JPS6079779A - Solar cell with amorphous thin-film - Google Patents

Solar cell with amorphous thin-film

Info

Publication number
JPS6079779A
JPS6079779A JP58187309A JP18730983A JPS6079779A JP S6079779 A JPS6079779 A JP S6079779A JP 58187309 A JP58187309 A JP 58187309A JP 18730983 A JP18730983 A JP 18730983A JP S6079779 A JPS6079779 A JP S6079779A
Authority
JP
Japan
Prior art keywords
film
substrate
solar cell
silicon thin
fiber cloth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58187309A
Other languages
Japanese (ja)
Other versions
JPH0550151B2 (en
Inventor
Atsushi Kudo
淳 工藤
Masayoshi Koba
木場 正義
Setsu Akiyama
秋山 節
Hiroshi Imagawa
今川 容
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Toyobo Co Ltd
Original Assignee
Sharp Corp
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, Toyobo Co Ltd filed Critical Sharp Corp
Priority to JP58187309A priority Critical patent/JPS6079779A/en
Publication of JPS6079779A publication Critical patent/JPS6079779A/en
Publication of JPH0550151B2 publication Critical patent/JPH0550151B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enable continuous manufacture by a roll shape while preventing damage on the manufacture and use of a substrate by using a laminate obtained by laminating fiber cloth on a high molecular film as the substrate. CONSTITUTION:In a solar cell in which an amorphous silicon thin-film is formed on a flexible substrate, a laminate obtained by laminating fiber cloth on a high molecular film is used as the substrate. A film resisting heat on the formation of an silicon thin-film may be used as the high molecular film, and a polyimide film and a polyester sulfonic film, for example, are employed. A woven fabric, knit and a nonfiber cloth-like material are used as fiber cloth. Continuous manufacture by a roll shape is enabled by employing such a laminated substrate. The generation of creases on winding can be prevented because sliding properties between fiber cloth and an silicon thin-film surface are improved. Mechanical strength can be made higher than a thin-film in which a film is used singly.

Description

【発明の詳細な説明】 この発明は、可撓性基板上に光起電力発生要素として非
晶質シリコンのamを設゛けた太陽電池に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar cell in which an amorphous silicon am is provided as a photovoltaic force generating element on a flexible substrate.

非晶′R薄膜を、ステンレス板、ガラス板等の非可撓性
基板に設けた太陽電池や、ポリイミドなどの樹脂1mの
ような可撓性基板に設けた太陽電池が知られている。な
かんずく、□後者の太陽電池は、従来の非可撓性基板上
に形成された太m11!池と違い、シート状であるので
製品形状に任意性を持たせることができ、今後の用途n
発によりその応用が拡がることが期待される。また、こ
のような可撓性基板を採用するメリットは、連続生産が
できる、すなわち適度の張力をかけつつ巻出し、巻取る
、いわゆるRoll to Roll方式で、製造でき
る点にもある。そのためには、基板はこの張力に耐え得
る引張り強度を有していることが必要になるが、従来の
フィルム単独使用の基板は、太II?!池製造時あるい
は使用時に破れ、傷を受けることがあり、張力をかけた
場合その部分より破断する危惧があった。さらに、上記
Roll to Roll方式は、Roll状に巻かれ
た基材より基板を春出し、フィルム基板に下部電極、シ
リコン薄膜を形成させた後、再びROl、I状に轡取る
ものなので、巻上げロールではフィルム面と薄膜面とが
接触する。
Solar cells in which an amorphous 'R thin film is provided on a non-flexible substrate such as a stainless steel plate or a glass plate, and solar cells in which an amorphous 'R thin film is provided on a flexible substrate such as 1 m of resin such as polyimide are known. Above all, the latter solar cell is a thick m11 formed on a conventional non-flexible substrate! Unlike ponds, it is sheet-shaped, so the product shape can be arbitrary, making it suitable for future applications.
It is hoped that this development will expand its applications. Further, the advantage of employing such a flexible substrate is that continuous production is possible, that is, it can be manufactured using a so-called roll-to-roll method, in which the substrate is unwound and wound up while applying an appropriate tension. To do this, the substrate must have a tensile strength that can withstand this tension, but conventional substrates that use only film have a thickness of 2. ! The pond could be torn or damaged during manufacture or use, and there was a risk that it would break at that part if tension was applied. Furthermore, in the above-mentioned Roll to Roll method, the substrate is spring-rolled from the roll-shaped base material, the lower electrode and the silicon thin film are formed on the film substrate, and then the film is rolled back into the ROl and I-shapes. In this case, the film surface and the thin film surface come into contact.

