JP5334380B2 - Dye-sensitized solar cell and method for producing the same - Google Patents

Dye-sensitized solar cell and method for producing the same Download PDF

Info

Publication number
JP5334380B2
JP5334380B2 JP2007128764A JP2007128764A JP5334380B2 JP 5334380 B2 JP5334380 B2 JP 5334380B2 JP 2007128764 A JP2007128764 A JP 2007128764A JP 2007128764 A JP2007128764 A JP 2007128764A JP 5334380 B2 JP5334380 B2 JP 5334380B2
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
electrode
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007128764A
Other languages
Japanese (ja)
Other versions
JP2008287893A (en
Inventor
浩和 藤巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Priority to JP2007128764A priority Critical patent/JP5334380B2/en
Publication of JP2008287893A publication Critical patent/JP2008287893A/en
Application granted granted Critical
Publication of JP5334380B2 publication Critical patent/JP5334380B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the photoelectric transfer efficiency of a dye sensitized solar battery. <P>SOLUTION: The dye sensitized solar battery includes a negative electrode 40 and a positive electrode 50 disposed opposite to the negative electrode 40. The negative electrode 40 and the positive electrode 50 are bonded with a sealing material 60. An electrolyte solution 65 is filled between the negative electrode 40 and the positive electrode 50 and sealed with the sealing material 60. The negative electrode 40 includes a glass substrate 41 whose surface is coated with a transparent conductive film 42. A porous titanium oxide film 43 is formed on the transparent conductive film 42. This surface adsorbs (carries) a sensitizing dye 44. The positive electrode 50 includes a transparent glass substrate 51 whose surface is coated with a transparent conductive film 52. A porous titanium oxide layer 53 is formed on the surface of the transparent conductive film 52. A thin catalyst electrode 54 to accelerate reaction of the electrolyte solution 65 is formed on the whole surface of the transparent conductive film 52 containing the porous titanium oxide layer 53. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、光エネルギーを電気エネルギーに変換する色素増感太陽電池とその製造方法、特に、色素増感太陽電池の正極構造に関するものである。   The present invention relates to a dye-sensitized solar cell that converts light energy into electric energy and a method for producing the same, and more particularly to a positive electrode structure of a dye-sensitized solar cell.

地球全体に降り注ぐ太陽光エネルギーは、全世界が消費する電力の10万倍とも言われる。即ち、我々は特別な工業活動を行わなくても、既に膨大なエネルギー資源に囲まれているのである。そして太陽電池は、この資源(太陽光)を、人類が利用し易い電気エネルギーに変換するための装置であり、50年の歴史がある。ところで現在生産されている太陽電池の90%以上はシリコン(Si)系太陽電池で、更にSi系太陽電池は、単結晶Si、多結晶Si、アモルファスSiの形態に分類される。これらは変換効率(変換効率とは、系内に印加されたエネルギー量と、系外に取り出されるエネルギー量の比。)、コスト、加工性能が異なり、搭載製品、用途、設置場所等に応じて選択されている。ここでSi系太陽電池の中では、単結晶Si太陽電池の変換効率が最も高く、実用レベルで20%に達する製品も製造されている。又、人工衛星用向け等の特殊用途においては、超高変換効率や優れた耐放射線劣化特性を有する化合物半導体が用いられる場合もある。   It is said that the solar energy that falls on the entire earth is 100,000 times the power consumed by the whole world. In other words, we are already surrounded by enormous energy resources without special industrial activities. The solar cell is a device for converting this resource (sunlight) into electrical energy that is easy for human beings to use, and has a history of 50 years. By the way, 90% or more of solar cells currently produced are silicon (Si) solar cells, and Si solar cells are further classified into single crystal Si, polycrystal Si, and amorphous Si. These differ in conversion efficiency (conversion efficiency is the ratio of the amount of energy applied in the system to the amount of energy extracted outside the system), cost, and processing performance, and depends on the product, application, installation location, etc. Is selected. Here, among Si solar cells, single crystal Si solar cells have the highest conversion efficiency, and a product reaching 20% at a practical level is also manufactured. In special applications such as those for artificial satellites, compound semiconductors having ultra-high conversion efficiency and excellent radiation resistance deterioration characteristics may be used.

ところで、太陽電池を始めとした再生可能エネルギーは、環境負荷がほとんどない理想的なエネルギー資源と言われているが、これまでのところ、普及は十分には進んでいない状況にある。その理由は高い発電コストにある。現在、日本国内の電力単価は約20円/kWhであるが、一般家庭の消費電力(3〜5kW)を、ほぼ賄える太陽光発電システムの設置費用が200万円〜400万円であることを考えると、完全償却までに最低20年は必要になる。この償却期間の長さと、高額な初期投資が起因して、一般家庭用への普及は、あまり進んでいない状況である。このような状況下にて市場をより活性化させ、自然と調和するエネルギー供給システム(社会)を実現していくためには、発電の低コスト化が必要である。そして、これには技術面での進歩が必須で、具体的には2方向からのアプローチがある。   By the way, renewable energy such as solar cells is said to be an ideal energy resource with almost no environmental load, but so far it has not been sufficiently spread. The reason is high power generation cost. Currently, the unit price of electricity in Japan is about 20 yen / kWh, but the installation cost of a solar power generation system that can almost cover the power consumption (3-5 kW) of ordinary households is 2 million yen to 4 million yen. If considered, a minimum of 20 years will be required before complete depreciation. Due to the length of this depreciation period and the high initial investment, the spread to general households has not progressed much. Under these circumstances, it is necessary to reduce the cost of power generation in order to further activate the market and realize an energy supply system (society) that harmonizes with nature. And this requires technical progress, and specifically, there are two approaches.

第1は、太陽電池それ自体の高効率化を実現していくことにある。仮に同じ製造コストでも発電効率が倍になれば、製品コストは半分になったことと同等である。第2は、材料、製造方法、或いは構造自体を改良して、製品単価自体を下げる方法である。現在、主流のSi系太陽電池は、高純度のSi材料を必要とすること以外に、その製造工程にて高温/高真空が必要であることや、大面積基板へのSi材料の生成/加工においては、生産設備の巨大化等に伴い、製造コストを効果的に下げられない状況にある。このためSi系とは別の材料を用いて材料コストを下げ、更には高温工程や真空工程も極力除外することにより、製造過程でのエネルギー消費も抑え、結果的にトータルコストを大幅に抑えた太陽電池も各種提案されている。   The first is to achieve higher efficiency of the solar cell itself. If the power generation efficiency is doubled even at the same manufacturing cost, the product cost is equivalent to halving. The second is a method of reducing the product unit price itself by improving the material, the manufacturing method, or the structure itself. Currently, mainstream Si solar cells require high-purity Si material, high temperature / high vacuum in the manufacturing process, and production / processing of Si material on large area substrates However, the production cost cannot be reduced effectively with the enlargement of production facilities. For this reason, material costs are reduced by using materials other than Si-based materials, and furthermore, high temperature processes and vacuum processes are eliminated as much as possible to reduce energy consumption during the manufacturing process, resulting in greatly reduced total costs. Various types of solar cells have also been proposed.

この代表が湿式の色素増感型(グレッツェルセル)の太陽電池(色素増感太陽電池)と、乾式の有機薄膜太陽電池である。前者の色素増感太陽電池は、例えば、下記の特許文献等に記載されているように、構造が簡単で、構成材料としても資源的に豊富な材料を選択することができる。更に製造工程でのエネルギー消費量が少ない点や、大掛かりな設備も不要なため、発電コストが現在主流のSi系太陽電池に比較して1/5以下に抑えられると試算されている。   Typical examples are wet dye-sensitized (Gretzel cell) solar cells (dye-sensitized solar cells) and dry organic thin-film solar cells. The former dye-sensitized solar cell has a simple structure and can select abundant resources as a constituent material as described in, for example, the following patent documents. Furthermore, it is estimated that the power generation cost can be reduced to 1/5 or less as compared with the current mainstream Si-based solar cells because less energy is consumed in the manufacturing process and no large-scale equipment is required.

特開平10−112337号公報Japanese Patent Laid-Open No. 10-112337

図5は、特許文献1等に記載された従来の一般的な色素増感太陽電池の模式的な構成を示す断面図である。 FIG. 5 is a cross-sectional view showing a schematic configuration of a conventional general dye-sensitized solar cell described in Patent Document 1 and the like.

この色素増感太陽電池は、作用極(「アノード電極」ともいう。)である負極10と、対極(「カソード電極」ともいう。)である正極20との間に、ヨウ素(I)を含む電解質溶液30を充填したものである。   This dye-sensitized solar cell includes iodine (I) between a negative electrode 10 that is a working electrode (also referred to as “anode electrode”) and a positive electrode 20 that is a counter electrode (also referred to as “cathode electrode”). The electrolyte solution 30 is filled.

負極10は、ガラス基板11を有し、この表面が、透明導電膜(例えば、フッ素ドープ酸化スズ(FTO)若しくはスズドープ酸化インジュウム(ITO))12により被覆されている。透明導電膜12上には、二酸化チタン(TiO2、「チタニア」ともいう。)の微粒子を含んだペースト材が塗布され、このチタニアペースト材がアニール処理により焼結されて多孔質の半導体電極13が形成されている。半導体電極13には、ルテニウム(Ru)金属錯体(例えば、Ru色素N719)からなる増感色素14が担持(吸着)されている。負極10と対向する正極20は、ガラス基板21を有し、この表面に触媒電極(例えば、導電膜と薄い白金(Pt))22が形成されている。   The negative electrode 10 has a glass substrate 11, and the surface thereof is covered with a transparent conductive film (for example, fluorine-doped tin oxide (FTO) or tin-doped indium oxide (ITO)) 12. On the transparent conductive film 12, a paste material containing fine particles of titanium dioxide (TiO 2, also referred to as “titania”) is applied, and this titania paste material is sintered by annealing to form a porous semiconductor electrode 13. Is formed. A sensitizing dye 14 made of a ruthenium (Ru) metal complex (for example, Ru dye N719) is supported (adsorbed) on the semiconductor electrode 13. The positive electrode 20 facing the negative electrode 10 has a glass substrate 21 on which a catalyst electrode (for example, a conductive film and thin platinum (Pt)) 22 is formed.

この種の色素増感太陽電池では、光を負極10側から入射させると(但し、特許文献1では、光を正極20側から入射させている。)、多孔質の半導体電極13に吸着した増感色素14が光を吸収して、電子e−が励起される。増感色素14の励起順位に対して、半導体電極13の伝導帯は0.2eV程度のエネルギー順位が低いため、この励起した電子e−は、半導体電極13側へ流れて行く。更にこの電子e−は、ガラス基板11上の透明導電膜12を流れて外部負荷35を稼動させた後、正極20側に到達する。その後、この電子e−は電解質溶液30中へヨウ素イオンI−との還元反応にて引き渡され、このヨウ素(I)は拡散して励起した増感色素14へ電子e−を引き渡す酸化反応が起こる。以上のサイクルが繰り返されることにより、定常的な光照射に伴う光起電力が発生する。   In this type of dye-sensitized solar cell, when light is made incident from the negative electrode 10 side (however, in Patent Document 1, light is made incident from the positive electrode 20 side), the sensitization that is adsorbed to the porous semiconductor electrode 13. The dye 14 absorbs light and excites electrons e−. Since the conduction band of the semiconductor electrode 13 has a lower energy order of about 0.2 eV than the excitation order of the sensitizing dye 14, the excited electron e− flows toward the semiconductor electrode 13. Further, the electrons e− flow through the transparent conductive film 12 on the glass substrate 11 to operate the external load 35 and then reach the positive electrode 20 side. Thereafter, the electrons e− are delivered into the electrolyte solution 30 by a reduction reaction with iodine ions I−, and the iodine (I) undergoes an oxidation reaction in which the electrons e− are delivered to the sensitizing dye 14 which has been diffused and excited. . By repeating the above cycle, a photovoltaic force is generated due to steady light irradiation.

図6(A)〜(E)は、図5の色素増感太陽電池における製造方法を示す概略の製造工程図である。 FIG 6 (A) ~ (E) are manufacturing process diagrams schematically illustrating a manufacturing method of the dye-sensitized solar cell of FIG.

先ず、図6(A)において、表面にFTO若しくはITOの透明導電膜12を被覆したガラス基板11を準備する。透明導電膜12のシート抵抗値は10Ω/□以下で、約0.5μm厚とする。 First, in FIG. 6A, a glass substrate 11 whose surface is covered with a transparent conductive film 12 of FTO or ITO is prepared. The sheet resistance value of the transparent conductive film 12 is 10Ω / □ or less, and the thickness is about 0.5 μm.

図6(B)において、スクリーン印刷法、若しくは塗布法にて、10〜30nm程度のチタニアの微粒子を含んだペースト材を塗布する。このチタニアペースト材の厚さは、約50μmとする。次に、500℃、2時間程度のアニール処理にて、チタニアペースト材を焼結する。これによりペーストの溶剤が飛散して、且つチタニアの微粒子がネッキングして、多孔質の半導体電極13が形成され、電子e−の拡散路が形成される。 In FIG. 6B , a paste material containing titania fine particles of about 10 to 30 nm is applied by a screen printing method or a coating method. The thickness of the titania paste material is about 50 μm. Next, the titania paste material is sintered by annealing at 500 ° C. for about 2 hours. As a result, the solvent of the paste scatters and the titania fine particles are necked to form the porous semiconductor electrode 13, thereby forming an electron e− diffusion path.

図6(C)において、Ru金属錯体からなる増感色素14を含んだアルコール溶液中に、多孔質の半導体電極13が形成された基板を半日程度浸漬して、この多孔質の半導体電極13の表面に増感色素14を吸着させる。更に、エタノールで洗浄した後、暗所にて乾燥させる。 6C, the substrate on which the porous semiconductor electrode 13 is formed is immersed in an alcohol solution containing a sensitizing dye 14 made of a Ru metal complex for about half a day. The sensitizing dye 14 is adsorbed on the surface. Further, after washing with ethanol, it is dried in a dark place.

図6(D)において、正極20としてガラス基板21上に触媒電極(例えば、導電膜と薄いPt)22をスパッタした基板を準備する。正極20側の触媒電極22の周辺と、負極10側の半導体電極13の周辺とに、熱可塑性フィルム接着剤31であるハイミランフィルム(例えば、三井・ヂュポンケミカル:1004)を形成した後、負極10と正極20とを130℃にて接着させる。 In FIG. 6D, a substrate obtained by sputtering a catalyst electrode (for example, a conductive film and thin Pt) 22 on a glass substrate 21 is prepared as the positive electrode 20. After forming a high-milan film (for example, Mitsui-DuPont Chemical: 1004) as the thermoplastic film adhesive 31 around the periphery of the catalyst electrode 22 on the positive electrode 20 side and the periphery of the semiconductor electrode 13 on the negative electrode 10 side, The negative electrode 10 and the positive electrode 20 are bonded at 130 ° C.

図6(E)において、正極20に注入孔32を形成する。注入孔32からヨウ素(I)を含む電解質溶液30を注入して、負極10及び正極20間の隙間に電解質溶液30を充填し、注入孔32を塞ぐ。その後、負極10へは負電極配線33を結線し、正極20側からは正極配線34を結線すれば、図5に示すような平板状の色素増感太陽電池の製造が終了する。 In FIG. 6E, an injection hole 32 is formed in the positive electrode 20. The electrolyte solution 30 containing iodine (I) is injected from the injection hole 32, the gap between the negative electrode 10 and the positive electrode 20 is filled with the electrolyte solution 30, and the injection hole 32 is closed. Thereafter, when the negative electrode wiring 33 is connected to the negative electrode 10 and the positive electrode wiring 34 is connected from the positive electrode 20 side, the manufacture of the flat dye-sensitized solar cell as shown in FIG. 5 is completed.

以上のような製造方法と図5に示す発電のメカニズムにより、安価で高効率の色素増感太陽電池が製造できるようになった。これは現在主流のSi系太陽電池が、高温・高真空の製造方法と大型の設備を必要とし、更に高純度のSiを原材料にしているのに対して、常圧、低温、豊富な資源を使用できるため、Si太陽電池に比較して、極めて安価な太陽電池を製造することが可能となっている。この理由から、低コスト太陽電池の有力候補として注目されている。 By the above manufacturing method and the power generation mechanism shown in FIG. 5 , an inexpensive and highly efficient dye-sensitized solar cell can be manufactured. This is because the mainstream Si solar cells currently require high-temperature and high-vacuum manufacturing methods and large-scale equipment, and high-purity Si is used as a raw material. Since it can be used, it is possible to manufacture a very inexpensive solar cell as compared with a Si solar cell. For this reason, it is attracting attention as a leading candidate for low-cost solar cells.

しかし、現状での変換効率は、トップデータでも11%程度で、更に実用化レベルの大面積セルとなると、その変換効率が面積の増加に伴い急激に低下する問題を抱えている。このように、色素増感太陽電池は低コスト化に関しては、他の太陽電池を遙かに凌ぐ特長を有しているが、効率面では、トップデータでも11%程度で、単結晶Si太陽電池の半分以下となっている。   However, the current conversion efficiency is about 11% even in the top data, and when the cell becomes a large-area cell at a practical level, the conversion efficiency rapidly decreases as the area increases. As described above, the dye-sensitized solar cell has a feature that is far superior to other solar cells in terms of cost reduction. However, in terms of efficiency, the top data is about 11%, and the single crystal Si solar cell. Less than half.

ここで、理論効率としては30%程度が期待できる色素増感太陽電池の効率向上を阻害する要因として、セル内部の寄生抵抗が挙げられる。更に、この寄生抵抗は、電池内部の各領域(例えば、負極10側の透明導電膜12、半導体電極13、正極20側の触媒電極22等)や界面(例えば、負極10と電解質溶液30との界面、正極20と電解質溶液30との界面等)にて発生する。   Here, the parasitic resistance inside a cell is mentioned as a factor which inhibits the efficiency improvement of the dye-sensitized solar cell which can expect about 30% as theoretical efficiency. Further, this parasitic resistance is caused by each region (for example, the transparent conductive film 12 on the negative electrode 10 side, the semiconductor electrode 13, the catalyst electrode 22 on the positive electrode 20 side) or the interface (for example, between the negative electrode 10 and the electrolyte solution 30). At the interface, the interface between the positive electrode 20 and the electrolyte solution 30).

従来、このような問題を解決するために、例えば、特許文献1の技術では、増感色素14を坦持する半導体電極13として、導電性基板を構成する金属(図5の透明導電膜12に相当)を陽極酸化して形成された酸化膜を用い、導電性基板と酸化膜とを強固に結合された一体構造にすることにより、その界面での電気抵抗を低減している。又、陽極酸化及び水熱処理による加熱効果により、陽極酸化膜(図5の多孔質の半導体電極13に相当)を構成する微粒子間の電気抵抗を低減している。これにより、光電変換効率を向上させている。 Conventionally, in order to solve such a problem, for example, in the technique of Patent Document 1, as a semiconductor electrode 13 carrying a sensitizing dye 14, a metal constituting a conductive substrate (on the transparent conductive film 12 in FIG. 5 ) . The electrical resistance at the interface is reduced by using an oxide film formed by anodizing the equivalent) and forming an integrated structure in which the conductive substrate and the oxide film are firmly coupled. In addition, the electrical resistance between the fine particles constituting the anodic oxide film ( corresponding to the porous semiconductor electrode 13 in FIG. 5 ) is reduced by the heating effect by anodic oxidation and hydrothermal treatment. Thereby, the photoelectric conversion efficiency is improved.

しかしながら、従来の特許文献1に記載された技術でも、依然として電池内部の寄生抵抗が大きく、光電変換効率を向上させるにも限界があり、所望の光電変換効率を得ることが困難であった。   However, even with the technique described in Patent Document 1, the parasitic resistance inside the battery is still large, and there is a limit in improving the photoelectric conversion efficiency, and it is difficult to obtain a desired photoelectric conversion efficiency.

そこで本発明では、正極と電解質溶液との界面に存在する抵抗成分を低減することにより、色素増感太陽電池の効率を更に改善することを目的とする。   Therefore, an object of the present invention is to further improve the efficiency of the dye-sensitized solar cell by reducing the resistance component existing at the interface between the positive electrode and the electrolyte solution.

本発明の色素増感太陽電池は、透明導電性の第1の基材と、前記第1の基材上に形成され、増感色素を有する半導体電極と、前記第1の基材に対向して配設された導電性の第2の基材と、前記半導体電極と前記第2の基材との間に封止された電解質と、を有し、前記電解質側における前記第2の基材上に、多孔質酸化物半導体層が形成され、且つ、前記多孔質酸化物半導体層の表面に、前記電解質の反応を促す触媒電極が形成された色素増感太陽電池である。そして、前記多孔質酸化物半導体層は、多孔質酸化チタン層であり、耐電解質性及び導電性を有し酸化チタンより抵抗値の小さい微粒子が混在されていることを特徴とする。 The dye-sensitized solar cell of the present invention is a transparent conductive first substrate, a semiconductor electrode formed on the first substrate and having a sensitizing dye, and facing the first substrate. A conductive second substrate disposed on the electrolyte side, and an electrolyte sealed between the semiconductor electrode and the second substrate, and the second substrate on the electrolyte side The dye-sensitized solar cell has a porous oxide semiconductor layer formed thereon, and a catalyst electrode that promotes the reaction of the electrolyte is formed on the surface of the porous oxide semiconductor layer. Then, the porous oxide semiconductor layer is a porous titanium oxide layer, characterized in that the small particles are mixed resistance value than acid titanium have a electrolyte-electrolyte and conductivity.

本発明の色素増感太陽電池の製造方法は、前記発明の色素増感太陽電池の製造方法であって、前記第1の基板上に、前記増感色素を有する前記半導体電極を焼成によって形成する工程と、前記第2の基材上に、前記多孔質酸化チタン層を形成し、更に、前記多孔質酸化チタン層の表面に前記触媒電極を形成する工程と、前記触媒電極を前記第1の基材上に対向して配置し、前記半導体電極と前記触媒電極との間に介在させる前記電解質を封止材によって封止する工程と、を有している。そして、前記多孔質酸化チタン層は、前記微粒子を混在させた酸化チタンペーストを、前記第2の基材上に塗布した後に、窒素雰囲気中で焼成して、一部が窒化チタン化した多孔質膜が形成されて生成されていることを特徴とする。 The manufacturing method of the dye-sensitized solar cell of the present invention is the manufacturing method of the dye-sensitized solar cell of the present invention, wherein the semiconductor electrode having the sensitizing dye is formed on the first substrate by firing. Forming the porous titanium oxide layer on the second base material, and further forming the catalyst electrode on the surface of the porous titanium oxide layer; and And a step of sealing the electrolyte interposed between the semiconductor electrode and the catalyst electrode with a sealing material. The porous titanium oxide layer is a porous titanium nitride layer partially coated with titanium nitride paste after applying the titanium oxide paste mixed with the fine particles onto the second substrate. A film is formed and formed.

本発明の色素増感太陽電池及びその製造方法によれば、耐電解質性及び導電性を有し、酸化チタンより抵抗値の小さい微粒子が混在された多孔質酸化チタン層からなる多孔質酸化物半導体層を正極側に設け、その多孔質酸化物半導体層の表面に触媒電極を形成したので、正極と電解質との界面抵抗を大幅に改善することができる。従って、比較的簡単な構成と製造方法で、色素増感太陽電池の光電変換効率を向上できる。 According to the dye-sensitized solar cell and the manufacturing method thereof of the present invention, a porous oxide semiconductor comprising a porous titanium oxide layer in which fine particles having electrolyte resistance and conductivity and having a smaller resistance value than titanium oxide are mixed. Since the layer is provided on the positive electrode side and the catalyst electrode is formed on the surface of the porous oxide semiconductor layer , the interface resistance between the positive electrode and the electrolyte can be greatly improved. Therefore, the photoelectric conversion efficiency of the dye-sensitized solar cell can be improved with a relatively simple configuration and manufacturing method.

本発明を実施するための最良の形態は、以下の好ましい実施例の説明を添付図面と照らし合わせて読むと、明らかになるであろう。  The best mode for carrying out the invention will become apparent from the following description of the preferred embodiments when read in conjunction with the accompanying drawings.

(実施例1の構成・動作)
図1は、本発明の実施例1を示す色素増感太陽電池の模式的な断面図である。
この色素増感太陽電池は、負極40と、この負極40に対向して配置された正極50とを有し、これらの負極40及び正極50が封止材60により接着されている。負極40と正極50との間には、電解質(例えば、ヨウ素(I)、ヨウ化リチウム、アセトニトリル、TBP(4-tert-butylpyridine)等を混合した電解質溶液)65が充填され、この電解質溶液65が封止材60により封止されている。
(Configuration / Operation of Embodiment 1)
FIG. 1 is a schematic cross-sectional view of a dye-sensitized solar cell showing Example 1 of the present invention.
The dye-sensitized solar cell includes a negative electrode 40 and a positive electrode 50 disposed to face the negative electrode 40, and the negative electrode 40 and the positive electrode 50 are bonded to each other with a sealing material 60. An electrolyte (for example, an electrolyte solution in which iodine (I), lithium iodide, acetonitrile, TBP (4-tert-butylpyridine) or the like is mixed) 65 is filled between the negative electrode 40 and the positive electrode 50, and the electrolyte solution 65 Is sealed with a sealing material 60.

負極40は、透明導電性の第1の基材(例えば、ガラス基板41の表面がFTO、ITO等の透明導電膜42により被覆された基板)を有している。透明導電膜42上には、多孔質の半導体電極(例えば、多孔質の酸化物半導体膜である多孔質酸化チタン膜)43が形成され、この表面に、Ru金属錯体(例えば、Ru色素N719)等の増感色素44が吸着(担持)されている。   The negative electrode 40 has a transparent conductive first base material (for example, a substrate in which the surface of the glass substrate 41 is covered with a transparent conductive film 42 such as FTO or ITO). A porous semiconductor electrode (for example, a porous titanium oxide film which is a porous oxide semiconductor film) 43 is formed on the transparent conductive film 42, and a Ru metal complex (for example, Ru dye N719) is formed on the surface. A sensitizing dye 44 such as is adsorbed (supported).

正極50は、第2の基材(例えば、透明なガラス基板51の表面がFTO、ITO等の透明導電膜52により被覆された基板)を有している。透明導電膜52の表面には、負極40側の多孔質酸化チタン膜43に対向して、多孔質酸化物半導体層(例えば、厚さが約1μm以下の多孔質酸化チタン層)53が形成されている。多孔質酸化チタン層53を含む透明導電膜52の全面には、電解質溶液65の反応を促す薄いPt膜等の触媒電極54が形成されている。 The positive electrode 50 has a second base material (for example, a substrate in which the surface of a transparent glass substrate 51 is covered with a transparent conductive film 52 such as FTO or ITO). A porous oxide semiconductor layer (for example, a porous titanium oxide layer having a thickness of about 1 μm or less) 53 is formed on the surface of the transparent conductive film 52 so as to face the porous titanium oxide film 43 on the negative electrode 40 side. ing. On the entire surface of the transparent conductive film 52 including the porous titanium oxide layer 53, a catalyst electrode 54 such as a thin Pt film that promotes the reaction of the electrolyte solution 65 is formed.

負極40と正極50とは、所定間隔隔てて封止材60により接着されている。封止材60は、例えば、紫外線(UV)硬化型又は熱硬化型の樹脂体であり、この封止材60により、電解質溶液65が封止される。封止材60として、例えば、熱可塑性フィルム接着剤であるに三菱デュポン製のハイミランフィルムを使用する場合は、負極40と正極50とを熱圧着して内部を封止する。封止材60、負極40又は正極50には、図示しない注入孔が開けられ、この注入孔から注入された電解質溶液65が、その負極40と正極50との間に充填されている。図示しない注入孔は、電解質溶液65を注入した後に、エポキシ系樹脂材等により封止される。   The negative electrode 40 and the positive electrode 50 are bonded by a sealing material 60 at a predetermined interval. The sealing material 60 is, for example, an ultraviolet (UV) curable or thermosetting resin body, and the electrolyte solution 65 is sealed by the sealing material 60. As the sealing material 60, for example, when a high-milan film made of Mitsubishi DuPont is used as a thermoplastic film adhesive, the negative electrode 40 and the positive electrode 50 are thermocompression bonded to seal the inside. The sealing material 60, the negative electrode 40, or the positive electrode 50 has an injection hole (not shown), and an electrolyte solution 65 injected from the injection hole is filled between the negative electrode 40 and the positive electrode 50. An injection hole (not shown) is sealed with an epoxy resin material or the like after injecting the electrolyte solution 65.

このような構成の色素増感太陽電池では、光を負極40側(又は、正極50側)から入射させると、多孔質酸化チタン膜43に吸着した増感色素44が光を吸収して、電子e−が励起される。励起された電子e−は、多孔質酸化チタン膜43側へ流れて行く。更にこの電子e−は、ガラス基板41上の透明導電膜42を介して図示しない電極へ流れ、外部負荷を稼動させた後、正極50側に到達する。その後、この電子e−は電解質溶液65中へヨウ素イオンI−との還元反応にて引き渡され、このヨウ素(I)は拡散して励起した増感色素44へ電子e−を引き渡す酸化反応が起こる。以上のサイクルが繰り返されることにより、定常的な光照射に伴う光起電力が発生する。   In the dye-sensitized solar cell having such a configuration, when light is incident from the negative electrode 40 side (or the positive electrode 50 side), the sensitizing dye 44 adsorbed on the porous titanium oxide film 43 absorbs light, and electrons e- is excited. The excited electrons e− flow toward the porous titanium oxide film 43 side. Further, the electrons e− flow to an electrode (not shown) through the transparent conductive film 42 on the glass substrate 41 and reach the positive electrode 50 side after operating an external load. Thereafter, the electron e− is transferred into the electrolyte solution 65 by a reduction reaction with iodine ions I−, and the iodine (I) undergoes an oxidation reaction in which the electron e− is transferred to the sensitizing dye 44 which is diffused and excited. . By repeating the above cycle, a photovoltaic force is generated due to steady light irradiation.

(実施例1の製造方法)
図2(A)〜(D)は、図1の色素増感太陽電池の製造方法を示す製造工程の概略の断面図である。
(Manufacturing method of Example 1)
2 (A) to 2 (D) are schematic cross-sectional views of manufacturing steps showing the method for manufacturing the dye-sensitized solar cell of FIG.

本実施例1の色素増感太陽電池では、例えば、次の(1)〜(3)のような工程により製造される。   In the dye-sensitized solar cell of Example 1, for example, it is manufactured by the following steps (1) to (3).

(1) 図2(A)に示す負極40の製造工程
負極40の製造方法は、例えば、従来の製造方法と同一である。即ち、酸化スズ系の透明電極膜42が形成されたガラス基板41に、スクリーン印刷法等にて、約50μmの酸化チタンペースト43aを塗布する。塗布後、温度500℃にて大気雰囲気中、90分間のアニール処理を行い、図1に示すような多孔質酸化チタン膜43を形成させる。この時の多孔質酸化チタン膜厚は約10μmである。
(1) The manufacturing process of the negative electrode 40 shown to FIG. 2 (A) The manufacturing method of the negative electrode 40 is the same as the conventional manufacturing method, for example. That is, about 50 μm of titanium oxide paste 43a is applied to the glass substrate 41 on which the tin oxide-based transparent electrode film 42 is formed by a screen printing method or the like. After the application, annealing is performed for 90 minutes in an air atmosphere at a temperature of 500 ° C. to form a porous titanium oxide film 43 as shown in FIG. The film thickness of the porous titanium oxide at this time is about 10 μm.

次に、アセトニトリルとtブチルアルコールとの混合溶媒に金属錯体(例えば、Ru色素719)を4mMで溶かした溶液に、多孔質酸化チタン膜43を20時間ディップ(浸積)させる。これにより、多孔質状(ポーラス状)酸化チタン膜43の表面に、増感色素44が吸着され、負極40が形成される。   Next, the porous titanium oxide film 43 is dipped (immersed) for 20 hours in a solution obtained by dissolving a metal complex (for example, Ru dye 719) at 4 mM in a mixed solvent of acetonitrile and t-butyl alcohol. Thereby, the sensitizing dye 44 is adsorbed on the surface of the porous (porous) titanium oxide film 43, and the negative electrode 40 is formed.

(2) 図2(B)〜(D)に示す正極50の製造工程
前記負極40と共に正極50を、例えば、次のようにして製造する。
FIO、ITO等の透明導電膜52を形成したガラス基板51に、スクリーン印刷法もしくはスプレー法等にて、約1μm以下の酸化チタンペースト53a等を塗布する。これは、例えば、Solaronix社製の各種酸化チタンペーストを単層、もしくは積層して形成してもよい。酸化チタンペースト53a等の塗布後に、温度500℃にて大気雰囲気中、90分間のアニール処理を行い、図1に示すような多孔質酸化チタン層53を形成させる。この時の多孔質酸化チタン膜厚は、約0.5μm以下である。これにより、表面の粗さ(ラフネス)が数100以上の多孔質酸化チタン層53が形成される。
(2) Manufacturing Process of Positive Electrode 50 Shown in FIGS. 2B to 2D The positive electrode 50 is manufactured together with the negative electrode 40 as follows, for example.
A titanium oxide paste 53a of about 1 μm or less is applied to a glass substrate 51 on which a transparent conductive film 52 such as FIO or ITO is formed by a screen printing method or a spray method. For example, various titanium oxide pastes manufactured by Solaronix may be formed as a single layer or stacked layers. After the application of the titanium oxide paste 53a and the like, an annealing process is performed for 90 minutes in an air atmosphere at a temperature of 500 ° C. to form a porous titanium oxide layer 53 as shown in FIG. At this time, the film thickness of the porous titanium oxide is about 0.5 μm or less. Thereby, the porous titanium oxide layer 53 having a surface roughness (roughness) of several hundreds or more is formed.

次に、多孔質酸化チタン層53を含む透明導電膜52の全面に、スパッタリング法により、触媒電極54となるPtを厚さ約150Å程度生成させる。この時、Ptは、多孔質酸化チタン層53の内部にまで入り込む。触媒電極54の他の形成方法としては、スパッタリングに代えて、メッキ法により、多孔質酸化チタン層53の表面に極薄のPt層を形成させてもよい。あるいは、ヘキサクロロ白金酸をイソピロピルアルコール(IPA)に溶融させ、ディップさせた後に、温度400℃程度で焼成処理を行い、多孔質酸化チタン層53の表面にPtの微粒子を析出させてもよい。いずれの方法でも、ポイントは、多孔質酸化チタン層53の表面にPtを形成させることにある。これにより、正極50が形成される。   Next, Pt serving as the catalyst electrode 54 is formed on the entire surface of the transparent conductive film 52 including the porous titanium oxide layer 53 by a sputtering method to a thickness of about 150 mm. At this time, Pt enters into the porous titanium oxide layer 53. As another method for forming the catalyst electrode 54, an ultrathin Pt layer may be formed on the surface of the porous titanium oxide layer 53 by plating instead of sputtering. Alternatively, hexachloroplatinic acid may be melted in isopropyl alcohol (IPA) and dipped, followed by baking at a temperature of about 400 ° C. to deposit Pt fine particles on the surface of the porous titanium oxide layer 53. . In any method, the point is to form Pt on the surface of the porous titanium oxide layer 53. Thereby, the positive electrode 50 is formed.

(3) 図1に示す封止工程
図2(A)の負極40を裏返し、これと正極50とを位置合わせして熱可塑性フィルム接着剤であるハイミランフィルム(例えば、三菱デュポン製の厚さ60μmのハイミランフィルム)からなる封止材60にて熱圧着して封止する。次に、封止材60、負極40あるいは正極50の一部に開けた図示しない注入孔から、ヨウ素、ヨウ化リチウム、アセトニトリル、TBPを混合等した電解溶液65を、負極50と正極60との複合体の間隙に注入する。その後、前記注入孔をエポキシ系樹脂材等にて封止等すれば、図1の色素増感太陽電池の製造が終了する。
(3) Sealing step shown in FIG. 1 The negative electrode 40 of FIG. 2 (A) is turned upside down, and this and the positive electrode 50 are aligned, and a high-milan film (for example, a thickness made by Mitsubishi DuPont) is a thermoplastic film adhesive Sealing is performed by thermocompression bonding with a sealing material 60 made of a 60 μm high Milan film. Next, an electrolytic solution 65 in which iodine, lithium iodide, acetonitrile, TBP or the like is mixed from an injection hole (not shown) formed in a part of the sealing material 60, the negative electrode 40, or the positive electrode 50 is mixed between the negative electrode 50 and the positive electrode 60. Inject into the interstices of the complex. Then, if the said injection hole is sealed with an epoxy resin material etc., manufacture of the dye-sensitized solar cell of FIG. 1 will be complete | finished.

(実施例1の効果)
本実施例1によれば、正極50側に多孔質酸化チタン層53を設け、この表面にPtの触媒電極54を形成したので、正極50と電解溶液65との界面抵抗を大幅に改善することができる。
(Effect of Example 1)
According to the first embodiment, since the porous titanium oxide layer 53 is provided on the positive electrode 50 side and the Pt catalyst electrode 54 is formed on the surface, the interface resistance between the positive electrode 50 and the electrolytic solution 65 is greatly improved. Can do.

従来の図5の色素増感太陽電池では、負極10側に多孔質の半導体電極13を形成して、その表面に増感色素14を吸着させることにより、実効面積を平坦(フラット)な場合に比較して約1000倍程度広く取ることができた。この結果、光の有効利用が可能となり、変換効率は飛躍的に向上した。しかし、正極20に対しては、若干のラフネスの向上が試みられたが、負極程の試みはない。 In the conventional dye-sensitized solar cell of FIG. 5 , when the porous semiconductor electrode 13 is formed on the negative electrode 10 side and the sensitizing dye 14 is adsorbed on the surface thereof, the effective area is flat. In comparison, it was about 1000 times wider. As a result, the light can be used effectively and the conversion efficiency has been dramatically improved. However, for the positive electrode 20, a slight improvement in roughness has been attempted, but not as much as the negative electrode.

本実施例1では、この正極50にも負極40並みの多孔質化によるラフネスファクターの向上を行い、界面抵抗成分の大幅な低減を可能にしている。これにより、色素増感太陽電池の光電変換効率を向上できる。   In the first embodiment, the roughness factor is improved by making the positive electrode 50 as porous as the negative electrode 40, and the interface resistance component can be greatly reduced. Thereby, the photoelectric conversion efficiency of a dye-sensitized solar cell can be improved.

(実施例2の構成・製造方法)
図3(A)、(B)は、本発明の実施例2における図1の色素増感太陽電池の製造方法を示す概略の製造工程の断面図であり、実施例1を示す図2(C)、(D)中の要素と共通の要素には共通の符号が付されている。
(Configuration / Manufacturing Method of Example 2)
3 (A) and 3 (B) are cross-sectional views of a schematic manufacturing process showing the method for manufacturing the dye-sensitized solar cell of FIG. 1 in Example 2 of the present invention, and FIG. ) And (D) elements common to the elements in FIG.

本実施例2の色素増感太陽電池における基本的な構成と製造方法は、実施例1とほぼ同様である。実施例1と異なる点は、正極50側にスクリーン印刷等した酸化チタンペースト53aを、純粋な窒素(N2)雰囲気中にてアニール処理する点である。他の製造工程は、全て実施例1と同一である。   The basic configuration and manufacturing method of the dye-sensitized solar cell of Example 2 are almost the same as those of Example 1. The difference from Example 1 is that a titanium oxide paste 53a screen-printed on the positive electrode 50 side is annealed in a pure nitrogen (N2) atmosphere. All other manufacturing steps are the same as those in the first embodiment.

(実施例2の効果)
本実施例2によれば、実施例1のような大気もしくは酸素(O2)雰囲気中での焼成処理に比較して、N2中で焼成を行うと、一部が窒化チタン(TiN)化した酸化チタン層が形成される。これは純粋な酸化チタン層に比較して抵抗値が小さい。この結果、正極50と電解溶液65との界面抵抗は、実施例1と同じ程度(レベル)で、内部抵抗値R1が実施例1と比較して小さくすることが可能となり、色素増感太陽電池の光電変換効率を更に向上できる。
(Effect of Example 2)
According to the second embodiment, as compared with the baking treatment in the atmosphere or oxygen (O2) atmosphere as in the first embodiment, the oxidation in which titanium nitride (TiN) is partially formed when baking is performed in N2. A titanium layer is formed. This has a smaller resistance value than a pure titanium oxide layer. As a result, the interfacial resistance between the positive electrode 50 and the electrolytic solution 65 is about the same (level) as in Example 1, and the internal resistance value R1 can be made smaller than that in Example 1, and the dye-sensitized solar cell. The photoelectric conversion efficiency can be further improved.

(実施例3の構成・製造方法)
図4(A)、(B)は、本発明の実施例3における図1の色素増感太陽電池の製造方法を示す概略の製造工程の断面図であり、実施例1を示す図2(C)、(D)や、実施例2を示す図3(A)、(B)中の要素と共通の要素には共通の符号が付されている。
(Configuration / Manufacturing Method of Example 3)
4 (A) and 4 (B) are cross-sectional views of a schematic manufacturing process showing the method for manufacturing the dye-sensitized solar cell of FIG. 1 in Example 3 of the present invention, and FIG. ), (D) and elements common to those in FIGS. 3A and 3B showing the second embodiment are denoted by common reference numerals.

本実施例3の色素増感太陽電池における基本的な構成と製造方法は、実施例1、2とほぼ同様である。実施例1、2と異なる点は、正極50側において、耐電解質性及び導電性を有し、酸化チタンより抵抗値の小さい微粒子55(例えば、約3.6μmのタングステン微粒子、あるいはカーボン微粒子といった金属製の微粒子等)を、酸化チタンペースト53aに混合して分散させ、これを焼成して微粒子入りの多孔質酸化チタン層53を形成している点である。その他の構成や製造方法は、実施例1、2と同一である。   The basic configuration and manufacturing method of the dye-sensitized solar cell of Example 3 are almost the same as those of Examples 1 and 2. The difference from the first and second embodiments is that the positive electrode 50 side has an electrolyte resistance and conductivity, and has a resistance 55 smaller than that of titanium oxide (for example, a metal such as a tungsten fine particle of about 3.6 μm or a carbon fine particle). And the like, and the fine titanium particles 53 are mixed and dispersed in the titanium oxide paste 53a and fired to form the porous titanium oxide layer 53 containing the fine particles. Other configurations and manufacturing methods are the same as those in the first and second embodiments.

(実施例3の効果)
本実施例3によれば、多孔質酸化チタン層53に、酸化チタンより抵抗値の小さい金属製等の微粒子55を混在させたので、正極50側の内部抵抗値R1をより低減することが可能である。即ち、金属系の微粒子55等を混入させているため、内部抵抗値R1の大幅削減が可能であり、色素増感太陽電池の光電変換効率を更に向上できる。特に、タングステン微粒子について、これまでの報告では、ヨウ素系電解溶液65への耐性が高いため、正極50の一部として使用することが可能である。
(Effect of Example 3)
According to the third embodiment, since the porous titanium oxide layer 53 is mixed with fine particles 55 made of metal having a resistance value smaller than that of titanium oxide, the internal resistance value R1 on the positive electrode 50 side can be further reduced. It is. That is, since metallic fine particles 55 and the like are mixed, the internal resistance value R1 can be greatly reduced, and the photoelectric conversion efficiency of the dye-sensitized solar cell can be further improved. In particular, the tungsten fine particles can be used as a part of the positive electrode 50 because the resistance to the iodine-based electrolytic solution 65 is high in the previous reports.

(変形例)
本発明は、上記実施例1〜3に限定されず、色素増感太陽電池の形状、構造、構成材料、製造方法等は、図示以外の種々の利用形態や変形が可能である。
(Modification)
The present invention is not limited to Examples 1 to 3 described above, and the shape, structure, constituent material, manufacturing method, and the like of the dye-sensitized solar cell can be variously used and modified other than illustrated.

本発明の実施例1を示す色素増感太陽電池の模式的な断面図である。It is typical sectional drawing of the dye-sensitized solar cell which shows Example 1 of this invention. 図1の色素増感太陽電池の製造方法を示す製造工程の概略の断面図である。FIG. 2 is a schematic cross-sectional view of a manufacturing process showing a method for manufacturing the dye-sensitized solar cell of FIG. 1. 本発明の実施例2における図1の色素増感太陽電池の製造方法を示す概略の製造工程の断面図である。It is sectional drawing of the outline manufacturing process which shows the manufacturing method of the dye-sensitized solar cell of FIG. 1 in Example 2 of this invention. 本発明の実施例3における図1の色素増感太陽電池の製造方法を示す概略の製造工程の断面図である。It is sectional drawing of the outline manufacturing process which shows the manufacturing method of the dye-sensitized solar cell of FIG. 1 in Example 3 of this invention. 従来の一般的な色素増感太陽電池の模式的な構成を示す断面図である。It is sectional drawing which shows the typical structure of the conventional common dye-sensitized solar cell. 図5の色素増感太陽電池における製造方法を示す概略の製造工程図である。FIG. 6 is a schematic manufacturing process diagram showing a manufacturing method in the dye-sensitized solar cell of FIG. 5.

符号の説明Explanation of symbols

40 負極
41,51 ガラス基板
42,52 透明導電膜
43 多孔質酸化チタン膜
43a,53a 酸化チタンペースト
50 正極
53 多孔質酸化チタン層
54 触媒電極
55 微粒子
60 封止材
65 電解質溶液
40 Negative electrode 41, 51 Glass substrate 42, 52 Transparent conductive film 43 Porous titanium oxide film 43a, 53a Titanium oxide paste 50 Positive electrode 53 Porous titanium oxide layer 54 Catalyst electrode 55 Fine particles 60 Sealing material 65 Electrolyte solution

Claims (5)

透明導電性の第1の基材と、
前記第1の基材上に形成され、増感色素を有する半導体電極と、
前記第1の基材に対向して配設された導電性の第2の基材と、
前記半導体電極と前記第2の基材との間に封止された電解質と、
を有し、前記電解質側における前記第2の基材上に、多孔質酸化物半導体層が形成され、且つ、前記多孔質酸化物半導体層の表面に、前記電解質の反応を促す触媒電極が形成された色素増感太陽電池であって、
前記多孔質酸化物半導体層は、多孔質酸化チタン層であり、耐電解質性及び導電性を有し酸化チタンより抵抗値の小さい微粒子が混在されていることを特徴とする色素増感太陽電池。
A transparent conductive first substrate;
A semiconductor electrode formed on the first substrate and having a sensitizing dye;
A conductive second substrate disposed opposite the first substrate;
An electrolyte sealed between the semiconductor electrode and the second substrate;
A porous oxide semiconductor layer is formed on the second substrate on the electrolyte side, and a catalyst electrode that promotes the reaction of the electrolyte is formed on the surface of the porous oxide semiconductor layer A dye-sensitized solar cell,
The porous oxide semiconductor layer is a porous titanium oxide layer, a dye-sensitized solar cell, wherein the small particles are mixed resistance value than acid titanium have a electrolyte-electrolyte and conductive .
前記電解質は、ヨウ素系電解質溶液であり、The electrolyte is an iodine-based electrolyte solution,
前記多孔質酸化チタン層の表面には、前記ヨウ素系電解質溶液の還元反応を促す前記触媒電極が形成されていることを特徴とする請求項1記載の色素増感太陽電池。2. The dye-sensitized solar cell according to claim 1, wherein the catalyst electrode that promotes the reduction reaction of the iodine-based electrolyte solution is formed on the surface of the porous titanium oxide layer.
前記多孔質酸化物半導体層の厚さは、0.5μm〜1μmであることを特徴とする請求項1又は2記載の色素増感太陽電池。The dye-sensitized solar cell according to claim 1 or 2, wherein the porous oxide semiconductor layer has a thickness of 0.5 µm to 1 µm. 前記触媒電極は、白金であることを特徴とする請求項1〜3のいずれか1項に記載の色素増感太陽電池。The dye-sensitized solar cell according to any one of claims 1 to 3, wherein the catalyst electrode is platinum. 請求項1〜4のいずれか1項に記載の色素増感太陽電池の製造方法であって、
前記第1の基板上に、前記増感色素を有する前記半導体電極を焼成によって形成する工程と、
前記第2の基材上に、前記多孔質酸化チタン層を形成し、更に、前記多孔質酸化チタン層の表面に前記触媒電極を形成する工程と、
前記触媒電極を前記第1の基材上に対向して配置し、前記半導体電極と前記触媒電極との間に介在させる前記電解質を封止材によって封止する工程と、を有し、
前記多孔質酸化チタン層は、前記微粒子を混在させた酸化チタンペーストを、前記第2の基材上に塗布した後に、窒素雰囲気中で焼成して、一部が窒化チタン化した多孔質膜が形成されて生成されていることを特徴とする色素増感太陽電池の製造方法。
It is a manufacturing method of the dye-sensitized solar cell of any one of Claims 1-4,
Forming the semiconductor electrode having the sensitizing dye on the first substrate by baking;
Forming the porous titanium oxide layer on the second base material, and further forming the catalyst electrode on the surface of the porous titanium oxide layer;
The catalyst electrode is disposed opposite to the first substrate, and the electrolyte interposed between the semiconductor electrode and the catalyst electrode is sealed with a sealing material,
The porous titanium oxide layer is formed by applying a titanium oxide paste mixed with the fine particles onto the second base material and then baking it in a nitrogen atmosphere to partially form a titanium nitride porous film. A method for producing a dye-sensitized solar cell, which is formed and produced.
JP2007128764A 2007-05-15 2007-05-15 Dye-sensitized solar cell and method for producing the same Expired - Fee Related JP5334380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007128764A JP5334380B2 (en) 2007-05-15 2007-05-15 Dye-sensitized solar cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007128764A JP5334380B2 (en) 2007-05-15 2007-05-15 Dye-sensitized solar cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008287893A JP2008287893A (en) 2008-11-27
JP5334380B2 true JP5334380B2 (en) 2013-11-06

Family

ID=40147450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007128764A Expired - Fee Related JP5334380B2 (en) 2007-05-15 2007-05-15 Dye-sensitized solar cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP5334380B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101108182B1 (en) 2009-12-01 2012-01-31 삼성에스디아이 주식회사 Dye sensitized solar cell
KR101113200B1 (en) 2009-12-22 2012-02-15 부산대학교 산학협력단 Dye-Sensitized Solar Cell and Method for Preparing the Same
KR101509306B1 (en) 2012-05-08 2015-04-06 주식회사 엘지화학 Dye-sensitized solar cell and fabrication method thereof
JP2014238969A (en) * 2013-06-07 2014-12-18 シャープ株式会社 Solar battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200828607A (en) * 2006-12-11 2008-07-01 Fujikura Ltd Photoelectric conversion element
JP5165253B2 (en) * 2007-01-30 2013-03-21 ラピスセミコンダクタ株式会社 Dye-sensitized solar cell and method for producing the same

Also Published As

Publication number Publication date
JP2008287893A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
Fan et al. Fabrication and photoelectrochemical properties of TiO2 films on Ti substrate for flexible dye-sensitized solar cells
Chou et al. The effect of ZnO-coating on the performance of a dye-sensitized solar cell
Jasim Natural dye-sensitized solar cell based on nanocrystalline TiO2
Seo et al. Faster dye-adsorption of dye-sensitized solar cells by applying an electric field
JP5165253B2 (en) Dye-sensitized solar cell and method for producing the same
TW201115809A (en) Method for manufacturing an electrode
JP2007299557A (en) Dye-sensitized solar cell
JP5105764B2 (en) Dye-sensitized solar cell
JP4969046B2 (en) Photoelectric conversion device and photovoltaic device using the same
US8110740B2 (en) Photoelectrode substrate of dye sensitizing solar cell, and method for producing same
JP2007018909A (en) Manufacturing method for photoelectric conversion device
JP5334380B2 (en) Dye-sensitized solar cell and method for producing the same
JP2004319661A (en) Photoelectric conversion device, its manufacturing method substrate therefor, and its manufacturing method
Zhao et al. The effect of compression on electron transport and recombination in plastic TiO2 photoanodes
JP2009009936A (en) Photoelectric conversion device
TWI426617B (en) Dye-sensitized solar cell and method for manufacturing the same
JP2009193854A (en) Dye-sensitized solar cell
De Rossi et al. Large-area electrodeposition of counterelectrodes utilizing the same integrated conductive grid for fabrication of parallel flexible dye solar cell modules
US20100300523A1 (en) Dye-sensitized solar cell and method of fabricating the same
JP5248821B2 (en) Composite solar cell
JP5406434B2 (en) Method for producing dye-sensitized solar cell
KR101462356B1 (en) Dye sensitized solar cell and method of fabricating the same
JP2009099435A (en) Dye-sensitized solar battery
KR101256473B1 (en) Electrode plate and dye-sensitized solar cell having the same, and method for manufacturing the same
Martins et al. Decal Ni mesh to enhance the conductivity of carbon back contacts in dye sensitized and perovskite solar cells

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees