JPS59119878A - Solar cell - Google Patents

Solar cell

Info

Publication number
JPS59119878A
JPS59119878A JP57229996A JP22999682A JPS59119878A JP S59119878 A JPS59119878 A JP S59119878A JP 57229996 A JP57229996 A JP 57229996A JP 22999682 A JP22999682 A JP 22999682A JP S59119878 A JPS59119878 A JP S59119878A
Authority
JP
Japan
Prior art keywords
cloth
paper
substrate
solar cell
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57229996A
Other languages
Japanese (ja)
Other versions
JPH059947B2 (en
Inventor
Hiroshi Imagawa
今川 容
Minoru Fukuda
穣 福田
Setsu Akiyama
秋山 節
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP57229996A priority Critical patent/JPS59119878A/en
Publication of JPS59119878A publication Critical patent/JPS59119878A/en
Publication of JPH059947B2 publication Critical patent/JPH059947B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To prevent the generation of a curl on the manufacture of a film, and to obtain high photoelectric conversion efficiency by using a ceramics paper-like material or a cloth-like material as a substrate for the solar cell in which an amorphous silicon thin-film is formed on the flexible substrate. CONSTITUTION:The ceramics paper-like material or the cloth-like material is used as the substrate for the solar cell in which the amorphous silicon thin-film is formed on the flexible substrate. A material such as a flexible mica paper-like material/cloth-like material is preferable as the ceramics paper-like material/ cloth-like material. The material molded and processed to the paper-like material/cloth-like material is effective for further increasing strength because the surface state of the material is brought to a proper roughened surface and the material can be molded and processed sufficiently even when glass fibers are mixed. The material can be prepared up to approximately 50-300mum as thickness on the molding and processing of mica to a paper shape or a cloth shape, and weight per unit area is kept within a range of values such as 50-250g/m<2>.

Description

【発明の詳細な説明】 木発F!Aは可とう性基板上に光起電力発生要素として
非晶質シリコン薄膜を設けた太陽電池に関する。
[Detailed description of the invention] Kibatsu F! A relates to a solar cell in which an amorphous silicon thin film is provided as a photovoltaic force generating element on a flexible substrate.

更に詳しくは該基板としてセラミックスの紙状物又は布
状物を太陽電池用基板として使用した太陽電池に関する
More specifically, the present invention relates to a solar cell using a ceramic paper-like material or cloth-like material as the substrate for the solar cell.

非晶質薄膜をステンレス鋼、ガラス板などの非可とう性
基板に設けたもの、又可とう性基板としてポリイミド等
の樹脂薄膜を基板として使用する太陽電池がよく知られ
ている。
Solar cells are well known in which an amorphous thin film is provided on a non-flexible substrate such as a stainless steel or glass plate, or a resin thin film such as polyimide is used as a flexible substrate.

非晶質太陽電池を製造するに際して可とう性フィルム基
板を用いる特徴は、基板上に必要な非晶質シリコン層を
連続的に設けることが出来、製造コスト及び製造の容易
性の面で非可とう性基板に比し極めて優位に立てること
になる。更に可とう性基板に形成された非晶質太陽電池
は従来の非可が出来、例えば曲面状態でも使用すること
が可能であシ、その応用が広がることが期待されている
The advantage of using a flexible film substrate when manufacturing amorphous solar cells is that the necessary amorphous silicon layer can be continuously provided on the substrate, which is an advantage in terms of manufacturing cost and ease of manufacturing. This gives it an extremely advantageous advantage over flexible substrates. Furthermore, an amorphous solar cell formed on a flexible substrate can be used even in a curved state, for example, and is expected to be used in a wide range of applications.

しかるにかかる非晶質太陽電池を可とう性基板上に形成
させる場合、非晶質シリコン形成温度として少なくとも
250〜350℃の高温が望ましい為、高分子フィルム
を用いる場合には、耐熱性の優れ全ボリイ菜ドフィルム
しか適用出来ない。しかしポリイミドフィルムは、かか
る高温時における初期ヤング率があ捷り大きくなく非晶
質シリコン製膜時の熱応力に耐えるに充分な膜の強さを
持っていないという問題点がある。即ち充分な膜の強さ
を持っていない基板の場合には、非晶質薄膜を基板上に
設ける際、非晶質シリコン薄膜と基板、両方の熱膨強係
数の差異にもとずく熱応力が基板の機械的強度を越え基
板がカールしてし甘うことになる。
However, when forming such an amorphous solar cell on a flexible substrate, a high temperature of at least 250 to 350°C is desirable as the amorphous silicon formation temperature. Only Bolii Nado film can be applied. However, polyimide films have a problem in that the initial Young's modulus at such high temperatures is large and does not have sufficient film strength to withstand thermal stress during the formation of amorphous silicon films. In other words, in the case of a substrate that does not have sufficient film strength, when an amorphous thin film is provided on the substrate, thermal stress due to the difference in thermal expansion coefficient between the amorphous silicon thin film and the substrate may occur. This exceeds the mechanical strength of the board, causing the board to curl.

このカールの程度が大きくなると太陽電池としての効率
が大幅に低下してしまうという重大な欠陥を紹来させる
ことが確認されている。さらに従来のポリイミドフィル
ムは、表面が平滑すぎるため高い光電変換効率を得るこ
とがむつかしい状態にある。
It has been confirmed that when the degree of curl increases, a serious defect occurs in that the efficiency as a solar cell is significantly reduced. Furthermore, since the surface of conventional polyimide films is too smooth, it is difficult to obtain high photoelectric conversion efficiency.

従って、可とう性基板を用いて非晶質シリコン太陽電池
を実現するには少なくとも250°C以上の耐熱性に加
え、かかる高温時において製膜時の熱応力に耐えること
の出来る腰の強さ及び適宜な表面粗さをもった基板を供
しなければならない。
Therefore, in order to realize an amorphous silicon solar cell using a flexible substrate, in addition to heat resistance of at least 250°C, it must also be strong enough to withstand the thermal stress during film formation at such high temperatures. and a substrate with appropriate surface roughness must be provided.

本発明の目的の1つは、かかる製膜時のカール防止にあ
るが、又他の目的として光電変換効率に大きな影響を及
ぼす基板の表面粗さに関し、適宜な粗面を有する基板上
に非晶質シリコン薄膜を形成した太陽電池において、高
い光電変換効率を得ることを可能ならしめる適宜な粗面
を有する基板を提供することにある。
One of the purposes of the present invention is to prevent curling during film formation, but another purpose is to prevent surface roughness of the substrate, which has a large effect on photoelectric conversion efficiency. The object of the present invention is to provide a substrate having a suitably rough surface that makes it possible to obtain high photoelectric conversion efficiency in a solar cell formed with a crystalline silicon thin film.

基板の表面粗さと太陽電池の変換効率の関連性について
、変換効率を向上せしめるには、太陽電池表面の太陽光
の反射防止をすること、即ち太陽光の反射率を小さくす
ることか重要である。しか給金多数誘起させることで、
太陽電池としての特性そのものが悪くなってしまえば、
太陽電池本来の目的から逸脱してしまう。従って反射の
防止と電池特性維持等のかね合いから基板について適宜
な表面粗さを必要とするのである。
Regarding the relationship between the surface roughness of the substrate and the conversion efficiency of solar cells, in order to improve the conversion efficiency, it is important to prevent the reflection of sunlight on the surface of the solar cell, that is, to reduce the reflectance of sunlight. . However, by inducing a large number of salaries,
If the characteristics of the solar cell itself deteriorate,
This deviates from the original purpose of solar cells. Therefore, the substrate needs to have an appropriate surface roughness in order to prevent reflection and maintain battery characteristics.

本発明者は非晶質シリコン薄膜全光起電力要素とする薄
膜太陽電池において非晶質シリコン薄膜を基板上に形成
させる際に熱応力に充分耐えることが出来る結果として
、カール発生を防止することを得、かつ適宜な表面粗さ
に有し、電池特性を向上せしめるという目的を達成せし
める為、鋭意努力した結果、セラミックスの紙状物又は
布状物を非晶質シリコン薄膜太陽電池用基板として使用
することで本発明の目的を達成することを得、本発明に
到達したつ 前述した如く本発明は可とう性基板上に光起電力要素と
して非晶質シリコン薄膜を設けた太陽電池において、適
度の粗面を有する可とう性セラミックス紙状物又は布状
物を基板として用いることを特徴とするものであるが1
本発明において使用するセラミックス紙状物/布状物に
ついて以下言及する。本発明に係るセラミックス紙状物
/布状物としては、該形状に成形加工できるものであれ
はセラミックスの種類において特に制限を設けるもので
ない。セラミックス紙状物/布状物の好適例として可と
う性マイカの厭状吻/布状物に関して言及する。マイカ
として例えばM、7(MG2.i Li 、 7 )S
i40!0 F2 、nH2Oなる組成式を有し、Mが
Li又はKであるものは紙状物/布状物に容易に成型加
工出来る。該形状に成形加工する際には上記組成式のも
の単独であっても成型加工可能である。この様に成形加
工したものの表面状態は適当な粗面を有する。カラス繊
維を混入せしめても充分成型加工可能であるので、強度
をさらに向上せしめる為には極めて有効である。マイカ
を紙状又は布状に成型加工する時の厚みとしては50〜
800μ程度まで作成可能であり、又単位面積あたりの
重さとしてl/′i50〜250 f/frIの範囲に
あった。また見掛けの充填密度(d600〜1400〜
/−であった。
The present inventor has proposed that in a thin film solar cell using an amorphous silicon thin film as an all-photovoltaic element, when an amorphous silicon thin film is formed on a substrate, curling can be prevented as a result of being able to sufficiently withstand thermal stress. As a result of our earnest efforts, we have succeeded in achieving the objective of improving battery characteristics by obtaining amorphous silicon with an appropriate surface roughness. As described above, the present invention provides a solar cell in which an amorphous silicon thin film is provided as a photovoltaic element on a flexible substrate. It is characterized in that a flexible ceramic paper-like material or cloth-like material having a moderately rough surface is used as the substrate.1
The ceramic paper/cloth material used in the present invention will be mentioned below. The ceramic paper/cloth-like material according to the present invention is not particularly limited in type as long as it can be molded into the shape. As a preferred example of the ceramic paper/cloth material, a flexible mica paper/cloth material will be mentioned. As mica, for example, M, 7 (MG2.i Li, 7)S
Those having the compositional formula i40!0 F2, nH2O and in which M is Li or K can be easily molded into paper-like materials/cloth-like materials. When molding into the shape, it is also possible to mold only one having the above compositional formula. The surface of the product formed in this manner has a suitable roughness. Even if glass fiber is mixed in, it can be sufficiently molded, so it is extremely effective for further improving the strength. The thickness when molding mica into paper or cloth is 50~
It was possible to manufacture up to about 800μ, and the weight per unit area was in the range of l/'i50 to 250 f/frI. Also, the apparent packing density (d600~1400~
It was /-.

作成した膜の絶縁破壊抵抗、誘電率、比抵抗等の電気的
性質は極めて優れたものであった。
The electrical properties of the produced film, such as dielectric breakdown resistance, dielectric constant, and specific resistance, were extremely excellent.

更に強度、剛性、耐熱性に関して、特に剛性、耐熱性に
ついてはセラミックスであるか故に太陽電池用可とう性
基板として一般的に応用を試みられている高分子フィル
ムに比し、極めてすぐれた特件を示す。
Furthermore, in terms of strength, rigidity, and heat resistance, because it is made of ceramic, it has extremely superior properties compared to polymer films, which are commonly used as flexible substrates for solar cells. shows.

耐熱性H400°C程度に加熱しても全く問題なく、良
質の非晶質シリコン薄膜を作成するには極めて有利であ
る。
Heat Resistance H There is no problem at all even when heated to about 400°C, which is extremely advantageous for producing a high quality amorphous silicon thin film.

剛性についても耐熱性と同様、セラミックスであるため
、紙状又は布状物に成型したものについては腰があり、
非晶質シリコン製膜時の耐応力に充分耐え得るものであ
る。
As for rigidity, as well as heat resistance, since it is made of ceramics, it has some stiffness when molded into paper or cloth-like materials.
It can sufficiently withstand stress during the formation of an amorphous silicon film.

可とう性マイカの紙状物/布状物を太陽電池の基板とし
て用いる為に基板表面に電極を作成する。
In order to use a flexible mica paper/cloth material as a substrate for a solar cell, electrodes are created on the surface of the substrate.

電極としては特に限定するものではなく、アルミニウム
、鉄、ステンレス鋼、ニッケル、タングステン等の薄膜
を蒸着、スパッタリング、イオンブレーティング等で基
板状に形成させる。可とう性基板上に非晶質シリコン薄
膜を形成するにはグロー放電法、スパッタリング法、イ
オンブレーティング法、熱分解法等、公知の方法を用い
る1例えばグロー放電法の場合は0.1〜10torr
[維持されだ真空槽内でロールアップされた可とう性基
板から該基板を引き出し200〜850℃に加熱した基
板ホルダーに密着させる。この基板ホルダーを一方の電
極とし、これと対抗する電極との間に例えば18.56
MHzの高周波電力全供給する。真空槽内にはシランガ
ス(SiH4)、シボランガス(B2H6)、ホスフィ
ンカス(PHs)、水素カス(Hg) k導入してグロ
ー放電を起こし、所定の膜厚になるまで原料ガスを供給
し、光起電力の要素である非晶質シリコン薄膜を形成さ
せる。更に詳しくは、n型シリコン薄膜を作成するには
、シランガスとH2ガスを供給して製膜を行ない、又P
型シリコン薄膜を作成するには、シランカス、水素ガス
、ジポランガスを供給して製膜を行なう。又n型シリコ
ン薄膜については、シランガス、水素ガス、ホスフィン
ガスを供給することで製膜する。次に該非晶質シリコン
薄膜を太陽電池デバイスとする為に裏面電極を形成させ
た後、P層、i層、n層を@層させた可とう性基板を真
空槽内に装着し、例えばショット千−接合セルの場合は
、ショットキー障壁金属とし文、\□ 白金、金、パラジウム等をスパッタ法、真空蒸着法、イ
オンブレーティング法等で100A0程度の膜厚で堆積
させる。又ヘテロ(フェイス)接合セルの場合は、酸化
インジウム、酸化スズ、酸化スズ−酸化インジウム膜を
200〜5000A0程度の膜厚になる様にスパッタ法
、真空蒸着法、イオンブレーティング法等で堆積させ、
表面電極を形成させる。
The electrode is not particularly limited, and a thin film of aluminum, iron, stainless steel, nickel, tungsten, or the like is formed on a substrate by vapor deposition, sputtering, ion blasting, or the like. To form an amorphous silicon thin film on a flexible substrate, a known method such as a glow discharge method, a sputtering method, an ion blating method, or a thermal decomposition method is used. 10torr
[The substrate is pulled out from the flexible substrate rolled up in a maintained vacuum chamber and brought into close contact with a substrate holder heated to 200 to 850°C. This substrate holder is used as one electrode, and the distance between this and the opposing electrode is, for example, 18.56 mm.
Full supply of MHz high frequency power. Silane gas (SiH4), ciborane gas (B2H6), phosphine gas (PHs), and hydrogen gas (Hg) are introduced into the vacuum chamber to cause glow discharge, and raw material gas is supplied until a predetermined film thickness is reached, and photovoltaic Forms an amorphous silicon thin film, which is a power element. More specifically, in order to create an n-type silicon thin film, silane gas and H2 gas are supplied to form the film, and P
To create a type silicon thin film, silancus, hydrogen gas, and diporane gas are supplied to form the film. Further, the n-type silicon thin film is formed by supplying silane gas, hydrogen gas, and phosphine gas. Next, in order to use the amorphous silicon thin film as a solar cell device, a back electrode is formed, and then a flexible substrate on which the P layer, i layer, and n layer are formed is placed in a vacuum chamber, and shot, for example. In the case of a thousand-junction cell, a Schottky barrier metal such as platinum, gold, palladium, etc. is deposited to a thickness of about 100A0 by sputtering, vacuum evaporation, ion blating, or the like. In the case of a hetero (face) junction cell, an indium oxide, tin oxide, or tin oxide-indium oxide film is deposited to a film thickness of about 200 to 5000 A0 by sputtering, vacuum evaporation, ion blating, etc. ,
Form a surface electrode.

次に、収集電極をショットキー障壁金属、ヘテロフェイ
ス電極表面上に設けて非晶質シリコン太陽電池デバイス
とする。
A collection electrode is then provided on the Schottky barrier metal, heteroface electrode surface to form an amorphous silicon solar cell device.

本発明になる非晶質シリコン太陽電池は、可とう性セラ
ミックスの紙状物/布状物基板上に裏面電極を形成させ
、該電極上に多層の非晶質シリコン膜を設け、その上に
ショットキー障壁金属又はヘテロフェイス電極を設け、
その上に更に収集電極を設けた基本構造を持っている。
In the amorphous silicon solar cell of the present invention, a back electrode is formed on a flexible ceramic paper/cloth substrate, a multilayer amorphous silicon film is provided on the electrode, and a multilayer amorphous silicon film is provided on the back electrode. Provide a Schottky barrier metal or heteroface electrode,
It has a basic structure with a collection electrode further provided on top of it.

本発明の非晶質シリコン太陽電池は、可とう性基板とし
てセラミックスの紙状物又は布状物を用いたことに大き
な特徴を持つものであるが、この可とう性基板がセラミ
ックであることに帰因する下記の特徴を有する。
The amorphous silicon solar cell of the present invention has a major feature in that a ceramic paper-like or cloth-like material is used as a flexible substrate. It has the following characteristics.

■ 剛性が大きく製膜中の熱応力に充分耐え得る。■ It has high rigidity and can withstand thermal stress during film formation.

■ 耐熱性に優れていること、即ち400℃に加熱して
も全く問題がない。
■ It has excellent heat resistance, that is, there is no problem at all even when it is heated to 400°C.

■ 強度的にも優れているが、カラス繊維を混入させる
ことで更に高強度なものが出来る。
■Although it has excellent strength, it can be made even stronger by incorporating glass fiber.

■ 適宜な表面粗度を持っている為、後述の実施例に示
す如く優れた光電変換効率を得ることが出来る。
(2) Since it has an appropriate surface roughness, it is possible to obtain excellent photoelectric conversion efficiency as shown in the examples below.

この様に可とう性基板としてセラミックスの紙状物/布
状物を用いることにより、ロール型状による連続的太陽
電池の製造が可能であることに加え製膜中の熱応力に耐
え得る剛性を有し、かつ適宜な表面粗さを持っているこ
とに帰因する。光電変換効率の優れた太陽電池を実現す
ることが始めて可能となった。以下実施例をあげ、本発
明を説明する。
In this way, by using ceramic paper/cloth as a flexible substrate, it is possible to manufacture continuous solar cells in roll form, and it also has the rigidity to withstand thermal stress during film formation. This is due to the fact that the surface has a suitable surface roughness. For the first time, it has become possible to create solar cells with excellent photoelectric conversion efficiency. The present invention will be explained below with reference to Examples.

実施例1 組成式Li、7(MO2,1Li 、7) Si401
0 F2 、nH2Oなるマイカを紙状に成型し、厚さ
180μの可とり性マイカペーパを得た。
Example 1 Composition formula Li, 7 (MO2, 1Li, 7) Si401
Mica consisting of 0 F2 and nH2O was molded into a paper shape to obtain a removable mica paper with a thickness of 180 μm.

このマイカペーパf 10 ”torrの真空下で15
0℃2■」「の乾燥を行なった。この乾燥したマイカペ
ーパをスパッタリング装置に装着し゛、タングステンを
ターケラトとして厚さ1.5μのタングステン薄膜を裏
面電極として形成させた。非晶質シリコン薄膜は容量結
合方式の高周波(1B 、 56M)1z)グロー放電
装置を用いて、前記裏面電極を形成させた基板をクロー
放電装置のアノード例の電極上に緊張下で装着し8X1
0 ’torrに排気しながら300℃に該基板を加熱
する。その後N2ガスを500cc/min導入し、1
、QtorrのN2ガス雰囲気で200wの高周波電力
を印加し基板のイオンボンバードを20分行ない、基板
をクリーニングする、次に水素ガスで希釈した10%の
シランカス(SiH4)と水素ガスで0.1%に希釈し
たホスフィンカスをグロー放電装置内に導入し、0.6
torrの該ガス雰囲気で100wの高周波電力を印加
し200A0のn型の非晶質シリコン薄膜を設ける。次
いで水素ガスとシランガスで前記同様にしてn型の非晶
質シリコン薄膜上にn型の非晶質薄膜を300OA’の
厚みで形成させる。次いで水素カスで10%のシランガ
ス(8iH4)と水素ガスで0.1%に希釈したジポラ
ンカスをグロー放電装置内に導入し、n型非晶質シリコ
ン薄膜上に800A0のP型非晶質シリコン薄膜を形成
させ、可とう性マイカペーパ上にPin型の非晶質シリ
コン薄膜を設ける。この様にして得たPin型非型置晶
質シリコン薄膜パッタ装置に装着し酸化スズ−酸化イン
ジウム薄膜ヲ1060A0堆積させ、ヘテロフェイス層
とした。最後にこのヘテロフェイス層上に収集電極とし
てパラジウム’c 100OA’ < L型に堆積させ
、可とう性マイカペーパ基板上にPinヘテロフェイス
型太陽電池デバイスを得だ。
This mica paper f 10” under vacuum of 15” torr
The dried mica paper was placed in a sputtering device, and a 1.5μ thick tungsten thin film was formed as a back electrode using tungsten as a tarcerate.The amorphous silicon thin film was Using a bonding type high frequency (1B, 56M) 1z) glow discharge device, the substrate on which the back electrode was formed was mounted under tension on the electrode of the anode of the claw discharge device.
Heat the substrate to 300° C. while evacuating to 0′ torr. After that, N2 gas was introduced at 500cc/min, and
, Apply 200 W of high frequency power in a Qtorr N2 gas atmosphere to perform ion bombardment of the substrate for 20 minutes, and clean the substrate. Next, 10% silane gas (SiH4) diluted with hydrogen gas and 0.1% hydrogen gas. A phosphine gas diluted to 0.6
A high frequency power of 100 W is applied in the gas atmosphere of torr to form an n-type amorphous silicon thin film of 200 A0. Next, an n-type amorphous thin film with a thickness of 300 OA' is formed on the n-type amorphous silicon thin film using hydrogen gas and silane gas in the same manner as described above. Next, 10% silane gas (8iH4) diluted with hydrogen gas and dipolan gas diluted to 0.1% with hydrogen gas were introduced into the glow discharge device, and a P-type amorphous silicon thin film of 800A0 was formed on the n-type amorphous silicon thin film. A pin-type amorphous silicon thin film is provided on the flexible mica paper. The thus obtained pin-type amorphous crystalline silicon thin film sputtering device was installed, and a tin oxide-indium oxide thin film of 1060A was deposited to form a heteroface layer. Finally, palladium 'c 100OA'< L type was deposited as a collecting electrode on this heteroface layer to obtain a Pin heteroface type solar cell device on a flexible mica paper substrate.

実施例2 組成式に−7(MGgya Li、7)Si401o 
F2.nHg0なるマイカペーパに成型し、厚さ130
μの可とう性マイカペーパを得た。Pinヘテロフェイ
ス型太陽電池デバイスl″i実施例1と同様な条件で作
製した。
Example 2 -7 (MGgya Li, 7)Si401o in the composition formula
F2. Molded into nHg0 mica paper, thickness 130
A flexible mica paper of μ was obtained. Pin heteroface type solar cell device l''i was produced under the same conditions as in Example 1.

実施例8 Li 、 y(MG*、m Li 、7) Sia O
so Fx、nH2Oなるマイカにカラス繊維をマイカ
に対し20wt%混入させペーパ状に成型し、厚み13
0μのガラス強化のマイカペーパヲ得た。Pinへテロ
フェイス型太陽電池は実施例1と同様な条件で作製した
Example 8 Li, y (MG*, m Li , 7) Sia O
So Fx, nH2O mica was mixed with 20 wt% of glass fiber based on the mica and formed into a paper shape with a thickness of 13
I obtained 0μ glass-reinforced mica paper. A Pin heteroface type solar cell was produced under the same conditions as in Example 1.

実施例4 実施例1〜3の太陽電池デバイスの初期特性をAM= 
1に調整したオリエル社製ソーラシュミレータで測定し
た。
Example 4 The initial characteristics of the solar cell devices of Examples 1 to 3 are AM=
The measurement was performed using a solar simulator manufactured by Oriel Co., Ltd. adjusted to 1.

比較例としてポリイミドフィルムを選ひ、このフィルム
上に実施例1と同様の方法でPin型の太陽電池デバイ
スを形成させたものを用いた。尚この測定に際しては、
太陽電池デバイス形成工程を通じて、一度もサンプルの
緊張状態を解かずに測定試料に供した。結果を第1表に
示す。
As a comparative example, a polyimide film was selected, and a pin type solar cell device was formed on this film in the same manner as in Example 1. In addition, when making this measurement,
Throughout the process of forming a solar cell device, the sample was used as a measurement sample without releasing its tension even once. The results are shown in Table 1.

第1表 実施例5 実施例4で太陽電池デバイスの初期特性を、緊張状態を
1度も解かない条件下で測定した結果を示したが、本実
施例では各試料の緊張状態=i1度解いた条件下で測定
した結果を示す。
Table 1 Example 5 In Example 4, the initial characteristics of the solar cell device were measured under conditions where the tension state was never resolved. However, in this example, the tension state of each sample = i1 degree solution. The results are shown below.

実施例1〜3の試料については緊張を解いてもカールは
ほとんどなく電池特性も緊張を解く前とほとんど変わら
ない結果を得たが、ポリイミドフィルムはカールが著る
しく電池特性においても。
For the samples of Examples 1 to 3, there was almost no curling even after the tension was released, and the battery properties were almost the same as before the tension was released, but the polyimide film curled significantly and the battery properties also changed.

緊張を解く前I″i変換効率3.2%であったものカー
2.5%に減少していた。
The I''i conversion efficiency, which was 3.2% before the tension was released, had decreased to 2.5%.

特許出願人  東洋紡績株式会社Patent applicant: Toyobo Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)  可とう性基板上に非晶質シリコン薄膜を有す
る太陽電池においてセラミックスの紙状物又は布状物を
基板として使用することを特徴とする非晶質シリコン薄
膜太陽電池。
(1) An amorphous silicon thin film solar cell having an amorphous silicon thin film on a flexible substrate, characterized in that a ceramic paper or cloth material is used as the substrate.
(2)  セラミックスの紙状物又は布状物がマイカを
紙状又は布状に加工したものである特許請求の範囲第(
1)記載の太陽電池。
(2) The paper-like or cloth-like ceramic material is obtained by processing mica into a paper-like or cloth-like form (Claim No. 2)
1) The solar cell described above.
(3)  セラミックスの紙状物又は布状物がセラミッ
クスにガラス繊維を混入せしめ紙状又は布状に加工した
ものである特許請求の範囲第(1)項記載の太陽電池。
(3) The solar cell according to claim (1), wherein the paper-like or cloth-like ceramic material is obtained by mixing ceramics with glass fibers and processing them into a paper-like or cloth-like material.
JP57229996A 1982-12-27 1982-12-27 Solar cell Granted JPS59119878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57229996A JPS59119878A (en) 1982-12-27 1982-12-27 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57229996A JPS59119878A (en) 1982-12-27 1982-12-27 Solar cell

Publications (2)

Publication Number Publication Date
JPS59119878A true JPS59119878A (en) 1984-07-11
JPH059947B2 JPH059947B2 (en) 1993-02-08

Family

ID=16900963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57229996A Granted JPS59119878A (en) 1982-12-27 1982-12-27 Solar cell

Country Status (1)

Country Link
JP (1) JPS59119878A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106968A1 (en) * 2004-04-28 2005-11-10 Honda Motor Co., Ltd. Chalcopyrite type solar cell
WO2006087914A1 (en) * 2005-02-16 2006-08-24 Honda Motor Co., Ltd. Chalcopyrite solar cell and manufacturing method thereof
WO2006126590A1 (en) * 2005-05-24 2006-11-30 Honda Motor Co., Ltd. Chalcopyrite type solar cell
JP2007035921A (en) * 2005-07-27 2007-02-08 Honda Motor Co Ltd Chalcopyrite solar cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861678A (en) * 1981-10-08 1983-04-12 Taiyo Yuden Co Ltd Amorphous silicon solar battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861678A (en) * 1981-10-08 1983-04-12 Taiyo Yuden Co Ltd Amorphous silicon solar battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106968A1 (en) * 2004-04-28 2005-11-10 Honda Motor Co., Ltd. Chalcopyrite type solar cell
JP2005317728A (en) * 2004-04-28 2005-11-10 Honda Motor Co Ltd Chalcopyrite solar cell
US7663056B2 (en) 2004-04-28 2010-02-16 Honda Motor Co., Ltd. Chalcopyrite type solar cell
JP4695850B2 (en) * 2004-04-28 2011-06-08 本田技研工業株式会社 Chalcopyrite solar cell
DE112005000948B4 (en) * 2004-04-28 2012-07-12 Honda Motor Co., Ltd. Chalcopyrite-type solar cell with a mica-containing insulating substrate
WO2006087914A1 (en) * 2005-02-16 2006-08-24 Honda Motor Co., Ltd. Chalcopyrite solar cell and manufacturing method thereof
WO2006126590A1 (en) * 2005-05-24 2006-11-30 Honda Motor Co., Ltd. Chalcopyrite type solar cell
JP2006332190A (en) * 2005-05-24 2006-12-07 Honda Motor Co Ltd Chalcopyrite solar cell
JP4681352B2 (en) * 2005-05-24 2011-05-11 本田技研工業株式会社 Chalcopyrite solar cell
US7964791B2 (en) 2005-05-24 2011-06-21 Honda Motor Co., Ltd. Chalcopyrite type solar cell
JP2007035921A (en) * 2005-07-27 2007-02-08 Honda Motor Co Ltd Chalcopyrite solar cell
JP4646724B2 (en) * 2005-07-27 2011-03-09 本田技研工業株式会社 Chalcopyrite solar cell

Also Published As

Publication number Publication date
JPH059947B2 (en) 1993-02-08

Similar Documents

Publication Publication Date Title
Alpuim et al. Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition
TW201042065A (en) Methods for fabricating copper indium gallium diselenide (CIGS) compound thin films
JPH0253941B2 (en)
Scofield et al. Sodium diffusion, selenization, and microstructural effects associated with various molybdenum back contact layers for CIS-based solar cells
JPH02500397A (en) Method for manufacturing solar cells with antireflection coating
JPS62105485A (en) Manufacture of semiconductor substrate
JPS59119878A (en) Solar cell
JPS59119877A (en) Solar cell
JPH01502182A (en) Silicon carbide production
Kishore et al. Atomic force microscopy and x-ray diffraction studies of aluminum-induced crystallization of amorphous silicon in Al/α-Si: H, α-Si: H/Al, and Al/α-Si: H/Al thin film structures
US5278015A (en) Amorphous silicon film, its production and photo semiconductor device utilizing such a film
Ray et al. Characterization of microcrystalline silicon films prepared by the glow discharge method under different deposition conditions
JPS5815239A (en) Semiconductor element
Shing et al. Electron cyclotron resonance microwave plasma deposition of a-Si: H and a-SiC: H films
JPH02382A (en) Metallic substrate for solar cell, manufacture thereof and solar cell using said metallic substrate
US4508932A (en) Silicon-based solar energy conversion cells
JPH08288529A (en) Photoelectric conversion device and manufacture thereof
JPH0518271B2 (en)
Chumakov et al. Deposition and optical properties of amorphous hydrogenated SixCy layers
JPH04355970A (en) Manufacture of solar cell
Sridevi et al. Preparation and characterization of flash-evaporated CuInSe 2 thin films
JPH0518270B2 (en)
Kuo et al. Effects of growth parameters on surface-morphological, structural and electrical properties of Mo films by RF magnetron sputtering
JP2728874B2 (en) Semiconductor device manufacturing method
US5258207A (en) Amorphous silicon film, its production and photo semiconductor device utilizing such a film