JPH059947B2 - - Google Patents

Info

Publication number
JPH059947B2
JPH059947B2 JP57229996A JP22999682A JPH059947B2 JP H059947 B2 JPH059947 B2 JP H059947B2 JP 57229996 A JP57229996 A JP 57229996A JP 22999682 A JP22999682 A JP 22999682A JP H059947 B2 JPH059947 B2 JP H059947B2
Authority
JP
Japan
Prior art keywords
substrate
solar cell
paper
amorphous silicon
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57229996A
Other languages
Japanese (ja)
Other versions
JPS59119878A (en
Inventor
Hiroshi Imagawa
Minoru Fukuda
Setsu Akyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP57229996A priority Critical patent/JPS59119878A/en
Publication of JPS59119878A publication Critical patent/JPS59119878A/en
Publication of JPH059947B2 publication Critical patent/JPH059947B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は可とう性基板状に光起電力発生要素と
して非晶質シリコン薄膜を設けた太陽電池に関す
る。 更に詳しくは該基板としてセラミツクスの紙状
物又は布状物を太陽電池用基板として使用した太
陽電池に関する。 非晶質薄膜をステンレス鋼、ガラス板などの非
可とう性基板に設けたもの、又可とう性基板とし
てポリイミド等の樹脂薄膜を基板として使用する
太陽電池がよく知られている。 非晶質太陽電池を製造するに際して可とう性フ
イルム基板を用いる特徴は、基板上に必要な非晶
質シリコン層を連続的に設けることが出来、製造
コスト及び製造の容易性の面で非可とう性基板に
比し極めて優位に立てることになる。更に可とう
性基板に形成された非晶質太陽電池は従来の非可
とう性基板に形成させた太陽電池と違いフイルム
状であるので、製品形状に任意性を持たせること
が出来、例えば曲面状態でも使用することが可能
であり、その応用が広がることが期待されてい
る。 しかるにかかる非晶質太陽電池を可とう性基板
上に形成させる場合、非晶質シリコン形成温度と
して少なくとも250〜350℃の高温が望ましい為、
高分子フイルムを用いる場合には、耐熱性の優れ
をポリイミドフイルムしか適用出来ない。しかし
ポリイミドフイルムは、かかる高温時における初
期ヤング率があまり大きくなく非晶質シリコン製
膜時の熱応力に耐えるに充分な膜の強さを持つて
いないという問題点がある。即ち充分な膜の強さ
を持つていない基板の場合には、非晶質薄膜を基
板上に設ける際、非晶質シリコン薄膜と基板、両
方の熱膨強係数の差異にもとずく熱応力が基板の
機械的強度を越え基板がカールしてしまうことに
なる。 このカールの程度が大きくなると太陽電池とし
ての効率が大幅に低下してしまうという重大な欠
陥を招来させることが確認されている。さらに従
来のポリイミドフイルムは、表面が平滑すぎるた
め高い光電変換効率を得ることがむつかしい状態
にある。 従つて、可とう性基板を用いて非晶質シリコン
太陽電池を実現するには少なくとも250℃以上の
耐熱性に加え、かかる高温時において製膜時の熱
応力に耐えることの出来る腰の強さ及び適宜な表
面粗さをもつた基板を供しなければならない。 本発明の目的の1つは、かかる製膜時のカール
防止にあるが、又他の目的として光電変換効率に
大きな影響を及ぼす基板の表面粗さに関し、適宜
な粗面を有する基板上に非晶質シリコン薄膜を形
成した太陽電地において、高い光電変換効率を得
ることを可能ならしめる適宜な粗面を有する基板
を提供することにある。 基板の表面粗さと太陽電池の変換効率の関連性
について、変換効率を向上せしめるには、太陽電
池表面の太陽光の反射防止をすること、即ち太陽
光の反射率を小さくすることが重要である。しか
し、あまりに表面を粗面化することにより非晶質
シリコン薄膜中の細孔の生成及び起電力要素の短
絡を多数誘起させることで、太陽電池としての特
性そのものが悪くなつてしまえば、太陽電池本来
の目的から逸脱してしまう。従つて反射の防止と
電池特性維持等のかね合いから基板について適宜
な表面粗さを必要とするのである。 本発明者は非晶質シリコン薄膜を光起電力要素
とする薄膜太陽電池において非晶質シリコン薄膜
を基板上に形成させる際に熱応力に充分耐えるこ
とが出来る結果として、カール発生を防止するこ
とを得、かつ適宜な表面粗さを有し、電池特性を
向上せしめるという目的を達成せしめる為、鋭意
努力した結果、セラミツクスの紙状物又は布状物
を非晶質シリコン薄膜太陽電池用基板として使用
することで本発明の目的を達成することを得、本
発明に到達した。 前述した如く本発明は可とう性基板上に光起電
力要素として非晶質シリコン薄膜を設けた太陽電
池において、適度の粗面を有する可とう性セラミ
ツクス紙状物又は布状物を基板として用いること
を特徴とするものであるが、本発明において使用
するセラミツクス紙状物/布状物について以下言
及する。本発明に係るセラミツクス紙状物/布状
物としては、該形状に成形加工できるものであれ
ばセラミツクスの種類において特に制限を設ける
ものでない。セラミツクス紙状物/布状物の好適
例として可とう性マイカの紙状物/布状物に関し
て言及する。マイカとして例えばM.7(MG2.3Li.7
Si4O10F2.nH2Oなる組成式を有し、MがLi又はK
であるものは紙状物/布状物に容易に成型加工出
来る。該形状に成形加工する際には上記組成式の
もの単独であつても成型加工可能である。この様
に成形加工したものの表面状態は適当な粗面を有
する。ガラス繊維を混入せしめても充分成型加工
可能であるので、強度をさらに向上せしめる為に
は極めて有効である。マイカを紙状又は布状に成
型加工する時の厚みとしては50〜300μ程度まで
作成可能であり、又単位面積あたりの重さとして
は50〜250g/m2の範囲にあつた。また見掛けの
充填密度は600〜1400Kg/m3であつた。 作成した膜の絶縁破壊抵抗、誘電率、比抵抗等
の電気的性質は極めて優れたものであつた。 更に強度、剛性、耐熱性に関して、特に剛性、
耐熱性についてはセラミツクスであるが故に太陽
電池用可とう性基板として一般的に応用を試みら
れている高分子フイルムに比し、極めてすぐれた
特性を示す。 耐熱性は400℃程度に加熱しても全く問題なく、
良質の非晶質シリコン薄膜を作成するには極めて
有利である。 剛性についても耐熱性と同様、セラミツクスで
あるため、紙状又は布状物に成型したものについ
ては腰があり、非晶質シリコン製膜時の耐応力に
充分耐え得るものである。 可とう性マイカの紙状物/布状物を太陽電池の
基板として用いる為に基板表面に電極を作成す
る。電極としては特に限定するものではなく、ア
ルミニウム、鉄、ステンレス鋼、ニツケル、タン
グステン等の薄膜を蒸着、スパツタリング、イオ
ンプレーテイング等で基板状に形成させる。可と
う性基板上に非晶質シリコン薄膜を形成するには
グロー放電法、スパツタリング法、イオンプレー
テイング法、熱分解法等、公知の方法を用いる、
例えばグロー放電法の場合は0.1〜10torrに維持
された真空槽内でロールアツプされた可とう性基
板から該基板を引き出し200〜350℃に加熱した基
板ホルダーに密着させる。この基板ホルダーを一
方の電極とし、これと対抗する電極との間に例え
ば13.56MHzの高周波電力を供給する。真空槽内
にはシランガス(SiH4)、ジボランガス
(B2H6)、ホスフインガス(PH3)、水素ガス
(H2)を導入してグロー放電を起こし、所定の膜
厚になるまで原料ガスを供給し、光起電力の要素
である非晶質シリコン薄膜を形成させる。更に詳
しくは、i型シリコン薄膜を作成するには、シラ
ンガスとH2ガスを供給して製膜を行ない、又P
型シリコン薄膜を作成するには、シランガス、水
素ガス、ジボランガスを供給して製膜を行なう。
又n型シリコン薄膜については、シランガス、水
素ガス、ホスフインガスを供給することで製膜す
る。次に該非晶質シリコン薄膜を太陽電池デバイ
スとする為に裏面電極を形成させた後、P層、i
層、n層を積層させた可とう性基板を真空槽内に
装着し、例えばシヨツトキー接合セルの場合は、
シヨツトキー障壁金属として、白金、金、パラジ
ウム等をスパツタ法、真空蒸着法、イオンプレー
テイング法等で100Å程度の膜厚で推積させる。
又ヘテロ(フエイス)接合セルの場合は、酸化イ
ンジウム、酸化スズ、酸化スズ−酸化インジウム
膜を200〜5000Å程度の膜厚になる様にスパツタ
法、真空蒸着法、イオンプレーテイング法等で推
積させ、表面電極を形成させる。次に、収集電極
をシヨツトキー障壁金属、ヘテロフエイス電極表
面上に設けて非晶質シリコン太陽電池デバイスと
する。 本発明になる非晶質シリコン太陽電池は、可と
う性セラミツクスの紙状物/布状物基板上に裏面
電極を形成させ、該電極上に多層の非晶質シリコ
ン膜を設け、その上にシヨツトキー障壁金属又は
ヘテロフエイス電極を設け、その上に更に収集電
極を設けた基本構造を持つている。 本発明の非晶質シリコン太陽電池は、可とう性
基板としてセラミツクスの紙状物又は布状物を用
いたことに大きな特徴を持つものであるが、この
可とう性基板がセラミツクであることに帰因する
下記の特徴を有する。 剛性が大きく製膜中の熱応力に充分耐え得
る。 耐熱性に優れていること、即ち400℃に加熱
しても全く問題がない。 強度的にも優れているが、ガラス繊維を混入
させることで更に高強度なものが出来る。 適宜な表面粗度を持つている為、後述の実施
例に示す如く優れた光電変換効率を得ることが
出来る。 この様に可とう性基板としてセラミツクスの紙
状物/布状物を用いることにより、ロール型状に
よる連続的太陽電池の製造が可能であることに加
え製膜中の熱応力に耐え得る剛性を有し、かつ適
宜な表面粗さを持つていることに帰因する、光電
変換効率の優れた太陽電池を実現することが始め
て可能となつた。以下実施例をあげ、本発明を説
明する。 実施例 1 組成式Li.7(MG2.3Li.7)Si4O10F2.nH2Oなるマ
イカを紙状に成型し、厚さ130μの可とう性マイ
カペーパを得た。 このマイカペーパを10-2torrの真空下で150℃
2Hrの乾燥を行なつた。この乾燥したマイカペー
パをスパツタリング装置に装着し、タングステン
をターゲツトとして厚さ1.5μのタングステン薄膜
を裏面電極として形成させた。非晶質シリコン薄
膜は容量結合方式の高周波(13.56MHz)グロー
放電装置を用いて、前記裏面電極を形成させた基
板をグロー放電装置のアノード例の電極上に緊張
下で装着し8×10- 6torrに排気しながら300℃に
該基板を加熱する。その後N2ガスを500c.c./min
導入し、1.0torrのN2ガス雰囲気で200wの高周波
電力を印加し基板のイオンボンバードを20分行な
い、基板をクリーニングする、次に水素ガスで希
釈した10%のシランガス(SiH4)と水素ガスで
0.1%に希釈したホスフインガスをグロー放電装
置内に導入し、0.6torrの該ガス雰囲気で100wの
高周波電力を印加し200Åのn型の非晶質シリコ
ン薄膜を設ける。次いで水素ガスとシランガスで
前記同様にしてn型の非晶質シリコン薄膜上にi
型の非晶質薄膜を3000Åの厚みで形成させる。次
いで水素ガスで10%のシランガス(SiH4)と水
素ガスで0.1%に希釈したジボランガスをグロー
放電装置内に導入し、i型非晶質シリコン薄膜上
に300ÅのP型非晶質シリコン薄膜を形成させ、
可とう性マイカペーパ上にPin型の非晶質シリコ
ン薄膜を設ける。この様にして得たPin型非晶質
シリコン薄膜をスパツタ装置に装着し酸化スズ−
酸化インジウム薄膜を1000Å推積させ、ヘテロフ
エイス層とした。最後にこのヘテロフエイス層上
に収集電極としてパラジウムを1000Åくし型に推
積させ、可とう性マイカペーパ基板上にPinヘテ
ロフエイス型太陽電池デバイスを得た。 実施例 2 組成式K.7MG2.3Li.7)Si4O10F2.nH2Oなるマイ
カペーパに成型し、厚さ130μの可とう性マイカ
ペーパを得た。Pinヘテロフエイス型太陽電池デ
バイスは実施例1と同様な条件で作製した。 実施例 3 Li.7(MG2.3Li.7)Si4O10F2.nH2Oなるマイカに
ガラス繊維をマイカに対し20wt%混入させペー
パ状に成型し、厚み130μのガラス強化のマイカ
ペーパを得た。Pinヘテロフエイス型太陽電池は
実施例1と同様な条件で作製した。 実施例 4 実施例1〜3の太陽電池デバイスの初期特性を
AM=1に調整したオリエル社製ソーラシユミレ
ータで測定した。 比較例としてポリイミドフイルムを選び、この
フイルム上に実施例1と同様の方法でPin型の太
陽電池デバイスを形成させたものを用いた。尚こ
の測定に際しては、太陽電池デバイス形成工程を
通じて、一度もサンプルの緊張状態を解かずに測
定試料に供した。結果を第1表に示す。
The present invention relates to a solar cell in which an amorphous silicon thin film is provided as a photovoltaic force generating element on a flexible substrate. More specifically, the present invention relates to a solar cell using a paper-like or cloth-like ceramic material as the substrate for the solar cell. Solar cells are well known in which an amorphous thin film is provided on a non-flexible substrate such as a stainless steel or glass plate, or a resin thin film such as polyimide is used as a flexible substrate. The advantage of using a flexible film substrate when manufacturing amorphous solar cells is that the necessary amorphous silicon layer can be continuously provided on the substrate, which is an advantage in terms of manufacturing cost and ease of manufacturing. This gives it an extremely advantageous advantage over flexible substrates. Furthermore, unlike solar cells formed on conventional non-flexible substrates, amorphous solar cells formed on flexible substrates are film-like, so the product shape can be arbitrary, such as curved surfaces. It can be used in any state, and its applications are expected to expand. However, when forming such an amorphous solar cell on a flexible substrate, a high temperature of at least 250 to 350°C is desirable as the amorphous silicon formation temperature.
When using a polymer film, only polyimide film can be used due to its excellent heat resistance. However, the polyimide film has a problem in that its initial Young's modulus at such high temperatures is not very large and the film does not have sufficient film strength to withstand the thermal stress during the formation of an amorphous silicon film. In other words, in the case of a substrate that does not have sufficient film strength, when an amorphous thin film is provided on the substrate, thermal stress due to the difference in thermal expansion coefficient between the amorphous silicon thin film and the substrate may occur. exceeds the mechanical strength of the substrate, resulting in the substrate curling. It has been confirmed that when the degree of curl increases, a serious defect occurs in that the efficiency as a solar cell is significantly reduced. Furthermore, since the surface of conventional polyimide films is too smooth, it is difficult to obtain high photoelectric conversion efficiency. Therefore, in order to realize an amorphous silicon solar cell using a flexible substrate, in addition to heat resistance of at least 250°C, it must also have sufficient strength to withstand the thermal stress during film formation at such high temperatures. and a substrate with appropriate surface roughness must be provided. One of the purposes of the present invention is to prevent curling during film formation, but another purpose is to prevent surface roughness of the substrate, which has a large effect on photoelectric conversion efficiency. An object of the present invention is to provide a substrate having an appropriately rough surface that makes it possible to obtain high photoelectric conversion efficiency in a solar cell on which a crystalline silicon thin film is formed. Regarding the relationship between the surface roughness of the substrate and the conversion efficiency of solar cells, in order to improve the conversion efficiency, it is important to prevent the reflection of sunlight on the surface of the solar cell, that is, to reduce the reflectance of sunlight. . However, if the surface is roughened too much, it will cause the formation of pores in the amorphous silicon thin film and many short circuits of the electromotive force elements, which will deteriorate the characteristics of the solar cell itself. It deviates from its original purpose. Therefore, the substrate needs to have an appropriate surface roughness in order to prevent reflection and maintain battery characteristics. The present inventor has developed a thin film solar cell using an amorphous silicon thin film as a photovoltaic element, which can sufficiently withstand thermal stress when forming an amorphous silicon thin film on a substrate, thereby preventing curling. As a result of our earnest efforts, we have succeeded in achieving the objective of improving battery characteristics by obtaining a suitable surface roughness, and as a result, we have succeeded in using ceramic paper-like or cloth-like materials as substrates for amorphous silicon thin-film solar cells. By using the present invention, the object of the present invention can be achieved and the present invention has been achieved. As mentioned above, the present invention uses a flexible ceramic paper-like or cloth-like material having a moderately rough surface as a substrate in a solar cell in which an amorphous silicon thin film is provided as a photovoltaic element on a flexible substrate. The ceramic paper/cloth material used in the present invention will be described below. The ceramic paper/cloth-like material according to the present invention is not particularly limited in the type of ceramic as long as it can be molded into the shape. A flexible mica paper/cloth will be mentioned as a preferred example of the ceramic paper/cloth. Mica such as M.7 (MG 2.3 Li.7 )
It has the composition formula Si 4 O 10 F 2 .nH 2 O, and M is Li or K.
can be easily molded into paper-like or cloth-like materials. When molding into the shape, it is also possible to mold a material having the above composition formula alone. The surface of the product formed in this manner has a suitable roughness. Even if glass fiber is mixed in, it can be sufficiently molded, so it is extremely effective for further improving the strength. When mica is molded into paper or cloth, it can be made to a thickness of about 50 to 300 μm, and the weight per unit area is in the range of 50 to 250 g/m 2 . Moreover, the apparent packing density was 600 to 1400 Kg/m 3 . The electrical properties of the produced film, such as dielectric breakdown resistance, dielectric constant, and specific resistance, were extremely excellent. Furthermore, regarding strength, rigidity, and heat resistance, especially rigidity,
In terms of heat resistance, since it is made of ceramics, it exhibits extremely superior properties compared to polymer films, which are commonly used as flexible substrates for solar cells. There is no problem with heat resistance even when heated to around 400℃.
This is extremely advantageous for producing high-quality amorphous silicon thin films. As for rigidity, as well as heat resistance, since it is made of ceramics, it is stiff when molded into a paper-like or cloth-like material, and can sufficiently withstand stress during the formation of an amorphous silicon film. In order to use a flexible mica paper/cloth material as a substrate for a solar cell, electrodes are created on the surface of the substrate. The electrode is not particularly limited, and a thin film of aluminum, iron, stainless steel, nickel, tungsten, or the like is formed on a substrate by vapor deposition, sputtering, ion plating, or the like. In order to form an amorphous silicon thin film on a flexible substrate, a known method such as a glow discharge method, a sputtering method, an ion plating method, or a pyrolysis method is used.
For example, in the case of the glow discharge method, a flexible substrate is rolled up in a vacuum chamber maintained at 0.1 to 10 torr, and then the substrate is pulled out and brought into close contact with a substrate holder heated to 200 to 350°C. This substrate holder is used as one electrode, and high frequency power of, for example, 13.56 MHz is supplied between this and the opposing electrode. Silane gas (SiH 4 ), diborane gas (B 2 H 6 ), phosphine gas (PH 3 ), and hydrogen gas (H 2 ) are introduced into the vacuum chamber to cause glow discharge, and the raw material gas is fed until a predetermined film thickness is achieved. and forms an amorphous silicon thin film, which is an element of photovoltaic power. More specifically, in order to create an i-type silicon thin film, silane gas and H 2 gas are supplied to form the film, and P
To create a silicon thin film, silane gas, hydrogen gas, and diborane gas are supplied to form the film.
Further, the n-type silicon thin film is formed by supplying silane gas, hydrogen gas, and phosphine gas. Next, in order to use the amorphous silicon thin film as a solar cell device, a back electrode is formed, and then a P layer, an i
For example, in the case of a Schottky junction cell, a flexible substrate with laminated layers and n layers is mounted in a vacuum chamber.
As a Schottky barrier metal, platinum, gold, palladium, etc. are deposited to a film thickness of about 100 Å by sputtering, vacuum evaporation, ion plating, etc.
In the case of a heterojunction cell, indium oxide, tin oxide, and tin oxide-indium oxide films are deposited to a thickness of approximately 200 to 5000 Å using sputtering, vacuum evaporation, ion plating, etc. to form a surface electrode. A collection electrode is then provided on the Schottky barrier metal, heteroface electrode surface to form an amorphous silicon solar cell device. In the amorphous silicon solar cell of the present invention, a back electrode is formed on a flexible ceramic paper/cloth substrate, a multilayer amorphous silicon film is provided on the electrode, and a multilayer amorphous silicon film is provided on the back electrode. It has a basic structure in which a Schottky barrier metal or heteroface electrode is provided, and a collector electrode is further provided on top of the Schottky barrier metal or heteroface electrode. The amorphous silicon solar cell of the present invention has a major feature in that a paper-like or cloth-like ceramic material is used as a flexible substrate. It has the following characteristics. It has high rigidity and can withstand thermal stress during film formation. It has excellent heat resistance, that is, there is no problem even when heated to 400°C. It also has excellent strength, but it can be made even stronger by incorporating glass fiber. Since it has an appropriate surface roughness, it is possible to obtain excellent photoelectric conversion efficiency as shown in Examples described later. In this way, by using ceramic paper/cloth as a flexible substrate, it is possible to manufacture continuous solar cells in roll form, and it also has the rigidity to withstand thermal stress during film formation. For the first time, it has become possible to realize a solar cell with excellent photoelectric conversion efficiency, which is attributable to the fact that it has a suitable surface roughness. The present invention will be explained below with reference to Examples. Example 1 Mica having the compositional formula Li .7 (MG 2.3 Li .7 ) Si 4 O 10 F 2 .nH 2 O was molded into a paper shape to obtain a flexible mica paper with a thickness of 130 μm. This mica paper was heated at 150℃ under a vacuum of 10 -2 torr.
Drying was performed for 2 hours. This dried mica paper was attached to a sputtering device, and a 1.5 μm thick tungsten thin film was formed as a back electrode using tungsten as a target. The amorphous silicon thin film was prepared using a capacitively coupled high frequency (13.56 MHz) glow discharge device, and the substrate on which the back electrode was formed was mounted under tension on the anode electrode of the glow discharge device to form an 8×10 - Heat the substrate to 300° C. while evacuating to 6 torr. Then add N2 gas at 500c.c./min
ion bombardment of the substrate for 20 minutes by applying 200W of high frequency power in a 1.0torr N 2 gas atmosphere, cleaning the substrate, then 10% silane gas (SiH 4 ) diluted with hydrogen gas and hydrogen gas in
Phosphine gas diluted to 0.1% is introduced into a glow discharge device, and a high frequency power of 100 W is applied in the gas atmosphere of 0.6 torr to form an n-type amorphous silicon thin film of 200 Å. Next, an i
Form an amorphous thin film with a thickness of 3000 Å. Next, 10% silane gas (SiH 4 ) diluted with hydrogen gas and diborane gas diluted to 0.1% with hydrogen gas were introduced into the glow discharge device to form a 300 Å P-type amorphous silicon thin film on the i-type amorphous silicon thin film. to form;
A pin-shaped amorphous silicon thin film is provided on flexible mica paper. The pin-type amorphous silicon thin film obtained in this way was mounted on a sputtering device and exposed to tin oxide.
An indium oxide thin film was deposited to a thickness of 1000 Å to form a heteroface layer. Finally, palladium was deposited in a 1000 Å comb shape as a collection electrode on this heteroface layer to obtain a Pin heteroface type solar cell device on a flexible mica paper substrate. Example 2 A mica paper having the compositional formula K.7 MG 2.3 Li .7 ) Si 4 O 10 F 2 .nH 2 O was molded to obtain a flexible mica paper having a thickness of 130 μm. A Pin heteroface type solar cell device was produced under the same conditions as in Example 1. Example 3 Li .7 (MG 2.3 Li .7 ) Si 4 O 10 F 2 .nH 2 O mica was mixed with 20 wt% of glass fiber based on the mica and formed into a paper shape, and a glass-reinforced mica paper with a thickness of 130μ was made. Obtained. A Pin heteroface type solar cell was produced under the same conditions as in Example 1. Example 4 Initial characteristics of the solar cell devices of Examples 1 to 3
Measurement was performed using a solar simulator manufactured by Oriel Co., Ltd. adjusted to AM=1. A polyimide film was selected as a comparative example, and a pin-type solar cell device was formed on this film in the same manner as in Example 1. In this measurement, the sample was used as a measurement sample without once releasing the sample from its tensile state throughout the solar cell device forming process. The results are shown in Table 1.

【表】 実施例 5 実施例4で太陽電池デバイスの初期特性を、緊
張状態を1度も解かない条件下で測定した結果を
示したが、本実施例では各試料の緊張状態を1度
解いた条件下で測定した結果を示す。 実施例1〜3の試料については緊張を解いても
カールはほとんどなく電池特性も緊張を解く前と
ほとんど変わらない結果を得たが、ポリイミドフ
イルムはカールが著るしく電池特性においても、
緊張を解く前は変換効率3.2%であつたものが2.5
%に減少していた。
[Table] Example 5 Example 4 showed the results of measuring the initial characteristics of a solar cell device under conditions where the tension state was never resolved, but in this example, the tension state of each sample was resolved once. The results are shown below. For the samples of Examples 1 to 3, there was almost no curling even after the tension was released, and the battery properties were almost the same as before the tension was released, but the polyimide film curled significantly and the battery properties also showed poor results.
Before the tension was released, the conversion efficiency was 3.2%, but now it is 2.5.
%.

Claims (1)

【特許請求の範囲】 1 可とう性基板上に非晶質シリコン薄膜を有す
る太陽電池において厚さ50〜300μ、単位面積当
りの重量50〜250g/m2のセラミツクスの紙状物
又は布状物を基板として使用することを特徴とす
る非晶質シリコン薄膜太陽電池。 2 セラミツクスの紙状物又は布状物がマイカを
紙状又は布状に加工したものである特許請求の範
囲第1項記載の太陽電池。 3 セラミツクスの紙状物又は布状物がセラミツ
クスにガラス繊維を混入せしめ紙状又は布状に加
工したものである特許請求の範囲第1項記載の太
陽電池。
[Claims] 1. Ceramic paper or cloth having a thickness of 50 to 300 μm and a weight per unit area of 50 to 250 g/m 2 in a solar cell having an amorphous silicon thin film on a flexible substrate. An amorphous silicon thin film solar cell characterized by using as a substrate. 2. The solar cell according to claim 1, wherein the paper-like or cloth-like ceramic material is obtained by processing mica into a paper-like or cloth-like material. 3. The solar cell according to claim 1, wherein the paper-like or cloth-like ceramic material is made by mixing ceramics with glass fibers and processing them into a paper-like or cloth-like material.
JP57229996A 1982-12-27 1982-12-27 Solar cell Granted JPS59119878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57229996A JPS59119878A (en) 1982-12-27 1982-12-27 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57229996A JPS59119878A (en) 1982-12-27 1982-12-27 Solar cell

Publications (2)

Publication Number Publication Date
JPS59119878A JPS59119878A (en) 1984-07-11
JPH059947B2 true JPH059947B2 (en) 1993-02-08

Family

ID=16900963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57229996A Granted JPS59119878A (en) 1982-12-27 1982-12-27 Solar cell

Country Status (1)

Country Link
JP (1) JPS59119878A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4695850B2 (en) 2004-04-28 2011-06-08 本田技研工業株式会社 Chalcopyrite solar cell
JP4969785B2 (en) * 2005-02-16 2012-07-04 本田技研工業株式会社 Chalcopyrite solar cell and method for manufacturing the same
JP4681352B2 (en) 2005-05-24 2011-05-11 本田技研工業株式会社 Chalcopyrite solar cell
JP4646724B2 (en) * 2005-07-27 2011-03-09 本田技研工業株式会社 Chalcopyrite solar cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861678A (en) * 1981-10-08 1983-04-12 Taiyo Yuden Co Ltd Amorphous silicon solar battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861678A (en) * 1981-10-08 1983-04-12 Taiyo Yuden Co Ltd Amorphous silicon solar battery

Also Published As

Publication number Publication date
JPS59119878A (en) 1984-07-11

Similar Documents

Publication Publication Date Title
KR101389546B1 (en) Method of manufacturing crystalline silicon solar cells with improved surface passivation
JPS6228598B2 (en)
JP2012502450A (en) Hetero solar cell and hetero solar cell manufacturing method
TW201042065A (en) Methods for fabricating copper indium gallium diselenide (CIGS) compound thin films
Karunagaran et al. Effect of rapid thermal annealing on the properties of PECVD SiNx thin films
CN105932075A (en) Back crystal silicon heterojunction solar cell and preparation method thereof
JP5124189B2 (en) Method for manufacturing photoelectric conversion element
JPH059947B2 (en)
JPH059946B2 (en)
Banerjee et al. Fabrication of heterojunction solar cells by using microcrystalline hydrogenated silicon oxide film as an emitter
JP2692964B2 (en) Solar cell
US5278015A (en) Amorphous silicon film, its production and photo semiconductor device utilizing such a film
Bauer et al. pi interface engineering and i-layer control of hot-wire a-Si: H based pin solar cells using in-situ ellipsometry
JPH08288529A (en) Photoelectric conversion device and manufacture thereof
JPH0518271B2 (en)
JPS5815239A (en) Semiconductor element
JPH0518269B2 (en)
JPH0518270B2 (en)
US5152833A (en) Amorphous silicon film, its production and photo semiconductor device utilizing such a film
JPS6010788A (en) Substrate for solar cell
JPH07263731A (en) Polycrystalline silicon device
JPH0682855B2 (en) Semiconductor device and manufacturing method thereof
JPS6310590B2 (en)
JPH0558268B2 (en)
US5258207A (en) Amorphous silicon film, its production and photo semiconductor device utilizing such a film