. Dye sensitized photovoltaic cell
US20100126849A1 (en) * 2008-11-24 2010-05-27 Applied Materials, Inc. Apparatus and method for forming 3d nanostructure electrode for electrochemical battery and capacitor
JP4985717B2 (en) * 2008-12-04 2012-07-25 大日本印刷株式会社 Organic thin film solar cell and method for producing the same
DE202008017971U1 (en) * 2008-12-20 2011-04-14 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Thin-film solar cell with conductor track electrode
WO2010083161A1 (en) 2009-01-13 2010-07-22 Konarka Technologies, Inc. Photovoltaic module
WO2010090226A1 (en) * 2009-02-03 2010-08-12 株式会社昭和 Dye-sensitized solar cell
US20100224252A1 (en) 2009-03-05 2010-09-09 Konarka Technologies, Inc. Photovoltaic Cell Having Multiple Electron Donors
US8895849B2 (en) * 2009-03-06 2014-11-25 Nec Corporation Photoelectric conversion element, manufacturing method thereof, optical sensor, and solar cell
KR20110129959A (en) 2009-03-17 2011-12-02 코나르카 테크놀로지, 인코포레이티드 Metal substrate for a dye sensitized photovolatic cell
WO2010122433A2 (en) 2009-04-22 2010-10-28 Koninklijke Philips Electronics N.V. Imaging measurement system with a printed organic photodiode array
US20100276071A1 (en) * 2009-04-29 2010-11-04 Solarmer Energy, Inc. Tandem solar cell
WO2010138414A1 (en) 2009-05-27 2010-12-02 Konarka Technologies, Inc. Reflective multilayer electrode
FR2946459B1 (en) * 2009-06-05 2011-08-05 Centre Nat Etd Spatiales STRUCTURAL ELEMENT FOR SOLAR PANEL, AND STRUCTURE COMPRISING SUCH A ELEMENT
US8440496B2 (en) * 2009-07-08 2013-05-14 Solarmer Energy, Inc. Solar cell with conductive material embedded substrate
US8372945B2 (en) * 2009-07-24 2013-02-12 Solarmer Energy, Inc. Conjugated polymers with carbonyl substituted thieno[3,4-B]thiophene units for polymer solar cell active layer materials
US20110048489A1 (en) * 2009-09-01 2011-03-03 Gabriel Karim M Combined thermoelectric/photovoltaic device for high heat flux applications and method of making the same
US20110048488A1 (en) * 2009-09-01 2011-03-03 Gabriel Karim M Combined thermoelectric/photovoltaic device and method of making the same
TWI402992B (en) * 2009-10-23 2013-07-21 Ind Tech Res Inst Solar cell and method for fabricating the same
KR101030014B1 (en) * 2009-11-09 2011-04-20 삼성에스디아이 주식회사 Photoelectric conversion device
US8399889B2 (en) 2009-11-09 2013-03-19 Solarmer Energy, Inc. Organic light emitting diode and organic solar cell stack
JP4868058B2 (en) * 2009-11-16 2012-02-01 大日本印刷株式会社 Dye-sensitized solar cell
JP5566082B2 (en) * 2009-11-16 2014-08-06 日新製鋼株式会社 Counter electrode of dye-sensitized solar cell, method for producing the same, and battery
JP2011108463A (en) * 2009-11-16 2011-06-02 Nisshin Steel Co Ltd Photoelectrode of dye-sensitized solar cell, its manufacturing method, and battery
EP3134458B1 (en) 2010-01-05 2023-11-01 Raynergy Tek Inc. Photovoltaic cell with benzodithiophene-containing polymer
JP4935910B2 (en) * 2010-01-07 2012-05-23 大日本印刷株式会社 Organic thin film solar cell
KR101112212B1 (en) * 2010-01-27 2012-02-24 주식회사 이건창호 Manufacturing method for dye sensitized solar cell and dye sensitized solar cell manufactured by the same
JP5655325B2 (en) * 2010-02-26 2015-01-21 Tdk株式会社 Electrolyte composition for dye-sensitized solar cell and dye-sensitized solar cell
WO2011112701A1 (en) 2010-03-09 2011-09-15 Konarka Technologies, Inc. Photovoltaic module containing buffer layer
US9129751B2 (en) * 2010-03-29 2015-09-08 Northern Illinois University Highly efficient dye-sensitized solar cells using microtextured electron collecting anode and nanoporous and interdigitated hole collecting cathode and method for making same
WO2011127131A1 (en) 2010-04-06 2011-10-13 Konarka Technologies, Inc. Novel electrode
US20110277822A1 (en) * 2010-05-11 2011-11-17 Honeywell International Inc. Composite electron conductor for use in photovoltaic devices
US8802479B2 (en) * 2010-06-03 2014-08-12 NuvoSun, Inc. Solar cell interconnection method using a flat metallic mesh
EP2398086A1 (en) 2010-06-17 2011-12-21 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Opto-electric device and method of manufacturing thereof
WO2011160021A2 (en) 2010-06-17 2011-12-22 Konarka Technologies, Inc. Fullerene derivatives
US9214639B2 (en) * 2010-06-24 2015-12-15 Massachusetts Institute Of Technology Conductive polymer on a textured or plastic substrate
KR101137378B1 (en) * 2010-07-16 2012-04-20 삼성에스디아이 주식회사 Dye-sensitized solar cell
US8929054B2 (en) * 2010-07-21 2015-01-06 Cleanvolt Energy, Inc. Use of organic and organometallic high dielectric constant material for improved energy storage devices and associated methods
CN105731372B (en) 2010-09-02 2018-07-10 默克专利股份有限公司 Photovoltaic cell containing optical active polymer
JP2013537000A (en) 2010-09-07 2013-09-26 ダウ グローバル テクノロジーズ エルエルシー Improved photovoltaic cell assembly
JP5629010B2 (en) 2010-09-17 2014-11-19 ダウ グローバル テクノロジーズ エルエルシー Improved photovoltaic cell assembly and method
KR101172206B1 (en) * 2010-10-06 2012-08-07 엘지이노텍 주식회사 Solar cell
US8404000B2 (en) * 2010-10-14 2013-03-26 Industrial Technology Research Institute Organic dye, composite dye and dye-sensitized solar cells using the same
TWI474524B (en) * 2010-11-29 2015-02-21 Univ Kun Shan Preparation of the high efferent flexible polymeric solar cell
KR101279586B1 (en) * 2011-01-20 2013-06-27 한국과학기술연구원 Flexible electrodes and preparation method thereof, and flexible dye-sensitized solar cells using the same
JP2012186310A (en) 2011-03-04 2012-09-27 Three M Innovative Properties Co Photovoltaic power generation film
PT2690676T (en) 2011-03-22 2021-03-30 Efacec Engenharia E Sist S A Substrate and electrode for solar cells and corresponding manufacturing process
KR101270808B1 (en) * 2011-03-31 2013-06-05 부산대학교 산학협력단 Electronic Device Built-In with Mesh Electrodes And Manufacturing Method Thereof
JP5616272B2 (en) * 2011-03-31 2014-10-29 富士フイルム株式会社 Organic semiconductor polymer, composition for organic semiconductor material, and photovoltaic cell
CN102208563B (en) * 2011-04-18 2013-01-30 电子科技大学 Substrate for flexible luminescent device and preparation method thereof
EP2702048B1 (en) 2011-04-28 2019-01-23 Merck Patent GmbH Novel photoactive polymers
JP2014513443A (en) 2011-05-09 2014-05-29 メルク パテント ゲーエムベーハー Multi-junction photovoltaic cell
US8865298B2 (en) 2011-06-29 2014-10-21 Eastman Kodak Company Article with metal grid composite and methods of preparing
KR101189578B1 (en) * 2011-09-07 2012-10-11 현대자동차주식회사 Dye-sensitized solar cell
US20130061929A1 (en) * 2011-09-12 2013-03-14 Konica Minolta Business Technologies, Inc. Photoelectric conversion element, method for producing photoelectric conversion element, and solar cell
EP2761675A2 (en) 2011-09-29 2014-08-06 Dow Global Technologies LLC Photovoltaic cell interconnect
US20140352753A1 (en) 2011-09-29 2014-12-04 Dow Global Technologies Llc Photovoltaic cell interconnect
TWI443846B (en) * 2011-11-01 2014-07-01 Ind Tech Res Inst Structure of transparent conductors
WO2013082091A2 (en) 2011-11-29 2013-06-06 Dow Global Technologies Llc Method of forming a photovoltaic cell
MX339530B (en) 2011-12-07 2016-05-30 Nuvosun Inc Automated flexible solar cell fabrication and interconnection utilizing rolls expanded metallic mesh.
IN2014CN04167A (en) 2011-12-08 2015-07-17 Dow Global Technologies Llc
CN103178151A (en) * 2011-12-22 2013-06-26 亚树科技股份有限公司 Silicon-based thin film solar cell
US9545612B2 (en) * 2012-01-13 2017-01-17 California Institute Of Technology Solar fuel generator
US10026560B2 (en) * 2012-01-13 2018-07-17 The California Institute Of Technology Solar fuels generator
KR101410814B1 (en) * 2012-02-13 2014-07-02 한국전기연구원 flexible photovoltaic cell using fiber
CN104662672A (en) * 2012-03-15 2015-05-27 3M创新有限公司 Durable photovoltaic modules
CN110246918A (en) 2012-03-27 2019-09-17 3M创新有限公司 Photovoltaic module and preparation method thereof including light orientation medium
US20130263925A1 (en) 2012-04-05 2013-10-10 Merck Patent Gmbh Hole Carrier Layer For Organic Photovoltaic Device
US9991463B2 (en) * 2012-06-14 2018-06-05 Universal Display Corporation Electronic devices with improved shelf lives
US9379261B2 (en) * 2012-08-09 2016-06-28 The Board Of Trustees Of The Leland Stanford Junior University Ultra thin film nanostructured solar cell
CN104854721A (en) * 2012-12-07 2015-08-19 松下知识产权经营株式会社 Photoelectric conversion element
CN104584162A (en) * 2012-12-14 2015-04-29 积水化学工业株式会社 Electrode substrate and dye-sensitized solar cell
JP2014143333A (en) * 2013-01-25 2014-08-07 Ricoh Co Ltd Solid dye-sensitized solar cell and solid dye-sensitized solar cell module
US8916038B2 (en) 2013-03-13 2014-12-23 Gtat Corporation Free-standing metallic article for semiconductors
US8936709B2 (en) 2013-03-13 2015-01-20 Gtat Corporation Adaptable free-standing metallic article for semiconductors
US20160071655A1 (en) * 2013-04-04 2016-03-10 The Regents Of The University Of California Electrochemical solar cells
US9405164B2 (en) 2013-08-21 2016-08-02 Board Of Trustees Of Northern Illinois University Electrochromic device having three-dimensional electrode
EP3078067B1 (en) * 2013-12-08 2020-02-05 Solarpaint Ltd. Solar paint material and painting system using the same
KR101600786B1 (en) * 2014-02-24 2016-03-08 광주과학기술원 Manufacturing method for the dye-sensitized solar cell sub-module
US9054238B1 (en) 2014-02-26 2015-06-09 Gtat Corporation Semiconductor with silver patterns having pattern segments
US9518872B2 (en) * 2014-10-14 2016-12-13 Kidde Technologies, Inc. Thermal sensor
JP2016219657A (en) * 2015-05-22 2016-12-22 大阪瓦斯株式会社 Photoelectric conversion device and manufacturing method for the same
EP3362744A4 (en) 2015-10-12 2019-06-12 3M Innovative Properties Company Light redirecting film useful with solar modules
WO2017118481A1 (en) * 2016-01-07 2017-07-13 Kd Innovation Ltd. Electrochemical systems for direct generation of electricity and heat pumping
WO2018017320A1 (en) * 2016-07-21 2018-01-25 The Regents Of The University Of California Solar fuel generator including a catalytic mesh
EP3523835B1 (en) 2016-10-05 2022-11-16 Raynergy Tek Inc. Organic photodetector
US10782014B2 (en) 2016-11-11 2020-09-22 Habib Technologies LLC Plasmonic energy conversion device for vapor generation
US10283712B1 (en) * 2017-09-14 2019-05-07 Google Llc Paint circuits
TWI641010B (en) * 2017-11-29 2018-11-11 住華科技股份有限公司 Pressure sensitive adhesive composition, electrode composite film and manufacturing method for the same
US10490682B2 (en) 2018-03-14 2019-11-26 National Mechanical Group Corp. Frame-less encapsulated photo-voltaic solar panel supporting solar cell modules encapsulated within multiple layers of optically-transparent epoxy-resin materials
PL425137A1 (en) * 2018-04-05 2019-10-07 Blue Dot Solutions Spółka Z Ograniczoną Odpowiedzialnością Netlike panel of a satellite energy source
AU2019343155A1 (en) * 2018-09-21 2021-01-28 Ambient Photonics, Inc. Dye sensitized photovoltaic cells
EP4012793A1 (en) 2020-12-14 2022-06-15 Raynergy Tek Incorporation Photodiode
CN113421977B (en) * 2021-05-26 2022-10-04 华为技术有限公司 Solar cell, preparation method thereof, intelligent glasses and electronic equipment
GB202114149D0 (en) * 2021-10-04 2021-11-17 Univ Swansea Electrode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5158618A (en) * 1990-02-09 1992-10-27 Biophotonics, Inc. Photovoltaic cells for converting light energy to electric energy and photoelectric battery

Family Cites Families (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US358765A (en) * 1887-03-01 Casting gar-wheels
NL192903A (en) * 1954-03-05
US3442007A (en) * 1966-12-29 1969-05-06 Kewanee Oil Co Process of attaching a collector grid to a photovoltaic cell
US3597072A (en) 1968-10-03 1971-08-03 Owens Illinois Inc Electrode configuration for electrophotography
DE2112812C2 (en) * 1971-03-17 1984-02-09 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Semiconductor component with lattice-shaped metal electrode and method for its production
US3786307A (en) 1972-06-23 1974-01-15 Atronics Corp Solid state electroluminescent x-y display panels
NL7309000A (en) 1973-06-28 1974-12-31
NL7412756A (en) 1974-09-27 1976-03-30 Philips Nv TELEVISION RECORDING TUBE.
US4105470A (en) * 1977-06-01 1978-08-08 The United States Government As Represented By The United States Department Of Energy Dye-sensitized schottky barrier solar cells
GB2018513B (en) * 1978-02-28 1982-05-06 Snia Viscosa Process and cell for directly converting radiant energy toelectrical energy
JPS5536950A (en) * 1978-09-05 1980-03-14 Fuji Photo Film Co Ltd Manufacturing of thin film photocell
US4239555A (en) * 1979-07-30 1980-12-16 Mobil Tyco Solar Energy Corporation Encapsulated solar cell array
DE3013991A1 (en) * 1980-04-11 1981-10-15 Bayer Ag, 5090 Leverkusen LARGE-SCALE PHOTOVOLTAIC CELL
US4380112A (en) * 1980-08-25 1983-04-19 Spire Corporation Front surface metallization and encapsulation of solar cells
US4419424A (en) * 1981-07-14 1983-12-06 Julian John D Electrodes for electrochemical cells current generating cells and rechargeable accumulators
US4518894A (en) 1982-07-06 1985-05-21 Burroughs Corporation Display panel having memory
JPS5983327A (en) 1982-11-04 1984-05-14 Hitachi Ltd Photo-electric transducer
JPS5996639A (en) 1982-11-26 1984-06-04 Hitachi Ltd Image pickup tube
US4563617A (en) 1983-01-10 1986-01-07 Davidson Allen S Flat panel television/display
JPS6079779A (en) * 1983-10-05 1985-05-07 Sharp Corp Solar cell with amorphous thin-film
JPS61140037A (en) 1984-12-12 1986-06-27 Matsushita Electric Ind Co Ltd Color image display device
JPH07101598B2 (en) 1986-06-27 1995-11-01 株式会社日立製作所 Camera tube
JPS63289874A (en) * 1987-05-21 1988-11-28 Ricoh Co Ltd Optoelectric transducer
US5365357A (en) * 1988-04-21 1994-11-15 Asahi Glass Company Ltd. Color liquid crystal display having color filters and light blocking layers in the periphery
JPH02164079A (en) * 1988-12-19 1990-06-25 Hitachi Ltd Amorphous silicon solar cell
JPH03157976A (en) * 1989-11-15 1991-07-05 Sanyo Electric Co Ltd Photovoltaic device
US5131065A (en) 1991-03-06 1992-07-14 The Boeing Company High luminance and contrast flat display panel
US5293564A (en) 1991-04-30 1994-03-08 Texas Instruments Incorporated Address match scheme for DRAM redundancy scheme
US5287169A (en) 1991-05-03 1994-02-15 Brooklyn College Research And Development Foundation Contractless mode of electroreflectance
US5240510A (en) * 1991-09-23 1993-08-31 Development Products Inc. Photovoltaic cell
FR2694451B1 (en) * 1992-07-29 1994-09-30 Asulab Sa Photovoltaic cell.
US5331183A (en) 1992-08-17 1994-07-19 The Regents Of The University Of California Conjugated polymer - acceptor heterojunctions; diodes, photodiodes, and photovoltaic cells
JPH06176704A (en) 1992-12-02 1994-06-24 Nippon Hoso Kyokai <Nhk> Camera device and operation method thereof
JPH06204529A (en) * 1992-12-28 1994-07-22 Canon Inc Solar cell
US5455899A (en) 1992-12-31 1995-10-03 International Business Machines Corporation High speed image data processing circuit
US5617203A (en) 1993-10-01 1997-04-01 Hamamatsu Photonics K.K. Optical detector employing an optically-addressed spatial light modulator
US5474620A (en) * 1994-05-16 1995-12-12 United Solar Systems Corporation Cut resistant laminate for the light incident surface of a photovoltaic module
JPH0836977A (en) 1994-07-22 1996-02-06 Ise Electronics Corp Cover glass for fluorescent display tube
JPH0873834A (en) * 1994-09-09 1996-03-19 Tokyo Gas Co Ltd Organic thin film and photofunctional element
JPH0875543A (en) * 1994-09-09 1996-03-22 Tokyo Gas Co Ltd Photoelectric converision element
JP2992464B2 (en) * 1994-11-04 1999-12-20 キヤノン株式会社 Covering wire for current collecting electrode, photovoltaic element using the covering wire for current collecting electrode, and method of manufacturing the same
JPH08287969A (en) * 1995-04-13 1996-11-01 Murata Mfg Co Ltd Photocell
FR2755770B1 (en) * 1996-11-12 1999-01-22 Sextant Avionique HELMET WITH NIGHT VISION SYSTEM AND SUBSTITUTE OPTICS FOR DAY VISION
EP0859385A1 (en) 1997-02-17 1998-08-19 Monsanto Company Method for the manufacture of photovoltaic cell
EP0859386A1 (en) 1997-02-17 1998-08-19 Monsanto Company Photovoltaic cell
CN1153253C (en) 1997-03-21 2004-06-09 佳能株式会社 Image-formation device
JPH10321883A (en) * 1997-05-16 1998-12-04 Semiconductor Energy Lab Co Ltd Solar battery and manufacture thereof
DE69823706T2 (en) 1997-10-23 2005-04-28 Fuji Photo Film Co. Ltd., Minamiashigara Photoelectric conversion assembly and photoelectrochemical cell
DE29720192U1 (en) * 1997-11-14 1999-03-25 Kuesters Eduard Maschf Calender for treating a web
US6077712A (en) * 1997-12-03 2000-06-20 Trw Inc. Semiconductor chemical sensor
JPH11185836A (en) 1997-12-16 1999-07-09 Fuji Photo Film Co Ltd Photoelectric conversion element and light reproducing electrochemical cell
GB9806066D0 (en) 1998-03-20 1998-05-20 Cambridge Display Tech Ltd Multilayer photovoltaic or photoconductive devices
JPH11273753A (en) 1998-03-25 1999-10-08 Sekisui Chem Co Ltd Coloring matter sensitizing type photocell
US6078643A (en) 1998-05-07 2000-06-20 Infimed, Inc. Photoconductor-photocathode imager
US6037005A (en) 1998-05-12 2000-03-14 3M Innovative Properties Company Display substrate electrodes with auxiliary metal layers for enhanced conductivity
DE19822024A1 (en) 1998-05-15 1999-11-18 Aventis Res & Tech Gmbh & Co Chip card for use as a check, electronic travel, phone or car park card and for access controls or pay-TV etc.
US6444189B1 (en) 1998-05-18 2002-09-03 E. I. Du Pont De Nemours And Company Process for making and using titanium oxide particles
WO1999063614A1 (en) * 1998-05-29 1999-12-09 Catalysts & Chemicals Industries Co., Ltd. Method of manufacturing photoelectric cell and oxide semiconductor for photoelectric cell
NL1009432C2 (en) 1998-06-18 1999-12-21 Stichting Energie A method of manufacturing a liquid-containing photovoltaic element and an element manufactured according to this method.
NL1009431C2 (en) 1998-06-18 1999-12-27 Stichting Energie Inverted dye-sensitized photovoltaic cell.
EP0969517B1 (en) 1998-07-04 2005-10-12 International Business Machines Corporation Electrode for use in electro-optical devices
US6451415B1 (en) * 1998-08-19 2002-09-17 The Trustees Of Princeton University Organic photosensitive optoelectronic device with an exciton blocking layer
MX239894B (en) 1998-08-19 2006-08-30 Univ Princeton Organic photosensitive optoelectronic device
DE19905694A1 (en) * 1998-11-27 2000-08-17 Forschungszentrum Juelich Gmbh Component
EP1149326A1 (en) 1998-12-21 2001-10-31 E Ink Corporation Protective electrodes for electrophoretic displays
ATE231281T1 (en) 1999-02-08 2003-02-15 Kurth Glas & Spiegel Ag PHOTOVOLTAIC CELL AND METHOD FOR THE PRODUCTION THEREOF
JP2000243990A (en) * 1999-02-18 2000-09-08 Dainippon Printing Co Ltd Solar-cell cover film and manufacture thereof, and solar-cell module using same
AUPP931799A0 (en) 1999-03-18 1999-04-15 Sustainable Technologies Australia Limited Methods to implement interconnects in multi-cell regenerative photovoltaic photoelectrochemical devices
JP4043135B2 (en) * 1999-03-29 2008-02-06 株式会社東芝 Functional element and multi-component multi-phase polymer molding
JP2000294306A (en) * 1999-04-06 2000-10-20 Fuji Photo Film Co Ltd Photoelectric converting element and photoelectric chemical battery
US6291763B1 (en) * 1999-04-06 2001-09-18 Fuji Photo Film Co., Ltd. Photoelectric conversion device and photo cell
AU4418800A (en) 1999-04-23 2000-11-10 Imperial College Of Science, Technology And Medicine Photovoltaic devices
GB9909440D0 (en) 1999-04-23 1999-06-23 Unilever Plc Package for dispensing a flowable cosmetic composition and product
EP1052661B1 (en) 1999-05-14 2011-11-02 FUJIFILM Corporation Metal complex dye for a photoelectrochemical cell
US6359211B1 (en) 1999-06-17 2002-03-19 Chemmotif, Inc. Spectral sensitization of nanocrystalline solar cells
EP1119068B1 (en) * 1999-06-30 2012-11-28 JGC Catalysts and Chemicals Ltd. Photoelectric cell
JP2001031962A (en) 1999-07-23 2001-02-06 Nippon Telegr & Teleph Corp <Ntt> Luminescent material and electroluminescent element prepared by using same
DE60027512T2 (en) * 1999-08-04 2006-10-12 Fuji Photo Film Co., Ltd., Minami-Ashigara Electrolyte composition and photochemical cell
JP4320869B2 (en) 1999-10-04 2009-08-26 パナソニック電工株式会社 Method for manufacturing photoelectric conversion element
WO2001031333A1 (en) * 1999-10-26 2001-05-03 Genometrix Genomics Incorporated Process for requesting biological experiments and for the delivery of experimental information
JP2001168359A (en) 1999-12-10 2001-06-22 Fuji Photo Film Co Ltd Photoelectric transfer element and photoelectric cell
JP3614335B2 (en) 1999-12-28 2005-01-26 三星エスディアイ株式会社 Organic EL display device and manufacturing method thereof
JP2001243995A (en) * 2000-02-29 2001-09-07 Fuji Photo Film Co Ltd Photoelectric conversion element and photoelectric cell
JP2002014343A (en) 2000-04-26 2002-01-18 Nec Corp Liquid crystal display device, light emitting element and method for manufacturing liquid crystal display device
SE0103740D0 (en) * 2001-11-08 2001-11-08 Forskarpatent I Vaest Ab Photovoltaic element and production methods
US6913713B2 (en) * 2002-01-25 2005-07-05 Konarka Technologies, Inc. Photovoltaic fibers
US7022910B2 (en) * 2002-03-29 2006-04-04 Konarka Technologies, Inc. Photovoltaic cells utilizing mesh electrodes
JP2002008549A (en) 2000-06-27 2002-01-11 Nec Corp Plasma display panel
