JPWO2005122322A1 - Dye-sensitized solar cell and method for producing the same - Google Patents

Dye-sensitized solar cell and method for producing the same Download PDF

Info

Publication number
JPWO2005122322A1
JPWO2005122322A1 JP2006514452A JP2006514452A JPWO2005122322A1 JP WO2005122322 A1 JPWO2005122322 A1 JP WO2005122322A1 JP 2006514452 A JP2006514452 A JP 2006514452A JP 2006514452 A JP2006514452 A JP 2006514452A JP WO2005122322 A1 JPWO2005122322 A1 JP WO2005122322A1
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
substrates
sensitized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006514452A
Other languages
Japanese (ja)
Inventor
日出夫 安部
日出夫 安部
田中 康仁
康仁 田中
有美 小笠原
有美 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SFC Co Ltd
Original Assignee
SFC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SFC Co Ltd filed Critical SFC Co Ltd
Publication of JPWO2005122322A1 publication Critical patent/JPWO2005122322A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

2枚の基板の間隔を一定に保つとともに、基板間に保持される電解液の量及び流動性を制御することにより、再現性に優れ安定した性能を持つ色素増感型太陽電池及びその製造方法を提供する。少なくとも一方の透明基板表面に透明導電膜及び色素増感半導体電極が形成された2枚の基板を重ね合わせ、該2枚の基板の間に電解液を封入してなる色素増感型太陽電池において、該2枚の基板間において、2本以上の線材からなる網目状の部材であって電極として働く部材を配置していること特徴とする色素増感型太陽電池。A dye-sensitized solar cell having excellent reproducibility and stable performance by keeping the distance between two substrates constant and controlling the amount and fluidity of the electrolyte held between the substrates, and a method for producing the same I will provide a. In a dye-sensitized solar cell in which at least one transparent substrate surface is overlaid with two substrates on which a transparent conductive film and a dye-sensitized semiconductor electrode are formed, and an electrolytic solution is sealed between the two substrates A dye-sensitized solar cell, wherein a member that functions as an electrode, which is a mesh-like member composed of two or more wires, is disposed between the two substrates.

Description

本発明は光エネルギーを電気エネルギーに直接変換する色素増感型太陽電池及びその製造方法に関する。   The present invention relates to a dye-sensitized solar cell that directly converts light energy into electric energy and a method for manufacturing the same.

1991年にグレッツェルらが発表した色素増感太陽電池は、シリコン半導体のp-n接合による太陽電池とは異なるメカニズムによって作動し、変換効率が高くしかも製造コストが安いという利点があり、この太陽電池は、内部に電解液を封入してあることから、色素増感型太陽電池とも呼ばれる。   The dye-sensitized solar cell announced by Gretzell et al. In 1991 operates by a mechanism different from that of a silicon semiconductor pn junction solar cell and has the advantage of high conversion efficiency and low manufacturing cost. Since the electrolyte is sealed inside, it is also called a dye-sensitized solar cell.

この太陽電池は、図4に示すように、透明基板1の一方の面に形成された透明導電膜7と、増感色素を担持させた半導体電極(色素増感半導体電極4)が形成された導電性基板5とを電解液を含ませた状態で重ね合わせ、その周囲に樹脂を塗って封止されている。導電性基板の表面に設けられた多孔質な酸化チタン皮膜にルテニウム錯体など太陽光を効率的に吸収することができる増感色素がコ−ティングされたものを色素増感半導体電極として用いると、光によって励起された電子が酸化チタンに注入されて電気を流すことができる。このタイプの太陽電池では、電子の授受のために電解液が必要であり、一般的にはヨウ素電解液が用いられている。
特公平8−15097号公報。 特開2000−173680号公報。
In this solar cell, as shown in FIG. 4, a transparent conductive film 7 formed on one surface of the transparent substrate 1 and a semiconductor electrode carrying a sensitizing dye (dye-sensitized semiconductor electrode 4) are formed. The conductive substrate 5 is overlaid in a state where the electrolytic solution is contained, and the periphery thereof is coated with a resin and sealed. When a coating of a sensitizing dye capable of efficiently absorbing sunlight, such as a ruthenium complex, is used as a dye-sensitized semiconductor electrode on a porous titanium oxide film provided on the surface of a conductive substrate, Electrons excited by light can be injected into titanium oxide to flow electricity. In this type of solar cell, an electrolytic solution is required for transferring electrons, and an iodine electrolytic solution is generally used.
Japanese Patent Publication No. 8-15097. JP 2000-173680 A.

図4に示す従来の色素増感太陽電池では、電解液を封止するために周辺部(断面部付近)に厚い樹脂を塗布し硬化させているのみであり、2枚の基板の間隔が太陽電池の作製毎に違っていたり、1つの太陽電池内でも異なっていたりするため、電解液の量が一定とならず、太陽電池を傾けると電解液が流出してしまうなどの再現性・安定性の問題があった。   In the conventional dye-sensitized solar cell shown in FIG. 4, only a thick resin is applied to the peripheral portion (near the cross-sectional portion) and cured in order to seal the electrolytic solution. The amount of electrolyte is not constant because it varies from one battery production to another, or even within a single solar cell. Reproducibility and stability such as the electrolyte flowing out when the solar cell is tilted. There was a problem.

また、色素増感半導体電極として用いられる多孔質の酸化チタン皮膜は、塗布方法や粒径や厚さによって表面の凹凸形状が異なるものであるが、その凸部が対向する基板の導電膜と接触してしまうと、色素増感半導体電極と導電膜とが電解液を介さず通電されてしまうことになるため、電子の授受が十分に行われず、太陽電池としての効率の低下、性能の不安定化を招いてしまう。   In addition, the porous titanium oxide film used as the dye-sensitized semiconductor electrode has a surface irregularity shape that varies depending on the coating method, particle size, and thickness, but the convex portion is in contact with the conductive film of the opposing substrate. As a result, the dye-sensitized semiconductor electrode and the conductive film are energized without passing through the electrolyte solution, so that electrons are not sufficiently transferred, resulting in a decrease in efficiency as a solar cell and unstable performance. Invitation

そこで、本発明はこのような問題に鑑みてなされたものであり、2枚の基板の間隔を一定に保つとともに、基板間に保持される電解液の量及び流動性を制御することにより、再現性に優れ安定した性能を持つ色素増感型太陽電池及びその製造方法を提供することを目的とするものである。   Therefore, the present invention has been made in view of such problems, and is reproduced by keeping the distance between the two substrates constant and controlling the amount and fluidity of the electrolyte held between the substrates. It is an object of the present invention to provide a dye-sensitized solar cell having excellent properties and stable performance and a method for producing the same.

発明者らは鋭意研究の結果、色素増感型太陽電池の両基板間に網目状に編み込んだ線材を挟み込み、これにより電解液を保持することで、上記の課題が解決されることに想到した。   As a result of intensive studies, the inventors have conceived that the above problem can be solved by sandwiching a wire braided between both substrates of the dye-sensitized solar cell and holding the electrolytic solution thereby. .

すなわち、本発明は、少なくとも一方の透明基板表面に透明導電膜及び色素増感半導体電極が形成された2枚の基板を重ね合わせ、該2枚の基板の間に電解液を封入してなる色素増感型太陽電池において、該2枚の基板間において、2本以上の線材を網目状に編み込んでなる部材であって電極として働く部材を配置していること特徴とする色素増感型太陽電池を提供するものである。   That is, the present invention relates to a dye obtained by superposing two substrates each having a transparent conductive film and a dye-sensitized semiconductor electrode formed on the surface of at least one transparent substrate, and encapsulating an electrolyte between the two substrates. In the sensitized solar cell, a dye-sensitized solar cell comprising a member formed by weaving two or more wires in a mesh shape and serving as an electrode between the two substrates. Is to provide.

本発明の色素増感型太陽電池において、前記線材は導電性を有していることを特徴とする。あるいは、前記線材は絶縁性であり、前記線材の片側又は両側の表面に導電性被膜が形成されていてもよい。   The dye-sensitized solar cell of the present invention is characterized in that the wire has conductivity. Alternatively, the wire may be insulative, and a conductive film may be formed on one or both surfaces of the wire.

本発明の色素増感型太陽電池において、前記線材の厚さは、前記基板の透明導電膜及び色素増感半導体電極が形成された表面における凹凸の高さよりも大きいことを特徴とする。   In the dye-sensitized solar cell of the present invention, the thickness of the wire is larger than the height of the unevenness on the surface of the substrate on which the transparent conductive film and the dye-sensitized semiconductor electrode are formed.

本発明の色素増感型太陽電池において、前記2枚の基板のうち、透明導電膜及び色素増感半導体電極が形成されていない基板は絶縁性であることを特徴とする。   The dye-sensitized solar cell of the present invention is characterized in that the substrate on which the transparent conductive film and the dye-sensitized semiconductor electrode are not formed is insulating among the two substrates.

以上説明した通り、本発明によれば、2つの基板間に電解液保持・電極材を配置することにより、保持される電解液の量が安定し、その流動性が抑制されるとともに、色素増感半導体電極と導電膜とが電解液を介さないで通電されることがなくなるため、効率がよく再現性に優れ安定した性能を持つ色素増感型太陽電池が提供される。   As described above, according to the present invention, by disposing the electrolyte solution holding / electrode material between the two substrates, the amount of the electrolyte solution held is stabilized, the fluidity is suppressed, and the dye increase Since the sensitive semiconductor electrode and the conductive film are not energized without passing through the electrolytic solution, a dye-sensitized solar cell having high efficiency, excellent reproducibility and stable performance is provided.

本発明の色素増感型太陽電池の構成例を示す概略断面図である。It is a schematic sectional drawing which shows the structural example of the dye-sensitized solar cell of this invention. 本発明の色素増感型太陽電池の製造工程の例を示すプロセスフロー図である。It is a process flow figure which shows the example of the manufacturing process of the dye-sensitized solar cell of this invention. 本発明の色素増感型太陽電池における電解液保持・電極材の構成例を示す図である。It is a figure which shows the structural example of the electrolyte solution holding | maintenance and electrode material in the dye-sensitized solar cell of this invention. 従来の色素増感型太陽電池の構成例を示す概略断面図である。It is a schematic sectional drawing which shows the structural example of the conventional dye-sensitized solar cell.

符号の説明Explanation of symbols

1 基板
2 電解液保持・電極材
3 電解液
4 色素増感半導体電極
5 透明ガラス基板
6 透明導電性膜
7 導電膜
8 シール材
DESCRIPTION OF SYMBOLS 1 Substrate 2 Electrolyte holding / electrode material 3 Electrolytic solution 4 Dye-sensitized semiconductor electrode 5 Transparent glass substrate 6 Transparent conductive film 7 Conductive film 8 Sealing material

以下、本発明の実施形態としての色素増感型太陽電池について図面を用いて参照しながら説明する。本発明の実施形態の色素増感型太陽電池の概略断面図を図1に示す。   Hereinafter, a dye-sensitized solar cell as an embodiment of the present invention will be described with reference to the drawings. A schematic cross-sectional view of a dye-sensitized solar cell according to an embodiment of the present invention is shown in FIG.

図1において、本実施形態の色素増感型太陽電池は、基板1と、色素増感半導体電極4及び透明導電性膜6が形成された透明ガラス基板5とを有しており、両基板の間には、網目状の電解液保持・電極材2が配置され、電解液3が含まれている。尚、両基板は側面にシール材を塗布して封止してあるが、ここでは図示を省略している。   In FIG. 1, the dye-sensitized solar cell of this embodiment has a substrate 1 and a transparent glass substrate 5 on which a dye-sensitized semiconductor electrode 4 and a transparent conductive film 6 are formed. Between them, a mesh-like electrolyte solution holding / electrode material 2 is arranged, and the electrolyte solution 3 is included. Although both substrates are sealed by applying a sealing material to the side surfaces, the illustration is omitted here.

基板1は、絶縁性のガラス基板やセラミックス基板、金属やカーボン等々の導電性材料を形成した基板、あるいは金属板などで構成することができる。透明ガラス基板5は、透明のプラスチック基板等で代用してもよい。色素増感半導体電極4は、酸化チタン、酸化タンタル、酸化ニオブ、酸化ジルコニウム等から構成することができるが、これらに限定されるものではない。透明導電性膜6は、ITO(錫含有酸化インジュウム)、酸化錫、酸化亜鉛等から構成することができるが、これらに限定されるものではなく、透過率を低下させない程度の膜厚の白金やメタル、又は炭素膜も適用可能である。シール材は、温度により硬度が変化する材料などであって、基板間を封止できるものであればよい。   The substrate 1 can be composed of an insulating glass substrate, a ceramic substrate, a substrate on which a conductive material such as metal or carbon is formed, or a metal plate. The transparent glass substrate 5 may be replaced with a transparent plastic substrate or the like. The dye-sensitized semiconductor electrode 4 can be composed of titanium oxide, tantalum oxide, niobium oxide, zirconium oxide, or the like, but is not limited thereto. The transparent conductive film 6 can be composed of ITO (tin-containing indium oxide), tin oxide, zinc oxide, or the like, but is not limited to these, and platinum or a film having a thickness that does not decrease the transmittance. A metal or carbon film is also applicable. The sealing material is a material whose hardness changes depending on temperature, and may be any material that can seal between substrates.

電解液保持・電極材2は、複数の線材を網目状に編み込んだメッシュ状になっており、線材の編み込み方については、平織、綾織、平畳織、綾畳織などがある。1本の線材を編み込んだものだけではなく、2本以上の線材をよじった撚り線ものを編み込んだものを用いてもよい。電解液保持・電極材2の線材の形状は、角柱状、円柱状等とすることができるが、これらに限定されるものではない。前記電解液保持・電極材2の厚みは、導電性基板の表面の凹凸や色素増感半導体電極4の凹凸よりも大きければよく、一般的には数μm〜1mm程度、より好ましくは数十μm〜数百μm程度とする。電解液保持・電極材2の網目間隔や線材径などについては、網目間や線材間に電解液が浸み込んで電解液の流動が抑制されるという効果が生じるように、任意に選択すればよい。   The electrolyte solution holding / electrode material 2 has a mesh shape in which a plurality of wire rods are knitted in a mesh shape, and there are plain weave, twill weave, plain tatami weave, twill tatami weave, and the like. Not only one knitted wire, but also knitted stranded wire twisting two or more wires may be used. The shape of the wire for the electrolyte solution holding / electrode material 2 may be a prismatic shape, a cylindrical shape, or the like, but is not limited thereto. The thickness of the electrolytic solution holding / electrode material 2 may be larger than the unevenness of the surface of the conductive substrate or the unevenness of the dye-sensitized semiconductor electrode 4, and is generally about several μm to 1 mm, more preferably several tens of μm. ˜about several hundred μm. The electrolyte solution holding / electrode material 2 mesh spacing, wire diameter, etc., can be arbitrarily selected so that the electrolyte solution is immersed in between the meshes or between the wire materials, thereby suppressing the flow of the electrolyte solution. Good.

電解液保持・電極材2の線材の材質は、ステンレスやAlやNi等の金属性の導電性材料を用いるもののほか、ガラス、アルミナ等のセラミックス、ナイロンやポリイミド等の高分子からなる絶縁材料の片側の表面にPtやカーボンやAlやNi等の金属を蒸着やメッキ法で被膜したものであってもよいが、これらに限定されるのもではなく、使用する電解液に溶解したり、電解液を弾いたり(撥水性)しないものであればよい。   The material of the electrolyte holding / electrode material 2 is made of an insulating material made of a polymer such as glass, ceramics such as alumina, nylon or polyimide, as well as those using metallic conductive materials such as stainless steel, Al and Ni. The surface of one side may be coated with a metal such as Pt, carbon, Al, or Ni by vapor deposition or plating, but is not limited to these. Any material that does not repel liquid (water repellency) may be used.

次に、本発明の実施形態の色素増感型太陽電池の製造方法について、図2を参照しながら説明する。   Next, the manufacturing method of the dye-sensitized solar cell of embodiment of this invention is demonstrated, referring FIG.

まず、透明ガラス基板5として、透明なガラス基板又はプラスチック基板を用意し、この基板上にITO(錫含有酸化インジュウム)、酸化錫、酸化亜鉛等からなる、もしくは透過率を低下させない程度の膜厚の白金、Ti等のメタル又は炭素膜等からなる透明導電性膜6を形成する。   First, as the transparent glass substrate 5, a transparent glass substrate or a plastic substrate is prepared, and the film thickness is such that the substrate is made of ITO (tin-containing indium oxide), tin oxide, zinc oxide, or the like, or the transmittance is not lowered. A transparent conductive film 6 made of a metal such as platinum, Ti, or a carbon film is formed.

次に、透明導電性膜6の表面上に酸化チタン、酸化タンタル、酸化ニオブ、酸化ジルコニウム等の金属酸化物微粒子と少量の有機高分子とを含有するコロイド溶液を印刷法等により塗布し、自然乾燥させた後、500℃の温度で加熱処理して有機高分子を揮発させる。このとき、金属酸化物微粒子を塗布した表面には、微細な細孔が形成される。ここで、表面の凹凸の高さをαステップ等の表面形状評価装置で測定しておく。このようにして透明導電性膜6の表面上に形成した多孔質の金属酸化膜を増感色素の溶液に浸漬し、その表面に増感色素を吸着させて、色素増感半導体電極4を形成する。   Next, a colloidal solution containing metal oxide fine particles such as titanium oxide, tantalum oxide, niobium oxide, zirconium oxide and a small amount of organic polymer is applied on the surface of the transparent conductive film 6 by a printing method or the like. After drying, the organic polymer is volatilized by heat treatment at a temperature of 500 ° C. At this time, fine pores are formed on the surface coated with the metal oxide fine particles. Here, the height of the irregularities on the surface is measured with a surface shape evaluation apparatus such as an α step. The porous metal oxide film thus formed on the surface of the transparent conductive film 6 is immersed in a sensitizing dye solution, and the sensitizing dye is adsorbed on the surface to form the dye-sensitized semiconductor electrode 4. To do.

このようにして透明導電性基板5に形成された色素増感半導体電極4の上に、網目状に編み込まれた電解液保持・電極材2を配置する。図3は、この電解液保持・電極材2の配置を概略的に示す上面図である。このとき、電解液保持・電極材2は、上記で測定した色素増感半導体電極4表面の凹凸の高さよりも厚みが大きいものを準備することとする。   On the dye-sensitized semiconductor electrode 4 formed on the transparent conductive substrate 5 in this manner, the electrolytic solution holding / electrode material 2 knitted in a mesh shape is disposed. FIG. 3 is a top view schematically showing the arrangement of the electrolytic solution holding / electrode material 2. At this time, the electrolytic solution holding / electrode material 2 is prepared with a thickness larger than the height of the unevenness on the surface of the dye-sensitized semiconductor electrode 4 measured as described above.

その後、電解液保持・電極材2を上方から挟むようにして基板1を重ね合わせ、基板間にヨウ素電解液を注入し、基板間の周囲にシール材を塗布する。尚、電解液3は、ヨウ素電解液に限定されるものではなく、酸化・還元種を含む有機電解液であればよい。   Thereafter, the substrate 1 is overlapped with the electrolyte solution holding / electrode material 2 sandwiched from above, an iodine electrolyte solution is injected between the substrates, and a sealing material is applied around the substrate. The electrolytic solution 3 is not limited to the iodine electrolytic solution, and may be an organic electrolytic solution containing oxidation / reduction species.

実施例1
上記した実施形態による色素増感型太陽電池を以下の様な手順で製作した。大きさが2×3cm、厚さ2.8mmのガラス基板を2枚用意し、一枚には透明導電性膜6としてITO膜をスパッタ法で200nm形成した。この表面の凹凸の高さはほぼ1μm以下であった。透明導電性膜6を形成した基板5上にテープ等でマスキングし塗布した後、粒径約20nmの光触媒用酸化チタンを水とポリエチレングリコール、硝酸を加えよく混ぜペースト状にし、印刷した。
Example 1
The dye-sensitized solar cell according to the above-described embodiment was manufactured according to the following procedure. Two glass substrates each having a size of 2 × 3 cm and a thickness of 2.8 mm were prepared, and an ITO film was formed as a transparent conductive film 6 by 200 nm on one sheet by a sputtering method. The height of the irregularities on the surface was approximately 1 μm or less. After masking and coating with tape or the like on the substrate 5 on which the transparent conductive film 6 was formed, titanium oxide for photocatalyst having a particle size of about 20 nm was added with water, polyethylene glycol and nitric acid, mixed well to form a paste, and printed.

次に、大気中500℃で30分間加熱処理し、冷却し平均厚さ10μm程度のチタニア膜とした。この表面の凹凸の高さはほぼ30μm以下であった。これより、使用する電解液保持・電極材2は30μm以上の厚みを持つものを使用することとした。さらに、上記で形成したチタニア膜をルテニウム錯体のアセトニトリル溶液に浸漬した。その結果、皮膜を構成する酸化チタン微粒子上に、増感色素であるルテニウム錯体が吸着、コ−ティングされ、色素増感半導体電極4が形成された。   Next, it was heat-treated at 500 ° C. for 30 minutes in the atmosphere, and cooled to obtain a titania film having an average thickness of about 10 μm. The height of the unevenness on the surface was approximately 30 μm or less. Accordingly, the electrolytic solution holding / electrode material 2 to be used has a thickness of 30 μm or more. Further, the titania film formed above was immersed in an acetonitrile solution of a ruthenium complex. As a result, the ruthenium complex, which is a sensitizing dye, was adsorbed and coated on the titanium oxide fine particles constituting the film, and the dye-sensitized semiconductor electrode 4 was formed.

電解液保持・電極材2としては、16μm径のステンレス製の線材3本を縄状にしたワイヤーを作成した後、ほぼピッチ100μmで網目状にしたメッシュを作製した。厚さは約50μmとなった。色素増感半導体電極4を形成した基板5ともう一方の基板1との間に電解液保持・電極材2を挟むようにして重ね合わせた後、基板間にヨウ素電解液3を注入した。   As the electrolyte solution holding / electrode material 2, a wire having three ropes made of stainless steel having a diameter of 16 μm was formed, and then a mesh having a mesh shape with a pitch of about 100 μm was prepared. The thickness was about 50 μm. The substrate 5 on which the dye-sensitized semiconductor electrode 4 was formed and the other substrate 1 were superposed with the electrolyte solution holding / electrode material 2 interposed therebetween, and then the iodine electrolyte solution 3 was injected between the substrates.

ヨウ素電解液3としては、0.5Mヨウ化リチウムと0.05Mヨウ素を3−メトキシプロピオニトリルとアセトニトリル混合溶液に溶解したものを用いた。さらに、ディスペンサーを用いて基板間の周辺にシール材を塗布し封止して、色素増感型太陽電池を作製した。   As the iodine electrolyte 3, a solution obtained by dissolving 0.5 M lithium iodide and 0.05 M iodine in a mixed solution of 3-methoxypropionitrile and acetonitrile was used. Furthermore, a sealant was applied around the periphery of the substrate using a dispenser and sealed to prepare a dye-sensitized solar cell.

実施例2
本実施例では、実施例1で用いた電解液保持・電極材の片側表面にイオンビームアシスト蒸着法によって10nm程度のPtを被膜したものを用いた以外は実施例1と同様にして色素増感型太陽電池を作製した。本実施例のセルは10セル作製した。
Example 2
In this example, dye sensitization was performed in the same manner as in Example 1 except that the electrolyte solution holding / electrode material used in Example 1 was coated with about 10 nm of Pt by ion beam assisted deposition. Type solar cells were produced. Ten cells were manufactured in this example.

実施例3
本実施例では、実施例1で用いた電解液保持・電極材の両側表面にイオンビームアシスト蒸着法によって10nm程度のPtを被膜したものを用いた以外は実施例1と同様にして色素増感型太陽電池 を作製した。本実施例のセルは10セル作製した。
Example 3
In this example, dye sensitization was performed in the same manner as in Example 1 except that the electrolyte solution holding / electrode material used in Example 1 was coated with about 10 nm of Pt by ion beam assisted deposition. Type solar cells were fabricated. Ten cells were manufactured in this example.

実施例4
本実施例では、電解液保持・電極材2として、16μm径のナイロン線材を用い、厚さ100μm程度のピッチ100μm程度のメッシュとした。この電解液保持・電極材2の片側表面にイオンビームアシスト蒸着法によって10nm程度のPtを被膜したものを用いて、実施例1と同様にして色素増感型太陽電池を作製した。本実施例のセルは10セル作製した。
Example 4
In this example, a 16 μm diameter nylon wire was used as the electrolyte solution holding / electrode material 2 and a mesh having a thickness of about 100 μm and a pitch of about 100 μm was used. A dye-sensitized solar cell was produced in the same manner as in Example 1 by using a surface on which one side of the electrolyte solution holding / electrode material 2 was coated with Pt of about 10 nm by ion beam assisted deposition. Ten cells were manufactured in this example.

比較例
上記の実施例に対する比較例として、電解液保持・電極材2を用いない以外は実施例1と同様にして色素増感型太陽電池を10セル作製した。
Comparative Example As a comparative example with respect to the above example, 10 dye-sensitized solar cells were produced in the same manner as in Example 1 except that the electrolytic solution holding / electrode material 2 was not used.

比較結果
実施例1〜4で作製した色素増感型太陽電池に、キセノンランプを照射して起電力を測定したところ、比較例のセルは100mW、1cm2あたりの短絡電流は5〜15mA、開放電圧は0.57〜0.65Vであったのに対し、実施例1のセルは1cm2あたりの短絡電流は約15mA、開放電圧は約0.6V、実施例2のセルは1cm2あたりの短絡電流は約20mA、開放電圧は約0.65V、実施例3のセルは1cm2あたりの短絡電流は約25mA、開放電圧は約0.65V、実施例4のセルは10セルとも1cm2あたりの短絡電流は約8mA、開放電圧は約0.60V、であった。
Comparative Results When the electromotive force was measured by irradiating the dye-sensitized solar cells produced in Examples 1 to 4 with a xenon lamp, the cell of the comparative example was 100 mW, the short-circuit current per 1 cm 2 was 5 to 15 mA, and the open circuit was open. While the voltage was 0.57 to 0.65 V, the cell of Example 1 had a short circuit current of about 15 mA per cm 2 , the open circuit voltage was about 0.6 V, and the cell of Example 2 had a capacity of 1 cm 2 . The short-circuit current is about 20 mA, the open-circuit voltage is about 0.65 V, the cell of Example 3 has a short-circuit current of about 25 mA per 1 cm 2 , the open-circuit voltage is about 0.65 V, and the cells of Example 4 all have 10 cells per 1 cm 2. The short circuit current was about 8 mA, and the open circuit voltage was about 0.60V.

このように、本発明の色素増感型太陽電池は、再現性に優れ安定した性能を有するものであることが確認できた。   Thus, it was confirmed that the dye-sensitized solar cell of the present invention has excellent reproducibility and stable performance.

以上、本発明の色素増感型太陽電池及びその製造方法について、具体的な実施の形態を示して説明したが、本発明はこれらに限定されるものではない。当業者であれば、本発明の要旨を逸脱しない範囲内において、上記各実施形態又は他の実施形態にかかる発明の構成及び機能に様々な変更・改良を加えることが可能である。   As mentioned above, although the specific embodiment was shown and demonstrated about the dye-sensitized solar cell and its manufacturing method of this invention, this invention is not limited to these. A person skilled in the art can make various changes and improvements to the configurations and functions of the invention according to the above-described embodiments or other embodiments without departing from the gist of the present invention.

Claims (5)

少なくとも一方の透明基板表面に透明導電膜及び色素増感半導体電極が形成された2枚の基板を重ね合わせ、該2枚の基板の間に電解液を封入してなる色素増感型太陽電池において、
該2枚の基板間において、2本以上の線材を網目状に編み込んでなる部材であって電極として働く部材を配置していること特徴とする色素増感型太陽電池。
In a dye-sensitized solar cell in which two substrates each having a transparent conductive film and a dye-sensitized semiconductor electrode formed on at least one transparent substrate are overlapped and an electrolyte solution is sealed between the two substrates. ,
A dye-sensitized solar cell comprising a member formed by weaving two or more wire rods in a mesh shape and serving as an electrode between the two substrates.
前記線材は導電性を有していることを特徴とする請求項1記載の色素増感型太陽電池。 The dye-sensitized solar cell according to claim 1, wherein the wire has conductivity. 前記線材は絶縁性であり、前記線材の片側又は両側の表面に導電性被膜が形成されていることを特徴とする請求項1記載の色素増感型太陽電池。 The dye-sensitized solar cell according to claim 1, wherein the wire is insulative, and a conductive film is formed on one or both surfaces of the wire. 前記線材の厚さは、前記基板の透明導電膜及び色素増感半導体電極が形成された表面における凹凸の高さよりも大きいことを特徴とする請求項1から3のいずれか1項記載の色素増感型太陽電池。 The dye sensitization according to any one of claims 1 to 3, wherein the thickness of the wire is larger than the height of the unevenness on the surface of the substrate on which the transparent conductive film and the dye-sensitized semiconductor electrode are formed. Sensitive solar cell. 前記2枚の基板のうち、透明導電膜及び色素増感半導体電極が形成されていない基板は絶縁性であることを特徴とする請求項1から3のいずれか1項記載の色素増感型太陽電池。 4. The dye-sensitized solar according to claim 1, wherein a substrate on which the transparent conductive film and the dye-sensitized semiconductor electrode are not formed is insulative among the two substrates. 5. battery.
JP2006514452A 2004-06-08 2005-05-26 Dye-sensitized solar cell and method for producing the same Pending JPWO2005122322A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004198688 2004-06-08
JP2004198688 2004-06-08
JPPCT/JP2005/005806 2005-03-29
PCT/JP2005/005806 WO2005122321A1 (en) 2004-06-08 2005-03-29 Dye sensitized solar cell and process for producing the same
PCT/JP2005/009677 WO2005122322A1 (en) 2004-06-08 2005-05-26 Dye sensitization solar cell and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPWO2005122322A1 true JPWO2005122322A1 (en) 2008-04-10

Family

ID=35503405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006514452A Pending JPWO2005122322A1 (en) 2004-06-08 2005-05-26 Dye-sensitized solar cell and method for producing the same

Country Status (3)

Country Link
JP (1) JPWO2005122322A1 (en)
KR (1) KR20070050906A (en)
WO (2) WO2005122321A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210317A (en) * 2004-12-28 2006-08-10 Nippon Oil Corp Manufacturing method of dye-sensitized solar cell element
GB0910295D0 (en) * 2009-06-16 2009-07-29 Pilkington Group Ltd Laminated structure
KR101156534B1 (en) * 2009-12-28 2012-06-20 삼성에스디아이 주식회사 Photoelectric conversion device
JP2011221470A (en) * 2010-04-14 2011-11-04 Sony Corp Optical element, method for manufacturing the same, display unit, and solar cell
CN103700502A (en) * 2013-12-30 2014-04-02 中国科学院上海硅酸盐研究所 Method for preparing titanium dioxide photo-anode of DSSC (Dye-Sensitized Solar Cell)
CN103903861B (en) * 2014-04-23 2017-05-03 南开大学 Counter electrode made of metal sulfide and graphene composite materials and preparation method and application of counter electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243995A (en) * 2000-02-29 2001-09-07 Fuji Photo Film Co Ltd Photoelectric conversion element and photoelectric cell
US20030230337A1 (en) * 2002-03-29 2003-12-18 Gaudiana Russell A. Photovoltaic cells utilizing mesh electrodes

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340644A (en) * 1990-10-05 1994-08-23 Hercules Incorporated Organosilicon compositions
CA2067678C (en) * 1991-11-18 1995-08-08 Louis H. Toporcer Flame retardant elastomeric composition
JP3183041B2 (en) * 1994-05-09 2001-07-03 信越化学工業株式会社 Hydrosilylation reaction catalyst for silicone composition and addition-curable silicone composition
JP3436991B2 (en) * 1994-11-04 2003-08-18 鐘淵化学工業株式会社 Curable composition
JP4738559B2 (en) * 1999-09-29 2011-08-03 日揮触媒化成株式会社 Photoelectric cell
JP2004095248A (en) * 2002-08-30 2004-03-25 Three Bond Co Ltd Sealant composition for dye-sensitized solar cell
JP4172239B2 (en) * 2002-09-25 2008-10-29 松下電工株式会社 Photoelectric conversion element
JP4465971B2 (en) * 2003-03-26 2010-05-26 株式会社ブリヂストン Counter electrode for dye-sensitized solar cell and dye-sensitized solar cell
JP2005166313A (en) * 2003-11-28 2005-06-23 Ngk Spark Plug Co Ltd Dye-sensitized solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243995A (en) * 2000-02-29 2001-09-07 Fuji Photo Film Co Ltd Photoelectric conversion element and photoelectric cell
US20030230337A1 (en) * 2002-03-29 2003-12-18 Gaudiana Russell A. Photovoltaic cells utilizing mesh electrodes

Also Published As

Publication number Publication date
WO2005122322A1 (en) 2005-12-22
KR20070050906A (en) 2007-05-16
WO2005122321A1 (en) 2005-12-22

Similar Documents

Publication Publication Date Title
JP5150818B2 (en) Dye-sensitized solar cell and method for producing the same
WO2011096154A1 (en) Dye-sensitized solar cell and method for manufacturing the same
US20040115858A1 (en) Dye sensitized solar cells having foil electrodes
US20090320914A1 (en) Dye-sensitized solar cell and method of fabricating the same
JP5456054B2 (en) Wet solar cell and wet solar cell module
US20090101198A1 (en) Dye-sensitized solar cell and method of fabricating the same
JPWO2005122322A1 (en) Dye-sensitized solar cell and method for producing the same
US20110220192A1 (en) Single-sided dye-sensitized solar cells having a vertical patterned structure
US20070204906A1 (en) Dye Sensitization Solar Cell and Manufacturing Method Thereof
JP2004319661A (en) Photoelectric conversion device, its manufacturing method substrate therefor, and its manufacturing method
JP4966525B2 (en) Dye-sensitized solar cell, its photoelectrode substrate, and method for producing the photoelectrode substrate
JP2004311355A (en) Manufacturing method of substrate for electrode
KR100994584B1 (en) Photovoltaic cell with Ti-mesh/TiO2 nano tube
JP4836473B2 (en) PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOVOLTAIC POWER
JP5972811B2 (en) Photoelectric conversion element, method for producing photoelectric conversion element, and dye-sensitized solar cell
JP6161860B2 (en) Dye-sensitized solar cell with a collector electrode at the counter electrode
US20100300523A1 (en) Dye-sensitized solar cell and method of fabricating the same
KR20090020058A (en) Dye-sensitized solar cells having electron recombination protection layer and method for manufacturing the same
JP2004311354A (en) Manufacturing method of substrate for electrode
JP5334380B2 (en) Dye-sensitized solar cell and method for producing the same
JP2005340167A (en) Manufacturing method of optical electrode substrate of dye-sensitized solar cell, optical electrode substrate of dye-sensitized solar cell, and dye-sensitized solar cell
JP2007123088A (en) Dye-sensitized solar cell
KR100998146B1 (en) Photovoltaic cell with Ti-Grid/TiO2 nano tube
KR101272781B1 (en) Dye-Sensitized Solar Cell And Method Of Fabricating The Same
JP4496013B2 (en) Dye-sensitized solar cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019