JPH06209114A - Photovoltaic element - Google Patents

Photovoltaic element

Info

Publication number
JPH06209114A
JPH06209114A JP50A JP323893A JPH06209114A JP H06209114 A JPH06209114 A JP H06209114A JP 50 A JP50 A JP 50A JP 323893 A JP323893 A JP 323893A JP H06209114 A JPH06209114 A JP H06209114A
Authority
JP
Japan
Prior art keywords
power generation
light
generation layer
photovoltaic element
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP50A
Other languages
Japanese (ja)
Other versions
JP3442418B2 (en
Inventor
Toru Sawada
徹 澤田
Toshiaki Baba
俊明 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP00323893A priority Critical patent/JP3442418B2/en
Publication of JPH06209114A publication Critical patent/JPH06209114A/en
Application granted granted Critical
Publication of JP3442418B2 publication Critical patent/JP3442418B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To obtain a photovoltaic element having an excellent sensitivity to long wavelength light and an enhanced conversion efficiency. CONSTITUTION:Within this photovoltaic element, several collector electrodes 4 in strips are formed on the surface of semiconductor on an underneath substrate 2 while the collector electrode 4 having tapered surface inclined to the generating layer 3 as it goes toward the incident region 6 between the collector electrodes 4 leads the incident beams by the tapered surface 4a to the generating layer part exposed in the region 6 so that long wavelength light may be reflected by the collector electrodes 4 and confined in the generating layer 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光エネルギーを電気エ
ネルギーに変換する光起電力素子に関し、特に、光が入
射される側の電極構造が改良された光起電力素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic device for converting light energy into electric energy, and more particularly to a photovoltaic device having an improved electrode structure on the side where light is incident.

【0002】[0002]

【従来の技術】太陽電池などの光起電力素子において発
電量を高めるには、光の入射量を多くする必要がある。
他方、光起電力素子では、Siのような半導体からなる
発電層の受光面側に、透明電極及び集電極を形成した構
造が多用されている。これらの電極のうち、透明電極は
光を透過させるが、集電極はAlなどの光を透過しない
材料からなる。従って、変換効率を高めるには、集電極
の面積を可能な限り小さくすることが望ましいとされて
いる(R.Mertens,et al.6thInt
PVSEC,New Delhi,1992,第33
頁〜第39頁)。
2. Description of the Related Art In order to increase the amount of power generation in a photovoltaic element such as a solar cell, it is necessary to increase the amount of incident light.
On the other hand, in a photovoltaic element, a structure in which a transparent electrode and a collecting electrode are formed on the light receiving surface side of a power generation layer made of a semiconductor such as Si is often used. Among these electrodes, the transparent electrode transmits light, but the collector electrode is made of a material such as Al that does not transmit light. Therefore, in order to improve the conversion efficiency, it is desirable to make the area of the collecting electrode as small as possible (R. Mertens, et al. 6thInt.
PVSEC, New Delhi, 1992, 33rd
P.-p. 39).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、薄膜半
導体、たとえば薄膜Siを発電層とした光起電力素子で
は、発電層の膜厚は10μm程度とかなり薄くされてい
る。従って、光吸収係数の小さい長波長の光は、光起電
力素子の裏面側、すなわち光が入射される側とは反対側
の面で反射された後、その大部分が発電層を透過して受
光面側から外部に散乱してしまうという問題があった。
However, in a photovoltaic element using a thin film semiconductor, for example, thin film Si as a power generation layer, the thickness of the power generation layer is about 10 μm, which is considerably thin. Therefore, long-wavelength light with a small light absorption coefficient is reflected by the back surface side of the photovoltaic element, that is, the surface opposite to the side on which light is incident, and then most of it passes through the power generation layer. There is a problem that the light is scattered from the light receiving surface side to the outside.

【0004】上記のような長波長光の発電層外への散乱
は、発電層の表面側に微小な凹凸を設けることにより改
善される。しかしながら、上記のような凹凸を設けたと
しても、外部に散乱してしまう光を無くすことはできな
い。
The scattering of long-wavelength light to the outside of the power generation layer as described above is improved by providing minute irregularities on the surface side of the power generation layer. However, even if the unevenness is provided as described above, it is not possible to eliminate the light scattered to the outside.

【0005】さらに、発電層と異なる材料からなる基板
上に薄膜Siからなる発電層を形成して得られた、いわ
ゆる逆タイプと称されている太陽電池では、下地の基板
上に凹凸を設けることにより、長波長光を裏面側で乱反
射させている。しかし、薄膜Si表面における凹凸は、
下地基板から離れている分だけ、凹凸の程度が緩やかと
なっている。従って、長波長光の光閉じ込め効果は未だ
充分とはいえなかった。その結果、〜200μm程度の
厚みを有する厚膜タイプのSi太陽電池に比べて、薄膜
半導体を用いた太陽電池では、長波長光に対する感度が
低いという欠点があった。
Further, in a so-called reverse type solar cell obtained by forming a power generation layer made of thin film Si on a substrate made of a material different from that of the power generation layer, unevenness is provided on the underlying substrate. Thus, the long-wavelength light is diffusely reflected on the back surface side. However, the unevenness on the surface of the thin film Si is
The degree of unevenness is gentler as the distance from the base substrate is increased. Therefore, the optical confinement effect of long-wavelength light has not been sufficient. As a result, as compared with a thick film type Si solar cell having a thickness of about 200 μm, a solar cell using a thin film semiconductor has a drawback that sensitivity to long wavelength light is low.

【0006】本発明の目的は、薄膜半導体からなる発電
層を用いているにも係わらず、長波長光に対する感度が
高く、従って変換効率が高められた光起電力素子を提供
することにある。
An object of the present invention is to provide a photovoltaic element having high sensitivity to long-wavelength light and therefore improved conversion efficiency, even though a power generation layer made of a thin film semiconductor is used.

【0007】[0007]

【課題を解決するための手段】本発明の光起電力素子で
は、薄膜半導体からなる発電層を有し、該発電層の受光
面側に集電極を形成してなる光起電力素子において、発
電層に光を入射させるために、前記集電極が受光面側に
部分的に形成されており、該集電極が、集電極間の光が
入射される領域に向かうにつれて発電層側に傾斜したテ
ーパー面を有するようにテクスチュアー化されているこ
とを特徴とする光起電力素子である。
In the photovoltaic element of the present invention, a photovoltaic element having a power generation layer made of a thin film semiconductor and a collector electrode formed on the light receiving surface side of the power generation layer is used. The collector electrode is partially formed on the light-receiving surface side to allow light to enter the layer, and the collector electrode has a taper inclined toward the power generation layer toward a region where light is incident between the collector electrodes. It is a photovoltaic element characterized by being textured so as to have a surface.

【0008】なお、本発明の光起電力素子においては、
上記のように発電層の受光面側に集電極が形成されてい
るが、この集電極は、発電層の受光面に直接形成されて
もよく、あるいは受光面に形成された透明電極等の上に
形成されていてもよい。
In the photovoltaic element of the present invention,
Although the collecting electrode is formed on the light-receiving surface side of the power generation layer as described above, this collecting electrode may be directly formed on the light-receiving surface of the power generation layer, or on a transparent electrode or the like formed on the light-receiving surface. It may be formed in.

【0009】[0009]

【作用】本発明の光起電力素子では、集電極間において
発電層に光が入射されるが、集電極が上記テクスチュア
ー構造を有するため、集電極に到達した光は上記テーパ
ー面により反射されて、最終的に集電極間の上記光が入
射される領域に導かれ、発電層に入射される。従って、
集電極の面積が比較的大きくても、充分な量の光が発電
層に導かれる。
In the photovoltaic device of the present invention, light is incident on the power generation layer between the collecting electrodes, but since the collecting electrode has the texture structure, the light reaching the collecting electrode is reflected by the tapered surface. Finally, the light is guided to the region between the collector electrodes where the light is incident, and is incident on the power generation layer. Therefore,
Even if the area of the collecting electrode is relatively large, a sufficient amount of light is guided to the power generation layer.

【0010】また、光起電力素子の受光面側に上記集電
極が形成されているため、集電極が形成されている領域
では、裏面側において反射されてきた光、特に長波長光
が該集電極により反射されて素子内に効果的に閉じ込め
られる。
Further, since the collector electrode is formed on the light-receiving surface side of the photovoltaic element, the light reflected on the back surface side, particularly long-wavelength light, is collected in the region where the collector electrode is formed. It is reflected by the electrodes and effectively confined within the device.

【0011】[0011]

【実施例の説明】以下、本発明の実施例を説明すること
により、本発明を明らかにする。図1及び図2を参照し
て本発明の一実施例の光起電力素子を説明する。光起電
力素子1では、下地となる基板2上に発電層3が形成さ
れている。発電層3の下面には、特に図示はしないが、
裏面電極が形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be clarified by describing the embodiments of the present invention. A photovoltaic element according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. In the photovoltaic element 1, the power generation layer 3 is formed on the substrate 2 that is a base. Although not particularly shown on the lower surface of the power generation layer 3,
A back electrode is formed.

【0012】発電層3の上面には複数本の短冊状の集電
極4及び透明電極5が形成されている。上記透明電極を
除いた平面図である図1(b)に示されているように、
複数本の集電極4は、所定ピッチで平行に配置されてい
る。なお、本実施例では、集電極4の面積と、集電極
4,4間の光が入射される領域6との面積が等しくされ
ている。従って、領域6においては、図1(a)に示す
ように、発電層3の受光面3aが集電極4で覆われてお
らず、矢印Xで示す入射光は、該領域6内において発電
層3に入射される。
A plurality of strip-shaped collecting electrodes 4 and transparent electrodes 5 are formed on the upper surface of the power generation layer 3. As shown in FIG. 1 (b) which is a plan view excluding the transparent electrode,
The plurality of collector electrodes 4 are arranged in parallel at a predetermined pitch. In this embodiment, the area of the collector electrode 4 is made equal to the area of the region 6 between the collector electrodes 4 and 4 where light is incident. Therefore, in the region 6, as shown in FIG. 1A, the light receiving surface 3a of the power generation layer 3 is not covered with the collector electrode 4, and the incident light indicated by the arrow X is generated in the region 6 by the incident light. It is incident on 3.

【0013】さらに、集電極4には、上記領域6に近づ
くにつれて発電層3側に傾斜したテーパー面4aが形成
されている。テーパー面4aは、光が集電極4で反射さ
れて上記領域6に導かれるように、その傾斜角度が選択
されている。従って、本実施例の光起電力素子1では、
上記テーパー面4aで反射された光が、領域6内に臨ん
でいる発電層部分に導かれる。よって、集電極4が発電
層3の受光面側を覆っている面積が比較的大きくとも、
上記テーパー面4aが設けられているため、充分な光量
の入射光が領域6内の発電層部分に導かれる。
Further, the collecting electrode 4 is formed with a tapered surface 4a which is inclined toward the power generation layer 3 as it approaches the region 6. The inclination angle of the tapered surface 4a is selected so that the light is reflected by the collecting electrode 4 and guided to the region 6. Therefore, in the photovoltaic device 1 of this embodiment,
The light reflected by the tapered surface 4a is guided to the power generation layer portion facing the area 6. Therefore, even if the area where the collecting electrode 4 covers the light receiving surface side of the power generation layer 3 is relatively large,
Since the tapered surface 4a is provided, a sufficient amount of incident light is guided to the power generation layer portion in the region 6.

【0014】なお、本実施例では、領域6は平面形状が
矩形とされていたが、円形もしくは三角形等の他の形状
とされていてもよい。また、領域6に代えて、図5に示
す開口部36や一部が開かれた切欠を有するように、集
電極4が形成されていてもよい。
In this embodiment, the area 6 has a rectangular planar shape, but it may have another shape such as a circular shape or a triangular shape. Further, instead of the region 6, the collector electrode 4 may be formed so as to have the opening 36 shown in FIG.

【0015】さらに、本実施例の光起電力素子1では、
集電極4が発電層3の受光面を覆っている面積と、上記
領域6の面積とが約1:1とされている。この場合、図
2に示すように、上記テーパー面4aの作用により、集
電極4で覆われていない部分、すなわち領域6内に露出
されている領域の発電層部分Aにおける短絡光電流は、
集光されていない場合(すなわち、集電極4に上記テー
パー面4aを設けなかった場合)の2倍の電流値から、
集電極4で覆われている部分の発電層部分B側に入る光
が発電層部分A内に存在した場合に生成される電流を差
し引いたものとなる。
Further, in the photovoltaic element 1 of this embodiment,
The area where the collecting electrode 4 covers the light receiving surface of the power generation layer 3 and the area of the region 6 are set to about 1: 1. In this case, as shown in FIG. 2, due to the action of the tapered surface 4a, the short-circuit photocurrent in the power generation layer portion A in the portion not covered with the collector electrode 4, that is, the region exposed in the region 6 is
From the current value twice as high as that when the light is not collected (that is, when the tapered surface 4a is not provided on the collecting electrode 4),
The current generated when the light entering the power generation layer portion B side of the portion covered with the collector electrode 4 is present in the power generation layer portion A is subtracted.

【0016】他方、集電極4で覆われた発電層部分Bで
は、発電層部分A側から散乱した光のみが入射すること
になるが、発電層部分Bは、裏面電極(図示せず)と、
受光面側の集電極4とにより挟まれている。従って、光
吸収係数の小さい長波長光が、受光面側と裏面側との間
で繰り返し反射されてすべて吸収される。その結果、全
体の光起電力素子の特性は、発電層部分Aにより構成さ
れる光起電力素子と、発電層部分Bで構成される光起電
力素子とを並列接続したものの特性と等価となる。
On the other hand, in the power generation layer portion B covered with the collector electrode 4, only the light scattered from the power generation layer portion A side is incident, but the power generation layer portion B has a back electrode (not shown). ,
It is sandwiched by the collecting electrode 4 on the light receiving surface side. Therefore, long-wavelength light having a small light absorption coefficient is repeatedly reflected and absorbed between the light receiving surface side and the back surface side. As a result, the characteristics of the entire photovoltaic element are equivalent to those of the photovoltaic element configured by the power generation layer portion A and the photovoltaic element configured by the power generation layer portion B connected in parallel. .

【0017】よって、本実施例の光起電力素子では、従
来の光起電力素子に比べて、発電層部分Bにおいて発電
層部分Aで吸収されない長波長光を吸収し得る分だけ、
長波長光に対する感度が増大し、従って短絡光光電流値
が高められる。
Therefore, in the photovoltaic device of this embodiment, as compared with the conventional photovoltaic device, the power generation layer portion B can absorb the long wavelength light which is not absorbed in the power generation layer portion A.
The sensitivity to long-wavelength light is increased, thus increasing the short circuit photocurrent value.

【0018】次に、具体的な実験例につき説明する。図
3は、本発明の一実施例において製造した光起電力素子
の模式的断面図である。本実施例の光起電力素子におい
て、光の入射方向は、矢印Cで示す方向である。
Next, a concrete experimental example will be described. FIG. 3 is a schematic cross-sectional view of a photovoltaic element manufactured in one example of the present invention. In the photovoltaic device of the present embodiment, the incident direction of light is the direction indicated by arrow C.

【0019】本実施例の光起電力素子10を得るにあた
っては、図4(a)に示すように上面に凹凸が形成され
た下地基板11上に裏面電極(図示せず)を形成し、該
裏面電極上に発電層12を形成する。発電層12は、下
方から薄膜多結晶Si及びa−Si薄膜を積層した構造
を有する。
To obtain the photovoltaic element 10 of this embodiment, a back electrode (not shown) is formed on a base substrate 11 having an uneven surface as shown in FIG. The power generation layer 12 is formed on the back electrode. The power generation layer 12 has a structure in which thin film polycrystalline Si and a-Si thin films are stacked from below.

【0020】発電層12上に、図4(b)に示すよう
に、全面にAlを蒸着し、厚み50μmの電極13を形
成する。
As shown in FIG. 4B, Al is vapor-deposited on the entire surface of the power generation layer 12 to form an electrode 13 having a thickness of 50 μm.

【0021】次に、レジストからなるマスク15と、H
2 PO4 とHNO3 との混液からなるエッチング液を用
い、上記電極13をエッチングし、図4(c)に示すよ
うに断面が三角形状の複数本の集電極13を、集電極間
の領域16の幅が50μm、集電極13の幅が50μm
となるように形成した。
Next, a mask 15 made of resist and H
The electrode 13 is etched using an etching solution composed of a mixture of 2 PO 4 and HNO 3 to form a plurality of collector electrodes 13 each having a triangular cross section as shown in FIG. The width of 16 is 50 μm, and the width of the collecting electrode 13 is 50 μm
Was formed so that

【0022】次に、上記発電層12の上面及び集電極1
3の上面を覆うようにITO(インジウム錫酸化物)か
らなる透明電極14を形成し、図4(d)の光起電力素
子10を得た。
Next, the upper surface of the power generation layer 12 and the collecting electrode 1
A transparent electrode 14 made of ITO (indium tin oxide) was formed so as to cover the upper surface of No. 3, and the photovoltaic element 10 of FIG. 4D was obtained.

【0023】なお、図4では、発電層12は単一の層と
して図示していたが、実際には、図3に示すように本実
施例の光起電力素子10では、n型の薄膜多結晶Si層
17と、p型のa−Si層18とを積層した構造を有す
る。また、図3に示したように、下地基板11の上面に
は凹凸が付与されている。下地基板11上に形成される
薄膜半導体よりなる発電層12の上面にも、図示のよう
に下地基板11の上面の凹凸よりも緩和されてはいる
が、同じく凹凸が形成されることになる。このように下
地基板11の上面に、すなわち発電層12の下面に凹凸
を付与することより、入射してきた長波長光を、裏面側
において効果的に乱反射させることができ、それによっ
て集電極13の直下に位置している発電層部分内に長波
長光をより効果的に導くことができる。
Although the power generation layer 12 is shown as a single layer in FIG. 4, in actuality, as shown in FIG. It has a structure in which a crystalline Si layer 17 and a p-type a-Si layer 18 are stacked. Further, as shown in FIG. 3, the upper surface of the base substrate 11 is provided with irregularities. Although the unevenness on the upper surface of the power generation layer 12 formed of the thin film semiconductor formed on the base substrate 11 is less than the unevenness on the upper surface of the base substrate 11 as shown in the drawing, the unevenness is also formed. By thus providing the upper surface of the base substrate 11, that is, the lower surface of the power generation layer 12 with unevenness, incident long-wavelength light can be effectively diffusedly reflected on the back surface side, whereby the collector electrode 13 can be reflected. Long-wavelength light can be guided more effectively into the power generation layer portion located immediately below.

【0024】図6は、比較のために用意した従来の光起
電力素子を示す断面図である。光起電力素子20では、
下地基板21上に、実施例と同様にn型薄膜多結晶Si
27及びp型a−Si薄膜28からなる発電層22が形
成されている。ここまでは、図3に示した実施例と同様
である。異なる点は、発電層22の上面の全面にITO
よりなる透明電極24が形成されており、かつ透明電極
24の上面に隣合う開口部中心間隔2mm及び開口部幅
100μmのマスクを用いて、上面が平坦な線幅100
μmの集電極23が複数本形成されていることにある。
この実施例では、全集電極23の面積が受光面側の全表
面積の5%であり、従って全照射光のうち5%は発電層
22には入らずに反射される。
FIG. 6 is a sectional view showing a conventional photovoltaic element prepared for comparison. In the photovoltaic element 20,
On the underlying substrate 21, n-type thin film polycrystalline Si is formed as in the embodiment.
The power generation layer 22 including the thin film 27 and the p-type a-Si thin film 28 is formed. Up to this point, the process is similar to that of the embodiment shown in FIG. The difference is that ITO is formed on the entire upper surface of the power generation layer 22.
A transparent electrode 24 made of, and using a mask adjacent to the upper surface of the transparent electrode 24 with an opening center interval of 2 mm and an opening width of 100 μm, a line width 100 having a flat upper surface is formed.
This is because a plurality of μm collector electrodes 23 are formed.
In this embodiment, the area of the total collecting electrode 23 is 5% of the total surface area on the light receiving surface side, and therefore 5% of the total irradiation light is reflected without entering the power generation layer 22.

【0025】なお、図3及び図6における発電層12,
22は、表面に凹凸が付与されたタングステン製下地基
板11,21上にn- 型a−Siを厚み10μmに形成
した後、固相成長法により結晶化してn型多結晶Si層
17,27とし、その上にp型a−Si層18,28を
形成することにより得たものである。このa−Si層の
形成条件を下記の表1に示す。なお、発電層12の上面
の表面積は100mm 2 である。
Incidentally, the power generation layer 12 in FIG. 3 and FIG.
22 is a tungsten base substrate having an uneven surface.
N on the plates 11 and 21-Form a-Si with a thickness of 10 μm
Then, the n-type polycrystalline Si layer is crystallized by solid phase growth method.
17, 27 and p-type a-Si layers 18 and 28 thereon.
It is obtained by forming. Of this a-Si layer
The forming conditions are shown in Table 1 below. The upper surface of the power generation layer 12
Has a surface area of 100 mm 2Is.

【0026】[0026]

【表1】 [Table 1]

【0027】上記のようにして用意した従来例及び図3
の実施例(集電極により覆われている部分の面積と、光
入射領域の面積とが等しいもの)の特性を測定したとこ
ろ、下記の表2に示す結果が得られた。
The conventional example prepared as described above and FIG.
The characteristics of Example (where the area of the portion covered by the collecting electrode is equal to the area of the light incident region) were measured, and the results shown in Table 2 below were obtained.

【0028】[0028]

【表2】 [Table 2]

【0029】表2から明らかなように、受光面側の表面
の1/2の面積が集電極に覆われているにも係わらず、
実施例の光起電力素子では、受光面側が5%しか覆われ
ていない従来例を上回る変換効率が得られることが分か
る。
As is clear from Table 2, although the surface area on the light-receiving surface side is covered with the collecting electrode,
It can be seen that in the photovoltaic elements of the examples, conversion efficiency higher than that of the conventional example in which the light-receiving surface side is covered by only 5% is obtained.

【0030】上述した説明では、半導体薄膜はSiによ
り構成されていたが、GeやGaAs等の他の半導体材
料により構成してもよい。また、発電層の構成について
も、上記ヘテロ接合タイプのものに限らず、従来より公
知の光起電力素子の発電層を適宜用いることができる。
Although the semiconductor thin film is made of Si in the above description, it may be made of another semiconductor material such as Ge or GaAs. Further, the structure of the power generation layer is not limited to the above-mentioned heterojunction type, and a conventionally known power generation layer of a photovoltaic element can be appropriately used.

【0031】[0031]

【発明の効果】以上のように、本発明の光起電力素子で
は、発電層の受光面側が比較的大きな面積の集電極で覆
われている場合でも、集電極に上記テーパー面が形成さ
れているため、入射光がテーパー面により反射されて集
電極間の光が入射される領域に臨む発電層部分に導かれ
る。しかも、発電層の受光面側が集電極で覆われている
部分では、素子の裏面側で反射されてきた光吸収係数の
小さい長波長光が該集電極によって反射され、発電層内
に効果的に閉じ込められる。
As described above, in the photovoltaic element of the present invention, even when the light receiving surface side of the power generation layer is covered with the collecting electrode having a relatively large area, the collecting electrode has the tapered surface. Therefore, the incident light is reflected by the tapered surface and guided to the power generation layer portion facing the region where the light is incident between the collector electrodes. Moreover, in the portion where the light-receiving surface side of the power generation layer is covered with the collecting electrode, the long-wavelength light having a small light absorption coefficient reflected on the back surface side of the element is reflected by the collecting electrode, effectively Be trapped.

【0032】よって、集電極の面積をかなり大きくした
場合であっても、従来の光起電力素子に比べて変換効率
の高い、特に長波長光に対する感度に優れた光起電力素
子を提供することができる。
Therefore, it is possible to provide a photovoltaic element having a higher conversion efficiency than that of a conventional photovoltaic element, particularly excellent in sensitivity to long-wavelength light even when the area of the collecting electrode is considerably increased. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)及び(b)は、それぞれ、一実施例の光
起電力素子の断面図及び集電極の平面図。
1A and 1B are respectively a cross-sectional view of a photovoltaic element and a plan view of a collecting electrode according to an embodiment.

【図2】図1に示した光起電力素子における集光及び長
波長光の閉じ込めの原理を説明するための断面図。
FIG. 2 is a sectional view for explaining the principle of condensing light and confining long-wavelength light in the photovoltaic element shown in FIG.

【図3】本発明の具体的実験例に用いた光起電力素子を
示す断面図。
FIG. 3 is a sectional view showing a photovoltaic element used in a specific experimental example of the present invention.

【図4】(a)〜(d)は、それぞれ、図3に示した光
起電力素子を製造する工程を説明するための各断面図。
4 (a) to 4 (d) are cross-sectional views for explaining steps of manufacturing the photovoltaic element shown in FIG. 3, respectively.

【図5】集電極の形状の他の例を示す平面図。FIG. 5 is a plan view showing another example of the shape of the collecting electrode.

【図6】比較ために用意した従来の光起電力素子を示す
断面図。
FIG. 6 is a cross-sectional view showing a conventional photovoltaic element prepared for comparison.

【符号の説明】[Explanation of symbols]

1…光起電力素子 3…発電層 4…集電極 4a…テーパー面 5…透明電極 6…光が入射される領域 DESCRIPTION OF SYMBOLS 1 ... Photovoltaic element 3 ... Power generation layer 4 ... Collection electrode 4a ... Tapered surface 5 ... Transparent electrode 6 ... Area where light is incident

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 薄膜半導体からなる発電層を有し、該発
電層の受光面側に集電極を形成してなる光起電力素子に
おいて、 発電層に光を入射させるために、前記集電極が受光面側
に部分的に形成されており、該集電極が、集電極間の光
が入射される領域に向かうにつれて発電層側に傾斜した
テーパー面を有するようにテクスチュアー化されている
ことを特徴とする、光起電力素子。
1. A photovoltaic element comprising a power generation layer made of a thin-film semiconductor, wherein a collecting electrode is formed on the light-receiving surface side of the power generation layer, wherein the collecting electrode is arranged to allow light to enter the power generation layer. It is partially formed on the light-receiving surface side, and the collecting electrode is textured so as to have a tapered surface inclined toward the power generation layer toward the region where the light enters between the collecting electrodes. And a photovoltaic element.
JP00323893A 1993-01-12 1993-01-12 Photovoltaic element Expired - Fee Related JP3442418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00323893A JP3442418B2 (en) 1993-01-12 1993-01-12 Photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00323893A JP3442418B2 (en) 1993-01-12 1993-01-12 Photovoltaic element

Publications (2)

Publication Number Publication Date
JPH06209114A true JPH06209114A (en) 1994-07-26
JP3442418B2 JP3442418B2 (en) 2003-09-02

Family

ID=11551881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00323893A Expired - Fee Related JP3442418B2 (en) 1993-01-12 1993-01-12 Photovoltaic element

Country Status (1)

Country Link
JP (1) JP3442418B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060104A (en) * 2004-08-23 2006-03-02 Sony Corp Photoelectric conversion element and its manufacturing method
WO2006129446A1 (en) * 2005-06-01 2006-12-07 Shin-Etsu Handotai Co., Ltd. Solar cell and solar cell manufacturing method
KR100937140B1 (en) * 2007-09-21 2010-01-15 고려대학교 산학협력단 High Efficiency Solar Cell
WO2012046932A1 (en) * 2010-10-05 2012-04-12 엘지이노텍주식회사 Solar cell and method for manufacturing same
US8979349B2 (en) 2009-05-29 2015-03-17 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
WO2019188133A1 (en) * 2018-03-30 2019-10-03 株式会社カネカ Solar cell, solar cell module, and method for manufacturing solar cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060104A (en) * 2004-08-23 2006-03-02 Sony Corp Photoelectric conversion element and its manufacturing method
WO2006129446A1 (en) * 2005-06-01 2006-12-07 Shin-Etsu Handotai Co., Ltd. Solar cell and solar cell manufacturing method
TWI422047B (en) * 2005-06-01 2014-01-01 Shinetsu Handotai Kk Solar cell and solar cell manufacturing method
KR100937140B1 (en) * 2007-09-21 2010-01-15 고려대학교 산학협력단 High Efficiency Solar Cell
US8979349B2 (en) 2009-05-29 2015-03-17 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
WO2012046932A1 (en) * 2010-10-05 2012-04-12 엘지이노텍주식회사 Solar cell and method for manufacturing same
CN103081122A (en) * 2010-10-05 2013-05-01 Lg伊诺特有限公司 Solar cell and method for manufacturing same
WO2019188133A1 (en) * 2018-03-30 2019-10-03 株式会社カネカ Solar cell, solar cell module, and method for manufacturing solar cell
JPWO2019188133A1 (en) * 2018-03-30 2021-04-01 株式会社カネカ Solar cells, solar cell modules, and methods for manufacturing solar cells

Also Published As

Publication number Publication date
JP3442418B2 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
Swanson et al. Point-contact silicon solar cells
KR101046219B1 (en) Solar cell having a selective emitter
US4886555A (en) Solar cell
JP3872428B2 (en) Manufacturing method of solar cell
KR101052030B1 (en) Electromagnetic radiation converter
JPH0795602B2 (en) Solar cell and manufacturing method thereof
US4726849A (en) Photovoltaic device and a method of manufacturing thereof
JP2001267610A (en) Solar battery
CN112466968A (en) Photovoltaic cell and photovoltaic module
CN114823951A (en) Solar cell and photovoltaic module
CN116722051A (en) Solar cell, preparation method and photovoltaic module
JP2001044470A (en) Solar battery, manufacture of the solar battery and condenser solar battery module
JPH06209114A (en) Photovoltaic element
JPH0671093B2 (en) Photovoltaic element
JP7444927B2 (en) Solar cells and solar power modules
JP3133494B2 (en) Photovoltaic element
CN115377230A (en) Solar cell and photovoltaic module
JPS6213829B2 (en)
JPH073875B2 (en) Photovoltaic device
JP4097549B2 (en) Solar cell device and manufacturing method thereof
JPS5935189B2 (en) Koden Henkan Soshinoseizouhouhou
JPH0548123A (en) Photoelectric conversion element
JP7470762B2 (en) Solar Cells and Photovoltaic Modules
EP4318607A1 (en) Solar cell and photovoltaic module
JP2869178B2 (en) Photovoltaic device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees