US20100047565A1 - Process for depositing an electrically conductive layer and assembly of the layer on a porous support substrate - Google Patents
Process for depositing an electrically conductive layer and assembly of the layer on a porous support substrate Download PDFInfo
- Publication number
- US20100047565A1 US20100047565A1 US12/349,735 US34973509A US2010047565A1 US 20100047565 A1 US20100047565 A1 US 20100047565A1 US 34973509 A US34973509 A US 34973509A US 2010047565 A1 US2010047565 A1 US 2010047565A1
- Authority
- US
- United States
- Prior art keywords
- layer
- process according
- comprises depositing
- weight
- depositing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0688—Cermets, e.g. mixtures of metal and one or more of carbides, nitrides, oxides or borides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/088—Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3485—Sputtering using pulsed power to the target
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
- H01M4/9025—Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9033—Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249967—Inorganic matrix in void-containing component
- Y10T428/24997—Of metal-containing material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
Definitions
- the invention relates to a process for producing or depositing an electrically conductive layer with a perovskitic structure.
- the invention also relates to an assembly of the layer on a porous support substrate.
- Protective layers with a perovskitic structure are used, for example, in high-temperature fuel cells (SOFC: Solid Oxide Fuel Cell). They are operated at temperatures of approximately 650 to 900° C., since it is only at those temperatures that the thermodynamic conditions for efficient energy production prevail.
- SOFC Solid Oxide Fuel Cell
- individual electrochemical cells made up of a cathode, a solid electrolyte and an anode are stacked to form a stack and connected through the use of metallic components, so-called interconnectors.
- the interconnector also separates anode and cathode gas spaces.
- a dense interconnector is just as important as a dense electrolyte layer for ensuring a highly effective high-temperature fuel cell.
- Suitable materials for interconnectors also have to have a sufficient conductivity and resistance to the oxidizing conditions on the air side and reducing conditions on the fuel gas side. Those requirements are currently best met by lanthanum chromite, chromium/iron alloys which are doped with yttrium oxide, and chromium-rich ferrites.
- a conductive layer with a perovskitic structure is deposited on the interconnector.
- perovskites which are currently used for producing cathodes in SOFCs, have the property of being mixed conductors, i.e. they conduct both electrons and ions. Perovskites are thermodynamically stable even at high oxygen partial pressures and, in order to improve the contact-connection, are also applied to that side of the interconnector which faces towards the cathode.
- processes such as APS (Atmospheric Plasma Spraying), VPS (Vacuum Plasma Spraying), dip coating or wet powder spraying have been evaluated, or are used on a semi-industrial scale, for coating interconnectors.
- APS atmospheric Plasma Spraying
- VPS Vauum Plasma Spraying
- dip coating or wet powder spraying have been evaluated, or are used on a semi-industrial scale, for coating interconnectors.
- Those spraying processes are also used to produce electrochemically active cell layers in the high-temperature fuel cell.
- VPS and APS are spraying processes which are carried out either under vacuum or under atmospheric conditions. In those processes, powder is melted in a plasma jet, and the powder grains immediately solidify in flat form with a thickness of a few pm when they impact on the substrate surface. A certain degree of residual porosity cannot be prevented in that technique.
- CVD processes on the basis of chloridic compounds and reaction with water vapor at deposition temperatures of 1100 to 1000° C. have also been tested. Layers with thicknesses of 20 to 50 ⁇ m have been produced using that process. That process, too, is costly and the high deposition temperatures are also disadvantageous.
- MSC concepts on the anode side permit high power densities to be achieved and constitute an inexpensive alternative.
- NiO—YSZ nickel oxide-yttrium stabilized zirconium oxide
- NiO—YSZ nickel oxide-yttrium stabilized zirconium oxide
- those support substrates are conventionally formed of an Fe-based alloy with a high Cr content
- Ni diffuses from the anode into the support substrate or Fe and Cr diffuse from the support substrate into the NiO—YSZ anode when used at temperatures of 650 to 900° C.
- the result of that interdiffusion phenomenon is that a diffusion zone of Fe—Cr—Ni is formed in the contact area. In comparison with the support substrate, that diffusion zone has a considerably higher coefficient of thermal expansion. That can lead to spalling which would result in severe degradation or total failure.
- the interdiffusion can be prevented by perovskitic diffusion barrier layers. To date, that has been done by depositing porous layers, since otherwise the support substrate is no longer gas-permeable. Plasma-sprayed diffusion barrier layers are also applied to the cathode side of interconnectors. It is disadvantageous in that case that very thick and therefore expensive layers are used due to the intrinsically high porosity.
- a further object of the invention is to provide a conductive ceramic diffusion barrier layer applied to a porous support substrate, which does not considerably impair the gas permeability of the support substrate.
- a process for depositing or producing an electrically conductive ceramic layer comprises producing the layer by a pulsed sputtering process.
- an electrically conductive ceramic layer preferably with a perovskitic structure, is deposited through the use of a pulsed sputtering process.
- the process according to the invention makes it possible to uniformly apply thin, dense and functional ceramic layers to the surface of dense, but also porous, substrate materials.
- the mass transfer through the applied layer is restricted to defect mechanisms. Even at temperatures above 600° C., the diffusivity of, for example, chromium in the layer according to the invention is very low.
- This makes it possible to use very thin layers with a thickness of preferably 0.1 to 5 ⁇ m as the diffusion barrier layer.
- the barrier effect is insufficient at a thickness of below 0.1 ⁇ m.
- the layer tends to spall at a thickness of above 5 ⁇ m.
- the porous support substrate preferably has a density of 40 to 70% of the theoretical density and preferably is formed of sintered grains of an Fe-based alloy including 15 to 35% by weight of Cr, 0.01 to 2% by weight of one or more elements selected from the group consisting of Ti, Zr, Hf, Mn, Y, Sc, rare earths, 0 to 10% by weight of Mo and/or Al, 0 to 5% by weight of one or more metals selected from the group consisting of Ni, W, Nb, Ta and 0.1 to 1% by weight of O, a remainder of Fe and impurities.
- PVD processes are not used for coating interconnectors with ceramic materials since, to date, it has been assumed that the difficult process management of reactive PVD processes makes them unsuitable for depositing conductive ceramic layers, in particular dielectric layers with a perovskitic structure, since it is not possible to achieve a stoichiometric deposition of the complex layer material and the required layer properties, such as high density and good electrical conductivity.
- the layer is made up of electrically neutral particles which have different energies due to the process.
- the coating material is therefore opposite the substrate as a target.
- the target is bombarded with positive ions.
- a voltage is applied between the substrate (holder) and the target, and therefore positive ions are accelerated towards the target where they eject atoms or molecules which then settle on the substrate as neutral particles, uninfluenced by the outer field, and form the thin functional layer.
- the space between the anode and the cathode is evacuated and then filled with the process gas. A voltage is applied between the anode and the cathode.
- pulsed sputtering plasmas makes it possible to use significantly higher target currents and arc currents.
- the higher current intensities mean that considerably higher coating rates can be achieved.
- oxide-ceramic sputtering targets makes it possible to carry out the process in non-reactive fashion, and this achieves high process stability and reduces the technical complexity.
- the content of multiply charged particles and the kinetic energy of the particles can be increased due to the relatively high degree of plasma excitation, and this makes it possible to provide a coating without a substrate bias. This results in improved layer properties such as, for example, a higher layer density, improved adhesion, higher electrical conductivity and improved chemical resistance.
- the concentration of the elements in the sputtering target differs at most by 5% from the concentration of the respective element in the layer.
- the process according to the invention therefore permits ceramic, preferably perovskitic layers to be stoichiometrically deposited, even on unheated substrates.
- the layer surfaces produced are smooth and chemically stable.
- the layer is deposited at a frequency of the pulsed voltage of 1 to 1000 kHz. At below 1 kHz or during DC operation, no stable coating processes can be carried out in the case of the deposition of dielectric materials. Instead, electrical flashovers and arcing occur.
- the technical outlay for the voltage supply and the number of adapting units required for controlling the process impedance become too great for an economic coating.
- the process becomes particularly economical when a frequency of 10 to 500 kHz, preferably 100 to 350 kHz, is chosen.
- the voltage root-mean-square value is +100 to ⁇ 1000 V, preferably +100 to ⁇ 500 V.
- the voltage root-mean-square value of an AC voltage is understood to mean the DC voltage value which corresponds to the same heat effect.
- the ratio of peak amplitude to root-mean-square value is referred to as the crest factor and is, for example, 1.41 for sinusoidals.
- the particle energies are too low for the desired sputtering process.
- the high particle energies can result in undesirable effects such as, for example, sputtering away of the evaporating layer, electrical flashovers due to high field strengths, implantation in the substrate, undesirable increase in temperature, etc., which prevent layers with a perovskitic structure from being deposited.
- the layer has proven to be advantageous to deposit the layer with a mean power density of 1 to 30 W/cm 2 . At below 1 W/cm 2 , the coating rate is too slow and the coating duration is therefore too long for industrial implementation. At above 30 W/cm 2 , the input of energy at the target is too great, and this results in the thermal destruction of the perovskitic target material.
- the process gas used is an inert gas, preferably argon, with a pressure of 1 ⁇ 10 ⁇ 4 to 9 ⁇ 10 ⁇ 2 mbar. At below 1 ⁇ 10 ⁇ 4 mbar, the sputtering process cannot be ignited. At above 9 ⁇ 10 ⁇ 2 mbar, the free path lengths of the sputtered layer particles become too small as a result of too many impact processes. This reduces the kinetic energy of the sputtered layer particles, which means that the desirable layer properties cannot be achieved.
- the ceramic layer preferably has a perovskitic structure with the structural formula ABO 3 .
- the crystal structure in this case is cubic, orthorhombic or tetragonal.
- A includes one or more elements selected from the group consisting of La, Ba, Sr, Ca.
- B includes one or more elements selected from the group consisting of Cr, Mg, Al, Mn, Fe, Co, Ni, Cu and Zn.
- the layers preferably have a density >99% of the theoretical density and an impurity content ⁇ 0.5% by weight, preferably ⁇ 0.1% by weight.
- FIG. 1 is an illustration diagrammatically showing a configuration of a perovskitic layer on a porous substrate
- FIG. 2 is a group of photographs showing EPMA measurements of a porous substrate with an LSC layer and an Ni layer deposited thereon, after ageing for 1000 h at 850° C.
- a porous support substrate having a composition of 26% by weight Cr, 0.5% by weight Y 2 O 3 , 2% by weight Mo, 0.3% by weight Ti and 0.03% by weight Al and a remainder of Fe was coated through the use of a pulsed, non-reactive DC process. This was done using an Edwards sputter coater fitted with an LSM target (La 0.8 Sr 0.2 Mn oxide) with a diameter of 72 mm. A sputtering power of 400 W, a voltage of 149 V, a current of 2.01 A, a frequency of 350 kHz (with a pulse duration of 1.1 ⁇ s) and a process pressure of 5*10 ⁇ 3 mbar were also set. This produced LSM layers being 3 ⁇ m thick and having the composition La 0.8 Sr 0.2 Mn oxide (LSM).
- LSM target La 0.8 Sr 0.2 Mn oxide
- FIG. 1 diagrammatically shows the configuration of the deposited layers on the porous support substrate.
- Porous and dense support substrates having a composition of 26% by weight Cr, 0.5% by weight Y 2 O 3 , 2% by weight Mo, 0.3% by weight Ti and 0.03% by weight Al and a remainder of Fe were coated through the use of a pulsed, non-reactive DC process.
- a sputtering power of 400 W, a voltage of 149 V, a current of 2.01 A, a frequency of 350 kHz (with a pulse duration of 1.1 ⁇ s) and a process pressure of 5*10 ⁇ 3 mbar were also set. This produced LSC layers being 3 ⁇ m thick and having the composition La 0.8 Sr 0.2 CrO 3 .
- the LSC layers were then coated with an APS nickel layer being 50 ⁇ m thick.
- This structure of an iron/chromium alloy (porous and non-porous)—LSC layer (3 ⁇ m)—APS nickel layer (50 ⁇ m) was used to investigate the diffusion barrier effect of the thin LSC layer with respect to nickel into iron or iron into nickel.
- the structure was aged in air for 100 h at 850° C. to 1000° C.
- the diffusion properties were documented using EPMA measurements, as seen in FIG. 2 .
- the LSC layer prevents diffusion of nickel into iron or iron into nickel under the stated test conditions.
- the LSC layers deposited have a high electrical conductivity (corresponding to the target used), a high density >99.9%, a homogeneous layer structure and a smooth surface with a mean roughness value which is the same as the mean roughness value of the substrate. As a result of the process, no foreign atom inclusions can be measured through the use of EPMA and EDX.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Physical Vapour Deposition (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Fuel Cell (AREA)
- Non-Insulated Conductors (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/419,831 US20120171464A1 (en) | 2006-07-07 | 2012-03-14 | Porous support substrate with an electrically conductive ceramic layer |
US14/618,127 US10320019B2 (en) | 2006-07-07 | 2015-02-10 | Process for producing a solid oxide fuel cell by depositing an electrically conductive and gas permeable layer on a porous support substrate |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0053406U AT9543U1 (de) | 2006-07-07 | 2006-07-07 | Verfahren zur herstellung einer elektrisch leitfähigen schicht |
ATGM534/2006 | 2006-07-07 | ||
PCT/AT2007/000338 WO2008003113A1 (de) | 2006-07-07 | 2007-07-05 | Verfahren zur herstellung einer elektrisch leitfähigen schicht |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AT2007/000338 Continuation WO2008003113A1 (de) | 2006-07-07 | 2007-07-05 | Verfahren zur herstellung einer elektrisch leitfähigen schicht |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/419,831 Division US20120171464A1 (en) | 2006-07-07 | 2012-03-14 | Porous support substrate with an electrically conductive ceramic layer |
US14/618,127 Continuation US10320019B2 (en) | 2006-07-07 | 2015-02-10 | Process for producing a solid oxide fuel cell by depositing an electrically conductive and gas permeable layer on a porous support substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100047565A1 true US20100047565A1 (en) | 2010-02-25 |
Family
ID=38456742
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/349,735 Abandoned US20100047565A1 (en) | 2006-07-07 | 2009-01-07 | Process for depositing an electrically conductive layer and assembly of the layer on a porous support substrate |
US13/419,831 Abandoned US20120171464A1 (en) | 2006-07-07 | 2012-03-14 | Porous support substrate with an electrically conductive ceramic layer |
US14/618,127 Expired - Fee Related US10320019B2 (en) | 2006-07-07 | 2015-02-10 | Process for producing a solid oxide fuel cell by depositing an electrically conductive and gas permeable layer on a porous support substrate |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/419,831 Abandoned US20120171464A1 (en) | 2006-07-07 | 2012-03-14 | Porous support substrate with an electrically conductive ceramic layer |
US14/618,127 Expired - Fee Related US10320019B2 (en) | 2006-07-07 | 2015-02-10 | Process for producing a solid oxide fuel cell by depositing an electrically conductive and gas permeable layer on a porous support substrate |
Country Status (8)
Country | Link |
---|---|
US (3) | US20100047565A1 (de) |
EP (1) | EP2038450B1 (de) |
JP (1) | JP5421101B2 (de) |
KR (1) | KR20090031518A (de) |
CN (1) | CN101484606B (de) |
AT (1) | AT9543U1 (de) |
DK (1) | DK2038450T3 (de) |
WO (1) | WO2008003113A1 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101421245B1 (ko) * | 2011-12-26 | 2014-07-18 | 한국기계연구원 | 금속지지형 고체산화물 연료전지의 제조방법 및 이에 의해 제조되는 금속지지형 고체산화물 연료전지 |
EP2808932A1 (de) | 2013-05-31 | 2014-12-03 | Topsøe Fuel Cell A/S | Metallgestützte Festoxidzelle |
US9992917B2 (en) | 2014-03-10 | 2018-06-05 | Vulcan GMS | 3-D printing method for producing tungsten-based shielding parts |
CN111785916A (zh) * | 2020-07-29 | 2020-10-16 | 吉林大学 | 一种pet膜双面快速镀膜、涂覆设备 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008049606A1 (de) * | 2008-09-30 | 2010-04-01 | Siemens Aktiengesellschaft | Verfahren zur Verringerung der Chromdiffusion aus Chrom enthaltenden, gesinterten porösen Metallsubstraten zwecks Verwendung in einer Hochtemperatur-Brennstoffzelle bzw. Brennstoffzellenanlage |
EP2333883A1 (de) | 2009-11-18 | 2011-06-15 | Forschungszentrum Jülich Gmbh (FJZ) | Anode für eine Hochtemperatur-Brennstoffzelle sowie deren Herstellung |
EP2325931A1 (de) * | 2009-11-18 | 2011-05-25 | Plansee Se | Anordnung für eine Brennstoffzelle sowie Verfahren zu deren Herstellungen |
CN103477484B (zh) | 2011-03-31 | 2016-07-06 | 株式会社村田制作所 | 燃料电池 |
DE102012103383A1 (de) * | 2012-04-18 | 2013-10-24 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Verfahren zur Herstellung eines Trägersubstrats, Trägersubstrat und elektrochemische Einrichtung |
US10084192B2 (en) | 2014-03-20 | 2018-09-25 | Versa Power Systems, Ltd | Cathode contact layer design for preventing chromium contamination of solid oxide fuel cells |
US9559366B2 (en) | 2014-03-20 | 2017-01-31 | Versa Power Systems Ltd. | Systems and methods for preventing chromium contamination of solid oxide fuel cells |
BR112016025969B1 (pt) | 2014-05-05 | 2022-05-24 | Daramic, Llc | Separadores de bateria, bateria de chumbo-ácido e método de fabricação dos mesmos |
AT521011B1 (de) * | 2018-09-21 | 2019-10-15 | High Tech Coatings Gmbh | Bauelement mit einer zweilagigen, oxidischen Schutzschicht |
CN111028977B (zh) * | 2019-12-24 | 2021-04-20 | 东北大学 | 一种双层复合质子导体材料及其制备方法 |
AT523864B1 (de) | 2020-05-20 | 2022-12-15 | High Tech Coatings Gmbh | Verfahren zur Herstellung einer Schutzschicht auf einem Bauelement |
DE102021209890A1 (de) | 2021-09-08 | 2023-03-09 | Robert Bosch Gesellschaft mit beschränkter Haftung | Kriechfester Stahl |
CN117712389B (zh) * | 2024-02-18 | 2024-04-16 | 深圳市汉嵙新材料技术有限公司 | 多孔集流体的制备方法、制造装置、电极以及二次电池 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5134042A (en) * | 1986-11-26 | 1992-07-28 | Sri International | Solid compositions for fuel cells, sensors and catalysts |
US5162294A (en) * | 1991-02-28 | 1992-11-10 | Westinghouse Electric Corp. | Buffer layer for copper oxide based superconductor growth on sapphire |
US5304293A (en) * | 1992-05-11 | 1994-04-19 | Teknekron Sensor Development Corporation | Microsensors for gaseous and vaporous species |
US6176986B1 (en) * | 1996-05-27 | 2001-01-23 | Mitsubishi Materials Corporation | Sputtering target of dielectrics having high strength and a method for manufacturing same |
US6455326B1 (en) * | 2000-05-15 | 2002-09-24 | Ramtron International Corporation | Enhanced process capability for sputtered ferroelectric films using low frequency pulsed DC and RF power supplies |
US20030161969A1 (en) * | 2002-02-26 | 2003-08-28 | Hilliard Donald Bennett | Electron-assisted deposition process and apparatus |
US20040259305A1 (en) * | 2003-05-23 | 2004-12-23 | Demaray Richard E. | Energy conversion and storage films and devices by physical vapor deposition of titanium and titanium oxides and sub-oxides |
US20050092597A1 (en) * | 2003-10-29 | 2005-05-05 | O'neil James | Method of forming thin-film electrodes |
US20060260466A1 (en) * | 2005-05-23 | 2006-11-23 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Hydrogen permeable member and method for production thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2826805A (en) | 1954-01-13 | 1958-03-18 | Federal Mogul Corp | Sintered stainless steel metal alloy |
DE1796089A1 (de) * | 1967-08-31 | 1972-04-13 | Cie Francaise De Raffinage S A | Batterie von Brennstoffelementen mit festem Elektrolyt und Verfahren zur Herstellung dieser Batterien |
US3980444A (en) | 1975-01-22 | 1976-09-14 | Allegheny Ludlum Industries, Inc. | Sintered liquid phase stainless steel |
US4028094A (en) | 1975-10-29 | 1977-06-07 | Allegheny Ludlum Industries, Inc. | Stainless steel powder |
DE4119498A1 (de) | 1991-06-13 | 1992-12-17 | Abb Patent Gmbh | Verfahren zur herstellung einer brennstoffzellen-luftelektrode |
US6004696A (en) * | 1995-03-22 | 1999-12-21 | Northwestern University | AG-perovskite cermets for thin film solid oxide fuel cell air-electrode applications |
US5686198A (en) * | 1996-02-29 | 1997-11-11 | Westinghouse Electric Corporation | Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells |
DE19804838A1 (de) | 1998-01-29 | 1999-08-05 | Inst Angewandte Chemie Berlin | Verfahren zur plasmagestützten Oberflächenwandlung teilchenförmiger Stoffe sowie Hohlkathoden-Plasmaquelle |
GB0217794D0 (en) * | 2002-08-01 | 2002-09-11 | Univ St Andrews | Fuel cell electrodes |
JP4029151B2 (ja) * | 2002-11-05 | 2008-01-09 | 独立行政法人産業技術総合研究所 | プロトン導電性ペロブスカイト型複合酸化物焼結体 |
JP2004199894A (ja) * | 2002-12-16 | 2004-07-15 | Seiko Epson Corp | 透明導電膜基板の製造方法、透明導電膜基板の製造装置、カラーフィルタ基板の製造方法、カラーフィルタ基板、電気光学装置及び電子機器 |
CN1282201C (zh) | 2004-04-13 | 2006-10-25 | 大连理工大学 | 一类氧离子导体电解质薄膜构造的脉冲磁控溅射制备方法 |
SE527933C2 (sv) | 2004-05-19 | 2006-07-11 | Sandvik Intellectual Property | Värmebeständigt stål |
-
2006
- 2006-07-07 AT AT0053406U patent/AT9543U1/de not_active IP Right Cessation
-
2007
- 2007-07-05 CN CN2007800256105A patent/CN101484606B/zh active Active
- 2007-07-05 JP JP2009516817A patent/JP5421101B2/ja not_active Expired - Fee Related
- 2007-07-05 WO PCT/AT2007/000338 patent/WO2008003113A1/de active Application Filing
- 2007-07-05 EP EP07763737A patent/EP2038450B1/de not_active Not-in-force
- 2007-07-05 KR KR1020087031211A patent/KR20090031518A/ko active Search and Examination
- 2007-07-05 DK DK07763737T patent/DK2038450T3/da active
-
2009
- 2009-01-07 US US12/349,735 patent/US20100047565A1/en not_active Abandoned
-
2012
- 2012-03-14 US US13/419,831 patent/US20120171464A1/en not_active Abandoned
-
2015
- 2015-02-10 US US14/618,127 patent/US10320019B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5134042A (en) * | 1986-11-26 | 1992-07-28 | Sri International | Solid compositions for fuel cells, sensors and catalysts |
US5162294A (en) * | 1991-02-28 | 1992-11-10 | Westinghouse Electric Corp. | Buffer layer for copper oxide based superconductor growth on sapphire |
US5304293A (en) * | 1992-05-11 | 1994-04-19 | Teknekron Sensor Development Corporation | Microsensors for gaseous and vaporous species |
US6176986B1 (en) * | 1996-05-27 | 2001-01-23 | Mitsubishi Materials Corporation | Sputtering target of dielectrics having high strength and a method for manufacturing same |
US6455326B1 (en) * | 2000-05-15 | 2002-09-24 | Ramtron International Corporation | Enhanced process capability for sputtered ferroelectric films using low frequency pulsed DC and RF power supplies |
US20030161969A1 (en) * | 2002-02-26 | 2003-08-28 | Hilliard Donald Bennett | Electron-assisted deposition process and apparatus |
US20040259305A1 (en) * | 2003-05-23 | 2004-12-23 | Demaray Richard E. | Energy conversion and storage films and devices by physical vapor deposition of titanium and titanium oxides and sub-oxides |
US20050092597A1 (en) * | 2003-10-29 | 2005-05-05 | O'neil James | Method of forming thin-film electrodes |
US20060260466A1 (en) * | 2005-05-23 | 2006-11-23 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Hydrogen permeable member and method for production thereof |
Non-Patent Citations (1)
Title |
---|
Tomsic, Joan L. "Dictionary of Materials and Testing." 2nd ed. 2000. page 284. * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101421245B1 (ko) * | 2011-12-26 | 2014-07-18 | 한국기계연구원 | 금속지지형 고체산화물 연료전지의 제조방법 및 이에 의해 제조되는 금속지지형 고체산화물 연료전지 |
EP2808932A1 (de) | 2013-05-31 | 2014-12-03 | Topsøe Fuel Cell A/S | Metallgestützte Festoxidzelle |
US9992917B2 (en) | 2014-03-10 | 2018-06-05 | Vulcan GMS | 3-D printing method for producing tungsten-based shielding parts |
CN111785916A (zh) * | 2020-07-29 | 2020-10-16 | 吉林大学 | 一种pet膜双面快速镀膜、涂覆设备 |
Also Published As
Publication number | Publication date |
---|---|
DK2038450T3 (da) | 2013-01-14 |
US20150155581A1 (en) | 2015-06-04 |
KR20090031518A (ko) | 2009-03-26 |
WO2008003113A1 (de) | 2008-01-10 |
CN101484606A (zh) | 2009-07-15 |
CN101484606B (zh) | 2013-03-13 |
JP2009542899A (ja) | 2009-12-03 |
US10320019B2 (en) | 2019-06-11 |
JP5421101B2 (ja) | 2014-02-19 |
EP2038450B1 (de) | 2012-09-26 |
US20120171464A1 (en) | 2012-07-05 |
AT9543U1 (de) | 2007-11-15 |
EP2038450A1 (de) | 2009-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10320019B2 (en) | Process for producing a solid oxide fuel cell by depositing an electrically conductive and gas permeable layer on a porous support substrate | |
RU2404488C2 (ru) | Многослойное покрытие | |
EP1950824B1 (de) | Herstellungsverfahren für eine mehrlagige Sperrschichtstruktur für eine Festoxidbrennstoffzelle | |
Zhu et al. | (Mn, Co) 3O4-Based spinels for SOFC interconnect coating application | |
US20100129693A1 (en) | Coating process for production of fuel cell components | |
Okumura et al. | Development of thermal spraying-sintering technology for solid oxide fuel cells | |
WO2023284596A1 (zh) | 高导电耐蚀长寿命max相固溶复合涂层、其制法与应用 | |
US9054348B2 (en) | Protective coatings for metal alloys and methods incorporating the same | |
Solovyev et al. | Scale‐up of solid oxide fuel cells with magnetron sputtered electrolyte | |
JP6600300B2 (ja) | 固体電解質用多重層配置構成 | |
KR101079248B1 (ko) | 전도성 산화물과 비전도성 산화물을 포함하는 치밀한 구조의 복합 산화물의 박막, 이의 제조방법 및 그를 이용한금속 접속자 | |
Noh et al. | Performance enhancement in thin film solid oxide fuel cells using metal-mixed ionic electronic conductors bilayer anode | |
JP2006185698A (ja) | 固体酸化物形燃料電池及びその製造方法 | |
Minh et al. | Sputtered thin-film solid oxide fuel cells | |
CA2689058A1 (en) | Fabricating solid oxide fuel cells | |
KR102647068B1 (ko) | 고체산화물 연료 전지용 연결재, 그 제조방법 및 이를 포함하는 고체 산화물 연료 전지 | |
Solovyev et al. | Magnetron deposition of yttria-stabilised zirconia electrolyte for solid oxide fuel cells | |
JPH09266000A (ja) | 固体電解質型燃料電池及びその製造方法 | |
US20110189586A1 (en) | Nanometer and sub-micron laminar structure of LaxSryMnOz for solid oxide fuel cells application | |
JPH09265999A (ja) | 固体電解質型燃料電池及びその製造方法 | |
Kunschert et al. | Ceramic PVD coatings as dense/thin barrier layers on interconnect components for SOFC applications | |
Du et al. | Progress in SOFC Metallic Interconnect Coating | |
Yoo et al. | Development of Metal Supported Thin Film SOFCs at ICPET/NRCC | |
JPH10294115A (ja) | 固体電解質薄膜とその製造方法 | |
Fonseca et al. | Bias-Assisted sputtering of gadolinia-doped ceria interlayers for solid oxide fuel cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PLANSEE SE, AUSTRIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAILER, KARL;KUNSCHERT, GEORG;SCHLICHTHERLE, STEFAN;AND OTHERS;SIGNING DATES FROM 20090126 TO 20090202;REEL/FRAME:027931/0700 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |