JPH08287969A - Photocell - Google Patents

Photocell

Info

Publication number
JPH08287969A
JPH08287969A JP7088313A JP8831395A JPH08287969A JP H08287969 A JPH08287969 A JP H08287969A JP 7088313 A JP7088313 A JP 7088313A JP 8831395 A JP8831395 A JP 8831395A JP H08287969 A JPH08287969 A JP H08287969A
Authority
JP
Japan
Prior art keywords
electrode
light
photovoltaic cell
incident light
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7088313A
Other languages
Japanese (ja)
Inventor
Yoshio Abe
良夫 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP7088313A priority Critical patent/JPH08287969A/en
Publication of JPH08287969A publication Critical patent/JPH08287969A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: To get a photocell equipped with an electrode on the side of incoming light where photoelectric conversion efficiency is raised and besides the electric resistance is lowered by preventing the interruption of light by metal. CONSTITUTION: For a photocell, the cross section has an acute edge on the side of incoming light. Besides, the photocell is equipped with an electrode on the side of incoming light, which has a metallic electrode 2 where the irradiated face of the incoming light is a mirror face, photoelectric convertor bodies 3 and 4, and a counter electrode 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光・電気変換効率を高
める入射光側電極を有する光電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic cell having an incident light side electrode which enhances light-electricity conversion efficiency.

【0002】[0002]

【従来の技術】従来の光電池において、入射光側の電極
としては、ITO膜やSnO2 膜などの透明電極が直接
用いられていた。
2. Description of the Related Art In a conventional photovoltaic cell, a transparent electrode such as an ITO film or a SnO 2 film is directly used as an electrode on the incident light side.

【0003】又、ITO膜やSnO2 膜などの透明電極
に、鉛などからなる縞模様の金属を集電電極として接触
させて用いられていた。
In addition, a striped metal such as lead was used as a current collecting electrode in contact with a transparent electrode such as an ITO film or a SnO 2 film.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
光電池において、入射光側の電極としてITO膜やSn
2 膜などの透明電極のみを用いた場合には、電極自体
の電気抵抗が大きいという問題点を有していた。
However, in the conventional photovoltaic cell, an ITO film or Sn is used as an electrode on the incident light side.
When only a transparent electrode such as an O 2 film is used, there is a problem that the electric resistance of the electrode itself is large.

【0005】また、透明電極に縞模様の金属を集電電極
として接触させて用いた場合には、この金属によって、
光−電気変換素子本体への光の照射が妨げられるという
問題点を有していた。
When a striped metal is used as a current collecting electrode in contact with the transparent electrode, the metal causes
There has been a problem that the irradiation of light to the main body of the photoelectric conversion element is hindered.

【0006】そこで、本発明の目的は、金属による光の
遮断を防止して光・電気変換効率を高め、かつ、電気抵
抗を下げた入射光側電極を備えた光電池を提供すること
にある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a photovoltaic cell provided with an incident light side electrode which prevents light from being blocked by a metal to improve light-to-electricity conversion efficiency and which has reduced electric resistance.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の光電池は、断面形状が入射光側に鋭角のエ
ッジを有し、かつ、入射光の照射面が鏡面である金属電
極を有する入射光側電極と、光・電気変換素子本体と、
対向電極とを備える。
In order to achieve the above object, the photovoltaic cell of the present invention comprises a metal electrode whose cross-sectional shape has an acute-angled edge on the incident light side and whose incident light irradiation surface is a mirror surface. An incident light side electrode having, a light-electricity conversion element body,
And a counter electrode.

【0008】そして、金属電極の形状は、複数の線状で
あることを特徴とする。
The shape of the metal electrode is a plurality of linear shapes.

【0009】さらに、複数の線状の金属電極は、縞状又
は格子状であることを特徴とする。
Further, the plurality of linear metal electrodes have a striped shape or a grid shape.

【0010】又、金属電極は、透明電極と電気的に接触
していることを特徴とする。
Further, the metal electrode is in electrical contact with the transparent electrode.

【0011】又、金属電極は、光照射面が透明基板内に
埋め込まれていることを特徴とする。
Further, the metal electrode is characterized in that the light irradiation surface is embedded in the transparent substrate.

【0012】[0012]

【作用】断面形状が入射光側に鋭角のエッジを有し、か
つ、光照射面が鏡面である金属電極を光電池の入射光側
の電極として有することにより、電極部分に照射される
光は、その電極表面で反射された後光電池内部に到達す
る。
The light radiated to the electrode portion is provided by having a metal electrode whose cross-sectional shape has an acute angle edge on the incident light side and whose light irradiation surface is a mirror surface as an electrode on the incident light side of the photocell. After being reflected on the surface of the electrode, it reaches the inside of the photovoltaic cell.

【0013】以下、入射光の反射方向を示す光路図であ
る図3に基づき説明する。断面形状が入射光側に鋭角の
エッジを有する形状は、図3に示す鋭角二等辺三角形で
近似できる。
A description will be given below with reference to FIG. 3, which is an optical path diagram showing the reflection direction of incident light. A shape whose cross-sectional shape has an acute-angled edge on the incident light side can be approximated by an acute-angled isosceles triangle shown in FIG.

【0014】鋭角二等辺三角形の底辺の長さを2x、高
さをy、底辺の対角の大きさを2θとした場合、三角形
底辺に垂直に入射した光aは、底辺の垂線に対して2θ
の方向に反射する。2θが90゜未満のとき、反射光は
底辺側(即ち、光電池側)に進み、隣の鋭角二等辺三角
形の電極に当たらなければ、光電池内部に進んで発電に
使うことができる。2θが90゜以上になると反射した
光は、隣の電極に当たってさらに反射し、光電池外に出
てしまう。したがって、底辺の対角2θは鋭角に限定さ
れる。又、鋭角二等辺三角形の頂点に入射した光は、底
辺に達するまでに、底辺に平行な方向に、y・tan2
θ進む。したがって、鋭角二等辺三角形を並べるとき、
その周期をx+y・tan2θ(=Yと置く)以上とす
れば、全垂直入射光を光電池内部に導入することができ
る。
When the base length of the acute-angled isosceles triangle is 2x, the height is y, and the diagonal size of the base is 2θ, the light a incident perpendicularly on the base of the triangle is relative to the perpendicular of the base. 2θ
Reflected in the direction of. When 2θ is less than 90 °, the reflected light travels to the bottom side (that is, the photocell side), and if it does not hit the electrode of the adjacent acute-angled isosceles triangle, it can go into the photocell and be used for power generation. When 2θ is 90 ° or more, the reflected light hits the adjacent electrode and is further reflected, and goes out of the photocell. Therefore, the diagonal 2θ of the base is limited to an acute angle. Also, the light incident on the apex of the acute-angled isosceles triangle is y · tan2 in the direction parallel to the base until it reaches the base.
θ advance. Therefore, when arranging acute-angled isosceles triangles,
If the period is set to x + y · tan 2θ (= Y) or more, all vertically incident light can be introduced into the photocell.

【0015】例えば、簡便のため、x=1とした場合、
Y=1+y・tan2θ=1+y{2tanθ/(1−
tan2 θ)}=1+2/(1−1/y2 )となり、y
が大きいほどYは小さくなり3に近づく。このことは、
電極の高さを無限に高くすると、電極間隔を三角形の底
辺の1/2の長さまで近づけても垂直入射光は、反射し
てすべて電池内部に到達することを示す。
For example, for simplicity, when x = 1,
Y = 1 + y · tan2θ = 1 + y {2tanθ / (1-
tan 2 θ)} = 1 + 2 / (1-1 / y 2 ), and y
Is larger, Y is smaller, and approaches 3. This is
It is shown that when the height of the electrodes is increased to infinity, all the vertically incident light is reflected and reaches the inside of the battery even if the electrode interval is made as close as 1/2 of the base of the triangle.

【0016】次に、鋭角二等辺三角形の底辺の垂直方向
に対して、δの角度で入射した光bの光路を考える。図
3から、鋭角二等辺三角形の頂点に入射した光は、底辺
に到達するまでに、底辺に水平な方向に、y・tan
(2θ+δ)だけ進む。したがって、鋭角二等辺三角形
の周期をx+y・tan(2θ+δ)以上とすれば、底
辺に垂直な方向からδ゜以内の範囲で分布する全入射光
を光電池内部に導入することができる。しかしながら、
δがθよりも十分に大きい領域では、反射による光電池
内部への入光は見込めなくり、直接届く光しか利用でき
ない。そしてこの場合には、yが大きければ大きいほ
ど、三角形が傘となって、直接光が光電池内部へ届きに
くくなる。
Next, consider the optical path of the light b incident at an angle of δ with respect to the vertical direction of the base of the acute-angled isosceles triangle. From FIG. 3, the light incident on the apex of the acute-angled isosceles triangle reaches y · tan in the direction horizontal to the base until it reaches the base.
Proceed by (2θ + δ). Therefore, if the period of the acute-angled isosceles triangle is x + y · tan (2θ + δ) or more, all incident light distributed within δ ° from the direction perpendicular to the base can be introduced into the photocell. However,
In a region where δ is sufficiently larger than θ, it is impossible to expect light to enter the inside of the photocell due to reflection, and only light that reaches directly can be used. Then, in this case, the larger y is, the more the triangle becomes an umbrella, and it becomes difficult for direct light to reach the inside of the photovoltaic cell.

【0017】以上のことより、光電池を使用する場所の
入射光の角度変化に応じて、yの大きさ即ち金属電極の
高さと、三角形即ち金属電極の間隔とを決めればよいこ
とがわかる。
From the above, it can be seen that the size of y, that is, the height of the metal electrodes, and the triangle, that is, the distance between the metal electrodes, may be determined according to the angle change of the incident light at the place where the photovoltaic cell is used.

【0018】そして、この金属電極の形状を複数の線
状、より好ましくは縞状又は格子状とすることにより、
光の遮断を防ぎ電気抵抗の低い入射光側電極が得られ
る。
Then, by making the shape of the metal electrode into a plurality of linear shapes, more preferably stripes or grids,
An incident light side electrode having a low electric resistance which prevents light from being blocked can be obtained.

【0019】又、この金属電極を透明電極上に形成する
ことにより、入射光側電極の電気抵抗をさらに下げるこ
とができる。
By forming this metal electrode on the transparent electrode, the electric resistance of the incident light side electrode can be further reduced.

【0020】さらに、この金属電極の光照射面を透明基
板内に埋め込むことにより、金属電極表面の鏡面性など
を保護することができるとともに、透明基板を光電池の
ケース部材として用いることもできる。
Furthermore, by embedding the light irradiation surface of the metal electrode in the transparent substrate, the mirror surface of the metal electrode can be protected and the transparent substrate can be used as a case member of a photovoltaic cell.

【0021】[0021]

【実施例】以下、本発明の光電池について、色素励起型
光電池を例として、その実施例を図面に基づいて説明す
る。
The photocell of the present invention will be described below with reference to the drawings by taking a dye-excited photocell as an example.

【0022】まず、光電池の透明電極の集電電極として
用いる縞状の金属電極を作製した。図1は、この縞状の
金属電極の断面図である。同図において、1は透明なシ
リカガラス基板、2はシリカガラス基板1に形成された
縞状の金属電極である。
First, a striped metal electrode used as a collector electrode of a transparent electrode of a photovoltaic cell was prepared. FIG. 1 is a sectional view of the striped metal electrode. In the figure, 1 is a transparent silica glass substrate, and 2 is a striped metal electrode formed on the silica glass substrate 1.

【0023】即ち、縦30mm、横40mm、厚さ5m
mの透明なシリカガラス基板1を用意した。そして、こ
のシリカガラス基板の片面を加工して、底辺の長さ0.
5mm、頂点角度(2θ)、高さと間隔が表1に示す二
等辺三角形の断面を有する複数の溝を作製した。次に、
これら溝に銀を蒸着した後、鉛を流し込んで、シリカガ
ラス基板に接する面、即ち光照射面が鏡面で、透明なシ
リカガラス基板に埋め込まれた縞状の金属電極を作製し
た。
That is, length 30 mm, width 40 mm, thickness 5 m
m transparent silica glass substrate 1 was prepared. Then, one side of this silica glass substrate is processed to have a bottom length of 0.
A plurality of grooves having an isosceles triangular cross section shown in Table 1 with 5 mm, apex angle (2θ), and height and spacing were prepared. next,
After silver was vapor-deposited in these grooves, lead was poured into the groove to prepare a striped metal electrode embedded in a transparent silica glass substrate, the surface in contact with the silica glass substrate, that is, the light irradiation surface was a mirror surface.

【0024】ここで、得られた縞状の金属電極の面積抵
抗と光透過率を測定した。即ち、面積抵抗は、シリカガ
ラス基板の縞状の金属電極が形成された面の金属電極が
伸びている方向の抵抗値を測定し、このシリカガラス面
の面積抵抗を求めた。
Here, the sheet resistance and the light transmittance of the obtained striped metal electrode were measured. That is, the area resistance was obtained by measuring the resistance value of the surface of the silica glass substrate on which the striped metal electrodes were formed in the direction in which the metal electrode was extended, and determining the area resistance of the silica glass surface.

【0025】又、光透過率は、縞状の金属電極が形成さ
れたシリカガラス面に垂直な、図1に示すZ方向の光を
当てたときの光の透過量を測定した。そして、未加工の
透明なシリカガラス単独の場合の光の透過量を基準とし
て、縞状の金属電極が形成されたシリカガラス全面に光
を照射した場合の全面光透過率を求めた。この値をもと
に、図1に示すS部分、即ち縞状の金属電極部分にのみ
光を照射した場合の金属部分光透過率を計算により求め
た。以上の結果を表1に示す。
The light transmittance was measured by measuring the amount of light transmitted when light in the Z direction shown in FIG. 1, which was perpendicular to the silica glass surface on which the striped metal electrodes were formed, was applied. Then, on the basis of the amount of light transmission in the case of the unprocessed transparent silica glass alone, the entire surface light transmittance in the case of irradiating light onto the entire surface of the silica glass on which the striped metal electrodes were formed was determined. Based on this value, the light transmittance of the metal portion in the case where light was irradiated only to the S portion shown in FIG. 1, that is, the striped metal electrode portion was calculated. Table 1 shows the above results.

【0026】[0026]

【表1】 [Table 1]

【0027】表1から明らかなように、溝の断面を鋭角
三角形にすることにより、全面光透過率を97〜99%
に、金属部分光透過率を94〜98%に高めることがで
きている。又、面積抵抗も、例えばSnO2 系の膜の抵
抗値が約15Ω/□であるのに対して0.1〜0.00
6Ω/□と低減させることができている。
As is clear from Table 1, the entire surface light transmittance is 97 to 99% by making the cross section of the groove an acute triangle.
In addition, the metal partial light transmittance can be increased to 94 to 98%. Further, the sheet resistance is, for example, 0.1 to 0.00 while the resistance value of the SnO 2 system film is about 15 Ω / □.
It can be reduced to 6Ω / □.

【0028】即ち、本実施例で得られる縞状の金属電極
は、光透過率が高く面積抵抗が低く、光電池の電極とし
て最適であることを示している。
That is, it is shown that the striped metal electrode obtained in this example has a high light transmittance and a low sheet resistance and is optimal as an electrode of a photovoltaic cell.

【0029】次に、この試料番号1〜4に示す縞状の金
属電極を用いて、図2に断面構造を示す色素励起型光電
池を作製した。同図において、1はシリカガラス基板、
2はシリカガラス基板1に形成された縞状の金属電極、
3は電解液、4は色素を吸着させた半導体セラミック
ス、5はITO膜からなる透明電極、6は白金からなる
対向電極である。
Next, using the striped metal electrodes shown in Sample Nos. 1 to 4, dye-excited photovoltaic cells having a sectional structure shown in FIG. 2 were produced. In the figure, 1 is a silica glass substrate,
2 is a striped metal electrode formed on the silica glass substrate 1,
Reference numeral 3 is an electrolytic solution, 4 is a semiconductor ceramic to which a dye is adsorbed, 5 is a transparent electrode made of an ITO film, and 6 is a counter electrode made of platinum.

【0030】以上のようにして得られた色素励起型光電
池はいずれも光・電気変換効率に優れたものであった。
The dye-excited photovoltaic cells obtained as described above were all excellent in light-to-electricity conversion efficiency.

【0031】なお、上記実施例においては、縞状の金属
電極の場合について説明したが、本願発明はこれのみに
限定されるものではない。即ち、電極形状は特に限定さ
れるものではなく、格子状や幾何学模様などの種々の形
状について同様な効果が得られる。
Although the striped metal electrode has been described in the above embodiments, the present invention is not limited to this. That is, the electrode shape is not particularly limited, and similar effects can be obtained for various shapes such as a lattice shape and a geometric pattern.

【0032】又、上記実施例においては、色素励起型光
電池の場合について説明したが、その他、p型・n型シ
リコン半導体接合タイプなど種々の光電池において、同
様の効果が得られる。
Further, in the above-mentioned embodiment, the case of the dye-excited type photocell has been described, but other various photocells such as p-type / n-type silicon semiconductor junction type can obtain the same effect.

【0033】さらに、上記実施例においては、入射光側
の電極として、ITO膜などの透明電極の上に縞状の金
属電極を形成した場合について説明したが、例えばp型
・n型シリコン半導体接合タイプの光電池のなどの場合
には、透明電極を形成せずに半導体膜上に入射光側電極
として縞状の金属電極を直接形成することもできる。
Further, in the above embodiment, the case where the striped metal electrode is formed on the transparent electrode such as the ITO film as the incident light side electrode has been described, but for example, the p-type / n-type silicon semiconductor junction is used. In the case of a photovoltaic cell of the type, a striped metal electrode can be directly formed as an incident light side electrode on the semiconductor film without forming the transparent electrode.

【0034】[0034]

【発明の効果】以上の説明で明らかなように、上記した
入射光側の金属電極によって、金属による光の遮断を防
止し、かつ、電気抵抗を下げた入射光側電極を有する光
・電気変換効率に優れた光電池を得ることができる。
As is apparent from the above description, the incident-light-side metal electrode described above prevents light from being blocked by metal and has an incident-light-side electrode whose electrical resistance is reduced. A highly efficient photovoltaic cell can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光電池に用いる縞状の金属電極の断面
図である。
FIG. 1 is a cross-sectional view of a striped metal electrode used in the photovoltaic cell of the present invention.

【図2】本発明の光電池の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of the photovoltaic cell of the present invention.

【図3】入射光の反射方向を示す光路図である。FIG. 3 is an optical path diagram showing a reflection direction of incident light.

【符号の説明】[Explanation of symbols]

1 シリカガラス基板 2 縞状の金属電極 3 電解液 4 半導体セラミックス 5 透明電極 6 対向電極 1 Silica Glass Substrate 2 Striped Metal Electrode 3 Electrolyte 4 Semiconductor Ceramics 5 Transparent Electrode 6 Counter Electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 断面形状が入射光側に鋭角のエッジを有
し、かつ、入射光の照射面が鏡面である金属電極を有す
る入射光側電極と、光・電気変換素子本体と、対向電極
とを備えた光電池。
1. An incident light side electrode having a metal electrode whose cross-sectional shape has an acute angle edge on the incident light side and whose incident light irradiation surface is a mirror surface, a photoelectric conversion element body, and a counter electrode. And a photovoltaic cell.
【請求項2】 金属電極の形状は、複数の線状であるこ
とを特徴とする請求項1記載の光電池。
2. The photovoltaic cell according to claim 1, wherein the shape of the metal electrode is a plurality of linear shapes.
【請求項3】 複数の線状の金属電極は、縞状又は格子
状であることを特徴とする請求項2記載の光電池。
3. The photovoltaic cell according to claim 2, wherein the plurality of linear metal electrodes have a stripe shape or a grid shape.
【請求項4】 金属電極は、透明電極と電気的に接触し
ていることを特徴とする請求項1又は請求項2記載の光
電池。
4. The photovoltaic cell according to claim 1 or 2, wherein the metal electrode is in electrical contact with the transparent electrode.
【請求項5】 金属電極は、光照射面が透明基板内に埋
め込まれていることを特徴とする請求項1、2及び4の
内いずれかに記載の光電池。
5. The photovoltaic cell according to claim 1, wherein the light irradiation surface of the metal electrode is embedded in a transparent substrate.
JP7088313A 1995-04-13 1995-04-13 Photocell Pending JPH08287969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7088313A JPH08287969A (en) 1995-04-13 1995-04-13 Photocell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7088313A JPH08287969A (en) 1995-04-13 1995-04-13 Photocell

Publications (1)

Publication Number Publication Date
JPH08287969A true JPH08287969A (en) 1996-11-01

Family

ID=13939451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7088313A Pending JPH08287969A (en) 1995-04-13 1995-04-13 Photocell

Country Status (1)

Country Link
JP (1) JPH08287969A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005530069A (en) * 2002-06-18 2005-10-06 フォトソーラー・アンパーツゼルスカブ Optical element for shading
JP2005293862A (en) * 2004-03-31 2005-10-20 Sekisui Jushi Co Ltd Solar cell
JP2005317225A (en) * 2004-04-27 2005-11-10 Enplas Corp Dye-sensitized solar cell, and photoelectrode for the same
JP2006060104A (en) * 2004-08-23 2006-03-02 Sony Corp Photoelectric conversion element and its manufacturing method
JP2006523369A (en) * 2003-03-24 2006-10-12 コナルカ テクノロジーズ インコーポレイテッド Photoelectric cell using mesh electrode
JP2006331934A (en) * 2005-05-27 2006-12-07 Sekisui Jushi Co Ltd Electrode substrate for dye-sensitized solar cell and dye-sensitized solar cell
JP2007103536A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Solar battery module
JP2007103537A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Solar battery module
JP2009009948A (en) * 2008-08-29 2009-01-15 Toyota Central R&D Labs Inc Dye-sensitized solar cell
WO2009098857A1 (en) * 2008-02-06 2009-08-13 Fujikura Ltd. Dye-sensitized solar cell
WO2010109785A1 (en) * 2009-03-23 2010-09-30 新日鐵化学株式会社 Dye-sensitized solar cell and method for manufacturing same
CN102130197A (en) * 2010-12-31 2011-07-20 常州天合光能有限公司 Light-reflecting low-resistance crystalline silicon solar cell assembly and connection welding belt thereof
CN102130196A (en) * 2010-12-31 2011-07-20 常州天合光能有限公司 Low-resistance crystalline silicon solar cell component
CN102142477A (en) * 2010-12-31 2011-08-03 常州天合光能有限公司 Reflective crystalline silicon solar cell module
US9184317B2 (en) 2007-04-02 2015-11-10 Merck Patent Gmbh Electrode containing a polymer and an additive

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005530069A (en) * 2002-06-18 2005-10-06 フォトソーラー・アンパーツゼルスカブ Optical element for shading
JP2006523369A (en) * 2003-03-24 2006-10-12 コナルカ テクノロジーズ インコーポレイテッド Photoelectric cell using mesh electrode
JP2005293862A (en) * 2004-03-31 2005-10-20 Sekisui Jushi Co Ltd Solar cell
JP2005317225A (en) * 2004-04-27 2005-11-10 Enplas Corp Dye-sensitized solar cell, and photoelectrode for the same
JP2006060104A (en) * 2004-08-23 2006-03-02 Sony Corp Photoelectric conversion element and its manufacturing method
JP2006331934A (en) * 2005-05-27 2006-12-07 Sekisui Jushi Co Ltd Electrode substrate for dye-sensitized solar cell and dye-sensitized solar cell
JP2007103536A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Solar battery module
JP2007103537A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Solar battery module
US9184317B2 (en) 2007-04-02 2015-11-10 Merck Patent Gmbh Electrode containing a polymer and an additive
WO2009098857A1 (en) * 2008-02-06 2009-08-13 Fujikura Ltd. Dye-sensitized solar cell
JP2009009948A (en) * 2008-08-29 2009-01-15 Toyota Central R&D Labs Inc Dye-sensitized solar cell
JP5589164B2 (en) * 2009-03-23 2014-09-17 新日鉄住金化学株式会社 Dye-sensitized solar cell and method for producing the same
WO2010109785A1 (en) * 2009-03-23 2010-09-30 新日鐵化学株式会社 Dye-sensitized solar cell and method for manufacturing same
CN102130197A (en) * 2010-12-31 2011-07-20 常州天合光能有限公司 Light-reflecting low-resistance crystalline silicon solar cell assembly and connection welding belt thereof
CN102130196A (en) * 2010-12-31 2011-07-20 常州天合光能有限公司 Low-resistance crystalline silicon solar cell component
CN102142477A (en) * 2010-12-31 2011-08-03 常州天合光能有限公司 Reflective crystalline silicon solar cell module

Similar Documents

Publication Publication Date Title
JPH08287969A (en) Photocell
US20160284914A1 (en) Bifacial crystalline silicon solar panel with reflector
JP2001148500A (en) Solar cell module
US20220278246A1 (en) Bifacial crystalline silicon solar panel with reflector
JP2001267610A (en) Solar battery
JPWO2011001735A1 (en) Thin film solar cell and manufacturing method thereof
AU2002358762B2 (en) Profiled photovoltaic roofing panel
JPH0671093B2 (en) Photovoltaic element
TW201442266A (en) Photo-voltaic cell and method of manufacturing such a cell
JP4593980B2 (en) Photoelectric conversion device, solar cell element using the same, and solar cell module
CN218414594U (en) Solar cell and photovoltaic module
JP2005353836A (en) Solar cell element and solar cell module using the same
CN104091840B (en) A kind of selective emitter solar battery
CN109216475B (en) Solar panel assembly
JPH06209114A (en) Photovoltaic element
CN218887200U (en) Solar cell front grid line structure
KR102453973B1 (en) Solar cell and solar cell module including the same
KR101193512B1 (en) Solar cell module
JPS63226971A (en) Photoelectric element
KR101739044B1 (en) Solar cell module and solar power generating system having the same
CN106920852B (en) Solar cell and module thereof
JPS5854678A (en) Solar battery element
JP2892921B2 (en) Photovoltaic device
JP2001111087A (en) Solar battery module
JP2023136180A (en) Solar cell module, photovoltaic power generation device, and manufacturing method of solar cell module