JPS62105485A - Manufacture of semiconductor substrate - Google Patents

Manufacture of semiconductor substrate

Info

Publication number
JPS62105485A
JPS62105485A JP60245469A JP24546985A JPS62105485A JP S62105485 A JPS62105485 A JP S62105485A JP 60245469 A JP60245469 A JP 60245469A JP 24546985 A JP24546985 A JP 24546985A JP S62105485 A JPS62105485 A JP S62105485A
Authority
JP
Japan
Prior art keywords
substrate
photoelectric conversion
reflected
light
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60245469A
Other languages
Japanese (ja)
Inventor
Toru Nunoi
徹 布居
Takateru Tsuji
辻 高輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60245469A priority Critical patent/JPS62105485A/en
Publication of JPS62105485A publication Critical patent/JPS62105485A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To remarkably improve the photoelectric conversion efficiency of a photoelectric conversion element, by providing fine undulations on the rear face of a semiconductor substrate. CONSTITUTION:A metallic molybdenum plate 11 having fine undulations 12 on one face is disposed within a vacuum reaction chamber and a polycrystalline silicon semiconductor layer 13 is deposited on the plate 11. When the deposited silicon layer 13 is peeled off from the temperate 11, the undulations 12 are transferred to the peeled surface 14 of the silicon substrate 13. The surface 15 of the silicon substrate is finished to be flat. This silicon substrate is utilized for producing a photoelectric conversion element. An incident ray 1 applied approximately vertically is reflected approximately totally by the undulated rear face 10, and the reflected ray 9 is also reflected approximately totally by the surface 7 of the substrate since it is reflected thereby at a certain angle. Accordingly, a light ray 1 once entering into the substrate never goes out therefrom and can be utilized for photoelectric conversion approximately completely.

Description

【発明の詳細な説明】 産系−し9刊用−分野 本発明(J、半導体基体の製造法、特に太陽電池の製造
に適17に半導体基体の製造に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention (J) relates to a method for manufacturing a semiconductor substrate, particularly suitable for manufacturing a solar cell.

従来技術 太陽電池等の光電変換装置では、基体面に対して垂直に
近い入射先程有効に利用されろ。なんら機能的な処理が
施されていない、平面状の半導体基体を使用1.構成し
た太陽電池における入射光の分岐の様子を第4図に示す
。一般に、入射光(1)は基体裏面(8)を透過する光
(2)と反射する光(3)とに分かれ、はぼ80%の光
が透過光(2)となって基体(8)の外へ出ろ。裏面反
射光(3)はさらに表面を透過′4−ろ児(4)と反射
オろ光(5)に分41ていく。光電変換機能は、光か、
活性領域、47j′わち、空乏層(6)を横切る時に発
揮さイ]ろので、空乏層(6)を通過4゛ろ光が多い程
、上た、」、ネルギーが大きい程、光電変換効率かI7
シ11“4“ろ。そJi、 IIl、、透過光(2)お
よび(4)をなくすこと、換、−;′4゛イ]げ、一旦
入射した光を基体の中に閉し込めろことが出来れば変換
効率はlWオろ、1 」1記した目的を達成4゛るL段と1.て、半導体11
1゜体裏面に凹凸を設(3ることが提案されている。裏
面に凹凸を設けた場合の光の進路の概念図を第1図に示
す。はぼ垂直に入射した光(IJ凹凸裏面(Io)に垂
直ではなく、一定の角度を持って反射オるため、はぼ全
反射する。その結果、裏面では透過光による損失がほぼ
完全に押さえられる。さらにその反射光(9)も基板表
面(7)に対して垂直ではなく、一定のIJ度を持って
反射するため、はぼ全反射ずろ。この、Lうに裏面に凹
凸を設:jだ場合、一旦入射した光(1)は外へ出るこ
となく、はぼ100%完全に光電変換に利用できろ。
In conventional photovoltaic conversion devices such as solar cells, the incidence angle close to perpendicular to the substrate surface is effectively utilized. 1. Using a flat semiconductor substrate that has not been subjected to any functional treatment. FIG. 4 shows how incident light is split in the constructed solar cell. In general, incident light (1) is divided into light (2) that passes through the back surface (8) of the substrate and light (3) that is reflected, and about 80% of the light becomes transmitted light (2) and returns to the substrate (8). Go outside. The back-reflected light (3) further passes through the front surface into a transmitted light (4) and a reflected light (5). The photoelectric conversion function is based on light or
The more light passes through the depletion layer (6), the greater the photoelectric conversion. Efficiency or I7
Shi11 "4"ro. If it is possible to eliminate the transmitted light (2) and (4), and confine the incident light inside the substrate, the conversion efficiency will increase. lW Oh, 1. Achieve the objectives listed in 1. 4 L stage and 1. So, semiconductor 11
It has been proposed to provide unevenness on the back surface of the IJ body. Figure 1 shows a conceptual diagram of the path of light when unevenness is provided on the back surface. Since the reflection is not perpendicular to (Io) but at a certain angle, it is almost totally reflected.As a result, loss due to transmitted light is almost completely suppressed on the back surface.Furthermore, the reflected light (9) is also reflected from the substrate. Since it is reflected not perpendicularly to the surface (7) but with a constant IJ degree, it is almost total reflection.If the back surface of the sea urchin is uneven: j, once the incident light (1) You can use it for 100% photoelectric conversion without going outside.

従来、)1゛導体括体に凹凸を設(Jろ手段と1〜で(
J、5iQt結晶の(l[io)面をアルカリ水溶液で
異方性の化学研摩を行うことによりピラミッド1[ニ状
が得らイ]ろが、コノ凹凸の頂fQii80−90°ノ
ー 定値となる。この角度(J1本発明の目的には合致
1.ない。
Conventionally, ) 1 conductor body is provided with unevenness ( J filter means and 1 ~ (
By performing anisotropic chemical polishing on the (l[io) plane of the J,5iQt crystal with an alkaline aqueous solution, pyramid 1 [D] shape is obtained. . This angle (J1) does not meet the purpose of the present invention.

−2より、本発明が従来法に比べて優れている点(」、
 一定形状の型を用いろ為に、従来法に比べて簡便に、
(F@の形状に仕−1−げろことかできる点にあろ1、 ブC1すjf/’)j’j −リ 本発明は、入射光を有効利用するために、裏面に微細な
凹凸を有オろゝ1を導体粘体の製造法を提(」(するこ
とを目的どする。
-2, the present invention is superior to the conventional method ('',
Because a mold with a fixed shape is used, it is easier than the conventional method.
(The advantage of this invention is that it can be shaped into the shape of F@1, buC1sujf/')j'j The purpose of this paper is to propose a method for producing a conductive viscous material.

発明の構I求 本発明(」、微細な凹凸を表面に有する堆積用型板1.
に、゛1′導体+A月を堆積成長さ且た後、両者を剥離
4〜るごとに、Lす、平板上1−の凹凸が転写された裏
面構造を有4゛る半導体基体を製造する方法に関する。
Structure of the Invention The present invention (1) Deposition template having fine irregularities on its surface.
After depositing and growing the ``1'' conductor + A, each time they are peeled off, a semiconductor substrate having a back surface structure on which the unevenness of 1- on the flat plate is transferred is manufactured. Regarding the method.

本発明方法で(」、」:4゛、第2図に示4゛、=と3
5、表面に微細な凹凸をf1計る堆積用型板lに゛I′
導体+411を堆積さU−ろ。堆積用型板としては、半
導体材料の種類や堆積ノj法にし上るが、グロー放′市
分解法やスパッタリング等の重積手段とし7て71iI
’m Fl’加を要4゛ろ場合やIljtM性4曹4−
ろ場合は、導出(’1+、4 II、即ら、金属製の型
INカ&rV l−kl、、金属+’l型板と(2ては
、例えば金属モリブデン、タンr)スフーン等が例示さ
イ]ろか、坩積嘆と型板との剥離を要する場合は、両者
が容易に剥離1.得ろ、1: ’+な金り4打月を選択
計へきである。例えは、半導体H11と1、て多結晶シ
リコンを用いろ場合(」、そA1とll#居1、係数の
大きく異なるMOを用いるごとによ?)、t[1なろ冷
却によζ)両者を剥離さlろ5−とがで。−/、。
In the method of the present invention ('','': 4'', as shown in FIG. 2, 4'', = and 3
5. ゛I' on the deposition template l to measure the fine irregularities f1 on the surface.
Deposit conductor +411. As a template for deposition, the type of semiconductor material and the deposition method can be used, but as a stacking method such as glow exposure decomposition method or sputtering, 71iI can be used.
'm Fl' must be added in case of 4 or IljtM 4-
In this case, the derivation ('1+, 4 II, i.e., metal mold INka&rV l-kl, metal +'l template and (2, for example, metal molybdenum, tan r), etc. is exemplified. However, if it is necessary to separate the crucible and the template, select 1:'+ metal 4 strokes so that both can be easily peeled off.For example, semiconductor H11 and 1, if polycrystalline silicon is used (A1 and 1, depending on the use of MO with significantly different coefficients?), both must be peeled off by cooling. 5-Togade. -/,.

従って、その様な組合わU−(」特に好ましいらい−(
7ある。
Therefore, such a combination U-("particularly preferred L-(
There are 7.

堆積用型板(、の凹凸(」鋸歯状、す゛rシンカブ状等
種々あるが、その光電変換に効用が大きいj[う状は第
1図、第2図に示したような断面構造による一3= 形状のものが特に好ましい。凹凸の大きさは、rlJ5
−30f17zm、深さ22−1O07z程度が適当で
ある。また、鋸歯状の凹凸の場合は、第2図に示4−傾
斜角(16)が30度以」−1特にシリコン基体で垂直
入射時を考えた場合には、その角度は30〜40度が好
ましい。
There are various types of deposition templates, such as serrated and cylindrical shapes, but these are most effective for photoelectric conversion. 3 = shape is particularly preferable.The size of the unevenness is rlJ5
-30f17zm and depth of about 22-1007z are appropriate. In addition, in the case of sawtooth-like unevenness, as shown in Figure 2, the angle of inclination (16) is 30 degrees or more. is preferred.

半導体+(ネ」を型板上に堆積させるには、半導体材料
の種類にもよるが、例えば半導体となる元素を主成分と
する各種の有機化合物あるいは水素化物等の分解反応を
利用する等の方法が例示される。
Depositing the semiconductor + (N) on the template depends on the type of semiconductor material, but for example, it is possible to use decomposition reactions of various organic compounds or hydrides whose main components are elements that will become semiconductors. A method is illustrated.

半導体+A料として多結晶シリコンを用いるときは、モ
ノシランガス(Si114)の減圧CVD法、グロー放
電分解法か特に適している。
When polycrystalline silicon is used as the semiconductor+A material, a low pressure CVD method using monosilane gas (Si114) or a glow discharge decomposition method is particularly suitable.

堆積条件そのものは、従来半導体の成膜に用いられた条
件と特に異なるものではない。
The deposition conditions themselves are not particularly different from those used for conventional semiconductor film formation.

半導体材料としては、典型的にはシリコンであるか、こ
イ]に限定されるものではなく、他のあらゆる半導体+
4料、例えばカリウム砒素(GaAs)、インジウノ・
燐(InP)等を使用し得る。
Semiconductor materials are typically silicon, but are not limited to silicon, and may include any other semiconductor material.
4 materials, such as potassium arsenic (GaAs), indium
Phosphorus (InP) or the like may be used.

本発明で得られる半導体基体は単層であってもよい。こ
の場合は後に、W種ノし素、例オ(Jリン等またはボl
:lン等を表面まノニは裏面に1・ ブj2−で、その
いずれかをp型またはp型にする。また、本発明半導体
7に体は、堆積(成ll*)時に、裏面1・た(3表面
に上記異種元素を導入し、そのいずイ1かをp型または
p型に極性調整したものであってもよい。
The semiconductor substrate obtained by the present invention may be a single layer. In this case, W species, e.g.
: The front side of the surface is 1, 2-, etc., and either one of them is made p-type or p-type. In addition, the semiconductor 7 of the present invention may have the above-mentioned different elements introduced into the back surface 1 and the surface 3 during deposition (formation*), and the polarity of one of the elements 1 and 1 may be adjusted to p-type or p-type. It may be.

以下多結晶シリコン半導体基体を例にとって、その製造
法を説明する。
The manufacturing method will be described below by taking a polycrystalline silicon semiconductor substrate as an example.

微細凹凸(深さI 0μm、iN O07zm、傾斜角
度35度)を有する金属モリブデン板(100x100
XI00mm)を真空反応室(2xlO’Torr)中
に設置し、型板温度を600〜900℃として維持する
。熱分解法により、1−記モリブデン板上にに多結晶シ
リコン半導体層(13)を形成させた(膜厚10〜10
0μ)。得られろシリコン半導体層はp型である。その
後、供給ガスを導市12、窒素ガス等の不活性雰囲気に
切換えろと同時に、型板温度を低下さu7Io ンリコ
ン坩積層(13)は、モリブデン金属との熱膨張係数の
差により、型板(11)より剥離する。剥離面(14)
には、型板凹凸而(12)か転写さA1ろ3、さらに、
剥離面(14)での反射率を11・月Uに・1ろ3j−
パ)に機械研摩等の表面処理を施41、シリコン゛しq
体層(13)の剥離面(14)の反対側のノリコンJ、
1体曲(15)iJ、化学研屋法等により、串ハ゛トな
1f11と1−7てイ11.ばてもよいし、表面デクス
チャエゾーJ′−ンタを11II!(、た而に仕1−げ
てちよい。
Metallic molybdenum plate (100x100
XI00mm) is placed in a vacuum reaction chamber (2xlO'Torr) and the template temperature is maintained at 600-900<0>C. A polycrystalline silicon semiconductor layer (13) was formed on the molybdenum plate described in 1-1 by a thermal decomposition method (thickness: 10-10
0μ). The silicon semiconductor layer obtained is p-type. After that, the supply gas is switched to an inert atmosphere such as nitrogen gas, and at the same time the template temperature is lowered. (11) Peel off. Peeling surface (14)
The pattern plate is uneven (12) or transferred A1 and 3, and
The reflectance on the peeled surface (14) is 11・month U・1ro3j−
Surface treatment such as mechanical polishing is applied to silicone
Noricon J on the opposite side of the peeled surface (14) of the body layer (13),
1 body song (15) iJ, Kagakukenya method, etc., skewer-height 1f11 and 1-7 are 11. You can also use the surface texture roller 11II! (But you can do it.

ごの41))にして得らイ]たシリ:IンJI(体を用
いて通′畠(ハ製市力法で、人陽市/11シ素了を作製
l−る。その素r構〕6を第3図に示4−o半導体基体
(23)は、I)型ノ11 ::lンイ611品で、そ
の基体の−1−面に、n型不純物の〃1拡牧処理により
11型層(17)を形成十ろ。
41))) Using the body, we created the Renyo City/11 Shiryo by using the body. ] 6 is shown in FIG. 3. The 4-o semiconductor substrate (23) is an I) type No. 11::ln-611 product, and the −1-plane of the substrate is treated with an n-type impurity by an expansion treatment. Form 11 type layer (17).

I)’!’1.1m (24)とn I(’! Il’
lI (17)の界面は、光電変換効率の高い部分であ
ろ空乏層(18)が構成されろ。光電変換により)発生
4−ろ電流は、電極(19)および(2o)より取りN
N−o電極の取り何口方法としては、蒸着技術、印刷焼
成法等が使用でΔろ。電極(19)の形状は、」I(体
内面での反射を考慮1.た[、で、微小の傾斜面に加1
置−でおくことが望ましく、特に、JII;体間凸面(
22)のj[ツ状に加工するのか最も望ま1゜し)。電
極(20)は、入射光(25)の透過を妨げないように
、格子状に配置する。
I)'! '1.1m (24) and n I('! Il'
The interface of lI (17) is a portion with high photoelectric conversion efficiency and constitutes a depletion layer (18). The current generated (by photoelectric conversion) is taken from the electrodes (19) and (2o).
Vapor deposition technology, printing/firing method, etc. can be used to form the N-o electrode. The shape of the electrode (19) is 1.
It is desirable to leave it in place, especially JII;
22) j [The most desirable angle is 1° to process into a square shape). The electrodes (20) are arranged in a grid pattern so as not to impede transmission of the incident light (25).

次に、本装置の動作について述べろ。受)し表面(21
)に)一方から垂直あるいはそれに返いjf1度で光か
入る。入射光(25)の一部(」、表面(21)で反射
されろか、大部分!J: A1体(23)内に入る。そ
1.で、活性領域であろ空乏層(18)を垂直に横切る
。入射光成分の内、短波長)冒二つい−(′(」、空乏
層(18)のイ、1近で吸収されて光電変換かさイする
が、より長波長光(上、裏面電極とのν/11ti 1
でヤ11ふt、−’r全反射さイする。反射光(26)
は、(1)ひ空乏層(18)を横QJり表面(21)で
↑反fl・I4−ろ515、−のように、甲偉体基体C
23)の内部で多重反射を繰返il゛、−、:に、1 
il、空乏層(18)を多数回横切り、うし電変換が損
失なく行/lf イ)れる。ごの現象を光電し込め効果
と称4−る。この効果は、従来の構造(第4図)−(二
はほとんと期待できない。従来の構造をした光電変換素
子で12%の変換効率の6ので6、本発明による構造(
図3)にすると13〜15%の変換効率か得られろ。
Next, describe the operation of this device. surface (21)
)) Light enters perpendicularly from one side or at a angle of 1 degree from one side. A part of the incident light (25) is reflected by the surface (21), or most of it! J: enters the A1 body (23). Among the incident light components, the short wavelength) is absorbed near the depletion layer (18) and photoelectrically converted, but the longer wavelength light (the upper and lower ν/11ti 1 with electrode
At 11 feet, -'r total internal reflection is detected. Reflected light (26)
(1) Transversely QJ the depletion layer (18) on the surface (21) ↑ anti-fl・I4-RO 515,-, the upper body substrate C
23), multiple reflections are repeated inside il゛, -, :, 1
il, the depletion layer (18) is crossed many times, and insulator conversion is performed without loss. This phenomenon is called the photoelectric injection effect. This effect cannot be expected with the conventional structure (Figure 4) - (2).The photoelectric conversion element with the conventional structure has a conversion efficiency of 12%, so the structure according to the present invention (6) has a conversion efficiency of 12%.
Figure 3) would give a conversion efficiency of 13 to 15%.

発明の効果 本発明により、゛1−導体基体の表面が所望の形状で得
ることがでΔ、その結果、光電変換効率を大幅に高める
構造を有した光電変換素子を提供4−ろことかできる。
Effects of the Invention The present invention provides a photoelectric conversion element having a structure in which the surface of the conductive substrate can be obtained in a desired shape, and as a result, the photoelectric conversion efficiency can be significantly increased. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図(J、裏面凹凸構造での光の進路を示す図、第2
図は、本発明にお(jろ凹凸の転写を示す概念図、第3
図は、本発明により作製した太陽N他素子の構造を示4
−図、第4図は、従来構造での光の進路を示す図である
、。 図中の記号(1以上の通りである。 l ・入射光、 2 透過光、 3・・・反射光、4・
透過)し、  5 反射光、 6・・・空乏層、7 基
体表面、8・・・ik体裏面、9・・反射光、10  
凹凸裏面、 11・金属モリブデン型板、12・・・型
板凹凸面、13・シリコン半導体層、14・剥離面、 
 15  シリコン基体面、16・・・傾斜角度、17
・ n型層、18・・・空乏層、19・電極、  20
・・・電極、  21・・受光表面、22・・・基体凹
凸面、23・・・半導体基体、24・・・p型層、 2
5・・・入射光、 26・・・反射光。 第1図 第2図
Figure 1 (J, Diagram showing the path of light on the uneven back surface structure, Figure 2
The figure is a conceptual diagram showing the transfer of unevenness according to the present invention.
The figure shows the structure of a solar element manufactured according to the present invention.
- Figure 4 is a diagram showing the path of light in a conventional structure. Symbols in the figure (1 or more. 1. Incident light, 2. Transmitted light, 3. Reflected light, 4.
5 Reflected light, 6... Depletion layer, 7 Substrate surface, 8... Ik body back surface, 9... Reflected light, 10
Uneven back surface, 11. Metallic molybdenum template, 12... Uneven surface of template, 13. Silicon semiconductor layer, 14. Peeling surface.
15 Silicon substrate surface, 16... Inclination angle, 17
・N-type layer, 18...depletion layer, 19・electrode, 20
...Electrode, 21.. Light-receiving surface, 22.. Base uneven surface, 23.. Semiconductor substrate, 24.. P-type layer, 2
5...Incoming light, 26...Reflected light. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、微細な凹凸を表面に有する堆積用型板上に、半導体
材料を堆積成長させた後、両者を剥離することにより、
型板上の凹凸が転写された裏面構造を有する半導体基体
を製造する方法。
1. By depositing and growing a semiconductor material on a deposition template having fine irregularities on its surface, and then peeling off both,
A method for manufacturing a semiconductor substrate having a back surface structure on which the irregularities on a template are transferred.
JP60245469A 1985-10-31 1985-10-31 Manufacture of semiconductor substrate Pending JPS62105485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60245469A JPS62105485A (en) 1985-10-31 1985-10-31 Manufacture of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60245469A JPS62105485A (en) 1985-10-31 1985-10-31 Manufacture of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS62105485A true JPS62105485A (en) 1987-05-15

Family

ID=17134122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60245469A Pending JPS62105485A (en) 1985-10-31 1985-10-31 Manufacture of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS62105485A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111887A (en) * 1987-09-08 1989-04-28 Westinghouse Electric Corp <We> Etching of silicon dendrite web crystal
JPH05343712A (en) * 1992-06-05 1993-12-24 Hitachi Ltd Manufacture of tandem heterogeneous photoelectric conversion element
JP2011023418A (en) * 2009-07-13 2011-02-03 Hamamatsu Photonics Kk Semiconductor photodetecting element and method for manufacturing the same
JP2011023417A (en) * 2009-07-13 2011-02-03 Hamamatsu Photonics Kk Semiconductor optical detecting element, and method of manufacturing the same
JP2012142568A (en) * 2010-12-17 2012-07-26 Semiconductor Energy Lab Co Ltd Photoelectric conversion element
JP2013115434A (en) * 2011-11-25 2013-06-10 Qinghua Univ Solar cell and manufacturing method therefor
US8575476B2 (en) 2007-07-13 2013-11-05 Omron Corporation CIS solar cell and method for manufacturing the same
US8809675B2 (en) 2011-12-16 2014-08-19 Tsinghua University Solar cell system
US8871533B2 (en) 2011-12-29 2014-10-28 Tsinghua University Method for making solar cell and solar cell system
US9012767B2 (en) 2011-12-16 2015-04-21 Tsinghua University Solar cell system
US9209335B2 (en) 2011-12-09 2015-12-08 Tsinghua University Solar cell system
US9349894B2 (en) 2011-12-29 2016-05-24 Tsinghua University Solar cell and solar cell system
US9349890B2 (en) 2011-12-29 2016-05-24 Tsinghua University Solar cell and solar cell system
JP2017092502A (en) * 2009-02-24 2017-05-25 浜松ホトニクス株式会社 Manufacturing method of photodiode
US9972729B2 (en) 2009-02-24 2018-05-15 Hamamatsu Photonics K.K. Photodiode and photodiode array

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111887A (en) * 1987-09-08 1989-04-28 Westinghouse Electric Corp <We> Etching of silicon dendrite web crystal
JPH05343712A (en) * 1992-06-05 1993-12-24 Hitachi Ltd Manufacture of tandem heterogeneous photoelectric conversion element
US8575476B2 (en) 2007-07-13 2013-11-05 Omron Corporation CIS solar cell and method for manufacturing the same
US9972729B2 (en) 2009-02-24 2018-05-15 Hamamatsu Photonics K.K. Photodiode and photodiode array
JP2017092502A (en) * 2009-02-24 2017-05-25 浜松ホトニクス株式会社 Manufacturing method of photodiode
JP2011023417A (en) * 2009-07-13 2011-02-03 Hamamatsu Photonics Kk Semiconductor optical detecting element, and method of manufacturing the same
JP2011023418A (en) * 2009-07-13 2011-02-03 Hamamatsu Photonics Kk Semiconductor photodetecting element and method for manufacturing the same
JP2012142568A (en) * 2010-12-17 2012-07-26 Semiconductor Energy Lab Co Ltd Photoelectric conversion element
JP2016154243A (en) * 2010-12-17 2016-08-25 株式会社半導体エネルギー研究所 Photoelectric conversion element
JP2013115434A (en) * 2011-11-25 2013-06-10 Qinghua Univ Solar cell and manufacturing method therefor
US9209335B2 (en) 2011-12-09 2015-12-08 Tsinghua University Solar cell system
US8809675B2 (en) 2011-12-16 2014-08-19 Tsinghua University Solar cell system
US9012767B2 (en) 2011-12-16 2015-04-21 Tsinghua University Solar cell system
US10109757B2 (en) 2011-12-16 2018-10-23 Tsinghua University Solar cell system
US8871533B2 (en) 2011-12-29 2014-10-28 Tsinghua University Method for making solar cell and solar cell system
US9349890B2 (en) 2011-12-29 2016-05-24 Tsinghua University Solar cell and solar cell system
US9349894B2 (en) 2011-12-29 2016-05-24 Tsinghua University Solar cell and solar cell system

Similar Documents

Publication Publication Date Title
US9608131B2 (en) Solar cell having doped semiconductor heterojunction contacts
KR101492946B1 (en) Crystalline silicon solar cell and manufacturing method and system thereof
KR102100909B1 (en) Solar cell having an emitter region with wide bandgap semiconductor material
JP2951146B2 (en) Photovoltaic devices
JPS62105485A (en) Manufacture of semiconductor substrate
EP0113434A1 (en) Photovoltaic device
JP2009503848A (en) Composition gradient photovoltaic device, manufacturing method and related products
CN103594542A (en) A photovoltaic device and a method for forming the same
KR101324292B1 (en) High efficiency solar cell and manufacturing method thereof, and solar cell manufacturing apparatus for the same
GB1603218A (en) Solar cells
GB2123606A (en) Pin type semiconductor photoelectric conversion device
US5340410A (en) Method for manufacturing polycrystalline silicon thin-film solar cells
US20090101201A1 (en) Nip-nip thin-film photovoltaic structure
EP2884544B1 (en) Solar cell production method
Jeong et al. Preparation of born-doped a-SiC: H thin films by ICP-CVD method and to the application of large-area heterojunction solar cells
JP2692964B2 (en) Solar cell
JP2724892B2 (en) Amorphous silicon pin type photoelectric conversion element
JP2592809B2 (en) Method for manufacturing photovoltaic element
JP3201540B2 (en) Solar cell and method of manufacturing the same
JP2854083B2 (en) Semiconductor thin film and method of manufacturing the same
JPH0319374A (en) Photovoltaic element
JPH02382A (en) Metallic substrate for solar cell, manufacture thereof and solar cell using said metallic substrate
JP2977686B2 (en) Method for manufacturing photovoltaic device and apparatus for manufacturing the same
JP2757896B2 (en) Photovoltaic device
JPH04355970A (en) Manufacture of solar cell