JP2001243995A - Photoelectric conversion element and photoelectric cell - Google Patents

Photoelectric conversion element and photoelectric cell

Info

Publication number
JP2001243995A
JP2001243995A JP2000054547A JP2000054547A JP2001243995A JP 2001243995 A JP2001243995 A JP 2001243995A JP 2000054547 A JP2000054547 A JP 2000054547A JP 2000054547 A JP2000054547 A JP 2000054547A JP 2001243995 A JP2001243995 A JP 2001243995A
Authority
JP
Japan
Prior art keywords
layer
group
photoelectric conversion
dye
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000054547A
Other languages
Japanese (ja)
Inventor
Shigeru Nakamura
茂 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2000054547A priority Critical patent/JP2001243995A/en
Publication of JP2001243995A publication Critical patent/JP2001243995A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2009Solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectric conversion element and a photoelectric cell using the same that has a high durability and has low fluctuation of conversion efficiency due to the environmental temperature. SOLUTION: The photoelectric conversion element and photoelectric cell comprise a semiconductor layer which is provided on a conductive supporting body and adsorbed with pigment, a charge transfer layer containing charge transfer material, and opposite electrodes successively in order. A porous layer which holds charge transfer material is provided adjacent to the opposite electrodes and at the opposite side of the semiconductor layer against the opposite electrodes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は色素により増感され
た半導体を用いた光電変換素子に関する。さらには、こ
れを用いた光電池に関する。
The present invention relates to a photoelectric conversion element using a semiconductor sensitized with a dye. Furthermore, the present invention relates to a photovoltaic cell using the same.

【0002】[0002]

【従来の技術】現在、太陽光発電は単結晶シリコン太陽
電池、多結晶シリコン太陽電池、アモルファスシリコン
太陽電池、テルル化カドミウムやセレン化インジウム銅
等の化合物太陽電池の改良が、実用化の主力技術となっ
ており、太陽光エネルギー変換効率として10%近い発
電効率が得られている。しかし、将来に向けてこれらを
普及させる上では、素材製造にかかるエネルギーコスト
が高く製品化への環境負荷が大きいこと、ユーザーにと
ってエネルギーペイバックタイムが長い等の問題点を克
服する必要がある。このため、低価格化を目指し、大面
積化も容易な有機材料をシリコンい替わる感光材料とし
て用いた太陽電池がこれまでに多く提案されてきたが、
エネルギー変換効率が1%以下と低く、耐久性も悪いと
いう問題があった。こうした状況の中で、Nature(第35
3巻、第737〜740頁、1991年)および米国特許4927721号
等に、色素によって増感された半導体微粒子を用いた光
電変換素子および太陽電池、ならびにこの作製に必要な
材料および製造技術が開示された。提案された電池は、
ルテニウム錯体によって分光増感された二酸化チタン多
孔質薄膜を作用電極とする湿式太陽電池である。この方
式の第一の利点は二酸化チタン等の安価な酸化物半導体
を高純度まで精製する必要なしに用いることができるた
め、安価な光電変換素子として提供できる点であり、第
二には用いられる色素の吸収がブロードであり、広い可
視光の波長域にわたって太陽光を電気に変換できること
であり、第三にはエネルギー変換効率が高いことであ
る。しかしながら太陽電池として実用化するには、電荷
移動層の耐久性の向上が重要な課題であった。初期の検
討では電荷輸送材料としてレドックス化合物の有機溶媒
溶液が用いられたが、これらの素子においては有機溶媒
の飛散が起き、性能の劣化が大きいとの問題があった。
これを解決する方法として、常温で液体状態を保つ常温
溶融塩の使用が検討されてきたが、これらの電荷移動層
では、電荷の移動が遅くなる傾向にあるため、環境温度
が低い場合、太陽電池としての性能が十分発揮できない
との問題があった。
2. Description of the Related Art At present, photovoltaic power generation is the main technology for practical use in which monocrystalline silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells, and compound solar cells such as cadmium telluride and indium copper selenide are improved. The power generation efficiency of about 10% is obtained as the solar energy conversion efficiency. However, in order to popularize these materials in the future, it is necessary to overcome the problems that the energy cost for material production is high, the environmental load for commercialization is large, and the energy payback time is long for users. For this reason, many solar cells that use organic materials that can easily be increased in area and used as photosensitive materials in place of silicon have been proposed so far in order to reduce costs,
There is a problem that the energy conversion efficiency is as low as 1% or less and the durability is poor. Under these circumstances, Nature (No. 35)
3, 737-740, 1991) and U.S. Pat. No. 4,492,721 disclose a photoelectric conversion element and a solar cell using semiconductor fine particles sensitized by a dye, and materials and manufacturing techniques required for the production thereof. Was done. The proposed battery is
This is a wet solar cell using a titanium dioxide porous thin film spectrally sensitized by a ruthenium complex as a working electrode. The first advantage of this method is that an inexpensive oxide semiconductor such as titanium dioxide can be used without having to purify it to high purity, and therefore it can be provided as an inexpensive photoelectric conversion element. Dye absorption is broad, and sunlight can be converted into electricity over a wide visible light wavelength range. Third, energy conversion efficiency is high. However, for practical use as a solar cell, improvement of the durability of the charge transfer layer has been an important issue. In the initial study, a solution of a redox compound in an organic solvent was used as the charge transporting material. However, in these devices, there was a problem that the organic solvent was scattered and the performance was greatly deteriorated.
As a method of solving this, the use of room temperature molten salts that maintain a liquid state at room temperature has been studied.However, in these charge transfer layers, the movement of charges tends to be slow. There is a problem that the performance as a battery cannot be sufficiently exhibited.

【0003】従来の素子では、半導体微粒子を担持した
作用極と、平面の対極とをスペーサーを介し対向させ、
その間に電解質を注入することで素子を構成するのが一
般的であった。このしかしこの素子の構造で電荷輸送を
し易くするためには、作用極と対極との間のギャップを
十分に小さくすることが必要で、特に粘度の高い常温溶
融塩の電解質では、作用極と対極とを殆ど密着状態まで
に接近させる必要があった。しかしながら、こうした素
子構造では電極間の接触による短絡が起きやすく、また
電極間の電解質の量が極端に少なくなることで、特に低
温下で電荷輸送が逆に不利になる傾向が現れる他、長期
使用で電解質に起こるわずかなの変化が直ちに素子性能
の劣化をもたらすなどの問題があり、結果的に、耐久性
に優れ、かつ性能の高い太陽電池を実現には、更なる新
た技術が必要であった。
In a conventional device, a working electrode carrying semiconductor fine particles and a planar counter electrode are opposed to each other via a spacer.
In the meantime, it has been general to form an element by injecting an electrolyte. However, in order to facilitate charge transport in the structure of this device, it is necessary to make the gap between the working electrode and the counter electrode sufficiently small. It was necessary to approach the counter electrode almost to the close contact state. However, in such an element structure, a short circuit is likely to occur due to contact between the electrodes, and the amount of electrolyte between the electrodes becomes extremely small. However, there are problems such as slight changes in the electrolyte immediately resulting in deterioration of element performance, and as a result, further new technology was required to realize a solar cell with excellent durability and high performance .

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、耐久
性の高い、且つ低温下でもエネルギー変換効率に優れた
色素増感光電変換素子および光電池を提供することであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a dye-sensitized photoelectric conversion element and a photovoltaic cell having high durability and excellent energy conversion efficiency even at a low temperature.

【0005】[0005]

【課題を解決するための手段】本発明の課題は本発明を
特定する下記の事項およびその好ましい態様により達成
された。 (1)導電性支持体上に設置された、色素を吸着した半
導体層、電荷輸送材料を含む電荷移動層および対極を順
次有する光電変換素子において、対極に隣接し、かつ、
対極に対して半導体層と反対側に、電荷輸送材料を保持
した多孔質層を有することを特徴とする光電変換素子。 (2)前記電荷輸送材料が、常温溶融塩を含む組成物で
あることを特徴とする上記(1)記載の光電変換素子。 (3)対極が網目状またはメッシュ状の金属電極である
ことを特徴とする(1)または(2)記載の光変換素
子。 (4)多孔質層が導電性材料からなり、対極が多孔質層
の上層部に離散的に付着した金属微粒子からなることを
特徴とする(1)または(2)記載の光変換素子。 (5)前記金属が白金であることを特徴とする(3)ま
たは(4)記載の光変換素子。 (6)前記半導体層が酸化チタンを含むことを特徴とす
る(1)〜(5)のいずれかに記載の光電変換素子。 (7)前記、常温溶融塩を含む組成物が、少なくともイ
ミダゾリウム誘導体の沃化物と沃素を含むことを特徴と
する(2)〜(6)のいずれかに記載の光電変換素子。 (8)上記(1)〜(7)の何れかの光電変換素子を用
いた光電池。
The object of the present invention has been attained by the following items which specify the present invention and preferred embodiments thereof. (1) A photoelectric conversion element, which is provided on a conductive support and has a dye-adsorbed semiconductor layer, a charge transport layer containing a charge transport material, and a counter electrode in sequence, adjacent to the counter electrode, and
A photoelectric conversion element comprising a porous layer holding a charge transporting material on a side opposite to a semiconductor layer with respect to a counter electrode. (2) The photoelectric conversion device according to the above (1), wherein the charge transport material is a composition containing a room temperature molten salt. (3) The light conversion element according to (1) or (2), wherein the counter electrode is a mesh-shaped or mesh-shaped metal electrode. (4) The light conversion element according to (1) or (2), wherein the porous layer is made of a conductive material, and the counter electrode is made of fine metal particles discretely attached to the upper layer of the porous layer. (5) The light conversion element according to (3) or (4), wherein the metal is platinum. (6) The photoelectric conversion element according to any one of (1) to (5), wherein the semiconductor layer contains titanium oxide. (7) The photoelectric conversion device according to any one of (2) to (6), wherein the composition containing a room-temperature molten salt contains at least iodide of an imidazolium derivative and iodine. (8) A photovoltaic cell using the photoelectric conversion element according to any one of (1) to (7).

【0006】[0006]

【発明の実施の形態】[1]光電変換素子の構成 本発明において色素増感した光電変換素子は、導電性支
持体上に設置され、色素により増感された半導体層(感
光層)からなる光電極、対極、そして光電極と対極に電
気的に接触し、これらを接合する電荷移動層(電荷輸送
材料を含有)からなる積層構成をとる。本発明では、さ
らに対極に隣接し、かつ、対極に対して感光層と反対側
に、電荷輸送材料を保持した多孔質層を有することを特
徴とする(すなわち、導電性支持体、感光層、電荷移動
層、対極、多孔質層の順に層構成される)。色素増感半
導体膜を設置した導電性支持体は光電変換素子における
作用電極であり、光アノードとして機能する。この光電
変換素子は作用電極の光照射下で外部回路に電流と起電
力を発生する光電池であり、電荷輸送材料がイオン伝導
性電解質の場合は光電気化学電池として特徴づけられ
る。感光層である色素増感半導体層は目的に応じて設計
され、単層構成でも多層構成でもよい。感光層に入射し
た光は色素によって吸収され色素分子を励起する。励起
状態の色素分子は、エネルギーの高い励起電子を半導体
微粒子の伝導帯に注入し、注入された伝導体電子は半導
体バルクを拡散して導電性支持体に到達する。電子注入
した色素分子は電子の欠損した酸化体となり、色素と接
する電荷輸送材料中の電子供与体によって電子的に還元
され再生される。すなわち、導電性支持体が受け取った
励起電子は外部回路で電気的仕事をして対極に伝達さ
れ、電荷輸送材層を経て色素酸化体に戻り、色素が再生
する。なお、本発明では層構成をとるものの、それぞれ
の層の接触部(たとえば、導電性支持体の導電層と感光
層の境界、感光層と電荷輸送材層の境界、電荷輸送材層
と対極の境界など)においては、層を構成する材料もし
くは化合物、イオンは、相互に拡散して混合した状態で
あってもよい。特に、半導体層は微粒子半導体からなる
多孔質であることが好ましく、この空隙に電荷輸送材料
を保持しているのが好ましい。さらに、半導体層、電荷
移動層および対極と接する多孔質層の電荷輸送材料は互
いに拡散・混合できるようにする。
BEST MODE FOR CARRYING OUT THE INVENTION [1] Structure of Photoelectric Conversion Device In the present invention, a dye-sensitized photoelectric conversion device is provided on a conductive support and comprises a semiconductor layer (photosensitive layer) sensitized by a dye. It has a laminated structure including a photoelectrode, a counter electrode, and a charge transfer layer (containing a charge transport material) that is in electrical contact with and joins the photoelectrode and the counter electrode. The present invention is further characterized in that a porous layer holding the charge transporting material is provided adjacent to the counter electrode and on the opposite side of the photosensitive layer with respect to the counter electrode (that is, the conductive support, the photosensitive layer, A charge transfer layer, a counter electrode, and a porous layer in this order). The conductive support provided with the dye-sensitized semiconductor film is a working electrode in the photoelectric conversion element and functions as a photoanode. This photoelectric conversion element is a photovoltaic cell that generates a current and an electromotive force in an external circuit under light irradiation of a working electrode, and is characterized as a photoelectrochemical cell when the charge transporting material is an ion-conductive electrolyte. The dye-sensitized semiconductor layer, which is a photosensitive layer, is designed according to the purpose, and may have a single-layer structure or a multilayer structure. Light incident on the photosensitive layer is absorbed by the dye and excites the dye molecules. The dye molecules in the excited state inject excited electrons having high energy into the conduction band of the semiconductor fine particles, and the injected conductor electrons diffuse through the semiconductor bulk and reach the conductive support. The electron-injected dye molecule becomes an oxidized form having an electron deficiency, and is electronically reduced and regenerated by an electron donor in the charge transporting material in contact with the dye. In other words, the excited electrons received by the conductive support perform electric work in an external circuit, are transmitted to the counter electrode, return to the oxidized dye via the charge transport material layer, and the dye is regenerated. In the present invention, although a layer structure is adopted, a contact portion of each layer (for example, a boundary between a conductive layer and a photosensitive layer of a conductive support, a boundary between a photosensitive layer and a charge transport material layer, and a charge transport material layer and a counter electrode). At the boundary, etc.), the materials or compounds and ions constituting the layer may be in a state of being diffused and mixed with each other. In particular, the semiconductor layer is preferably porous made of a fine particle semiconductor, and it is preferable that the charge transport material is held in the void. Further, the charge transport materials of the semiconductor layer, the charge transfer layer and the porous layer in contact with the counter electrode can be diffused and mixed with each other.

【0007】(A)導電性支持体 本発明の素子においては、色素増感半導体層を担持する
導電性支持体は、光学的に透明であるものが使用され
る。光学的に透明とは、可視光を透過する領域を面内に
持っていることを意味し、実質的に半透明であってもよ
い。具体的には、透明導電性支持体は400〜900n
mの可視光域で光透過率の最大が10%以上であること
を意味し、50%以上であることが好ましく、70%以
上が特に好ましい。本発明の光電変換素子は、入射する
光が透明な導電性支持体を透過し、感光層に到達する構
造となっており、導電性支持体の光透過率が高いほど、
感光層の光吸収効率が上がり、光電変換効率が改善され
る。本発明では、透過率を高くし、かつ、電極の抵抗を
減じて集電の効率を高く維持するために、金属リード
(アルミニウム、銅、銀、金、白金、ニッケル等の金
属)を透明電極の面内に配置した構造の透明導電性支持
体が好ましい。具体的には、透明導電層を表面に有する
透明もしくは半透明のガラスもしくはプラスチックの基
板である。導電層に用いる好ましい導電剤としては金属
(例えば白金、金、銀、銅、アルミニウム、ロジウム、
インジウム等)の透明薄膜、炭素薄膜、または導電性の
金属酸化物(インジウム−スズ複合酸化物、酸化スズに
フッ素をドープしたもの等)の薄膜が挙げられる。上記
導電剤層の厚さは、0.02〜10μm程度であること
が好ましい。導電性金属酸化物の塗布量は、支持体1m2
当たり0.01〜100gが好ましい。透明性導電性基
板は表面抵抗が低い程よい。好ましい面積抵抗の範囲と
しては100Ω/□以下であり、さらに好ましくは40
Ω/□以下である。この下限には特に制限はないが、通
常10Ω/□程度である。とくに好ましい透明導電性支
持体はガラスもしくはプラスチックに導電性の金属酸化
物を塗設したものである。この中でもフッ素もしくはア
ンチモンをドーピングした二酸化スズ、または酸化イン
ジウムスズ(ITO)からなる高導電性の透明な層を低
コストのソーダ石灰フロートガラスに被覆した導電性ガ
ラスが特に好ましい。また、低コストでフレキシブルな
光電変換素子または光電池には、透明ポリマーフィルム
に上記導電層を設けたものを用いるのがよい。透明ポリ
マーフィルムには、テトラアセチルセルロース(TA
C)、ポリエチレンテレフタレート(PET),ポリエ
チレンナフタレート(PEN)、シンジオクタチックポ
リステレン(SPS)、ポリフェニレンスルフィド(P
PS)、ポリカーボネート(PC)、ポリアリレート
(PAr)、ポリスルフォン(PSF)、ポリエステル
スルフォン(PES)、ポリエーテルイミド(PE
I)、環状ポリオレフィン、ブロム化フェノキシ等があ
る。
(A) Conductive Support In the device of the present invention, an optically transparent support that supports the dye-sensitized semiconductor layer is used. Optically transparent means that a region that transmits visible light is present in the plane, and may be substantially translucent. Specifically, the transparent conductive support has a thickness of 400 to 900 n.
m means that the maximum light transmittance in the visible light range is 10% or more, preferably 50% or more, and particularly preferably 70% or more. The photoelectric conversion element of the present invention has a structure in which incident light penetrates a transparent conductive support and reaches a photosensitive layer.As the light transmittance of the conductive support increases,
The light absorption efficiency of the photosensitive layer increases, and the photoelectric conversion efficiency improves. In the present invention, a metal lead (a metal such as aluminum, copper, silver, gold, platinum, nickel, etc.) is connected to a transparent electrode in order to increase the transmittance and reduce the resistance of the electrode to maintain a high current collection efficiency. A transparent conductive support having a structure arranged in the plane of is preferred. Specifically, it is a transparent or translucent glass or plastic substrate having a transparent conductive layer on the surface. Preferred conductive agents used for the conductive layer include metals (for example, platinum, gold, silver, copper, aluminum, rhodium,
And a thin film of a conductive metal oxide (such as indium-tin composite oxide or tin oxide doped with fluorine). The conductive agent layer preferably has a thickness of about 0.02 to 10 μm. The coating amount of the conductive metal oxide is 1 m 2 on the support.
0.01 to 100 g per unit is preferred. The lower the surface resistance of the transparent conductive substrate, the better. The preferable range of the sheet resistance is 100 Ω / □ or less, more preferably 40Ω / □.
Ω / □ or less. The lower limit is not particularly limited, but is usually about 10Ω / □. A particularly preferred transparent conductive support is glass or plastic coated with a conductive metal oxide. Among them, conductive glass in which a highly conductive transparent layer made of tin dioxide doped with fluorine or antimony or indium tin oxide (ITO) is coated on low-cost soda-lime float glass is particularly preferable. In addition, for a low-cost and flexible photoelectric conversion element or photovoltaic cell, a transparent polymer film provided with the above conductive layer is preferably used. For the transparent polymer film, tetraacetyl cellulose (TA
C), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), syndioctatic polysterene (SPS), polyphenylene sulfide (P
PS), polycarbonate (PC), polyarylate (PAr), polysulfone (PSF), polyestersulfone (PES), polyetherimide (PE)
I), cyclic polyolefin, brominated phenoxy and the like.

【0008】(B)感光層 (1)半導体 本発明で色素増感に用いる半導体は、光励起下で伝導帯
電子がキャリアーとなりアノード電流を与えるn型半導
体であることが好ましい。具体的には、シリコン、ゲル
マニウムのような単体半導体、III-V系化合物半導体、
金属のカルコゲニド(例えば酸化物、硫化物、セレン化
物等)、またはペロブスカイト構造を有する化合物(例
えばチタン酸ストロンチウム、チタン酸カルシウム、チ
タン酸ナトリウム、チタン酸バリウム、ニオブ酸カリウ
ム等)等を使用することができる。
(B) Photosensitive Layer (1) Semiconductor The semiconductor used for dye sensitization in the present invention is preferably an n-type semiconductor which gives an anode current by using conduction band electrons as carriers under photoexcitation. Specifically, silicon, a simple semiconductor such as germanium, a III-V compound semiconductor,
Use of metal chalcogenides (eg, oxides, sulfides, selenides, etc.) or compounds having a perovskite structure (eg, strontium titanate, calcium titanate, sodium titanate, barium titanate, potassium niobate, etc.) Can be.

【0009】好ましい金属のカルコゲニドとして、チタ
ン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ハ
フニウム、ストロンチウム、インジウム、セリウム、イ
ットリウム、ランタン、バナジウム、ニオブ、またはタ
ンタルの酸化物、カドミウム、亜鉛、鉛、銀、アンチモ
ンまたはビスマスの硫化物、カドミウムまたは鉛のセレ
ン化物、カドミウムのテルル化物等が挙げられる。他の
化合物半導体としては亜鉛、ガリウム、インジウム、カ
ドミウム等のリン化物、ガリウム−ヒ素または銅−イン
ジウムのセレン化物、銅−インジウムの硫化物等が挙げ
られる。
Preferred metal chalcogenides include titanium, tin, zinc, iron, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium or tantalum oxide, cadmium, zinc, lead and silver. , Antimony or bismuth sulfide, cadmium or lead selenide, cadmium telluride and the like. Other compound semiconductors include phosphides such as zinc, gallium, indium and cadmium, selenides of gallium-arsenic or copper-indium, and sulfides of copper-indium.

【0010】本発明に用いる半導体の好ましい具体例
は、Si、TiO2、SnO2、Fe2O3、WO3、ZnO、Nb2O5、CdS、Z
nS、PbS、Bi2S3、CdSe、CdTe、GaP、InP、GaAs、CuIn
S2、CuInSe2等であり、より好ましくはTiO2、ZnO、Sn
O2、Fe2O3、WO3、Nb2O5、CdS、PbS、CdSe、InP、GaAs、
CuInS2またはCuInSe2であり、特に好ましくはTiO2また
はNb 2O5であり、最も好ましくはTiO2である。
Preferred specific examples of the semiconductor used in the present invention
Is Si, TiOTwo, SnOTwo, FeTwoOThree, WOThree, ZnO, NbTwoOFive, CdS, Z
nS, PbS, BiTwoSThree, CdSe, CdTe, GaP, InP, GaAs, CuIn
STwo, CuInSeTwoEtc., more preferably TiOTwo, ZnO, Sn
OTwo, FeTwoOThree, WOThree, NbTwoOFive, CdS, PbS, CdSe, InP, GaAs,
CuInSTwoOr CuInSeTwoAnd particularly preferably TiOTwoAlso
Is Nb TwoOFiveAnd most preferably TiOTwoIt is.

【0011】本発明に用いられる半導体は、単結晶で
も、多結晶でもよい。変換効率としては単結晶が好まし
いが、製造コスト、原材料確保、エネルギーペイバック
タイム等の点では多結晶が好ましく、特にナノメートル
からマイクロメートルサイズの微粒子半導体が好まし
い。これらの半導体微粒子の粒径は、投影面積を円に換
算したときの直径を用いた平均粒径で一次粒子として5
〜200nmであることが好ましく、特に8〜100nmで
あることが好ましい。また、分散物中の半導体微粒子
(二次粒子)の平均粒径としては0.01〜100μm
であることが好ましい。また、2種類以上の粒子サイズ
分布の異なる微粒子を混合して用いてもよく、この場
合、小さい粒子の平均サイズは5nm以下であることが好
ましい。また、入射光を散乱させて光捕獲率を向上させ
る目的で、粒子サイズの大きな、例えば300nm程度の
半導体粒子を混合してもよい。
The semiconductor used in the present invention may be a single crystal or a polycrystal. Although a single crystal is preferable as the conversion efficiency, a polycrystal is preferable in terms of manufacturing cost, securing of raw materials, energy payback time, and the like, and a fine particle semiconductor having a nanometer to micrometer size is particularly preferable. The particle diameter of these semiconductor fine particles is an average particle diameter using the diameter when the projected area is converted into a circle, and is 5% as a primary particle.
It is preferably from 200 to 200 nm, particularly preferably from 8 to 100 nm. The average particle size of the semiconductor fine particles (secondary particles) in the dispersion is 0.01 to 100 μm.
It is preferred that Further, two or more kinds of fine particles having different particle size distributions may be mixed and used, and in this case, the average size of the small particles is preferably 5 nm or less. In addition, semiconductor particles having a large particle size, for example, about 300 nm may be mixed for the purpose of improving the light capture rate by scattering incident light.

【0012】半導体微粒子の作製法は、作花済夫の「ゾ
ルーゲル法の科学」アグネ承風社(1988年)、技術
情報協会の「ゾルーゲル法による薄膜コーティング技
術」(1995)等に記載のゾルーゲル法、杉本忠夫の
「新合成法ゲルーゾル法による単分散粒子の合成とサイ
ズ形態制御」 まてりあ、第35巻、第9号 1012
頁から1018頁(1996)記載のゲルーゾル法が好
ましい。またDegussa社が開発した塩化物を酸水
素炎中で高温加水分解により酸化物を作製する方法も好
ましい。また酸化チタンの場合は上記のゾルーゲル法、
ゲルーゾル法、塩化物を酸水素炎中で高温加水分解法が
いずれも好ましいが、さらに清野学の「酸化チタン 物
性と応用技術」技報堂出版(1997)に記載の硫酸
法、塩素法を用いることもできる。酸化チタンの場合は
上記のゾルーゲル法のうち特にバーブ等の「ジャーナル
・オブ・アメリカン・セラミック・ソサエティー 第8
0巻、第12号、3157ページから3171ページ
(1997)」記載のものと、バーンサイド等の「ケミ
カル・マテリアルズ 第10巻 第9号、2419ペー
ジから2425ページ」記載の方法が好ましい。
The method for producing semiconductor fine particles is described in "Sol-gel method", described in "Sol-gel method science" by Agne Shofusha (1988), "Technical Information Association", "Thin-film coating technique by sol-gel method" (1995). Tadao Sugimoto, "Synthesis of Monodisperse Particles by New Synthetic Gel-Sol Method and Size Morphology Control" Materia, Vol. 35, No. 9, 1012
The gel-sol method described on pages 10 to 1018 (1996) is preferred. Further, a method of producing an oxide by hydrolyzing a chloride in an oxyhydrogen flame at a high temperature developed by Degussa is also preferable. In the case of titanium oxide, the above sol-gel method,
The gel-sol method and the high-temperature hydrolysis method of chloride in an oxyhydrogen flame are both preferred, but the sulfuric acid method and chlorine method described in Manabu Kiyono's "Titanium oxide physical properties and applied technology" Gihodo Shuppan (1997) may also be used. it can. In the case of titanium oxide, among the above-mentioned sol-gel methods, in particular, Barb et al., Journal of American Ceramic Society No. 8
Vol. 0, No. 12, pages 3157 to 3171 (1997) "and the method described in Burnside et al.," Chemical Materials Vol. 10, No. 9, pages 2419 to 2425 "are preferred.

【0013】(2)半導体微粒子の塗設 半導体微粒子を導電性基板上(導電層側)に塗設する方
法としては、半導体微粒子の分散液またはコロイド溶液
を導電性基板上に塗布する方法、前述のゾル−ゲル法な
どが挙げられる。光電変換素子の量産化、液物性や支持
体の融通性を考えた場合、湿式の膜付与方式が比較的有
利である。湿式の膜付与方式としては、塗布法、印刷法
が代表的である。半導体微粒子層は単層であってもよい
し、微粒子の粒径の違った分散液を多層塗布した多層構
成であってもよい。また半導体の種類が異なる、あるい
はバインダー、添加剤の組成が異なる塗布層を多層塗布
した構成であってもよい。半導体微粒子層の厚みが増大
すると単位投影面積当たりの担持色素量が増えるため光
の捕獲率が高くなるが、生成した電子の拡散距離が増す
ため電荷再結合によるロスも大きくなる。したがって、
半導体微粒子含有層には好ましい厚さが存在するが、典
型的には0.1〜100μmである。光電池として用い
る場合は0.5〜30μmであることが好ましく、1〜
25μmであることがより好ましい。半導体微粒子の支
持体1m2当たりの塗布量は0.5〜400g、さらには
2〜100gが好ましい。半導体微粒子は導電性基板に
塗布した後に分散助剤を除去し、また粒子同士を電子的
にコンタクトさせるため、および塗膜強度の向上や基板
との密着性を向上させるために加熱処理することが好ま
しい。好ましい加熱処理温度の範囲は40℃以上700
℃未満であり、より好ましくは100℃以上600℃以
下である。また加熱処理時間は10分〜10時間程度で
ある。また、加熱処理後、半導体粒子の表面積を増大さ
せたり、半導体粒子近傍の純度を高め、色素から半導体
粒子への電子注入効率を高める目的で、例えば四塩化チ
タン水溶液を用いた化学処理や三塩化チタン水溶液を用
いた電気化学的処理を行ってもよい。半導体微粒子は多
くの色素を吸着することができるように表面積の大きい
ものが好ましい。このため半導体微粒子層を支持体上に
塗設した状態での表面積は、投影面積に対して10倍以
上であることが好ましく、さらに100倍以上であるこ
とが好ましい。この上限には特に制限はないが、通常1
000倍程度である。
(2) Coating of semiconductor fine particles As a method of coating semiconductor fine particles on a conductive substrate (conductive layer side), a method of coating a dispersion or colloid solution of semiconductor fine particles on a conductive substrate, as described above. Sol-gel method. In consideration of mass production of photoelectric conversion elements, liquid physical properties, and flexibility of a support, a wet film forming method is relatively advantageous. As a wet type film applying method, a coating method and a printing method are typical. The semiconductor fine particle layer may be a single layer, or may have a multilayer structure in which dispersion liquids having different particle diameters are applied in multiple layers. Further, a configuration in which coating layers having different types of semiconductors or different compositions of binders and additives are applied in multiple layers may be employed. When the thickness of the semiconductor fine particle layer is increased, the amount of the dye supported per unit projected area is increased, so that the light capture rate is increased. However, the diffusion distance of generated electrons is increased, and the loss due to charge recombination is also increased. Therefore,
The semiconductor fine particle-containing layer has a preferable thickness, but typically has a thickness of 0.1 to 100 μm. When used as a photovoltaic cell, the thickness is preferably 0.5 to 30 μm,
More preferably, it is 25 μm. The coating amount of the semiconductor fine particles per 1 m 2 of the support is preferably 0.5 to 400 g, more preferably 2 to 100 g. The semiconductor fine particles may be subjected to a heat treatment to remove the dispersing aid after being applied to the conductive substrate, to make the particles electronically contact each other, and to improve the coating film strength and the adhesion to the substrate. preferable. The preferred range of the heat treatment temperature is 40 ° C. or more and 700.
The temperature is lower than 100 ° C, more preferably 100 ° C to 600 ° C. The heat treatment time is about 10 minutes to 10 hours. After the heat treatment, for example, chemical treatment using an aqueous solution of titanium tetrachloride or trichloride for the purpose of increasing the surface area of the semiconductor particles, increasing the purity in the vicinity of the semiconductor particles, and increasing the efficiency of electron injection from the dye to the semiconductor particles. Electrochemical treatment using a titanium aqueous solution may be performed. The semiconductor fine particles preferably have a large surface area so that many dyes can be adsorbed. Therefore, the surface area when the semiconductor fine particle layer is coated on the support is preferably at least 10 times, more preferably at least 100 times the projected area. There is no particular upper limit, but usually 1
It is about 000 times.

【0014】(3)増感色素 本発明では上記の半導体微粒子に色素を物理的あるいは
化学的に吸着させて得られた色素吸着半導体層を感光層
に用いる。感光層では、色素の吸収波長領域での光吸収
によって生じた励起電子が半導体の伝導バンドに注入さ
れ、これが導電性支持体に伝達されて電流を生じる。こ
こで使用する色素は錯体色素、特に金属錯体色素または
メチン色素が好ましい。光電変換の波長域をできるだけ
広くし、かつ変換効率を上げるため、二種類以上の色素
を混合することもできる。そして、目的とする光源の波
長域と強度分布に合わせるように混合する色素とその割
合を選ぶことができる。こうした色素は半導体微粒子の
表面に対する適当な結合基(interlocking group)を有
しているのが好ましい。好ましい結合基としては、COOH
基、OH基、SO3H基、シアノ基、-P(O)(OH)2基、-OP(O)(O
H)2基、またはオキシム、ジオキシム、ヒドロキシキノ
リン、サリチレートおよびα-ケトエノレートのような
π伝導性を有するキレート化基が挙げられる。なかでも
COOH基、-P(O)(OH)2基、-OP(O)(OH)2基が特に好まし
い。これらの基はアルカリ金属等と塩を形成していても
よく、また分子内塩を形成していてもよい。またポリメ
チン色素の場合、メチン鎖がスクアリリウム環やクロコ
ニウム環を形成する場合のように酸性基を含有するな
ら、この部分を結合基としてもよい。
(3) Sensitizing Dye In the present invention, a dye-adsorbed semiconductor layer obtained by physically or chemically adsorbing a dye to the above semiconductor fine particles is used as a photosensitive layer. In the photosensitive layer, excited electrons generated by light absorption in the absorption wavelength region of the dye are injected into the conduction band of the semiconductor, and are transmitted to the conductive support to generate an electric current. The dye used here is preferably a complex dye, particularly a metal complex dye or a methine dye. In order to widen the wavelength range of photoelectric conversion as much as possible and to increase the conversion efficiency, two or more dyes can be mixed. Dyes to be mixed and their proportions can be selected so as to match the wavelength range and intensity distribution of the target light source. Such a dye preferably has an appropriate interlocking group for the surface of the semiconductor fine particles. Preferred linking groups include COOH
Group, OH group, SO 3 H group, cyano group, -P (O) (OH) 2 group, -OP (O) (O
H) 2 groups or chelating groups having π conductivity, such as oximes, dioximes, hydroxyquinolines, salicylates and α-ketoenolates. Especially
A COOH group, -P (O) (OH) 2 group and -OP (O) (OH) 2 group are particularly preferred. These groups may form a salt with an alkali metal or the like, or may form an inner salt. In the case of a polymethine dye, if the methine chain contains an acidic group as in the case of forming a squarylium ring or a croconium ring, this portion may be used as a bonding group.

【0015】以下、感光層に用いる好ましい色素を具体
的に説明する。
Hereinafter, preferred dyes used in the photosensitive layer will be specifically described.

【0016】(a)金属錯体色素 色素が金属錯体色素である場合、金属原子はルテニウム
Ruであるのが好ましい。ルテニウム錯体色素としては、
例えば米国特許4927721号、同4684537号、同5084365
号、同5350644号、同5463057号、同5525440号、特開平7
-249790号、特表平10-504512号、世界特許98/50393号等
に記載の錯体色素が挙げられる。
(A) Metal complex dye When the dye is a metal complex dye, the metal atom is ruthenium.
Ru is preferred. Ruthenium complex dyes include:
For example, U.S. Pat.Nos. 4,492,721, 4,684,537, 5,084,365
No. 5,350,644, No. 5463057, No. 5,525,440, JP-A-7
-249790, Japanese Translation of PCT International Publication No. 10-504512, and the complex dyes described in World Patent No. 98/50393.

【0017】さらに本発明で用いるルテニウム錯体色素
は下記一般式(I): (A1)pRu(B-a)(B-b)(B-c) ・・・(I) により表されるのが好ましい。一般式(I)中、A1はC
l、SCN、H2O、Br、I、CN、NCOおよびSeCNからなる群か
ら選ばれた配位子を表し、pは0〜3の整数である。B-
a、B-bおよびB-cはそれぞれ独立に下記式B-1〜B-8:
Further, the ruthenium complex dye used in the present invention is preferably represented by the following general formula (I): (A 1 ) p Ru (Ba) (Bb) (Bc) (I) In the general formula (I), A 1 is C
1, represents a ligand selected from the group consisting of SCN, H 2 O, Br, I, CN, NCO and SeCN, and p is an integer of 0 to 3. B-
a, Bb and Bc are each independently the following formulas B-1 to B-8:

【0018】[0018]

【化1】 Embedded image

【0019】(ただし、Raは水素原子または置換基を
表し、置換基としてはたとえば、ハロゲン原子、炭素原
子数1〜12の置換または無置換のアルキル基、炭素原子
数7〜12の置換または無置換のアラルキル基、あるいは
炭素原子数6〜12の置換または無置換のアリール基、カ
ルボン酸基、リン酸基(これらの酸基は塩を形成してい
てもよい)が挙げられ、アルキル基およびアラルキル基
のアルキル部分は直鎖状でも分岐状でもよく、またアリ
ール基およびアラルキル基のアリール部分は単環でも多
環(縮合環、環集合)でもよい。)により表される化合
物から選ばれた有機配位子を表す。B-a、B-bおよびB-c
は同一でも異なっていても良い。
(However, Ra represents a hydrogen atom or a substituent. Examples of the substituent include a halogen atom, a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted alkyl group having 7 to 12 carbon atoms. A substituted aralkyl group, or a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, a carboxylic acid group, a phosphoric acid group (these acid groups may form a salt); The alkyl part of the aralkyl group may be linear or branched, and the aryl group and the aryl part of the aralkyl group may be monocyclic or polycyclic (condensed ring, ring assembly). Represents an organic ligand. Ba, Bb and Bc
May be the same or different.

【0020】金属錯体色素の好ましい具体例を以下に示
すが、本発明はこれらに限定されるものではない。
Preferred specific examples of the metal complex dye are shown below, but the present invention is not limited thereto.

【0021】[0021]

【化2】 Embedded image

【0022】[0022]

【化3】 Embedded image

【0023】[0023]

【化4】 Embedded image

【0024】(b)メチン色素 本発明で好ましく用いられるメチン色素は、特開平11
−35836号、特開平11−158395号、特開平
11−163378号、特開平11−214730号、
特開平11−214731号、欧州特許892411号
および同911841号の各明細書に記載の色素であ
る。これらの色素の合成法については、エフ・エム・ハ
ーマー(F.M.Hamer)著「ヘテロサイクリック・コンパウ
ンズ−シアニンダイズ・アンド・リレィティド・コンパ
ウンズ(Heterocyclic Compounds-Cyanine Dyes and Rel
ated Compounds)」、ジョン・ウィリー・アンド・サン
ズ(John Wiley & Sons)社−ニューヨーク、ロンドン、
1964年刊、デー・エム・スターマー(D.M.Sturmer)
著「ヘテロ素サイクリック・コンパウンズースペシャル
・トピックス・イン・複素 サイクリック・ケミストリ
ー(Heterocyclic Compounds-Special topics in hetero
cyclic chemistry)」、第18章、第14節、第482
から515頁、ジョン ・ウィリー・アンド・サンズ(Jo
hn Wiley & Sons)社−ニューヨーク、ロンドン、197
7年刊、「ロッズ・ケミストリー・オブ・カーボン・コ
ンパウンズ(Rodd's Chemistry of Carbon Compounds)」
2nd.Ed.vol.IV,part B,1977刊、第15章、第36
9から422頁、エルセビア・サイエンス・パブリック
・カンパニー・インク(Elsevier Science Publishing C
ompanyInc.)社刊、ニューヨーク、英国特許第1,077,611
号、Ukrainskii KhimicheskiiZhurnal, 第40巻、第3
号、253〜258頁、Dyes and Pigments, 第21
巻、227〜234頁およびこれらの文献に引用された
文献になどに記載されている。
(B) Methine Dye The methine dye preferably used in the present invention is disclosed in
-35836, JP-A-11-158395, JP-A-11-163378, JP-A-11-214730,
Dyes described in the specifications of JP-A-11-214731, European Patents 892411 and 911841. For the synthesis of these dyes, see FM Hamer, Heterocyclic Compounds-Cyanine Dyes and Relative Compounds.
ated Compounds), John Wiley & Sons-New York, London,
Published in 1964, DMSturmer
Author, Heterocyclic Compounds-Special topics in heterogeneous
cyclic chemistry) ", Chapter 18, Section 14, 482
515 pages, John Willie and Sons (Jo
hn Wiley & Sons)-New York, London, 197
7th year, "Rodd's Chemistry of Carbon Compounds"
2nd.Ed.vol.IV, part B, 1977, Chapter 15, Chapter 36
9-422, Elsevier Science Public Company, Inc.
ompanyInc.), New York, UK Patent 1,077,611
No. Ukrainskii Khimicheskii Zhurnal, Vol. 40, No. 3
No. 253-258, Dyes and Pigments, No. 21
Volumes 227-234 and in the references cited therein.

【0025】(4)半導体微粒子への色素の吸着 半導体微粒子に色素を吸着させるには、色素の溶液中に
良く乾燥した半導体微粒子層を有する導電性支持体を浸
漬するか、色素の溶液を半導体微粒子層に塗布する方法
を用いることができる。前者の場合、浸漬法、ディップ
法、ローラ法、エアーナイフ法等が使用可能である。な
お浸漬法の場合、色素の吸着は室温で行ってもよいし、
特開平7-249790号に記載されているように加熱還流して
行ってもよい。また後者の塗布方法としては、ワイヤー
バー法、スライドホッパー法、エクストルージョン法、
カーテン法、スピン法、スプレー法等があり、印刷方法
としては、凸版、オフセット、グラビア、スクリーン印
刷等がある。溶媒は、色素の溶解性に応じて適宜選択で
きる。例えば、アルコール類(メタノール、エタノー
ル、t-ブタノール、ベンジルアルコール等)、ニトリル
類(アセトニトリル、プロピオニトリル、3-メトキシプ
ロピオニトリル等)、ニトロメタン、ハロゲン化炭化水
素(ジクロロメタン、ジクロロエタン、クロロホルム、
クロロベンゼン等)、エーテル類(ジエチルエーテル、
テトラヒドロフラン等)、ジメチルスルホキシド、アミ
ド類(N,N-ジメチルホルムアミド、N,N-ジメチルアセタ
ミド等)、N-メチルピロリドン、1,3-ジメチルイミダゾ
リジノン、3-メチルオキサゾリジノン、エステル類(酢
酸エチル、酢酸ブチル等)、炭酸エステル類(炭酸ジエ
チル、炭酸エチレン、炭酸プロピレン等)、ケトン類
(アセトン、2-ブタノン、シクロヘキサノン等)、炭化
水素(へキサン、石油エーテル、ベンゼン、トルエン
等)やこれらの混合溶媒が挙げられる。
(4) Adsorption of Dye on Semiconductor Fine Particles The dye is adsorbed on the semiconductor fine particles by immersing a conductive support having a well-dried semiconductor fine particle layer in a dye solution or by dissolving the dye solution in a semiconductor solution. A method of applying to the fine particle layer can be used. In the former case, a dipping method, a dipping method, a roller method, an air knife method, or the like can be used. In the case of the immersion method, the dye may be adsorbed at room temperature,
It may be carried out by heating and refluxing as described in JP-A-7-249790. In addition, as the latter coating method, a wire bar method, a slide hopper method, an extrusion method,
There are a curtain method, a spin method, a spray method and the like, and a printing method includes letterpress, offset, gravure, screen printing and the like. The solvent can be appropriately selected according to the solubility of the dye. For example, alcohols (methanol, ethanol, t-butanol, benzyl alcohol, etc.), nitriles (acetonitrile, propionitrile, 3-methoxypropionitrile, etc.), nitromethane, halogenated hydrocarbons (dichloromethane, dichloroethane, chloroform,
Chlorobenzene, etc.), ethers (diethyl ether,
Tetrahydrofuran), dimethylsulfoxide, amides (N, N-dimethylformamide, N, N-dimethylacetamide, etc.), N-methylpyrrolidone, 1,3-dimethylimidazolidinone, 3-methyloxazolidinone, esters ( Ethyl acetate, butyl acetate, etc.), carbonates (diethyl carbonate, ethylene carbonate, propylene carbonate, etc.), ketones (acetone, 2-butanone, cyclohexanone, etc.), hydrocarbons (hexane, petroleum ether, benzene, toluene, etc.) And a mixed solvent thereof.

【0026】色素の使用量は、全体で、支持体1m2当た
り0.01〜100ミリモルが好ましい。また、色素の
半導体微粒子に対する吸着量は半導体微粒子1gに対し
て0. 01〜1ミリモルが好ましい。このような色素
量とすることによって、半導体における増感効果が十分
に得られる。これに対し、色素量が少ないと増感効果が
不十分となり、色素量が多すぎると、半導体に付着して
いない色素が浮遊し増感効果を低減させる原因となる。
The total amount of the dye used is preferably 0.01 to 100 mmol per 1 m 2 of the support. The amount of the dye adsorbed on the semiconductor fine particles was 0.1 to 1 g of the semiconductor fine particles. It is preferably from 01 to 1 mmol. With such an amount of the dye, a sensitizing effect in the semiconductor can be sufficiently obtained. On the other hand, if the amount of the dye is small, the sensitizing effect becomes insufficient, and if the amount of the dye is too large, the dye not adhering to the semiconductor floats and causes a reduction in the sensitizing effect.

【0027】会合など色素同士の相互作用を低減する目
的で無色の化合物を共吸着させてもよい。共吸着させる
疎水性化合物としてはカルボキシル基を有するステロイ
ド化合物(例えばケノデオキシコール酸)等が挙げられ
る。また、紫外線による光劣化を防止する目的で紫外線
吸収剤を共吸着させることもできる。余分な色素の除去
を促進する目的で、色素を吸着した後にアミン類を用い
て半導体微粒子の表面を処理してもよい。好ましいアミ
ン類としてはピリジン、4−tert−ブチルピリジ
ン、ポリビニルピリジン等が挙げられる。これらは液体
の場合はそのまま用いてもよいし有機溶媒に溶解して用
いてもよい。
A colorless compound may be co-adsorbed for the purpose of reducing the interaction between dyes such as association. Examples of the hydrophobic compound to be co-adsorbed include a steroid compound having a carboxyl group (for example, chenodeoxycholic acid). In addition, an ultraviolet absorber can be co-adsorbed for the purpose of preventing light deterioration due to ultraviolet light. For the purpose of accelerating the removal of excess dye, the surface of the semiconductor fine particles may be treated with an amine after adsorbing the dye. Preferred amines include pyridine, 4-tert-butylpyridine, polyvinylpyridine and the like. When these are liquid, they may be used as they are, or may be used by dissolving them in an organic solvent.

【0028】(C)電荷移動層および電荷輸送材料 電荷移動層は色素の酸化体に電子を補充する機能を有す
る層である。本発明で用いることのできる代表的な電輸
送材料の例としては酸化還元対を有機溶媒に溶解した液
体(電解液)、酸化還元対を有機溶媒に溶解した液体を
ポリマーマトリクスに含浸したいわゆるゲル電解質、酸
化還元対を含有する溶融塩などが挙げられる。 (1)常温溶融塩電解質 本発明で好ましい電荷輸送材料は、常温溶融塩から成る
組成物である。このような常温溶融塩としては、例え
ば、WO95/18456号、特開平8−259543
号、電気化学第65巻11号923頁(1997年)、
EP−718288号、J. Electrochem. Soc., Vol.14
3,No.10,3099(1996)、Inorg. Chem. 1996,35,1168-1178
に記載されているピリジニウム塩、イミダゾリウム塩、
トリアゾニウム塩など既知の常温溶融塩を用いることが
できる。
(C) Charge Transfer Layer and Charge Transport Material The charge transfer layer is a layer having a function of replenishing an oxidized dye with electrons. Examples of typical electrotransport materials that can be used in the present invention include a liquid in which a redox couple is dissolved in an organic solvent (electrolyte solution) and a so-called gel in which a liquid in which a redox couple is dissolved in an organic solvent is impregnated in a polymer matrix. Examples include an electrolyte and a molten salt containing a redox couple. (1) Room Temperature Molten Salt Electrolyte The preferred charge transporting material in the present invention is a composition comprising a room temperature molten salt. Examples of such a room temperature molten salt include, for example, WO95 / 18456, and JP-A-8-259543.
No., Electrochemistry 65: 11 923 (1997),
EP-718288, J. Electrochem. Soc., Vol. 14
3, No. 10, 3099 (1996), Inorg. Chem. 1996, 35, 1168-1178
Pyridinium salts, imidazolium salts described in
Known room temperature molten salts such as triazonium salts can be used.

【0029】好ましく用いることのできる溶融塩として
は、下記一般式(Y-a)、(Y-b)及び(Y-c)のいずれ
かにより表されるものが挙げられる。
Examples of the molten salt that can be preferably used include those represented by any of the following formulas (Ya), (Yb) and (Yc).

【0030】[0030]

【化5】 Embedded image

【0031】一般式(Y-a)中、Qy1は窒素原子と共に5
又は6員環の芳香族カチオンを形成しうる原子団を表
す。Qy1は炭素原子、水素原子、窒素原子、酸素原子及
び硫黄原子からなる群から選ばれる1種以上の原子によ
り構成されるのが好ましい。
In the general formula (Ya), Q y1 is 5 together with a nitrogen atom.
Or an atomic group capable of forming a 6-membered aromatic cation. Q y1 is preferably composed of one or more atoms selected from the group consisting of a carbon atom, a hydrogen atom, a nitrogen atom, an oxygen atom and a sulfur atom.

【0032】Qy1により形成される5員環は、オキサゾ
ール環、チアゾール環、イミダゾール環、ピラゾール
環、イソオキサゾール環、チアジアゾール環、オキサジ
アゾール環又はトリアゾール環であるのが好ましく、オ
キサゾール環、チアゾール環又はイミダゾール環である
のがより好ましく、オキサゾール環又はイミダゾール環
であるのが特に好ましい。Qy1により形成される6員環
は、ピリジン環、ピリミジン環、ピリダジン環、ピラジ
ン環又はトリアジン環であるのが好ましく、ピリジン環
であるのがより好ましい。
The 5-membered ring formed by Q y1 is preferably an oxazole ring, a thiazole ring, an imidazole ring, a pyrazole ring, an isoxazole ring, a thiadiazole ring, an oxadiazole ring or a triazole ring. It is more preferably a ring or an imidazole ring, particularly preferably an oxazole ring or an imidazole ring. The 6-membered ring formed by Q y1 is preferably a pyridine ring, a pyrimidine ring, a pyridazine ring, a pyrazine ring or a triazine ring, and more preferably a pyridine ring.

【0033】一般式(Y-b)中、Ay1は窒素原子又はリン
原子を表す。
In the general formula (Yb), A y1 represents a nitrogen atom or a phosphorus atom.

【0034】一般式(Y-a)、(Y-b)及び(Y-c)中のR
y1〜Ry6はそれぞれ独立に置換又は無置換のアルキル基
(好ましくは炭素原子数1〜24、直鎖状であっても分岐
状であっても、また環式であってもよく、例えばメチル
基、エチル基、プロピル基、イソプロピル基、ペンチル
基、ヘキシル基、オクチル基、2-エチルヘキシル基、t-
オクチル基、デシル基、ドデシル基、テトラデシル基、
2-ヘキシルデシル基、オクタデシル基、シクロヘキシル
基、シクロペンチル基等)、或いは置換又は無置換のア
ルケニル基(好ましくは炭素原子数2〜24、直鎖状であ
っても分岐状であってもよく、例えばビニル基、アリル
基等)を表し、より好ましくは炭素原子数2〜18のアル
キル基又は炭素原子数2〜18のアルケニル基であり、特
に好ましくは炭素原子数2〜6のアルキル基である。
R in the general formulas (Ya), (Yb) and (Yc)
y1 to Ry6 each independently represent a substituted or unsubstituted alkyl group (preferably having 1 to 24 carbon atoms, which may be linear, branched, or cyclic; for example, methyl Group, ethyl group, propyl group, isopropyl group, pentyl group, hexyl group, octyl group, 2-ethylhexyl group, t-
Octyl, decyl, dodecyl, tetradecyl,
2-hexyldecyl group, octadecyl group, cyclohexyl group, cyclopentyl group, etc.) or a substituted or unsubstituted alkenyl group (preferably having 2 to 24 carbon atoms, which may be linear or branched, For example, a vinyl group or an allyl group), more preferably an alkyl group having 2 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms, and particularly preferably an alkyl group having 2 to 6 carbon atoms. .

【0035】また、一般式(Y-b)中のRy1〜Ry4のうち
2つ以上が互いに連結してAy1を含む非芳香族環を形成
してもよく、一般式(Y-c)中のRy1〜Ry6のうち2つ以
上が互いに連結して環構造を形成してもよい。
Two or more of R y1 to R y4 in the general formula (Yb) may be linked to each other to form a non-aromatic ring containing A y1 , Two or more of y1 to Ry6 may be connected to each other to form a ring structure.

【0036】一般式(Y-a)、(Y-b)及び(Y-c)中のQ
y1及びRy1〜Ry6は置換基を有していてもよく、好ましい
置換基の例としては、ハロゲン原子(F、Cl、Br、I
等)、シアノ基、アルコキシ基(メトキシ基、エトキシ
基等)、アリーロキシ基(フェノキシ基等)、アルキル
チオ基(メチルチオ基、エチルチオ基等)、アルコキシ
カルボニル基(エトキシカルボニル基等)、炭酸エステ
ル基(エトキシカルボニルオキシ基等)、アシル基(ア
セチル基、プロピオニル基、ベンゾイル基等)、スルホ
ニル基(メタンスルホニル基、ベンゼンスルホニル基
等)、アシルオキシ基(アセトキシ基、ベンゾイルオキ
シ基等)、スルホニルオキシ基(メタンスルホニルオキ
シ基、トルエンスルホニルオキシ基等)、ホスホニル基
(ジエチルホスホニル基等)、アミド基(アセチルアミ
ノ基、ベンゾイルアミノ基等)、カルバモイル基(N,N-
ジメチルカルバモイル基等)、アルキル基(メチル基、
エチル基、プロピル基、イソプロピル基、シクロプロピ
ル基、ブチル基、2-カルボキシエチル基、ベンジル基
等)、アリール基(フェニル基、トルイル基等)、複素
環基(ピリジル基、イミダゾリル基、フラニル基等)、
アルケニル基(ビニル基、1-プロペニル基等)等が挙げ
られる。
Q in the general formulas (Ya), (Yb) and (Yc)
y1 and R y1 to R y6 may have a substituent, examples of preferred substituents, a halogen atom (F, Cl, Br, I
), A cyano group, an alkoxy group (such as a methoxy group and an ethoxy group), an aryloxy group (such as a phenoxy group), an alkylthio group (such as a methylthio group and an ethylthio group), an alkoxycarbonyl group (such as an ethoxycarbonyl group), and a carbonate group ( Ethoxycarbonyloxy group, etc.), acyl group (acetyl group, propionyl group, benzoyl group, etc.), sulfonyl group (methanesulfonyl group, benzenesulfonyl group, etc.), acyloxy group (acetoxy group, benzoyloxy group, etc.), sulfonyloxy group ( Methanesulfonyloxy group, toluenesulfonyloxy group, etc.), phosphonyl group (diethylphosphonyl group, etc.), amide group (acetylamino group, benzoylamino group, etc.), carbamoyl group (N, N-
Dimethylcarbamoyl group), alkyl group (methyl group,
Ethyl group, propyl group, isopropyl group, cyclopropyl group, butyl group, 2-carboxyethyl group, benzyl group, etc., aryl group (phenyl group, toluyl group, etc.), heterocyclic group (pyridyl group, imidazolyl group, furanyl group) etc),
Alkenyl groups (vinyl group, 1-propenyl group, etc.) and the like.

【0037】一般式(Y-a)、(Y-b)又は(Y-c)によ
り表される化合物は、Qy1又はRy1〜R y6を介して多量体
を形成してもよい。
According to the general formula (Y-a), (Y-b) or (Y-c)
The compound represented byy1Or Ry1~ R y6Multimer through
May be formed.

【0038】これらの溶融塩は、単独で使用しても、2
種以上混合して使用してもよく、また、ヨウ素アニオン
を他のアニオンで置き換えた溶融塩と併用することもで
きる。ヨウ素アニオンと置き換えるアニオンとしては、
ハロゲン化物イオン(Cl-、Br-等)、SCN-、BF4 -、P
F6 -、ClO4 -、(CF3SO2)2N-、(CF3CF2SO2)2N-、CF3SO3 -
CF3COO-、Ph4B-、(CF3SO2)3C-等が好ましい例として挙
げられ、(CF3SO2)2N-又はBF4 -であるのがより好まし
い。また、LiIなど他のヨウ素塩を添加することもで
きる。
These molten salts may be used alone or
The iodine anion may be used in combination with a molten salt obtained by replacing the iodine anion with another anion. As the anion to replace the iodine anion,
Halide ions (Cl -, Br -, etc.), SCN -, BF 4 - , P
F 6 -, ClO 4 -, (CF 3 SO 2) 2 N -, (CF 3 CF 2 SO 2) 2 N -, CF 3 SO 3 -,
Preferred examples include CF 3 COO , Ph 4 B , (CF 3 SO 2 ) 3 C −, and more preferably (CF 3 SO 2 ) 2 N or BF 4 . Also, other iodine salts such as LiI can be added.

【0039】本発明で好ましく用いられる溶融塩の具体
例を以下に挙げるが、これらに限定されるわけではな
い。
Specific examples of the molten salt preferably used in the present invention are shown below, but are not limited thereto.

【0040】[0040]

【化6】 Embedded image

【0041】[0041]

【化7】 Embedded image

【0042】[0042]

【化8】 Embedded image

【0043】[0043]

【化9】 Embedded image

【0044】[0044]

【化10】 Embedded image

【0045】[0045]

【化11】 Embedded image

【0046】[0046]

【化12】 Embedded image

【0047】上記溶融塩電解質には、溶媒を用いない方
が好ましい。後述する電解液用の溶媒を添加しても構わ
ないが、溶融塩の含有量は電解質組成物全体に対して50
質量%以上であるのが好ましい。また、塩のうち、10質
量%以上がヨウ素塩であることが好ましく、50%以上で
あることがさらに好ましい。
It is preferable not to use a solvent for the molten salt electrolyte. Although a solvent for an electrolytic solution described later may be added, the content of the molten salt is 50% with respect to the entire electrolyte composition.
It is preferable that the amount is at least mass%. In addition, 10% by mass or more of the salt is preferably an iodine salt, and more preferably 50% or more.

【0048】電解質組成物にヨウ素を添加するのが好ま
しく、この場合、ヨウ素の含有量は、電解質組成物全体
に対して0.1〜20質量%であるのが好ましく、0.2〜5質
量%であるのがより好ましい。
It is preferable to add iodine to the electrolyte composition. In this case, the content of iodine is preferably 0.1 to 20% by mass, and more preferably 0.2 to 5% by mass based on the entire electrolyte composition. Is more preferred.

【0049】(2)電解液 電荷移動層に電解液を使用する場合、電解液は電解質、
溶媒、および添加物から構成されることが好ましい。本
発明の電解質はI2とヨウ化物の組み合わせ(ヨウ化物
としてはLiI、NaI、KI、CsI、CaI2 など
の金属ヨウ化物、あるいはテトラアルキルアンモニウム
ヨーダイド、ピリジニウムヨーダイド、イミダゾリウム
ヨーダイドなど4級アンモニウム化合物のヨウ素塩な
ど)、Br 2と臭化物の組み合わせ(臭化物としてはL
iBr、NaBr、KBr、CsBr、CaBr2 など
の金属臭化物、あるいはテトラアルキルアンモニウムブ
ロマイド、ピリジニウムブロマイドなど4級アンモニウ
ム化合物の臭素塩など)のほか、フェロシアン酸塩−フ
ェリシアン酸塩やフェロセン−フェリシニウムイオンな
どの金属錯体、ポリ硫化ナトリウム、アルキルチオール
−アルキルジスルフィドなどのイオウ化合物、ビオロゲ
ン色素、ヒドロキノン−キノンなどを用いることができ
る。この中でもI2とLiIやピリジニウムヨーダイド、
イミダゾリウムヨーダイドなど4級アンモニウム化合物
のヨウ素塩を組み合わせた電解質が本発明では好まし
い。上述した電解質は混合して用いてもよい。
(2) Electrolyte When an electrolyte is used for the charge transfer layer, the electrolyte is an electrolyte,
It is preferable to be composed of a solvent and an additive. Book
The electrolyte of the invention is ITwoAnd iodide combinations (iodide
Include LiI, NaI, KI, CsI, CaITwo Such
Metal iodide or tetraalkyl ammonium
Iodide, pyridinium iodide, imidazolium
Iodine salts of quaternary ammonium compounds such as iodide
Etc.), Br TwoAnd bromide (the bromide is L
iBr, NaBr, KBr, CsBr, CaBrTwo Such
Metal bromide or tetraalkylammonium
Quaternary ammonium such as romide and pyridinium bromide
Bromide salts), ferrocyanate salts
Ferricyanate and ferrocene-ferricinium ions
Which metal complex, sodium polysulfide, alkyl thiol
-Sulfur compounds such as alkyl disulfide, viologen
Dyes, hydroquinone-quinone and the like can be used.
You. Among them ITwoAnd LiI and pyridinium iodide,
Quaternary ammonium compounds such as imidazolium iodide
In the present invention, an electrolyte containing a combination of various iodine salts is preferred.
No. The above-mentioned electrolytes may be used as a mixture.

【0050】好ましい電解質濃度は0.1M以上15M以
下であり、さらに好ましくは0.2M以上10M以下であ
る。また、電解質にヨウ素を添加する場合の好ましいヨ
ウ素の添加濃度は0.01M以上0.5M以下である。
The preferred electrolyte concentration is 0.1M or more and 15M or less, more preferably 0.2M or more and 10M or less. When iodine is added to the electrolyte, a preferable concentration of iodine is 0.01 M or more and 0.5 M or less.

【0051】本発明で電解液に使用する溶媒は、粘度が
低くイオン易動度を向上したり、もしくは誘電率が高く
有効キャリアー濃度を向上したりして、優れたイオン伝
導性を発現できる化合物であることが望ましい。このよ
うな溶媒としては、エチレンカーボネート、プロピレン
カーボネートなどのカーボネート化合物、3−メチル−
2−オキサゾリジノンなどの複素環化合物、ジオキサ
ン、ジエチルエーテルなどのエーテル化合物、エチレン
グリコールジアルキルエーテル、プロピレングリコール
ジアルキルエーテル、ポリエチレングリコールジアルキ
ルエーテル、ポリプロピレングリコールジアルキルエー
テルなどの鎖状エーテル類、メタノール、エタノール、
エチレングリコールモノアルキルエーテル、プロピレン
グリコールモノアルキルエーテル、ポリエチレングリコ
ールモノアルキルエーテル、ポリプロピレングリコール
モノアルキルエーテルなどのアルコール類、エチレング
リコール、プロピレングリコール、ポリエチレングリコ
ール、ポリプロピレングリコール、グリセリンなどの多
価アルコール類、アセトニトリル、グルタロジニトリ
ル、メトキシアセトニトリル、プロピオニトリル、ベン
ゾニトリルなどのニトリル化合物、ジメチルスルフォキ
シド、スルフォランなど非プロトン極性物質、水などを
用いることができる。
The solvent used for the electrolytic solution in the present invention is a compound that can exhibit excellent ionic conductivity by lowering the viscosity and improving the ionic mobility, or increasing the dielectric constant and improving the effective carrier concentration. It is desirable that Examples of such a solvent include carbonate compounds such as ethylene carbonate and propylene carbonate, 3-methyl-
Heterocyclic compounds such as 2-oxazolidinone, dioxane, ether compounds such as diethyl ether, ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, chain ethers such as polypropylene glycol dialkyl ether, methanol, ethanol,
Alcohols such as ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, and polypropylene glycol monoalkyl ether; polyhydric alcohols such as ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, and glycerin; acetonitrile; Nitrile compounds such as glutaronitrile, methoxyacetonitrile, propionitrile, and benzonitrile; aprotic polar substances such as dimethyl sulfoxide and sulfolane; and water can be used.

【0052】また、本発明では、J. Am. Ceram. Soc .,
80 (12)3157-3171(1997)に記載されているようなter-ブ
チルピリジンや、2−ピコリン、2,6−ルチジン等の
塩基性化合物を添加することもできる。塩基性化合物を
添加する場合の好ましい濃度範囲は0.05M以上2M以下で
ある。
In the present invention, J. Am. Ceram. Soc.,
80 (12) 3157-3171 (1997), ter-butylpyridine, and basic compounds such as 2-picoline and 2,6-lutidine can also be added. The preferred concentration range when adding a basic compound is 0.05M or more and 2M or less.

【0053】(3)ゲル電解質 本発明では、電解質はポリマー添加、オイルゲル化剤添
加、多官能モノマー類を含む重合、ポリマーの架橋反応
等の手法によりゲル化(固体化)させて使用することも
できる。ポリマー添加によりゲル化させる場合は、"Pol
ymer Electrolyte Reviews-1および2"(J.R.MacCallumと
C.A. Vincentの共編、ELSEVIER APPLIEDSCIENCE)に記載
された化合物を使用することができるが、特にポリアク
リロニトリル、ポリフッ化ビニリデンを好ましく使用す
ることができる。オイルゲル化剤添加によりゲル化させ
る場合はJ. Chem Soc. Japan, Ind. Chem.Soc., 46779
(1943), J. Am. Chem. Soc., 111,5542(1989), J. Che
m. Soc., Chem. Commun.,1993, 390, Angew. Chem. In
t. Ed. Engl., 35,1949(1996), Chem. Lett., 1996, 88
5, J. Chm. Soc., Chem. Commun., 1997,545に記載され
ている化合物を使用することができるが、好ましい化合
物は分子構造中にアミド構造を有する化合物である。
(3) Gel Electrolyte In the present invention, the electrolyte may be gelled (solidified) by a method such as addition of a polymer, addition of an oil gelling agent, polymerization containing a polyfunctional monomer, or crosslinking reaction of a polymer. it can. When gelling by adding a polymer, use "Pol
ymer Electrolyte Reviews-1 and 2 "(with JRMacCallum
Compounds described in ELSEVIER APPLIEDSCIENCE (co-edited by CA Vincent) can be used, and particularly, polyacrylonitrile and polyvinylidene fluoride can be preferably used. When gelling by adding an oil gelling agent, use J. Chem Soc. Japan, Ind. Chem. Soc., 46779.
(1943), J. Am. Chem. Soc., 111,5542 (1989), J. Che.
m. Soc., Chem. Commun., 1993, 390, Angew. Chem. In
t. Ed. Engl., 35, 1949 (1996), Chem. Lett., 1996, 88.
5, J. Chm. Soc., Chem. Commun., 1997, 545, but preferred compounds are compounds having an amide structure in the molecular structure.

【0054】ゲル電解質を多官能モノマー類の重合によ
って形成する場合、多官能モノマー類、重合開始剤、電
解質、溶媒から溶液を調製し、キャスト法,塗布法,
浸漬法、含浸法などの方法により色素を担持した電極上
にゾル状の電解質層を形成し、その後ラジカル重合する
ことによってゲル化させる方法が好ましい。多官能性モ
ノマーはエチレン性不飽和基を2個以上有する化合物で
あることが好ましく、例えばジビニルベンゼン、エチレ
ングリコールジメタクリレート、エチレングリコールジ
アクリレート、エチレングリコールジメタクリレート、
ジエチレングリコールジアクリレート、ジエチレングリ
コールジメタクリレート、トリエチレングリコールジア
クリレート、トリエチレングリコールジメタクリレー
ト、ペンタエリスリトールトリアクリレート、トリメチ
ロールプロパントリアクリレートが好ましい例として挙
げられる。ゲル電解質を構成するモノマー類はこの他に
単官能モノマーを含んでいてもよく、アクリル酸または
α−アルキルアクリル酸(例えばメタクリル酸など)類
から誘導されるエステル類もしくはアミド類(例えば、
N−iso−プロピルアクリルアミド、アクリルアミド、
2−アクリルアミド−2−メチルプロパンスルホン酸、
アクリルアミドプロピルトリメチルアンモニウムクロラ
イド、メチルアクリレート、ヒドロキシエチルアクリレ
ート、n−プロピルアクリレート、 n−ブチルアクリ
レート 、2−メトキシエチルアクリレート、シクロヘ
キシルアクリレートなど)、ビニルエステル類(例えば
酢酸ビニル)、マレイン酸またはフマル酸から誘導され
るエステル類(例えばマレイン酸ジメチル、マレイン酸
ジブチル、フマル酸ジエチルなど)、マレイン酸、フマ
ル酸、p−スチレンスルホン酸のナトリウム塩、アクリ
ロニトリル、メタクリロニトリル、ジエン類(例えばブ
タジエン、シクロペンタジエン、イソプレン)、芳香族
ビニル化合物(例えばスチレン、p−クロルスチレン、
スチレンスルホン酸ナトリウム)、含窒素複素環を有す
るビニル化合物、4級アンモニウム塩を有するビニル化
合物、N−ビニルホルムアミド、N−ビニル−N−メチ
ルホルムアミド、ビニルスルホン酸、ビニルスルホン酸
ナトリウム、ビニリデンフルオライド、ビニリデンクロ
ライド、ビニルアルキルエーテル類(例えばメチルビニ
ルエーテル)、エチレン、プロピレン、1−ブテン、イ
ソブテン、N−フェニルマレイミド等を好ましく使用す
ることができる。モノマー全量に占める多官能性モノマ
ーの好ましい質量組成範囲は0.5質量%以上70質量%以下
であることが好ましく、さらに好ましくは1.0質量%以
上50質量%以下である。
When the gel electrolyte is formed by polymerization of polyfunctional monomers, a solution is prepared from the polyfunctional monomers, a polymerization initiator, an electrolyte, and a solvent, and a casting method, a coating method,
It is preferable to form a sol-like electrolyte layer on the electrode supporting the dye by a method such as an immersion method or an impregnation method, and then to cause a gelation by radical polymerization. The polyfunctional monomer is preferably a compound having two or more ethylenically unsaturated groups, for example, divinylbenzene, ethylene glycol dimethacrylate, ethylene glycol diacrylate, ethylene glycol dimethacrylate,
Preferred examples include diethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol diacrylate, triethylene glycol dimethacrylate, pentaerythritol triacrylate, and trimethylolpropane triacrylate. The monomers constituting the gel electrolyte may further contain a monofunctional monomer, and esters or amides derived from acrylic acid or α-alkylacrylic acid (such as methacrylic acid) (for example,
N-iso-propylacrylamide, acrylamide,
2-acrylamido-2-methylpropanesulfonic acid,
Derived from acrylamidopropyltrimethylammonium chloride, methyl acrylate, hydroxyethyl acrylate, n-propyl acrylate, n-butyl acrylate, 2-methoxyethyl acrylate, cyclohexyl acrylate, etc., vinyl esters (for example, vinyl acetate), maleic acid or fumaric acid (E.g., dimethyl maleate, dibutyl maleate, diethyl fumarate, etc.), maleic acid, fumaric acid, sodium salt of p-styrenesulfonic acid, acrylonitrile, methacrylonitrile, dienes (e.g., butadiene, cyclopentadiene, Isoprene), aromatic vinyl compounds (eg, styrene, p-chlorostyrene,
Sodium styrenesulfonate), vinyl compounds having a nitrogen-containing heterocycle, vinyl compounds having a quaternary ammonium salt, N-vinylformamide, N-vinyl-N-methylformamide, vinylsulfonic acid, sodium vinylsulfonate, vinylidene fluoride , Vinylidene chloride, vinyl alkyl ethers (for example, methyl vinyl ether), ethylene, propylene, 1-butene, isobutene, N-phenylmaleimide and the like can be preferably used. The preferred mass composition range of the polyfunctional monomer in the total amount of the monomers is preferably 0.5% by mass or more and 70% by mass or less, more preferably 1.0% by mass or more and 50% by mass or less.

【0055】上述のモノマーは、重合開始剤の存在下
で、加熱、光、電子線、また電気化学的にラジカル重合
することができる。ゲル電解質に占めるモノマー類の質
量組成範囲は0.5質量%以上70質量%以下であることが好
ましく、さらに好ましくは1.0質量%以上50質量%以下
である。また、ポリマーの架橋反応により電解質をゲル
化させる場合、架橋可能な反応性基を含有するポリマー
および架橋剤を併用することが望ましい。この場合、好
ましい架橋可能な反応性基は、含窒素複素環(例えば、
ピリジン環、イミダゾール環、チアゾール環、オキサゾ
ール環、トリアゾール環、モルホリン環、ピペリジン
環、ピペラジン環など)であり、好ましい架橋剤は、窒
素原子に対して求電子反応可能な2官能以上の試薬(例
えば、ハロゲン化アルキル、ハロゲン化アラルキル、ス
ルホン酸エステル、酸無水物、酸クロライド、イソシア
ネートなど)である。
The above-mentioned monomers can be subjected to radical polymerization by heating, light, electron beam or electrochemically in the presence of a polymerization initiator. The mass composition range of the monomers in the gel electrolyte is preferably 0.5% by mass to 70% by mass, and more preferably 1.0% by mass to 50% by mass. When the electrolyte is gelled by a crosslinking reaction of the polymer, it is preferable to use a polymer containing a crosslinkable reactive group and a crosslinking agent together. In this case, a preferable crosslinkable reactive group is a nitrogen-containing heterocyclic ring (for example,
A pyridine ring, an imidazole ring, a thiazole ring, an oxazole ring, a triazole ring, a morpholine ring, a piperidine ring, a piperazine ring, etc., and a preferable crosslinking agent is a bifunctional or higher functional reagent capable of electrophilic reaction with a nitrogen atom (for example, , Alkyl halides, aralkyl halides, sulfonic esters, acid anhydrides, acid chlorides, isocyanates, etc.).

【0056】(4)電荷移動層の形成 電荷移動層の形成方法に関しては2通りの方法が考えら
れる。1つは増感色素を担持させた半導体層の上に先に
対極を貼り合わせておき、その間隙に液状の電荷移動層
を挟み込む方法である。もう1つは半導体層上に直接電
荷移動層を付与する方法で、対極はその後付与すること
になる。
(4) Formation of Charge Transfer Layer There are two methods for forming the charge transfer layer. One is a method in which a counter electrode is first attached to a semiconductor layer on which a sensitizing dye is supported, and a liquid charge transfer layer is sandwiched in the gap. The other is a method in which a charge transfer layer is provided directly on a semiconductor layer, and a counter electrode is subsequently provided.

【0057】前者の場合の電荷移動層の挟み込み方法と
して、浸漬等による毛管現象を利用する常圧プロセスと
常圧より低い圧力にして気相を液相に置換する真空プロ
セスが利用できる。
As the method of sandwiching the charge transfer layer in the former case, a normal pressure process utilizing a capillary phenomenon by immersion or the like and a vacuum process of replacing the gas phase with a liquid phase at a pressure lower than normal pressure can be used.

【0058】後者の場合、湿式の電荷移動層においては
未乾燥のまま対極を付与し、エッジ部の液漏洩防止措置
も施すことになる。またゲル電解質の場合には湿式で塗
布して重合等の方法により固体化する方法もあり、その
場合には乾燥、固定化した後に対極を付与することもで
きる。電解液やゲル電解質を付与する方法としては、半
導体微粒子含有層や色素の付与と同様に、浸漬法、ロー
ラ法、ディップ法、エアーナイフ法、エクストルージョ
ン法、スライドホッパー法、ワーヤーバー法、スピン
法、スプレー法、キャスト法、各種印刷法等が考えられ
る。
In the latter case, the wet charge transfer layer is provided with a counter electrode in an undried state, and measures are taken to prevent the edge portion from leaking liquid. In the case of a gel electrolyte, there is also a method of applying it by a wet method and solidifying it by a method such as polymerization. In this case, a counter electrode can be provided after drying and fixing. As a method for applying an electrolytic solution or a gel electrolyte, the immersion method, the roller method, the dipping method, the air knife method, the extrusion method, the slide hopper method, the wire bar method, and the spin method are the same as the method for applying the semiconductor fine particle-containing layer and the dye. , Spraying, casting, various printing methods, and the like.

【0059】感光層(半導体層)と対極との短絡が生じ
ないように、電荷移動層は、ある程度の厚さを有する
が、厚すぎると光電変換効率上好ましくない。電荷移動
層の厚さは、好ましくは0.05μm以上100μm以
下であり、より好ましくは0.1μm以上50μm以下
である。なお、電荷輸送材料は、先にも述べたように、
半導体微粒子から形成された多孔質の感光層中や後述の
対極に隣接した多孔質層中にも存在させる。
The charge transfer layer has a certain thickness so as not to cause a short circuit between the photosensitive layer (semiconductor layer) and the counter electrode. However, if the charge transfer layer is too thick, it is not preferable in terms of photoelectric conversion efficiency. The thickness of the charge transfer layer is preferably from 0.05 μm to 100 μm, and more preferably from 0.1 μm to 50 μm. In addition, the charge transport material, as described above,
It is also present in a porous photosensitive layer formed from semiconductor fine particles or in a porous layer adjacent to a counter electrode described below.

【0060】電荷移動層はその水分の含量が10,00
0ppm以下であることが好ましく、さらには2,00
0ppm以下、特に100ppm以下であることがより
好ましい。
The charge transfer layer has a water content of 10,000.
0 ppm or less, more preferably 2,000 ppm.
More preferably, it is 0 ppm or less, especially 100 ppm or less.

【0061】(D)多孔質層 本発明においては、後述する対極に隣接し、対極に対し
て半導体微粒子層と反対側に電荷移動層中と同じ電荷輸
送材料を保持してなる多孔質層部分を有することを特徴
とする。上記多孔質層部分は、電荷輸送材料を保持する
空間部を有し、この空間部に保持された電荷輸送材料
が、電荷移動層や半導体微粒子層内に保持される電荷輸
送材料と接続するような構造であれば任意の構造をとる
ことが出来る。本多孔質層は例えば、微粒子を焼結して
なる多孔質層、ゾルゲル法で作成される多孔質層、また
電気化学的に作成されたハネカム構造を有する層、ある
いは基盤にレーザー加工により設けられた孔を有するも
のなどが挙げられる。多孔質層の孔のサイズは、5nm
から1μmが好ましく、さらに好ましくは50nmから
500nmである。多孔質層の厚みは2μm以上が好ま
しく、通常10μmから100μmの範囲で用いる。
(D) Porous Layer In the present invention, the porous layer portion which is adjacent to the counter electrode described below and which has the same charge transporting material as in the charge transfer layer on the side opposite to the semiconductor fine particle layer with respect to the counter electrode. It is characterized by having. The porous layer portion has a space for holding the charge transport material, and the charge transport material held in this space is connected to the charge transport material held in the charge transfer layer or the semiconductor fine particle layer. Any structure can be adopted as long as the structure is appropriate. The present porous layer is provided by, for example, laser processing on a porous layer formed by sintering fine particles, a porous layer formed by a sol-gel method, a layer having a honeycomb structure formed electrochemically, or a base. And the like having a perforated hole. The pore size of the porous layer is 5 nm
To 1 μm, more preferably 50 nm to 500 nm. The thickness of the porous layer is preferably 2 μm or more, and is usually used in the range of 10 μm to 100 μm.

【0062】多孔質部分を構成する材質は、電荷輸送材
料と接した状態で化学的に安定な材質であれば任意の材
質が使用できる。例えば、SiO2,SnO2,ZnO,
Al 23などの金属酸化物、あるいは酸化物ガラスが挙
げられる。好ましい酸化物ガラス物質の具体例は、珪
素、硼素およびリンから選ばれる少なくとも一種の元素
を含む酸化物ガラスであり例えば以下の組成のガラスが
挙げられる。
The material constituting the porous portion is a charge transport material.
Any material that is chemically stable in contact with the material
Quality is available. For example, SiOTwo, SnOTwo, ZnO,
Al TwoOThreeMetal oxides or oxide glass
I can do it. Specific examples of preferred oxide glass materials include silica.
At least one element selected from boron, boron and phosphorus
Is an oxide glass containing, for example, a glass having the following composition:
No.

【0063】Na0.20.40.4X Rb0.20.40.4X Pb0.20.25Si0.25X Pb0.2Zn0.1BOX Na 0.2 B 0.4 P 0.4 O X Rb 0.2 B 0.4 P 0.4 O X Pb 0.2 B 0.25 Si 0.25 O X Pb 0.2 Zn 0.1 BO X

【0064】また、有機高分子より成る多孔質層を用い
ることも可能である。例えば、ポリメチルメタクリレー
ト、ポリエチレン、ポリスチレン、ポリプロピレン、ポ
リビニリデン−ジ−フルオレートなどの材料からなる多
孔質膜が挙げられる。また、多孔質層は導電性物質(例
えば、金属やカーボン、導電性有機材料など)で構成さ
れていてもよい。
It is also possible to use a porous layer made of an organic polymer. For example, a porous membrane made of a material such as polymethyl methacrylate, polyethylene, polystyrene, polypropylene, and polyvinylidene-di-fluorate is exemplified. Further, the porous layer may be made of a conductive substance (for example, metal, carbon, a conductive organic material, or the like).

【0065】(E)対極 電荷移動層中の電荷輸送材料と電子授受反応を行う対極
は、上記多孔質層に隣接し、多孔質層に対して、色素を
吸着した半導体電極側に設置される。対極は、前記多孔
質層中の電荷輸送材料と電荷輸送層および色素吸着電極
部の電荷輸送材料とが互いに行き来でき、かつ、外部に
電流を取り出すことの出来る構造であることが必要であ
る。具体的には、例えば、前記多孔質層上に形成された
網目状またはメッシュ状の金属薄膜や多数の孔の開いた
金属膜等を挙げることができる。多孔質膜が導電性を備
えている場合は、電極部は必ずしも連続した構造を有す
る必要は無く、導電性多孔質の上層(色素吸着半導体電
極側)に離散的に付着した金属微粒子などの導電性微粒
子であっても良い。
(E) Counter Electrode A counter electrode that performs an electron transfer reaction with the charge transporting material in the charge transfer layer is disposed adjacent to the porous layer and on the side of the porous layer on the semiconductor electrode side on which the dye is adsorbed. . The counter electrode must have a structure in which the charge transport material in the porous layer and the charge transport layer and the charge transport material in the dye-adsorbing electrode portion can move back and forth, and can take out current outside. Specifically, examples thereof include a mesh-like or mesh-like metal thin film formed on the porous layer and a metal film having a large number of holes. When the porous film has conductivity, the electrode portion does not necessarily have to have a continuous structure, and the conductive portion such as metal fine particles discretely attached to the upper layer of the conductive porous material (the dye-adsorbing semiconductor electrode side). Fine particles may be used.

【0066】対極は、電荷輸送材料との間で、抵抗の少
ないオーミックコンタクトが取れる材料であれば任意の
もの(金属、導電性金属酸化物、炭素など)が使用でき
るが、白金または炭素が好ましく用いられ、特に白金が
好ましい。
As the counter electrode, any material (metal, conductive metal oxide, carbon, etc.) can be used as long as it can form an ohmic contact with a small resistance with the charge transporting material. Platinum or carbon is preferable. Platinum is particularly preferred.

【0067】多孔質膜上に網目状等の金属膜を形成する
方法としては、例えば蒸着法、スパッター法などが挙げ
られ、マスクによりパターン化することもできる。導電
性多孔質膜に離散状に金属微粒子を析出させる方法とし
ては、電析法の他、金属コロイドを電気泳動法により付
着させる方法、無電解メッキ法などが挙げられる。
As a method for forming a mesh-like metal film on the porous film, for example, a vapor deposition method, a sputtering method and the like can be mentioned, and patterning can be performed using a mask. Examples of a method for depositing metal fine particles discretely on the conductive porous film include, in addition to an electrodeposition method, a method of attaching a metal colloid by electrophoresis, and an electroless plating method.

【0068】光の入射する側と反対側(即ち、多孔質層
側)にも素子の強度付与、製造の容易化、電流の取り出
し等の目的で支持体を用いることもできる。多孔質層側
の支持体は、透明または不透明のどちらでもよく、導電
性であっても絶縁性であってもよい。また、対極と電気
的コンタクトを有し、対極からの電流を取り出せる構成
のもの、例えば、導電性支持体やガラスまたはプラスチ
ック基板に金属リードを一定間隔で配置した構成をもつ
支持体でもよい。対極が金属膜である場合のように別個
に電気的接続がとれる場合には、支持体自体は、導電性
を有しなくともよい。
A support can also be used on the side opposite to the side on which light is incident (ie, on the porous layer side) for the purpose of imparting strength to the element, facilitating manufacture, extracting current, and the like. The support on the porous layer side may be either transparent or opaque, and may be conductive or insulating. Further, a structure having an electrical contact with the counter electrode and capable of extracting a current from the counter electrode, for example, a conductive support or a support having a structure in which metal leads are arranged at regular intervals on a glass or plastic substrate may be used. In the case where electrical connection can be made separately, such as when the counter electrode is a metal film, the support itself may not have conductivity.

【0069】〔2〕光電池 本発明の光電池は、上記光電変換素子に外部回路で仕事
をさせるようにしたものである。光電池は構成物の劣化
や内容物の揮散を防止するために、側面をポリマーや接
着剤等で密封するのが好ましい。導電性支持体および対
極にリードを介して接続される外部回路自体は公知のも
ので良い。本発明の光電変換素子をいわゆる太陽電池に
適用する場合、そのセル内部の構造は基本的に上述した
光電変換素子の構造と同じである。以下、本発明の光電
変換素子を用いた太陽電池のモジュール構造について説
明する。
[2] Photovoltaic cell The photovoltaic cell of the present invention has the photoelectric conversion element work in an external circuit. It is preferable that the side surface of the photovoltaic cell is sealed with a polymer, an adhesive, or the like in order to prevent deterioration of components and volatilization of the contents. The external circuit itself connected to the conductive support and the counter electrode via a lead may be a known one. When the photoelectric conversion element of the present invention is applied to a so-called solar cell, the structure inside the cell is basically the same as the structure of the above-described photoelectric conversion element. Hereinafter, a module structure of a solar cell using the photoelectric conversion element of the present invention will be described.

【0070】本発明の色素増感型太陽電池のモジュール
構造は、従来の太陽電池モジュールと基本的には同様の
構造をとりうる。一般的には、金属・セラミック等の支
持基板の上にセルが構成され、その上を充填樹脂や保護
ガラス等で覆い、支持基板の反対側から光を取り込む構
造とすることができるが、支持基板に強化ガラス等の透
明材料を用い、その上にセルを構成してその透明の支持
基板側から光を取り込むことも可能である。具体的に
は、スーパーストレートタイプ、サブストレートタイ
プ、ポッティングタイプと呼ばれるモジュール構造ある
いはアモルファスシリコン太陽電池などで用いられる基
板一体型などのモジュール構造が可能である。これらの
モジュール構造は使用目的や使用場所(環境)により適
宜選択できる。
The module structure of the dye-sensitized solar cell of the present invention can have basically the same structure as a conventional solar cell module. Generally, a cell is formed on a supporting substrate such as a metal or ceramic, and the cell is covered with a filling resin or a protective glass or the like, and light can be taken in from the opposite side of the supporting substrate. It is also possible to use a transparent material such as tempered glass for the substrate, form a cell thereon, and take in light from the transparent support substrate side. Specifically, a module structure called a superstrate type, a substrate type, or a potting type, or a module structure such as an integrated substrate type used in an amorphous silicon solar cell or the like is possible. These module structures can be appropriately selected depending on the purpose of use and the place of use (environment).

【0071】スーパーストレートタイプやサブストレー
トタイプの代表的な構造は、片側または両側が透明で反
射防止処理を施された支持基板の間に、一定間隔にセル
が配置され、隣り合うセル間が金属リードまたはフレキ
シブル配線等によって接続されており、外縁部に集電電
極を配置して、発生した電力を外部に取り出す構造にな
っている。基板とセルの間には、セルの保護や集電効率
アップのため、目的に応じ、エチレンビニルアセテート
(EVA)等様々な種類のプラスチック材料をフイルム
または充填樹脂の形で用いることができる。また、外部
からの衝撃が少ないところなど表面を硬い素材で覆う必
要のない場所に使う場合には、表面保護層を透明プラス
チックフイルムで構成したり、または、上記充填・封止
材料を硬化させることによって保護機能を付与し、片側
の支持基板を無くすことも可能である。支持基板の周囲
は、内部の密封およびモジュールの剛性確保のため、金
属製のフレームでサンドイッチ状に固定し、支持基板と
フレームの間は封止材で密封シールする。
A typical structure of a superstrate type or a substrate type is that cells are arranged at regular intervals between supporting substrates which are transparent on one or both sides and have been subjected to antireflection treatment, and metal leads or adjacent cells are provided between adjacent cells. They are connected by a flexible wiring or the like, and have a structure in which current collecting electrodes are arranged on the outer edge to take out generated power to the outside. Various types of plastic materials such as ethylene vinyl acetate (EVA) can be used between the substrate and the cell in the form of a film or a filling resin, depending on the purpose, in order to protect the cell and increase current collection efficiency. When using in places where it is not necessary to cover the surface with a hard material, such as places where there is little external impact, make the surface protective layer of a transparent plastic film or cure the above-mentioned filling and sealing material. It is also possible to provide a protective function and eliminate the support substrate on one side. The periphery of the support substrate is fixed in a sandwich shape with a metal frame in order to seal the inside and ensure the rigidity of the module, and the space between the support substrate and the frame is hermetically sealed with a sealing material.

【0072】以下、本発明の効果を実施例によって具体
的に説明する。 実施例1
Hereinafter, the effects of the present invention will be specifically described with reference to examples. Example 1

【0073】1.透明導電性支持体(作用極用)の作製 厚さ1.9mmの無アルカリガラスの基板に、CVD法
によってフッ素ドープ型の二酸化スズを全面に均一にコ
ーティングし、厚さ600nm、面抵抗約20Ω/□、
光透過率(500nm)が85%の導電性二酸化スズ膜
を片面に被覆した透明導電性支持体を形成した。
1. Preparation of Transparent Conductive Support (for Working Electrode) A 1.9 mm-thick alkali-free glass substrate is uniformly coated with fluorine-doped tin dioxide on the entire surface by CVD, and has a thickness of 600 nm and a sheet resistance of about 20Ω. / □,
A transparent conductive support was formed in which a conductive tin dioxide film having a light transmittance (500 nm) of 85% was coated on one side.

【0074】2.二酸化チタン粒子含有塗布液の作製 C.J.BarbeらのJ.Am.Ceramic S
oc.80巻,p3157の論文に記載の製造方法に従
い、チタン原料にチタニウムテトライソプロポキシドを
用い、オートクレーブ中での重合反応の温度を230℃
に設定して二酸化チタン濃度11質量%の二酸化チタン
分散物を合成した。得られた二酸化チタン粒子の平均サ
イズは約10nmであった。この分散物に二酸化チタンに
対し30質量%のポリエチレングリコール(分子量2
0,000、和光純薬製)を添加し、混合して塗布液を
得た。
2. Preparation of coating solution containing titanium dioxide particles J. J. Barbe et al. Am. Ceramic S
oc. According to the production method described in the article of Vol. 80, p. 3157, titanium tetraisopropoxide is used as a titanium raw material, and the temperature of the polymerization reaction in the autoclave is 230 ° C.
And a titanium dioxide dispersion having a titanium dioxide concentration of 11% by mass was synthesized. The average size of the obtained titanium dioxide particles was about 10 nm. 30% by mass of polyethylene glycol (molecular weight: 2
000, manufactured by Wako Pure Chemical Industries, Ltd.) and mixed to obtain a coating solution.

【0075】3.色素を吸着した二酸化チタン電極の作
製 上記1で作製した透明導電性支持体の導電面側に2の塗
布液をドクターブレード法で100μmの厚みで塗布
し、25℃で30分間乾燥した後、電気炉で450℃に
て30分間焼成した。二酸化チタンの塗布量は15g/m2
であり、膜厚は8μmであった。ガラスを取り出し冷却
した後、色素R−2の有機溶液(色素3×10-4モル/
リットル、溶媒:2−プロパノール)に40℃で12時
間浸漬した。色素の染着したガラスをエタノールで洗浄
し暗所にて自然乾燥させた。色素の吸着量は、二酸化チ
タンの塗布面積1m2あたりおよそ1.5×10-3モル
であった。
3. Preparation of Titanium Dioxide Electrode Adsorbing Dye A coating solution of 2 was applied to the conductive surface side of the transparent conductive support prepared in 1 above at a thickness of 100 μm by a doctor blade method, dried at 25 ° C. for 30 minutes, and then dried. It was baked in a furnace at 450 ° C. for 30 minutes. The application amount of titanium dioxide is 15 g / m 2
And the film thickness was 8 μm. After the glass was taken out and cooled, an organic solution of dye R-2 (dye 3 × 10 -4 mol /
Liter, solvent: 2-propanol) at 40 ° C. for 12 hours. The dyed glass was washed with ethanol and dried naturally in the dark. The amount of the dye adsorbed was about 1.5 × 10 −3 mol per 1 m 2 of the titanium dioxide coated area.

【0076】4.多孔質層付対極Aの作製 市販のSiO2微粒子粉末(ナノテック社製:粒子サイ
ズ:20nm)10gを水100mlに分散し、これに
平均分子量500,000のポリエチレングリコールを
7g加え、攪拌することで、SiO2の分散液を調製し
た。次いで、石英ガラス基板上に、この分散液を200
μmの厚みで塗布した後、1100℃で焼結すること
で、多孔質膜付の基板を得た。これにスパッター法によ
り白金を平均膜厚みが100nmとなるまで付着せしめ
ることで、SiO2の多孔質膜の上部に、網目上に繋が
った白金の電極部を形成した。
4. Preparation of Counter Electrode A with Porous Layer 10 g of commercially available SiO 2 fine particle powder (manufactured by Nanotech: particle size: 20 nm) was dispersed in 100 ml of water, and 7 g of polyethylene glycol having an average molecular weight of 500,000 was added thereto, followed by stirring. , SiO 2 dispersion was prepared. Next, this dispersion was put on a quartz glass substrate for 200 hours.
After coating with a thickness of μm, sintering was performed at 1100 ° C. to obtain a substrate with a porous film. Platinum was adhered to this by a sputtering method until the average film thickness became 100 nm, whereby a platinum electrode portion connected on a mesh was formed on the upper portion of the porous SiO 2 film.

【0077】5.多孔質層付対極Bの作製 酸化錫と酸化インジウムからなる導電性微粒子(平均粒
子径が約5nm)10gを水100mlに分散し、これに
平均分子量500,000のポリエチレングリコールを
7g加え、攪拌することで、分散液を調製した。これを
無アルカリガラス基板上に200μmの厚みで塗布した
後、450℃で焼結することで、多孔質膜付の基板を得
た。これを熱板の上で約120℃の温度に加熱した状態
で、塩化白金酸の水溶液を噴霧し、さらにこれを400℃
で20分加熱することで、表面に微細な白金粒子が付着さ
せた。
5. Preparation of Counter Electrode B with Porous Layer 10 g of conductive fine particles (average particle diameter: about 5 nm) composed of tin oxide and indium oxide are dispersed in 100 ml of water, and 7 g of polyethylene glycol having an average molecular weight of 500,000 is added thereto, followed by stirring. Thus, a dispersion was prepared. This was applied on a non-alkali glass substrate with a thickness of 200 μm, and then sintered at 450 ° C. to obtain a substrate with a porous film. This was heated to a temperature of about 120 ° C on a hot plate, and an aqueous solution of chloroplatinic acid was sprayed.
For 20 minutes, thereby causing fine platinum particles to adhere to the surface.

【0078】6.光電池の作製 上述のようにして作製した色増感されたTiO2電極
(2cm×1.5cm)と多孔質層付対極Aとを、ポリ
エチレン製のフレーム型スペーサー(厚さ10μm)を
挟んで、長辺方向に端子用の末端部である幅2mmを交
互に外へ出して重ね合わせた(図1参照)。セルを、受
光部であるTiO2電極の透明導電性支持体面を残して
全体をエポキシ樹脂接着剤でシールした。次に、スペー
サーの側面に注液用の小孔を空け、本文記載の化合物
(Y8−1)を0.8g、(Y7−2)を0.3g及び
ヨウ素を0.02gを含む常温溶融塩の組成物の5μl
を注入した。このようにして、受光面積が約2cm2
あり、図1に示した基本層構成のとおり、導電性ガラス
1(ガラス上に導電剤層2が設層されたもの)、色素吸
着TiO2感光層3、電荷移動層(溶融塩含有)4、白
金対極層5、多孔質層6および 支持体ガラス7が順に
積層された光電池を組み立てた。多孔質層付対極Bにつ
いても同様にして光電池を作製した。比較用として同じ
石英基板の上に、白金を100nmの厚さにスパッターで
付着させることで、多孔質層を有さない平滑な構造の対
極を作製し、同様にして積層された光電池を組み立て
た。
6. Production of Photovoltaic Cell The color-sensitized TiO 2 electrode (2 cm × 1.5 cm) produced as described above and the counter electrode A with a porous layer were sandwiched by a polyethylene frame spacer (thickness: 10 μm). Terminals for terminals with a width of 2 mm were alternately put outside in the direction of the long side and superposed (see FIG. 1). The entire cell was sealed with an epoxy resin adhesive except for the surface of the transparent conductive support of the TiO 2 electrode as the light receiving portion. Next, a small hole for liquid injection was made on the side surface of the spacer, and a room temperature molten salt containing 0.8 g of the compound (Y8-1), 0.3 g of (Y7-2) and 0.02 g of iodine described in the text. 5 μl of the composition
Was injected. In this manner, the light receiving area is about 2 cm 2 , and as shown in the basic layer configuration shown in FIG. 1, the conductive glass 1 (the conductive agent layer 2 is provided on the glass), the dye-adsorbed TiO 2 A photovoltaic cell in which the layer 3, the charge transfer layer (containing the molten salt) 4, the platinum counter electrode layer 5, the porous layer 6, and the support glass 7 were sequentially laminated was assembled. A photovoltaic cell was similarly prepared for the counter electrode B with a porous layer. On the same quartz substrate for comparison, platinum was deposited to a thickness of 100 nm by sputtering, thereby producing a counter electrode having a smooth structure without a porous layer, and assembling the stacked photovoltaic cells in the same manner. .

【0079】7.光電変換効率の測定 500Wのキセノンランプ(ウシオ電気)に太陽光シミ
ュレーション用補正フィルター(Oriel社製AM
1.5)を装着し、電池への入射光強度が94mW/c
2に調整された模擬太陽光を透明導電性支持体側から
照射した。作製した光電池の導電性ガラスと対極とから
取り出した端子に導線を接続し、両電極の電気応答を電
流電圧測定装置(ケースレー製ソースメジャーユニット
238型)に入力し、電流―電圧特性を測定した。電池
は温度制御されたステージ上に固定することで、光照射
中の温度を表1のように制御して測定を行った。これに
より求められた光電池の開放電圧(Voc)、短絡電流密度
(Jsc)、形状因子(FF)、変換効率(η)を一括して表1
に記載した。
7. Measurement of photoelectric conversion efficiency A 500 W xenon lamp (USHIO Inc.) and a correction filter for sunlight simulation (AM manufactured by Oriel)
1.5), and the incident light intensity on the battery is 94 mW / c
Simulated sunlight adjusted to m 2 was irradiated from the transparent conductive support side. A lead wire was connected to a terminal taken out of the conductive glass and the counter electrode of the fabricated photovoltaic cell, and the electric response of both electrodes was input to a current / voltage measuring device (source measure unit 238 made by Keithley) to measure current-voltage characteristics. . The measurement was performed by fixing the battery on a temperature-controlled stage and controlling the temperature during light irradiation as shown in Table 1. The open-circuit voltage (Voc) and short-circuit current density of the photovoltaic cell determined by this
(Jsc), form factor (FF) and conversion efficiency (η) are summarized in Table 1.
It described in.

【0080】[0080]

【表1】 [Table 1]

【0081】上記実施例の結果から,比較例の従来の対
極を使用した電池では、環境温度の低下とともに変換効
率が低下するのに対して、本発明になる構成の対極を使
用することで、広い温度範囲で高い変換効率が発揮でき
ることが判る。
From the results of the above example, it is found that in the battery using the conventional counter electrode of the comparative example, the conversion efficiency decreases as the environmental temperature decreases. It can be seen that high conversion efficiency can be exhibited in a wide temperature range.

【0082】[実施例2]アルミナ製多孔質フィルター
(Wattman製、アノディスク/孔径0.2μm)
をパラジウム処理した後、無電解メッキ法により表面に
白金金属を約200nmの厚みで析出させ、多孔質層付
対極を作製した。色素を吸着させた二酸化チタン電極
を、実施例1と同様にして作製し、これに順次、ポリエ
チレン製のフレーム型スペーサー(厚さ10μm)、上
記のアルミナ多孔質層付対極、ポリエチレン製のフレー
ム型スペーサー(厚さ25μm)、液注入孔付の無アルカ
リガラスからなる基板を重ね合わせて120℃で30秒間加
熱することでシールし、光電池を作製した。電解質は、
実施例1と同じ組成物を注入し、用いた。また、実施例
1と同様の比較用電池を作製した。本実施例2の電池お
よび比較電池につき、10Ωの抵抗を接続した状態で、9
4mW/m2の擬似太陽光に晒して、耐久性の試験を行
ない、その結果を表2に示した。
Example 2 Alumina Porous Filter (Wattman, Anodisc / Pore Diameter 0.2 μm)
After palladium treatment, platinum metal was deposited on the surface to a thickness of about 200 nm by electroless plating to produce a counter electrode with a porous layer. A titanium dioxide electrode to which a dye was adsorbed was prepared in the same manner as in Example 1, and a frame spacer made of polyethylene (thickness: 10 μm), a counter electrode with an alumina porous layer described above, and a frame made of polyethylene were sequentially formed. A spacer (thickness: 25 μm) and a substrate made of non-alkali glass having a liquid injection hole were overlapped and sealed by heating at 120 ° C. for 30 seconds to produce a photovoltaic cell. The electrolyte is
The same composition as in Example 1 was injected and used. Further, a comparative battery similar to that of Example 1 was produced. For the battery of Example 2 and the comparative battery, 9
A durability test was carried out by exposing it to simulated sunlight of 4 mW / m 2 , and the results are shown in Table 2.

【0083】[0083]

【表2】 [Table 2]

【0084】表2から、対極に隣接して、電荷輸送材を
保持する多孔質部分を有する、本発明になる光電池は、
平滑な対極からなる従来の光電池に対して、高い耐久性
を示すことが判る。
From Table 2, it can be seen that the photovoltaic cell according to the present invention, having a porous portion holding the charge transport material adjacent to the counter electrode,
It can be seen that the conventional photovoltaic cell having a smooth counter electrode exhibits high durability.

【0085】[0085]

【発明の効果】本発明によって、低温におけるエネルギ
ー変換効率に優れ、かつ、耐久性を有する色素増感光電
変換素子および光電池が得られる。
According to the present invention, a dye-sensitized photoelectric conversion element and a photovoltaic cell having excellent energy conversion efficiency at low temperatures and durability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の好ましい光電変換素子の構造を示す
部分断面図である。
FIG. 1 is a partial sectional view showing the structure of a preferred photoelectric conversion element of the present invention.

【符号の説明】[Explanation of symbols]

1 導電性ガラス 2 透明導電層 3 色素吸着TiO2層 4 電荷移動層 5 網目状白金層からなる対極 6 多孔質層(電荷輸送材料含有) 7 ガラス支持体 8 フレーム型スペーサーREFERENCE SIGNS LIST 1 conductive glass 2 transparent conductive layer 3 dye-adsorbed TiO 2 layer 4 charge transfer layer 5 counter electrode composed of network platinum layer 6 porous layer (containing charge transporting material) 7 glass support 8 frame spacer

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 導電性支持体上に設置された、色素を吸
着した半導体層、電荷輸送材料を含む電荷移動層および
対極を順次有する光電変換素子において、対極に隣接
し、かつ、対極に対して半導体層と反対側に、電荷輸送
材料を保持した多孔質層を有することを特徴とする光電
変換素子。
1. A photoelectric conversion element, which is provided on a conductive support and has a dye-adsorbed semiconductor layer, a charge transport layer containing a charge transport material, and a counter electrode in sequence, wherein the photoelectric conversion element is adjacent to and opposite to the counter electrode. A photoelectric conversion element comprising a porous layer holding a charge transporting material on the side opposite to the semiconductor layer.
【請求項2】 前記電荷輸送材料が、常温溶融塩を含む
組成物であることを特徴とする請求項1記載の光電変換
素子。
2. The photoelectric conversion device according to claim 1, wherein the charge transporting material is a composition containing a room temperature molten salt.
【請求項3】 対極が網目状またはメッシュ状の金属電
極であることを特徴とする請求項1または2記載の光変
換素子。
3. The light conversion element according to claim 1, wherein the counter electrode is a mesh-shaped or mesh-shaped metal electrode.
【請求項4】 多孔質層が導電性材料からなり、対極が
多孔質層の上層部に離散的に付着した金属微粒子からな
ることを特徴とする請求項1または2記載の光変換素
子。
4. The light conversion element according to claim 1, wherein the porous layer is made of a conductive material, and the counter electrode is made of fine metal particles discretely attached to an upper layer of the porous layer.
【請求項5】 前記金属が白金であることを特徴とする
請求項3または4記載の光変換素子。
5. The light conversion device according to claim 3, wherein the metal is platinum.
【請求項6】 前記半導体層が酸化チタンを含むことを
特徴とする請求項1〜5のいずれかに記載の光電変換素
子。
6. The photoelectric conversion device according to claim 1, wherein the semiconductor layer contains titanium oxide.
【請求項7】 前記、常温溶融塩を含む組成物が、少な
くともイミダゾリウム誘導体の沃化物と沃素を含むこと
を特徴とする請求項2〜6のいずれかに記載の光電変換
素子。
7. The photoelectric conversion device according to claim 2, wherein the composition containing a room-temperature molten salt contains at least iodide of an imidazolium derivative and iodine.
【請求項8】 請求項1〜7の何れかの光電変換素子を
用いた光電池。
8. A photovoltaic cell using the photoelectric conversion element according to claim 1.
JP2000054547A 2000-02-29 2000-02-29 Photoelectric conversion element and photoelectric cell Pending JP2001243995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000054547A JP2001243995A (en) 2000-02-29 2000-02-29 Photoelectric conversion element and photoelectric cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000054547A JP2001243995A (en) 2000-02-29 2000-02-29 Photoelectric conversion element and photoelectric cell

Publications (1)

Publication Number Publication Date
JP2001243995A true JP2001243995A (en) 2001-09-07

Family

ID=18575786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000054547A Pending JP2001243995A (en) 2000-02-29 2000-02-29 Photoelectric conversion element and photoelectric cell

Country Status (1)

Country Link
JP (1) JP2001243995A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106419A1 (en) * 2002-06-01 2003-12-24 ダイキン工業株式会社 Room-temperature molten salt, process for producing the same and applications thereof
JP2005197097A (en) * 2004-01-07 2005-07-21 Ngk Spark Plug Co Ltd Dye-sensitized solar cell
JP2006012731A (en) * 2004-06-29 2006-01-12 Hitachi Maxell Ltd Photoelectric conversion module and its manufacturing method
JP2006164697A (en) * 2004-12-06 2006-06-22 Sharp Corp Dye-sensitized solar cell and dye-sensitized solar cell module
JP2006523369A (en) * 2003-03-24 2006-10-12 コナルカ テクノロジーズ インコーポレイテッド Photoelectric cell using mesh electrode
JP2006286534A (en) * 2005-04-04 2006-10-19 Nippon Oil Corp Flexible dye sensitized solar cell
JP2006324111A (en) * 2005-05-18 2006-11-30 Nippon Oil Corp Flexible dye-sensitized solar cell
JP2007059102A (en) * 2005-08-22 2007-03-08 Nippon Oil Corp Dye-sensitized solar cell
JP2007095773A (en) * 2005-09-27 2007-04-12 Sumitomo Osaka Cement Co Ltd Method of manufacturing photoelectric conversion device
JPWO2005122322A1 (en) * 2004-06-08 2008-04-10 株式会社エス・エフ・シー Dye-sensitized solar cell and method for producing the same
JP2008311121A (en) * 2007-06-15 2008-12-25 Fujikura Ltd Photoelectric transfer element
JP2010055935A (en) * 2008-08-28 2010-03-11 Institute Of National Colleges Of Technology Japan Dye-sensitized solar cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2011074325A1 (en) * 2009-12-16 2011-06-23 トヨタ自動車株式会社 Normal-temperature molten salt, electrode, cell, agent for preventing charge-up, and method for observing sample
EP2492375A1 (en) * 2009-10-21 2012-08-29 International Frontier Technology Laboratory Inc. Photoelectrode material and photocell material
WO2012124655A1 (en) * 2011-03-11 2012-09-20 国際先端技術総合研究所株式会社 Silicon dioxide solar cell
JP5071741B2 (en) * 2006-11-28 2012-11-14 島根県 Method for producing electrode having platinum film
WO2012173180A1 (en) * 2011-06-14 2012-12-20 国際先端技術総合研究所株式会社 Tandem solar cell
JP5246348B2 (en) * 2009-12-16 2013-07-24 トヨタ自動車株式会社 Room temperature molten salt, electrode, battery, charge-up inhibitor and sample observation method
WO2013129562A1 (en) * 2012-02-28 2013-09-06 国際先端技術総合研究所株式会社 Solar cell composite glass plate
WO2014034652A1 (en) * 2012-08-27 2014-03-06 国際先端技術総合研究所株式会社 Combination solar cell
WO2014092081A1 (en) * 2012-12-13 2014-06-19 国際先端技術総合研究所株式会社 Dye-sensitized tandem silicon dioxide solar cell
WO2014092080A1 (en) * 2012-12-10 2014-06-19 国際先端技術総合研究所株式会社 Silicon dioxide solar cell
JP2014130766A (en) * 2012-12-28 2014-07-10 International Frontier Technology Laboratory Inc Dye-sensitized tandem silicon dioxide solar cell
WO2014119645A1 (en) * 2013-01-30 2014-08-07 国際先端技術総合研究所株式会社 Capacitor having photovoltaic capability
US9184317B2 (en) 2007-04-02 2015-11-10 Merck Patent Gmbh Electrode containing a polymer and an additive
US10121601B2 (en) 2012-05-22 2018-11-06 International Frontier Technology Laboratory, Inc. Photoelectrode material and photocell material

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106419A1 (en) * 2002-06-01 2003-12-24 ダイキン工業株式会社 Room-temperature molten salt, process for producing the same and applications thereof
JP2006523369A (en) * 2003-03-24 2006-10-12 コナルカ テクノロジーズ インコーポレイテッド Photoelectric cell using mesh electrode
JP2005197097A (en) * 2004-01-07 2005-07-21 Ngk Spark Plug Co Ltd Dye-sensitized solar cell
JPWO2005122322A1 (en) * 2004-06-08 2008-04-10 株式会社エス・エフ・シー Dye-sensitized solar cell and method for producing the same
JP4696485B2 (en) * 2004-06-29 2011-06-08 パナソニック電工株式会社 Photoelectric conversion module and manufacturing method thereof
JP2006012731A (en) * 2004-06-29 2006-01-12 Hitachi Maxell Ltd Photoelectric conversion module and its manufacturing method
JP2006164697A (en) * 2004-12-06 2006-06-22 Sharp Corp Dye-sensitized solar cell and dye-sensitized solar cell module
JP2006286534A (en) * 2005-04-04 2006-10-19 Nippon Oil Corp Flexible dye sensitized solar cell
JP2006324111A (en) * 2005-05-18 2006-11-30 Nippon Oil Corp Flexible dye-sensitized solar cell
JP2007059102A (en) * 2005-08-22 2007-03-08 Nippon Oil Corp Dye-sensitized solar cell
JP2007095773A (en) * 2005-09-27 2007-04-12 Sumitomo Osaka Cement Co Ltd Method of manufacturing photoelectric conversion device
JP5071741B2 (en) * 2006-11-28 2012-11-14 島根県 Method for producing electrode having platinum film
US9184317B2 (en) 2007-04-02 2015-11-10 Merck Patent Gmbh Electrode containing a polymer and an additive
JP2008311121A (en) * 2007-06-15 2008-12-25 Fujikura Ltd Photoelectric transfer element
JP2010055935A (en) * 2008-08-28 2010-03-11 Institute Of National Colleges Of Technology Japan Dye-sensitized solar cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2492375A4 (en) * 2009-10-21 2014-09-17 Internat Frontier Tech Lab Inc Photoelectrode material and photocell material
US9172124B2 (en) 2009-10-21 2015-10-27 Iftl-Solar Inc. Photoelectrode material and photocell material
EP2492375A1 (en) * 2009-10-21 2012-08-29 International Frontier Technology Laboratory Inc. Photoelectrode material and photocell material
JP5246348B2 (en) * 2009-12-16 2013-07-24 トヨタ自動車株式会社 Room temperature molten salt, electrode, battery, charge-up inhibitor and sample observation method
WO2011074325A1 (en) * 2009-12-16 2011-06-23 トヨタ自動車株式会社 Normal-temperature molten salt, electrode, cell, agent for preventing charge-up, and method for observing sample
US9276289B2 (en) 2009-12-16 2016-03-01 Toyota Jidosha Kabushiki Kaisha Ambient temperature molten salt, electrode, battery, agent for preventing charge-up, and method for observing sample
US9384902B2 (en) 2011-03-11 2016-07-05 International Frontier Technology Laboratory, Inc. Silicon dioxide solar cell
WO2012124656A1 (en) * 2011-03-11 2012-09-20 国際先端技術総合研究所株式会社 Silicon dioxide solar cell
AU2012227434B2 (en) * 2011-03-11 2016-12-01 International Frontier Technology Laboratory, Inc. Silicon dioxide solar cell
JPWO2012124656A1 (en) * 2011-03-11 2014-07-24 国際先端技術総合研究所株式会社 Silicon dioxide solar cell
JP5848324B2 (en) * 2011-03-11 2016-01-27 IFTL−Solar株式会社 Silicon dioxide solar cell
WO2012124655A1 (en) * 2011-03-11 2012-09-20 国際先端技術総合研究所株式会社 Silicon dioxide solar cell
JPWO2012173180A1 (en) * 2011-06-14 2015-02-23 国際先端技術総合研究所株式会社 Tandem solar cell
WO2012173180A1 (en) * 2011-06-14 2012-12-20 国際先端技術総合研究所株式会社 Tandem solar cell
WO2013129562A1 (en) * 2012-02-28 2013-09-06 国際先端技術総合研究所株式会社 Solar cell composite glass plate
US10121601B2 (en) 2012-05-22 2018-11-06 International Frontier Technology Laboratory, Inc. Photoelectrode material and photocell material
WO2014034652A1 (en) * 2012-08-27 2014-03-06 国際先端技術総合研究所株式会社 Combination solar cell
WO2014092080A1 (en) * 2012-12-10 2014-06-19 国際先端技術総合研究所株式会社 Silicon dioxide solar cell
JP2014116210A (en) * 2012-12-10 2014-06-26 International Frontier Technology Laboratory Inc Silicon dioxide solar cell
JP2014120243A (en) * 2012-12-13 2014-06-30 International Frontier Technology Laboratory Inc Dye-sensitized tandem silicon-dioxide solar cell
WO2014092081A1 (en) * 2012-12-13 2014-06-19 国際先端技術総合研究所株式会社 Dye-sensitized tandem silicon dioxide solar cell
JP2014130766A (en) * 2012-12-28 2014-07-10 International Frontier Technology Laboratory Inc Dye-sensitized tandem silicon dioxide solar cell
CN104995704A (en) * 2013-01-30 2015-10-21 国际先端技术综合研究所株式会社 Capacitor having photovoltaic capability
JP2014146773A (en) * 2013-01-30 2014-08-14 International Frontier Technology Laboratory Inc Capacitor having photoelectromotive performance
WO2014119645A1 (en) * 2013-01-30 2014-08-07 国際先端技術総合研究所株式会社 Capacitor having photovoltaic capability

Similar Documents

Publication Publication Date Title
JP5081345B2 (en) Method for manufacturing photoelectric conversion element
JP2001243995A (en) Photoelectric conversion element and photoelectric cell
US6291763B1 (en) Photoelectric conversion device and photo cell
JP5022413B2 (en) Imidazolium compounds and pyridinium compounds
JP4620224B2 (en) Electrolyte composition
JP4638973B2 (en) Photoelectric conversion element and photovoltaic cell
JP2000285977A (en) Photoelectric conversion element and photocell
JP4617014B2 (en) Method for manufacturing photoelectric conversion element
JP2002105346A (en) Metal complex dye, photoelectric conversion element and photocell
JP4500420B2 (en) Photoelectric conversion element and photovoltaic cell
JP2002008741A (en) Photoelectric conversion element and photocell
JP2003187881A (en) Photoelectric conversion element, method for manufacturing the same, and photoelectric cell
JP2001319698A (en) Photoelectric conversion element and photoelectric cell
JP4392773B2 (en) Photoelectric conversion element and photoelectrochemical cell
JP4643792B2 (en) Photoelectric conversion element and photoelectrochemical cell
JP2002222968A (en) Photoelectric converter and photoelectrochemical cell
JP2001143771A (en) Photoelectric transducer and photoelectric cell
JP2001102104A (en) Photoelectric conversion device and photoelectric cell
JP2002025636A (en) Photoelectric transducer and photocell using the same
JP4100491B2 (en) Semiconductor fine particle layer, photoelectric conversion element and photovoltaic cell
JP4643791B2 (en) Method for manufacturing photoelectric conversion element and solar cell
JP2001035253A (en) Electrolyte composition, photoelectric transfer element and photo-electrochemical battery
JP4247810B2 (en) Photoelectric conversion element and photovoltaic cell
JP4578695B2 (en) Method for creating photoelectric conversion element
JP4958331B2 (en) Method for producing photoelectric conversion element, photoelectric conversion element and photovoltaic cell