この場合、両面は酒りが悪くフィルム面が皺になりやす
く、せっかく形成させた太陽電池の非晶質シリコン薄膜
を損傷させる不都合が惹起する。このように、これまで
のフィルムを基板とする太陽電池では、上記Ro11方
式以外でもフィルム自体の破損が起こりやすく、終局的
には太陽電池の変換効率が著しく低下した。
In this case, both sides have poor stability and the film surface tends to wrinkle, causing the disadvantage of damaging the amorphous silicon thin film of the solar cell that has been formed. As described above, in conventional solar cells using films as substrates, even in systems other than the above-mentioned Ro11 method, the film itself is likely to be damaged, and ultimately the conversion efficiency of the solar cells is significantly reduced.

而して、この発明者等は、在来のフィルム基板太11J
iffi池に付随するデメリットを解消すべく鋭意検討
した結果、この発明を見出すに至った。
Therefore, the inventors discovered that the conventional film substrate thickness 11J
As a result of intensive study to eliminate the disadvantages associated with IFFI ponds, this invention was discovered.

ブなわら、この発明は可撓性基板上に非晶質シリコン簿
膜を有する太Ill電池において、該基板として高分子
フィルムに1M布帛を積層せしめたものを使用する太陽
電池である。
More specifically, the present invention is a solar cell in which a 1M fabric is laminated on a polymer film as the substrate in a thick type battery having an amorphous silicon film on a flexible substrate.

この発明に係る非晶質シリコン薄膜を有する太陽Wi池
とは、シリコン系の非晶質薄膜を用いて、ショットキ型
、pIn型、またはタンデム型の素子構造を形成した太
陽電池である。なお、シリコン系の非晶質l膜としては
、81,5t−Ge、S+−C,s+ −Nなどの単体
または化合物からなる水素化アモルファス膜もしくはフ
ッ素化アモルファス膜が含まれる。
The solar cell having an amorphous silicon thin film according to the present invention is a solar cell in which a Schottky type, pIn type, or tandem type element structure is formed using a silicon-based amorphous thin film. Note that the silicon-based amorphous l film includes a hydrogenated amorphous film or a fluorinated amorphous film made of a single substance or a compound of 81,5t-Ge, S+-C, s+-N, etc.

この発明に使用する高分子フィルムは、シリコン薄膜形
成時に熱に耐え得るものであれば格別制限を設けるもの
ではない。たとえば、ポリイミドフィルム、芳香族ポリ
アミドフィルム、ポリエーテルスルホンフィルム、ポリ
スルホンフィルムなどが挙げられる。
The polymer film used in this invention is not particularly limited as long as it can withstand heat during the formation of a silicon thin film. Examples include polyimide film, aromatic polyamide film, polyethersulfone film, polysulfone film, and the like.

また、この発明でフィルムに積層する繊維布帛とは、織
布、ニット、不織布などの11M布帛状物をいう。目付
は、10〜4000/I2の範囲のものである。この布
帛も耐熱性が要求され、好適な素材としては芳香族ポリ
アミド、全芳香族ポリエステルが挙げられる。
Furthermore, the fiber fabric laminated on the film in this invention refers to 11M fabrics such as woven fabrics, knitted fabrics, and nonwoven fabrics. The basis weight is in the range of 10 to 4000/I2. This fabric is also required to have heat resistance, and suitable materials include aromatic polyamide and wholly aromatic polyester.