EP1174891A3 (en) 2000-07-19 2004-02-25 Fuji Photo Film Co., Ltd. Dye sensitized photoelectrochemical cell
US6407330B1 (en) 2000-07-21 2002-06-18 North Carolina State University Solar cells incorporating light harvesting arrays
US6420648B1 (en) 2000-07-21 2002-07-16 North Carolina State University Light harvesting arrays
JP2002050413A (en) * 2000-08-03 2002-02-15 Japan Gore Tex Inc Light electrode, and solar cell using the same
JP4461656B2 (en) * 2000-12-07 2010-05-12 セイコーエプソン株式会社 Photoelectric conversion element
JP4850338B2 (en) * 2000-12-12 2012-01-11 リンテック株式会社 Semiconductor electrode manufacturing method and photochemical battery
JP2002184477A (en) 2000-12-14 2002-06-28 Fuji Xerox Co Ltd Optical semiconductor electrode, its method of manufacture, and photoelectric conversion element using the same
JP2002298936A (en) * 2001-03-30 2002-10-11 Fuji Xerox Co Ltd Photoelectric conversion element and its manufacturing method
JP2002314108A (en) * 2001-04-13 2002-10-25 Seiko Epson Corp Solar cell
US6798464B2 (en) 2001-05-11 2004-09-28 International Business Machines Corporation Liquid crystal display
JP2003123855A (en) 2001-10-17 2003-04-25 Fujikura Ltd Electrode for photoelectric conversion element
JP2003174178A (en) * 2001-12-05 2003-06-20 Shirouma Science Co Ltd Wire mesh embedded solar battery panel
NL1020744C2 (en) * 2002-06-04 2003-12-08 Stichting Energie Liquid-containing photovoltaic element.
US6852920B2 (en) * 2002-06-22 2005-02-08 Nanosolar, Inc. Nano-architected/assembled solar electricity cell
US6946597B2 (en) * 2002-06-22 2005-09-20 Nanosular, Inc. Photovoltaic devices fabricated by growth from porous template
US7825330B2 (en) * 2002-07-09 2010-11-02 Fujikura Ltd. Solar cell
US20040201878A1 (en) * 2002-07-25 2004-10-14 Enki Technologies Llc Electrooptic devices
AU2003279708A1 (en) * 2002-09-05 2004-03-29 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
US7368659B2 (en) * 2002-11-26 2008-05-06 General Electric Company Electrodes mitigating effects of defects in organic electronic devices
US7145071B2 (en) * 2002-12-11 2006-12-05 General Electric Company Dye sensitized solar cell having finger electrodes
US7179988B2 (en) * 2002-12-11 2007-02-20 General Electric Company Dye sensitized solar cells having foil electrodes
WO2004086462A2 (en) * 2003-03-24 2004-10-07 Konarka Technologies, Inc. Photovoltaic cell with mesh electrode
JP2004296669A (en) * 2003-03-26 2004-10-21 Bridgestone Corp Dye-sensitized solar cell and electrode therefor
US6936761B2 (en) * 2003-03-29 2005-08-30 Nanosolar, Inc. Transparent electrode, optoelectronic apparatus and devices
US7462774B2 (en) * 2003-05-21 2008-12-09 Nanosolar, Inc. Photovoltaic devices fabricated from insulating nanostructured template
US7605327B2 (en) * 2003-05-21 2009-10-20 Nanosolar, Inc. Photovoltaic devices fabricated from nanostructured template
WO2005083730A1 (en) * 2004-02-19 2005-09-09 Konarka Technologies, Inc. Photovoltaic cell with spacers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5158618A (en) * 1990-02-09 1992-10-27 Biophotonics, Inc. Photovoltaic cells for converting light energy to electric energy and photoelectric battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8987036B2 (en) 2008-07-02 2015-03-24 Sharp Kabushiki Kaisha Solar battery module and solar battery array

Also Published As

Publication number Publication date
EP1606845A2 (en) 2005-12-21
EP1606845B1 (en) 2015-10-14
JP5248770B2 (en) 2013-07-31
WO2004086464A3 (en) 2004-10-28
ATE486378T1 (en) 2010-11-15
KR20050116152A (en) 2005-12-09
EP1606845A4 (en) 2009-05-27
US20040187911A1 (en) 2004-09-30
JP2013093328A (en) 2013-05-16
US7022910B2 (en) 2006-04-04
US20030230337A1 (en) 2003-12-18
KR101024876B1 (en) 2011-03-31
JP2006523369A (en) 2006-10-12
JP2011205149A (en) 2011-10-13
JP5616852B2 (en) 2014-10-29
WO2004086464A2 (en) 2004-10-07
DE602004029770D1 (en) 2010-12-09

Similar Documents

Publication Publication Date Title
US20110308604A1 (en) Photovoltaic cell with mesh electrode
EP1606846B1 (en) Photovoltaic cell with mesh electrode
US7749794B2 (en) Method of preparing electrode
EP1902476B1 (en) Method of transferring photovoltaic cells
US20070108539A1 (en) Stable organic devices
US20070044834A1 (en) CIGS photovoltaic cells
CA2346294C (en) Solid-state photoelectric device
KR101557587B1 (en) Organic solar cell and manufacturing the same
US20070084506A1 (en) Diffraction foils
US20100258189A1 (en) Wrapped solar cel

Legal Events

Date Code Title Description
AS Assignment

Owner name: KONARKA TECHNOLOGIES, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GAUDIANA, RUSSELL;MONTELLO, ALAN;REEL/FRAME:026785/0933

Effective date: 20040519

AS Assignment

Owner name: TOTAL GAS & POWER USA (SAS), FRANCE

Free format text: SECURITY AGREEMENT;ASSIGNOR:KONARKA TECHNOLOGIES, INC.;REEL/FRAME:027465/0192

Effective date: 20111005

AS Assignment

Owner name: MERCK PATENT GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MERCK KGAA;REEL/FRAME:029717/0065

Effective date: 20121120

Owner name: MERCK KGAA, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KONARKA TECHNOLOGIES, INC.;REEL/FRAME:029717/0048

Effective date: 20121102

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION