JPH03157976A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPH03157976A
JPH03157976A JP1297159A JP29715989A JPH03157976A JP H03157976 A JPH03157976 A JP H03157976A JP 1297159 A JP1297159 A JP 1297159A JP 29715989 A JP29715989 A JP 29715989A JP H03157976 A JPH03157976 A JP H03157976A
Authority
JP
Japan
Prior art keywords
layer
light
type
present
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1297159A
Other languages
Japanese (ja)
Inventor
Koji Minami
浩二 南
Masayuki Iwamoto
岩本 正幸
Toshihiko Yamachi
山置 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1297159A priority Critical patent/JPH03157976A/en
Publication of JPH03157976A publication Critical patent/JPH03157976A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To reduce damage at the time of forming a semiconductor layer, and effectively use light, by forming a photo detecting surface electrode as a metal electrode, and equipping the metal electrode with a light transparent part for transmitting an incident light. CONSTITUTION:A P-type semiconductor layer is formed on a substrate 1 via a photo detecting surface electrode layer 21, and the following are formed in order on the layer 31; a buffer layer 4, an I-type a-Si layer 5 and an N-type a-Si layer 6. A light transparent part 22 for transmitting an incident light is formed in the electrode layer 21 composed of Al. Hence the electrode layer 21 can be constituted without using a transparent conductive film, the sensitivity for short wavelength light is increased, and characteristics can be improved.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、光エネルギを電気エネルギに変換する光起電
力装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a photovoltaic device that converts light energy into electrical energy.

(ロ)従来の技術 pinの半導体接合を備える非晶質シリコン系の半導体
層を光活性層とする光起電力装置は既に知られており、
その基本構成を第6図に示す。
(b) Conventional technology A photovoltaic device whose photoactive layer is an amorphous silicon-based semiconductor layer with a pin semiconductor junction is already known.
Its basic configuration is shown in FIG.

第6図において、(1)はガラス等からなる透光性の絶
縁基板、(2)は基板(1)上に形成された透明導電膜
である。(3)は透明導電膜(2)上に形成されたp型
非晶質シリコン(以下、a−3iと称す)層、(4)は
p型a−3i層(3)上に形成されたa−3i層からな
るバッファ層、(5)はバッファ層(4)lに形成され
たi型a−3i層である。(6)はn型のa−5i層、
(7)は裏面電極である。ところで、前述した透明導電
膜(2)は酸化スズ(SnO2)や酸化インジウムスズ
(ITO)が用いられている。
In FIG. 6, (1) is a transparent insulating substrate made of glass or the like, and (2) is a transparent conductive film formed on the substrate (1). (3) is a p-type amorphous silicon (hereinafter referred to as a-3i) layer formed on the transparent conductive film (2), and (4) is formed on the p-type a-3i layer (3). The buffer layer (5) is an i-type a-3i layer formed on the buffer layer (4)l. (6) is an n-type a-5i layer,
(7) is a back electrode. By the way, tin oxide (SnO2) or indium tin oxide (ITO) is used for the above-mentioned transparent conductive film (2).

(ハ)発明が解決しようとする課題 第7図はSnO□またはITOからなる透明導電膜の波
長と光吸収係数との関係を示す特性図である。
(c) Problems to be Solved by the Invention FIG. 7 is a characteristic diagram showing the relationship between wavelength and light absorption coefficient of a transparent conductive film made of SnO□ or ITO.

この第7図に示すように、5n02あるいはITOから
なる透明導電膜は光吸収係数が大きいため、光起電力装
置の出力電流を低下させるという難点がある。
As shown in FIG. 7, since the transparent conductive film made of 5n02 or ITO has a large light absorption coefficient, it has the disadvantage that it reduces the output current of the photovoltaic device.

また、JAPANESE JOURNAL OF AP
PLIED 1)HYSIC3Vo1.27.、 No
、7. 、July、 1988. pp、L1190
−Ll192の論文r Diffusion of C
on5tituent Atoms 1nP−type
 a−3i:H/SnO□Interfaces Jに
報告されているように、5n02からなる透明導電膜は
還元されやすく、p型a−3i層形成時にダメージを受
け、出力低下を招き易いなどの難点があった。
Also, JAPANESE JOURNAL OF AP
PLIED 1) HYSIC3Vo1.27. , No
,7. , July, 1988. pp, L1190
-Ll192 paper r Diffusion of C
on5tituent Atoms 1nP-type
As reported in a-3i: H/SnO□Interfaces J, the transparent conductive film made of 5n02 is easily reduced and is damaged during the formation of the p-type a-3i layer, resulting in a decrease in output. there were.

本発明は上述した難点を解消すべくなされたものにして
、出力低下を起こさない受光面側の電極層を提供するこ
とをその課題とする。
The present invention has been made to solve the above-mentioned difficulties, and an object of the present invention is to provide an electrode layer on the light-receiving surface side that does not cause a decrease in output.

(ニ)課題を解決するための手段 本発明は、受光面となる透光性の絶縁基板上に、受光面
電極層、光活性層を含む半導体層及び裏面電極層を積層
せしめた光起電力装置であって、前記受光面電極層を金
属電極で形成し、この金属電極に入射光を透過せしめる
透光部を形成したことを特徴とする。
(d) Means for Solving the Problems The present invention provides a photovoltaic device in which a light-receiving surface electrode layer, a semiconductor layer including a photoactive layer, and a back electrode layer are laminated on a light-transmitting insulating substrate serving as a light-receiving surface. The device is characterized in that the light-receiving surface electrode layer is formed of a metal electrode, and a light-transmitting portion that transmits incident light is formed in the metal electrode.

(ホ)作用 本発明は受光面電極層として、透明導電膜を用いないた
め、半導体層形成時のダメージが低減され、光の有効利
用が行なえる。
(E) Function Since the present invention does not use a transparent conductive film as the light-receiving surface electrode layer, damage during the formation of the semiconductor layer is reduced and light can be used effectively.

(へ)実施例 以下、本発明の一実施例を第1図ないし第5図を参照し
て説明する。
(F) Example Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 5.

尚、従来例と同一部分には同一符合を付す。Note that the same parts as in the conventional example are given the same reference numerals.

第1図は本発明の光起電力装置としての太陽電池の断面
図、第2図は本発明の要部である受光面電極層を示し、
第2図(イ)は平面図、第2区(ロ)は断面図である。
FIG. 1 is a cross-sectional view of a solar cell as a photovoltaic device of the present invention, and FIG. 2 shows a light-receiving surface electrode layer, which is the main part of the present invention.
FIG. 2(a) is a plan view, and the second section (b) is a sectional view.

この図において、(1)はガラス等からなる透光性の絶
縁基板、(21)はこの基板(1) j二に形成された
本発明の受光面電極層としての金属電極であり、本実施
例ではアルミニウム(A1)からなる金属電極(21)
に入射光を透過せしめる透光部(22)が形成されてい
る。本実施例の金属電極(21)は、透光部(22)を
設けるためにメツシュ状に形成されている。このA1か
らなる金属電極(21)は第2図に示すように、開口率
すなわち、金属のない部分の面積/全面積を90%以上
になるように形成される。
In this figure, (1) is a light-transmitting insulating substrate made of glass or the like, and (21) is a metal electrode as a light-receiving surface electrode layer of the present invention formed on this substrate (1). In the example, a metal electrode (21) made of aluminum (A1)
A light transmitting portion (22) is formed to allow incident light to pass therethrough. The metal electrode (21) of this example is formed into a mesh shape in order to provide a transparent portion (22). As shown in FIG. 2, this metal electrode (21) made of A1 is formed so that the aperture ratio, that is, the area of the part without metal/total area is 90% or more.

(31)は受光面電極層(21)を介して、基板(1)
上に形成されたp型半導体層であり、p型の非晶質シリ
コンカーバイド(a−3iC)層を形成し、レーザアニ
ールにより、多結晶させている。
(31) is connected to the substrate (1) via the light-receiving surface electrode layer (21).
This is a p-type semiconductor layer formed thereon, and a p-type amorphous silicon carbide (a-3iC) layer is formed, and polycrystalline is formed by laser annealing.

このp型ドーパントとしてはAlを用いる。A1を用い
た理由としては、結晶系SiCのp型のドーパントとし
てA1が秀れていること、並びに金属電極(21)とし
てAIを用いているため、このA1がレーザアニール等
により拡散したとしてもSiCの特性を変化させないた
めである。
Al is used as this p-type dopant. The reason for using A1 is that A1 is excellent as a p-type dopant for crystalline SiC, and since AI is used as the metal electrode (21), even if this A1 is diffused by laser annealing etc. This is to avoid changing the characteristics of SiC.

(4)はこのp型半導体層(31)の上に水素化アモル
ファスシリコンカーバイドからなるバッファliJ、(
5)はバッファ層(4)上に形成されたi型のa−3i
層、(6)はi型a−3i層(5)上に形成されたn型
a−3i層である。(7)はA1からなる裏面電極であ
る。
(4) is a buffer liJ made of hydrogenated amorphous silicon carbide on this p-type semiconductor layer (31), (
5) is an i-type a-3i formed on the buffer layer (4).
Layer (6) is an n-type a-3i layer formed on the i-type a-3i layer (5). (7) is a back electrode made of A1.

次に、本実施例の各層の膜形成につき、具体的に説明す
る。膜形成はプラズマCVD法により行ない、基板(1
)を反応容器内に配置し、表1に示す形成条件で各層の
膜形成を行なった。
Next, the film formation of each layer in this example will be specifically explained. Film formation was performed by plasma CVD method, and the film was formed on a substrate (1
) was placed in a reaction vessel, and each layer was formed under the formation conditions shown in Table 1.

(以下余白) 表1 本実施例においては、p型半導体層(31)は、上述し
た形成条件でp型a−3i層を形成した後、レーザアニ
ールにより多結晶化させた。
(Margins below) Table 1 In this example, the p-type semiconductor layer (31) was formed by forming a p-type a-3i layer under the above-mentioned formation conditions, and then polycrystallized by laser annealing.

次に、上述した条件で形成した本実施例と、バッファ層
を除いて上述した実施例と同一条件で形成した比較例と
、受光面電極層として透明導電膜を用いた以外は上述し
た第1表の条件と同一条件で形成した従来例とを準備し
、各特性を比較した結果を第2表および第3図に示す。
Next, we will discuss the present example formed under the above-mentioned conditions, the comparative example formed under the same conditions as the above-mentioned example except for the buffer layer, and the above-mentioned first example except that a transparent conductive film was used as the light-receiving surface electrode layer. A conventional example formed under the same conditions as those shown in the table was prepared, and the results of comparing each characteristic are shown in Table 2 and FIG.

第2表 従来、透明導電膜を用いた太陽電池においては、p型S
iCと1型a−3iの界面にはバッファ層が有効である
ことが知られているが、本発明においても、第2表より
p型半導体層(31)と1型a−5i層(5)との間に
バッファ層(4)を設けることが太陽電池の特性上有効
であることを示している。また、本発明の実施例と従来
例と比較して、Iscの向上が見られる。
Table 2 Conventionally, in solar cells using transparent conductive films, p-type S
It is known that a buffer layer is effective at the interface between iC and type 1 a-3i, but in the present invention, as shown in Table 2, the buffer layer (31) and type 1 a-5i layer (5 ) is shown to be effective in terms of the characteristics of the solar cell. Furthermore, an improvement in Isc can be seen as compared to the embodiment of the present invention and the conventional example.

第3図は本発明の実施例と従来例との各波長領域におけ
る収集効率を示す特性図である。この図より明らかなよ
うに、本発明によれば短波長11での収集効率が向上し
ているこの収集効率の向上により第2表で示すように、
lscが向上している。
FIG. 3 is a characteristic diagram showing the collection efficiency in each wavelength region of the embodiment of the present invention and the conventional example. As is clear from this figure, according to the present invention, the collection efficiency at the short wavelength 11 is improved.As shown in Table 2, due to this improvement in collection efficiency,
lsc has improved.

更に、第1表の形成条件において、バッファ層(4)、
i型a−3i層(5)、n型a−5i層(6)の基板温
度を400℃の高温に設定した以外、第1表と同一の形
成条件で作成した本発明の実施例2と同じく同じ箇所の
半導体層を400°Cの高温に設定して同じ形成条件で
従来例2を作成し、電池特性を測定した結果を第3表に
示す。ところで、−Mに形成温度を高くすると第4図に
示すように、特に長波長領域の光吸収係数は増加し、電
流の増加が期待できる。しかしながら、従来装置におい
ては、透明導電膜おJ:びp型a−8i層からの不純物
拡散が多くなり、第3表に示すように、特性は却って悪
くなり、特性向上は望めない。これに対し、本発明の実
施例2においては、透明導電膜は用いておらず、しかも
p型半導体層もレーザアニールによる多結晶SiCであ
るため、拡散の問題は極めて少ない。このため、第3表
に示すように200°Cの基板温度の形成に比して、大
幅にIscが増加し、特性が向」ニしていることが判る
Further, under the formation conditions shown in Table 1, the buffer layer (4),
Example 2 of the present invention was created under the same formation conditions as in Table 1, except that the substrate temperature of the i-type a-3i layer (5) and the n-type a-5i layer (6) was set at a high temperature of 400°C. Conventional Example 2 was prepared under the same formation conditions by setting the semiconductor layer at the same location to a high temperature of 400° C., and the battery characteristics were measured. Table 3 shows the results. By the way, when the formation temperature is raised to -M, as shown in FIG. 4, the light absorption coefficient particularly in the long wavelength region increases, and an increase in current can be expected. However, in the conventional device, impurity diffusion from the transparent conductive film and the p-type a-8i layer increases, and as shown in Table 3, the characteristics are rather deteriorated, and no improvement in the characteristics can be expected. In contrast, in Example 2 of the present invention, no transparent conductive film is used, and the p-type semiconductor layer is also made of polycrystalline SiC formed by laser annealing, so the problem of diffusion is extremely small. Therefore, as shown in Table 3, compared to the formation at a substrate temperature of 200° C., Isc increases significantly, and it can be seen that the characteristics are improved.

(以下余白) 第3表 続いて、本発明を紫外線センサに応用した場合につき説
明する。
(Margins below) Table 3 Next, a case where the present invention is applied to an ultraviolet sensor will be explained.

形成条件は第1表と基本的に同しであるが、各膜厚が相
違する。p型半導体層(31)は50人とし、l型a−
8i層(5)は500人とした。また、基板(1)は石
英を用いた。
The formation conditions are basically the same as in Table 1, but each film thickness is different. The p-type semiconductor layer (31) has 50 people, and the l-type a-
The 8i layer (5) was set at 500 people. Moreover, quartz was used for the substrate (1).

第5図は本発明による紫外線センサと、透明導電膜を用
いた以外は本発明と同様に形成した紫外線センサの逆バ
イアス時(−2V)での収集効率を示す特性図である。
FIG. 5 is a characteristic diagram showing the collection efficiency at reverse bias (-2V) of the ultraviolet sensor according to the present invention and the ultraviolet sensor formed in the same manner as the present invention except that a transparent conductive film was used.

第5図より明らかなように、本発明によるセン 0 サは従来例に比して特に短波長領域での感度が大きく向
上していることが判る。これは第7図に示すように、短
波長領域での透明導電膜の吸収係数が高いことに起因す
るものである。
As is clear from FIG. 5, it can be seen that the sensor according to the present invention has greatly improved sensitivity, especially in the short wavelength region, compared to the conventional example. This is due to the fact that the transparent conductive film has a high absorption coefficient in the short wavelength region, as shown in FIG.

このように、本発明は、透明導電膜を用いていないため
紫外線センサとしても有効である。
In this manner, the present invention is effective as an ultraviolet sensor because it does not use a transparent conductive film.

尚、上述した実施例は、受光面電極層としてAIをメツ
シュ状に形成した場合につき説明したが、受光面電極層
はメツシュ状に限られず、ライン状に形成しても良い。
In the above-described embodiments, the light-receiving surface electrode layer is formed of AI in a mesh shape, but the light-receiving surface electrode layer is not limited to the mesh shape, and may be formed in a line shape.

また使用する金属もA1以外に耐熱性の高いCr等を用
いることもできる。
Further, as for the metal to be used, other than A1, Cr or the like having high heat resistance can also be used.

(ト)発明の詳細 な説明したように、本発明によれば、受光面電極層を透
明導電膜を用いずに構成できるため、短波長感度が向上
し、特性の向上が図れる。更に、耐熱性にも優れるため
、光吸収係数の高い高温形成の非晶質半導体を用いて特
性の向上を図ることができる。
(g) As described in detail of the invention, according to the invention, the light-receiving surface electrode layer can be constructed without using a transparent conductive film, so that the short wavelength sensitivity can be improved and the characteristics can be improved. Furthermore, since it has excellent heat resistance, it is possible to improve the characteristics by using an amorphous semiconductor formed at a high temperature and having a high light absorption coefficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光起電力装置を示す断面図、1 第2区は本発明の要部である受光面電極層を示し、第2
図(イ)は平面図である。第3図は本発明と従来例との
各波長領域における収集効率を示す特性図、第4図は各
基板温度における波長と光吸収係数との関係を示す特性
図、第5図は本発明を背外線センサに適用した場合の波
長と光吸収係数との関係を示す特性図である。第6図は
従来の光起電力装置を示す特性図、第7図は透明導電膜
の波長と光吸収係数との関係を示す特性図である。  2 第2図 1 第1図 1:基板 21:金属電極 31:p型半導体層 7:裏面電極 手 氾に 袖 正 書(方式) %式% 1、事件の表示 平成1年特許願第297159号 2、発明の名称 光起電力装置 3 補正をする者 事件との関係  特許出願人 名 称 f188+三洋電機株式会社 4、代理人 住 所 (〒530)大阪市北区天神西町1番6号大和
ビル12号館3階307号 7、補正の内容 明細書第11頁第20行乃至第12頁第1O行を下記の
ごとく補正する。 記 第1図は本発明の光起電力装置を示す断面図、第2図は
本発明の要部である受光面電極層を示し、第2図(イ)
は平面図、第2図(ロ)は断面図である。第3図は本発
明と従来例との各波長領域における収集効率を示す特性
図、第4図は各基板温度における波長と光吸収係数との
関係を示す特性図、第5図は本発明を紫外線センサに適
用した場合の波長と光吸収係数との関係を示す特性図で
ある。第6図は従来の光起電力装置を示す特性図、第7
図は透明導電膜の波長と光吸収係数との関係を示す特性
図である。 5、補正命令の日付(発送臼) 平成2年 2月27日 以上
FIG. 1 is a cross-sectional view showing the photovoltaic device of the present invention.
Figure (a) is a plan view. Fig. 3 is a characteristic diagram showing the collection efficiency in each wavelength range for the present invention and the conventional example, Fig. 4 is a characteristic diagram showing the relationship between wavelength and light absorption coefficient at each substrate temperature, and Fig. 5 is a characteristic diagram for the present invention and the conventional example. FIG. 3 is a characteristic diagram showing the relationship between wavelength and light absorption coefficient when applied to a dorsal external ray sensor. FIG. 6 is a characteristic diagram showing a conventional photovoltaic device, and FIG. 7 is a characteristic diagram showing the relationship between wavelength and light absorption coefficient of a transparent conductive film. 2 Fig. 2 1 Fig. 1 1: Substrate 21: Metal electrode 31: P-type semiconductor layer 7: Back side electrode Sleeve writing (method) % formula % 1. Display of the incident 1999 Patent Application No. 297159 2. Name of the invention Photovoltaic device 3 Relationship with the case of the person making the amendment Patent applicant name f188 + Sanyo Electric Co., Ltd. 4 Agent address (12 Yamato Building, 1-6 Tenjin Nishimachi, Kita-ku, Osaka 530) Building No. 3, Floor 307, No. 7, page 11, line 20 to page 12, line 10 of the statement of contents of the amendment are amended as follows. FIG. 1 is a sectional view showing the photovoltaic device of the present invention, and FIG. 2 shows the light-receiving surface electrode layer, which is the main part of the present invention.
2 is a plan view, and FIG. 2(b) is a sectional view. Fig. 3 is a characteristic diagram showing the collection efficiency in each wavelength range for the present invention and the conventional example, Fig. 4 is a characteristic diagram showing the relationship between wavelength and light absorption coefficient at each substrate temperature, and Fig. 5 is a characteristic diagram for the present invention and the conventional example. FIG. 3 is a characteristic diagram showing the relationship between wavelength and light absorption coefficient when applied to an ultraviolet sensor. Figure 6 is a characteristic diagram showing a conventional photovoltaic device;
The figure is a characteristic diagram showing the relationship between wavelength and light absorption coefficient of a transparent conductive film. 5. Date of amendment order (dispatch mortar) February 27, 1990 or later

Claims (1)

【特許請求の範囲】[Claims] (1)受光面となる透光性の絶縁基板上に、受光面電極
層、光活性層を含む半導体層及び裏面電極層を積層せし
めた光起電力装置であって、前記受光面電極層を金属電
極で形成し、この金属電極に入射光を透過せしめる透光
部を形成したことを特徴とする光起電力装置。
(1) A photovoltaic device in which a light-receiving surface electrode layer, a semiconductor layer including a photoactive layer, and a back electrode layer are laminated on a light-transmitting insulating substrate serving as a light-receiving surface, wherein the light-receiving surface electrode layer 1. A photovoltaic device characterized in that it is formed of a metal electrode, and a light-transmitting part that allows incident light to pass through the metal electrode is formed.
JP1297159A 1989-11-15 1989-11-15 Photovoltaic device Pending JPH03157976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1297159A JPH03157976A (en) 1989-11-15 1989-11-15 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1297159A JPH03157976A (en) 1989-11-15 1989-11-15 Photovoltaic device

Publications (1)

Publication Number Publication Date
JPH03157976A true JPH03157976A (en) 1991-07-05

Family

ID=17842956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1297159A Pending JPH03157976A (en) 1989-11-15 1989-11-15 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPH03157976A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205149A (en) * 2003-03-24 2011-10-13 Konarka Technologies Inc Photovoltaic cell with mesh electrode
JP2020529387A (en) * 2017-08-04 2020-10-08 ビトロ フラット グラス エルエルシー Flash annealing of transparent conductive oxides and semiconductor coatings

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651880A (en) * 1979-10-04 1981-05-09 Fuji Electric Co Ltd Amorphous semiconductor photocell
JPH02164079A (en) * 1988-12-19 1990-06-25 Hitachi Ltd Amorphous silicon solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651880A (en) * 1979-10-04 1981-05-09 Fuji Electric Co Ltd Amorphous semiconductor photocell
JPH02164079A (en) * 1988-12-19 1990-06-25 Hitachi Ltd Amorphous silicon solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205149A (en) * 2003-03-24 2011-10-13 Konarka Technologies Inc Photovoltaic cell with mesh electrode
JP2020529387A (en) * 2017-08-04 2020-10-08 ビトロ フラット グラス エルエルシー Flash annealing of transparent conductive oxides and semiconductor coatings

Similar Documents

Publication Publication Date Title
US4728370A (en) Amorphous photovoltaic elements
JP2740284B2 (en) Photovoltaic element
US4387265A (en) Tandem junction amorphous semiconductor photovoltaic cell
JP2814351B2 (en) Photoelectric device
JP2846651B2 (en) Photovoltaic device
TW201917904A (en) Solar cell
JP3469729B2 (en) Solar cell element
JPH0795603B2 (en) Photovoltaic device
JPH0693519B2 (en) Amorphous photoelectric conversion device
JPH0752778B2 (en) Photovoltaic device
JP2664371B2 (en) Photovoltaic element
JPH03157976A (en) Photovoltaic device
JP3342257B2 (en) Photovoltaic element
JP2896793B2 (en) Method for manufacturing photovoltaic device
JP2669834B2 (en) Stacked photovoltaic device
JP2744680B2 (en) Manufacturing method of thin film solar cell
JPH09181343A (en) Photoelectric conversion device
JP2940687B2 (en) Photovoltaic device
JP2000150935A (en) Photovoltaic element
JPH0273672A (en) Film photoelectric transfer element
JPS63170976A (en) Manufacture of a-si photodiode
JPS612372A (en) Photovoltaic device
JPH03159179A (en) Manufacture of photoelectric converter
JPH046880A (en) Amorphous silicon carbide film, formation thereof and photovoltaic device using same
JPS61222275A (en) Photovoltaic device