かかる高分子フィルムとm維布帛とは積層されて基板に
形成される。双方の積層は、たとえば、エポキシ系、シ
リコン系、ポリイミド系の耐熱性接着剤によりS帷布帛
がフィルムのシリコン薄膜と反対の面に位置するように
なされる。このようにして作成した基板(フィルムと繊
維布帛とを一体化したもの)上に光起電力要素としての
非晶質シリコンWillを、グロー放電法、蒸着法、ク
ラスターイオンビーム法などにより形成させるが、その
形成前にフィルム表面に下部電極を形成する。
The polymer film and the m-fiber fabric are laminated to form a substrate. Both layers are laminated using, for example, an epoxy, silicone, or polyimide heat-resistant adhesive such that the S-cloth is located on the opposite side of the film from the silicone thin film. Amorphous silicon Will as a photovoltaic element is formed on the thus created substrate (integrated film and fiber fabric) by glow discharge method, vapor deposition method, cluster ion beam method, etc. , form a lower electrode on the film surface before its formation.

電極としては特に限定するものではなく、アルミニウム
、鉄、ステンレス鋼、ニッケル、タングステンなどをw
m状となるように蒸着、スパッタリング、イオンブレー
ティングなどで基板上に形成させ下部電極が形成できる
The electrodes are not particularly limited, and may be made of aluminum, iron, stainless steel, nickel, tungsten, etc.
The lower electrode can be formed by forming an m-shaped layer on the substrate by vapor deposition, sputtering, ion blasting, etc.

次に、この下部電極上に非晶質シリコン薄膜を形成する
。それには、上述したようなグロー放電法、蒸着法、ク
ラスターイオンビーム法などの公知の方法を用いる。た
とえば、グロー放電法の場合ハ、O0′1〜10Tor
rに維持された真空層内でロールアップされた可撓性基
板(フィルムと布帛とを組合せ、下部電極を形成)から
該基板を引出し、200〜350℃に加熱した基板ホル
ダーに密着させる。この基板ホルダーを一方の電極とし
、これと対向する電極との間に、たとえば、18.56
MHzの高周波電力を供給する。真空隔内には、シラン
ガス(81)14)、シボランフゴス(828G)、ボ
スフィンガス(PH,)、水素ガス(H2)を導入して
グロー放電を起こし、所定の薄膜になるまで原料ガスを
供給し、光起電力の要素である非晶質シリコン薄膜を形
成させる。
Next, an amorphous silicon thin film is formed on this lower electrode. For this purpose, known methods such as the above-mentioned glow discharge method, vapor deposition method, cluster ion beam method, etc. are used. For example, in the case of glow discharge method, O0'1~10Tor
The flexible substrate (film and fabric combined to form the lower electrode) is rolled up in a vacuum layer maintained at r and is pulled out from the flexible substrate and brought into close contact with a substrate holder heated to 200-350°C. This substrate holder is used as one electrode, and between this and the opposite electrode, for example, 18.56
Supplies MHz high frequency power. Silane gas (81) 14), Ciborane Fugos (828G), Bosphin gas (PH, ), and hydrogen gas (H2) are introduced into the vacuum chamber to cause glow discharge, and the raw material gas is supplied until a predetermined thin film is formed. Then, an amorphous silicon thin film, which is an element of photovoltaic power, is formed.

さらに詳しくは、1型シリコンWImを作製するには、
シランガスと水素ガスを供給して製脱を行ない、またn
型シリコン薄膜を作製するには、シランガス、水素ガス
、ジボランガスを供給して製IIIを行なう。またn型
シリコン薄膜を作製Jるには、シランガス、水素ガス、
ホスフィンガスを供給づることで製膜する。
More specifically, to fabricate type 1 silicon WIm,
Silane gas and hydrogen gas are supplied to perform decomposition, and n
In order to fabricate a silicon thin film, silane gas, hydrogen gas, and diborane gas are supplied to perform fabrication III. In addition, to prepare an n-type silicon thin film, silane gas, hydrogen gas,
Film is formed by supplying phosphine gas.

次に、この上に表面電極を形成する。これはショット・
主接合セルの場合は、ショットキ障壁金属として、白金
、金、パラジウムなどをスパッタ法、真空蒸着法、イオ
ンブレーティング法などで100A程度の薄膜で堆積さ
せる。またへゾロフェイス接合セルの場合は、酸化イン
ジウム、酸化錫、酸化錫−酸イヒインジウム膜を200
〜5000A程度の薄膜になるようにスパッタ法、真空
蒸着法、イオンブレーティング法などで堆積させる。さ
らに、収集電極をショットキ障壁金属、ヘトロワlイス
電極表面上に設けて非晶質シリコン薄膜を有する太陽電
池とする。
Next, a surface electrode is formed on this. This is a shot
In the case of the main junction cell, platinum, gold, palladium, or the like is deposited as a Schottky barrier metal in a thin film of about 100 A by sputtering, vacuum evaporation, ion blating, or the like. In addition, in the case of hezoroface junction cells, indium oxide, tin oxide, tin oxide-tin oxide films are used at 200%
It is deposited by a sputtering method, a vacuum evaporation method, an ion blating method, etc. so that it becomes a thin film of about 5000A. Further, a collector electrode is provided on the surface of the Schottky barrier metal, Hetroweiss electrode to obtain a solar cell having an amorphous silicon thin film.

このように、この発明に関わる非晶質シリコン太陽電池
は、高分子フィルムと繊維布帛とを積層した基板、該基
板上に形成した下部電極、該電極上に設けた多層の非晶
質シリコン膜、さらにその上に表面電極、収集電極を設
けた基本構造を持っている。
As described above, the amorphous silicon solar cell according to the present invention includes a substrate in which a polymer film and a fiber cloth are laminated, a lower electrode formed on the substrate, and a multilayer amorphous silicon film provided on the electrode. It has a basic structure with a surface electrode and a collection electrode on top of it.

このように、可撓性基板として高分子フィルムと繊維布
帛との積層物を用いることによるメリットは次のごとく
である。
As described above, the advantages of using a laminate of a polymer film and a fiber fabric as a flexible substrate are as follows.

すなわち、ロール型状による太陽電池の連続製造が可能
であることは言うに及ばず、繊維布帛とシリコン薄膜面
との滑り性が良いため巻取り時での皺発生などのトラブ
ルも全くなく、しかも布帛がフィルム面に裏打ちされて
いるためフィルム単独使用による基板に比べて破断強度
、引張り強度が大幅に向上する。かかるメリットが相乗
的に作用して太陽電池の変換効率が著しく高められるこ
とになった。
In other words, it goes without saying that it is possible to continuously manufacture solar cells in roll form, and because the fiber fabric and the silicon thin film surface have good sliding properties, there are no problems such as wrinkles during winding. Since the fabric is lined with the film surface, the breaking strength and tensile strength are significantly improved compared to a substrate using only film. These advantages work synergistically to significantly increase the conversion efficiency of solar cells.

以下この発明の実施例を記載するが、この発明はかかる
実施例によって何ら限定を受けるものではない。
Examples of the present invention will be described below, but the present invention is not limited in any way by these Examples.

実施例1 厚さ50μのポリイミドフィルムに、エポキシ系の接着
剤を付して芳香族ポリアミド織布(商品名ケブラー)を
積層し硬化させ、可撓性基板を作製した。この基板を1
0− ’ Torr真空下で150℃2hr乾燥した。
Example 1 Aromatic polyamide woven fabric (trade name: Kevlar) was laminated onto a polyimide film having a thickness of 50 μm using an epoxy adhesive and cured to produce a flexible substrate. This board is 1
It was dried at 150°C for 2 hours under a 0-' Torr vacuum.

乾燥した基材をスパッタリング装置に挿入し、タングス
テンをターゲラ1−として厚さ1.5μのタングステン
簿膜を下部電極として形成させた。しかる後、この下部
電極を形成させた基板をグロー放電装置のアノード側の
電極上に緊張下で導入し、8X10− ’−rorrに
排気しながら300℃に該基板を加熱し、引続き窒素ガ
ス(N2)を500 cc/1nで導入し、1.0TO
「「の窒素ガス雰囲気で200Wの高周波電力を印加し
基板のイオンボンバードを20分行ない、基板をクリー
ニングする。次に、水素ガスで希釈した10%のシラン
ガスと水素ガスで0.1%に希釈したホスフィンガスを
グロー放電装置内に導入し、0.6Torrの該ガス雰
囲気で100Wの高周波電力を印加し、200Aのn型
の非晶質シリコンWImを形成させる。次に、水素ガス
とシランガスで前記と同様にして、n型のシリコンWI
膜上に1型の非晶質薄膜を3000Aの厚みで形成させ
る。次に、水素ガスで10%に希釈したシランガスど水
素ガスで0.1%に希釈したジボランガスをグロー放電
装置内に導入し、i型シリコン薄躾上に300Aのp型
非晶質シリコンWJ賎を形成させ、高分子フィルムに繊
維布帛を積層させた基板上にpln型の非晶質シリコン
薄膜を設ける。
The dried base material was inserted into a sputtering device, and a tungsten film having a thickness of 1.5 μm was formed as a lower electrode using tungsten as a target layer. Thereafter, the substrate on which the lower electrode was formed was introduced under tension onto the anode side electrode of a glow discharge device, and the substrate was heated to 300° C. while being evacuated to 8×10-'-rorr, and then nitrogen gas ( N2) was introduced at 500 cc/1n, and 1.0TO
200W of high frequency power is applied in a nitrogen gas atmosphere to ion bombard the substrate for 20 minutes to clean the substrate.Next, 10% silane gas diluted with hydrogen gas and diluted to 0.1% with hydrogen gas. The phosphine gas thus prepared is introduced into a glow discharge device, and a high frequency power of 100 W is applied in the gas atmosphere of 0.6 Torr to form a 200 A n-type amorphous silicon WIm. Next, hydrogen gas and silane gas In the same manner as above, n-type silicon WI
A type 1 amorphous thin film with a thickness of 3000A is formed on the film. Next, silane gas diluted to 10% with hydrogen gas and diborane gas diluted to 0.1% with hydrogen gas were introduced into the glow discharge device, and a 300A p-type amorphous silicon WJ was placed on the i-type silicon thin film. A PLN type amorphous silicon thin film is provided on a substrate in which a fiber fabric is laminated on a polymer film.

このようにして得たpin型非晶質シリコン薄躾をスパ
ッタ装設に装着し、酸化錫−酸化インジウム@躾を゛1
000A堆積し、ヘテロフェイス層とした。最終的に、
このヘテロフェイス層上に収集電極としてパラジウムを
1000A<i型に堆積させ、可撓性基板上にpln型
へテロフェイス型太陽電池デバイスを得た。上記のデバ
イスは、Rollto Ro11方式で形成した。得ら
れたデバイスの初期特性を、AM−1に調整したオリニ
ル社製ソーラシ1ミレータで測定した。その結果を第1
表に示す。また、デバイス作製段階では巻取り時シリコ
ン面に皺は発生せず、また基板の破損、破壊は全く認め
られなかった。
The pin-type amorphous silicon thin film obtained in this way was attached to a sputtering equipment, and the tin oxide-indium oxide @ film was attached to the sputtering equipment.
000A was deposited to form a heteroface layer. Finally,
On this heteroface layer, palladium was deposited as a collector electrode in a 1000A<i type to obtain a pln type heteroface solar cell device on a flexible substrate. The above device was formed using a Roll to Ro11 method. The initial characteristics of the obtained device were measured using a Solari 1 Millator manufactured by Orinil Co., Ltd. adjusted to AM-1. The result is the first
Shown in the table. Further, during the device fabrication stage, no wrinkles were generated on the silicon surface during winding, and no damage or destruction of the substrate was observed.

実施例2 厚さ50μのポリエーテルスルホンフィルムにエポキシ
系接着剤を介し゛C芳香族ポリアミドslew織布(商
品名ノーメックス)を積層し、硬化させて可撓性基板を
形成した。該基板を用い、pln Ijlへテロフェイ
ス太陽電池を実施例1と同様な方法で作製した。得られ
た太陽電池デバイスの初vA特性を第1表に示す。
Example 2 Aromatic polyamide slew woven fabric (trade name: Nomex) was laminated on a polyether sulfone film with a thickness of 50 μm via an epoxy adhesive and cured to form a flexible substrate. Using this substrate, a pln Ijl heteroface solar cell was fabricated in the same manner as in Example 1. Table 1 shows the initial vA characteristics of the obtained solar cell device.

実施例3 厚さ50μのボリアリレート樹脂フィルムにシリコン系
接着剤を介して芳香族ポリアミド楳M織布(商品名ノー
メックス)を84層し、硬化させ又可撓性基板を形成し
た。該基板を用い、pln型へテロフェイス太陽電池を
実施例1と同様な方法で作製した。得られたデバイスの
特性を第1表に示す。
Example 3 84 layers of aromatic polyamide woven M fabric (trade name Nomex) were coated on a polyarylate resin film with a thickness of 50 μm via a silicone adhesive, and then cured to form a flexible substrate. Using this substrate, a PLN type heteroface solar cell was produced in the same manner as in Example 1. Table 1 shows the characteristics of the obtained device.

Claims (1)

【特許請求の範囲】[Claims] 可撓性基板上に非晶質シリコン薄膜を有する太陽電池に
おいて、″咳基板とし□て高分子フィルムにIli維布
帛を積層せしめたものを使用することを特徴とする非晶
質I膜を有する太陽電池。
A solar cell having an amorphous silicon thin film on a flexible substrate, which has an amorphous I film characterized by using a polymer film laminated with an Ili fiber fabric as the substrate. solar cells.
JP58187309A 1983-10-05 1983-10-05 Solar cell with amorphous thin-film Granted JPS6079779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58187309A JPS6079779A (en) 1983-10-05 1983-10-05 Solar cell with amorphous thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58187309A JPS6079779A (en) 1983-10-05 1983-10-05 Solar cell with amorphous thin-film

Publications (2)

Publication Number Publication Date
JPS6079779A true JPS6079779A (en) 1985-05-07
JPH0550151B2 JPH0550151B2 (en) 1993-07-28

Family

ID=16203740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58187309A Granted JPS6079779A (en) 1983-10-05 1983-10-05 Solar cell with amorphous thin-film

Country Status (1)

Country Link
JP (1) JPS6079779A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299010U (en) * 1989-01-27 1990-08-07
WO2004086464A3 (en) * 2003-03-24 2004-10-28 Konarka Technologies Inc Photovoltaic cells utilizing mesh electrodes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166082A (en) * 1981-03-17 1982-10-13 Messerschmitt Boelkow Blohm Solar battery supporting membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166082A (en) * 1981-03-17 1982-10-13 Messerschmitt Boelkow Blohm Solar battery supporting membrane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299010U (en) * 1989-01-27 1990-08-07
US7022910B2 (en) * 2002-03-29 2006-04-04 Konarka Technologies, Inc. Photovoltaic cells utilizing mesh electrodes
WO2004086464A3 (en) * 2003-03-24 2004-10-28 Konarka Technologies Inc Photovoltaic cells utilizing mesh electrodes

Also Published As

Publication number Publication date
JPH0550151B2 (en) 1993-07-28

Similar Documents

Publication Publication Date Title
TW444414B (en) Method of manufacturing a photovoltaic foil
TW201042065A (en) Methods for fabricating copper indium gallium diselenide (CIGS) compound thin films
JPS5961077A (en) Amorphous silicon solar battery
US6379994B1 (en) Method for manufacturing photovoltaic element
JPS6079779A (en) Solar cell with amorphous thin-film
JP2004140143A (en) Substrate for solar cell and solar cell
TW201340337A (en) Transparent conducting layer for solar cell applications
JP2004056024A (en) Thin-film solar battery, and manufacturing method thereof
JP4332226B2 (en) Plasma CVD apparatus for flexible film, amorphous silicon manufacturing method
KR100916199B1 (en) Manufacturing method of single crystal substrate and manufacturing method of solar cell using it
JPS59143378A (en) Solar battery
JP2838141B2 (en) Solar cell
JPS6050977A (en) Amorphous silicon thin film solar battery
JPH081959B2 (en) Solar cell
JPH08288529A (en) Photoelectric conversion device and manufacture thereof
JPH0518270B2 (en)
JPH059947B2 (en)
JPH0481350B2 (en)
JPS59119877A (en) Solar cell
JPS60195979A (en) Thin film solar battery
JPH0518269B2 (en)
JPH0518272B2 (en)
JPH0564472B2 (en)
JPH0550150B2 (en)
JPH0368546B2 (en)