JPH09266000A - 固体電解質型燃料電池及びその製造方法 - Google Patents

固体電解質型燃料電池及びその製造方法

Info

Publication number
JPH09266000A
JPH09266000A JP8076766A JP7676696A JPH09266000A JP H09266000 A JPH09266000 A JP H09266000A JP 8076766 A JP8076766 A JP 8076766A JP 7676696 A JP7676696 A JP 7676696A JP H09266000 A JPH09266000 A JP H09266000A
Authority
JP
Japan
Prior art keywords
solid electrolyte
fuel cell
air electrode
type fuel
intermediate region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8076766A
Other languages
English (en)
Inventor
Masakatsu Nagata
雅克 永田
Mikiyuki Ono
幹幸 小野
Tsutomu Iwazawa
力 岩澤
Satoru Yamaoka
悟 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP8076766A priority Critical patent/JPH09266000A/ja
Publication of JPH09266000A publication Critical patent/JPH09266000A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

(57)【要約】 【課題】 空気極と固体電解質の間で熱膨張による歪み
の発生を防ぎ剥離しないようにして、内部の電気抵抗が
大きくなるのを抑え、寿命特性の向上した固体電解質型
燃料電池を提供し、かつ、前記固体電解質型燃料電池を
容易かつ効率的に製造する方法を提供する。 【解決手段】 空気極と固体電解質間に溶射法により作
製される中間領域を設け、該中間領域が空気極材料と固
体電解質材料の組成を傾斜的に変化させた固体電解質型
燃料電池である。これにより、空気極と固体電解質間の
界面による組成の不連続が解消するための中間領域によ
って熱膨張率の急激な変化を避け、高温度下での歪みを
抑えて剥離するのを防ぐことができる。これにより、内
部の電気抵抗の小さい、寿命特性の向上した固体電解質
型燃料電池が得られる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、固体電解質型燃料
電池に関し、さらに詳しくはその空気極の改良に関する
ものである。
【0002】
【従来技術】固体電解質型燃料電池は、固体電解質の膜
を挟んで空気極と燃料極が積層され、空気極には空気
(酸素)を、燃料極には水素などを含む燃料ガスを供給
する構造になっている。電解質に酸素イオン(O2-)導
電体を用いる固体電解質型燃料電池では、空気極側でイ
オン化した酸素イオンが電解質を移動して燃料極側に達
し、水素と反応して電子を放出する。このため、空気極
が陽極になり、燃料極が陰極になって単電池を形成する
と同時に、副産物として燃料極で水が生成される。
【0003】図3は、固体電解質型燃料電池7のうち縦
縞円筒方式の一般的構造を例示して説明したものであ
る。図3に示すように、多孔性基体管6に空気極1、更
に固体電解質4、燃料極2の積層した構造になってい
る。なお、インターコネクタ5は空気極1から円筒外周
部表面に延びている。矢印は空気、燃料ガスの通路で、
多孔性基体管6内を酸化剤として空気が送られ、円筒外
周部に燃料ガスが送られる。
【0004】空気極1の表面には多孔性基体管6内部を
通過して空気が供給され、約1000℃の高温下でラン
タンマンガネート(LaMnO3 )等により酸素
(O2 )をイオン化(O2-)する。ここで空気極1は高
温の酸化雰囲気下にあるために、かかる雰囲気下での化
学的安定性が必要である。又、電子伝導性、イオン伝導
性等の電気特性も必要とされる。さらに、固体電解質4
との間での密着性、高温下にあるために熱膨張率の整合
性、高温−室温の繰り返しに対する耐熱衝撃性が求めら
れる。これらの要求に対して、現状はランタンマンガネ
ート系のペロブスカイト型酸化物が使用されている。実
際の使用に当たっては、電子伝導性を高めるためにLa
の一部をSr、Ca等に置換した固溶体が用いられこと
が多い。
【0005】燃料極2では約1000℃の高温下でニッ
ケル(Ni)等により燃料ガス中の水素(H2 )が、固
体電解質4の中を移動してきた酸素イオン(O2-)と反
応して、水を生成する。燃料極2は、空気極1とは逆に
還元性雰囲気下にあるためにかかる雰囲気下での化学的
安定性、また固体電解質4との密着性等空気極1と同様
の性能が要求される。このため、現在は多孔性ニッケル
あるいは安定化ジルコニアとのサーメットを使用するの
が一般的である。
【0006】固体電解質4は電子伝導性を有しないで、
酸素イオンの伝導性を有することが必要である。固体電
解質4は、高いイオン導電率を得るために800〜10
00℃の高温下で使用されるのが通常である。従って、
高温で化学的に安定であること、高温−室温の繰り返し
に対する熱衝撃に耐えられることが必要とされる。これ
に適する材料としてジルコニア(ZrO2 )にイットリ
ア(Y2 3 )を添加した安定化ジルコニア(YSZ)
が一般的に使用される。
【0007】インターコネクタ5は他の単電池と接続す
るために必要な部材である。材質としては、酸化・還元
雰囲気中で安定なこと、電子伝導性を有するがイオン伝
導性がないこと、空気と燃料が混合しないような気密性
を有すること、他の材料と熱膨張率が一致すること等の
性質が要求される。現在一般にはランタンクロマイト
(LaCrO3 )が使用される。
【0008】また、図4(a)は、図3の丸中の空気極
1と固体電解質4が接する部分を拡大して模式的に示し
たものである。図4(b)は、その場合の空気極1材料
と固体電解質4材料の組成比の変化を合わせて示したも
のである。空気極1と固体電解質4の間は異相が接する
界面で、組成比は空気極1材料のみの層と固体電解質4
材料のみからなる層とが接しており、混ざり合った領域
が存在しない。かかる界面は別工程で製作されるために
両者の密着性が低く酸素イオンの移動の障壁になること
が多い。従来は、成膜後に高温度で焼結することによっ
て密着性を向上させる手段等が提案されている(特開平
5−283095号等)。なお、固体電解質型燃料電池
7にはこの他に横縞円筒方式、平板方式等もあるが構造
は同様で後述の本発明はいずれの方式に適用は可能であ
る。
【0009】
【発明が解決しようとする課題】しかしながら、上記の
ような固体電解質型燃料電池7では、次のような問題点
がある。上記固体電解質型燃料電池7の空気極1、固体
電解質4は1000℃付近の高温度下にあるために各構
成材料は熱膨張を生ずる。空気極1の構成材料であるラ
ンタンマンガネート(LaMnO3 )の熱膨張率が1
1.9×10-6/Kで、固体電解質4の構成材料のYS
Zの熱膨張率が10.5×10-6/Kと異なるために両
者の界面で歪みが生ずる。さらに、空気極1における反
応は発熱反応のために固体電解質4よりも空気極1の方
が50〜100℃ほど高い温度に接する。このため、界
面における歪みが助長される傾向にあり、この歪みが大
きい場合は界面が剥離することになる。空気極1と固体
電解質4の界面が剥離すると、酸素イオンの移動に寄与
しうる面積が減少するために内部の電気抵抗、分極抵抗
が大きくなり、電流密度、電圧が低下するため電流値・
電圧値が実用的範囲外となる。このために、剥離が生じ
やすいと固体電解質型燃料電池7の寿命が短くなってし
まう。空気極1と固体電解質4の界面の密着性が低い場
合も酸素イオンの移動に寄与しうる面積が少なくなるた
め、使用当初から低い電流値等の固体電解質型燃料電池
7しかえられない。さらに、上記のように各構成材料に
は厳しい性能が要求されており、代替材料を容易に選択
することができないという問題がある。
【0010】本発明は、上記問題点に鑑みてなされたも
のであり、その課題は空気極1と固体電解質4に熱膨張
による歪みの発生を防ぎ剥離しないようにして、内部の
電気抵抗が大きくなるのを抑え、寿命特性の向上した固
体電解質型燃料電池7を提供することである。また、空
気極と固体電解質間の密着性の高い固体電解質型燃料電
池7を提供することである。また、上記固体電解質型燃
料電池7を容易かつ効率的に製造する方法を提供するこ
とである。
【0011】
【課題を解決するための手段】上記のような問題点を解
決するために、請求項1記載の発明は、固体電解質を挟
んだ燃料極と空気極によって構成される固体電解質型燃
料電池において、空気極と固体電解質間に中間領域を設
け、該中間領域が空気極材料と固体電解質材料の組成を
傾斜的に変化させた固体電解質型燃料電池である。請求
項2、3又は4記載の発明は、前記中間領域の組成変化
が50〜150μmの範囲で直線的又は指数関数的であ
る固体電解質型燃料電池である。
【0012】これは、中間領域を設けて組成を連続的に
推移させ熱膨張率の急激な変化を避けることにより、高
温度下における歪みの発生を防止するためである。ここ
で、中間領域とは空気極材料と固体電解質材料のみから
なる層の間に両者の組成比を連続的に変化させた遷移領
域をいう。また、中間領域を有する固体電解質型燃料電
池では異相界面が存在しないために界面における密着性
を問題にする必要がない。従って、イオンの移動に対す
る障害が少なく、高い電流値、電圧値を得ることができ
る。中間領域の厚さは中間領域を挟んだ両層を構成する
材料の熱膨張率の大きさによって異なるが、50μm以
下では遷移に要する距離が短いために中間領域の効果が
発揮し得ないし、150μm以上では細かい組成の制御
が困難で組成比の連続性を維持することが困難になる傾
向にある。このため、50〜150μmの範囲が好まし
い。
【0013】請求項5記載の発明は、前記中間領域を溶
射法による前記固体電解質型燃料電池の製造方法であ
る。本発明で用いる溶射法としては、ガス溶射法、爆発
溶射法、プラズマ溶射法等があるがいずれも適用可能で
ある。また、溶射法以外にも成膜方法として、スラリー
コーティング法、電気化学蒸着法(EVD)、物理蒸着
法(PVD)、化学蒸着法(CVD)等を挙げることが
できる。しかし、溶射法は、真空にする必要がないため
装置が小型で済み、製造時間が短くすることができる。
また、供給する粉末の混合割合を変えることにより容易
に膜の組成を変えることができるので、空気極等の成膜
後中断することなく中間領域を製造することができ、連
続して効率的に成膜することができる等の特徴を有して
いる。従って、請求項1乃至4記載の発明には種々の方
法で成膜することができるが、溶射法が最も適してい
る。
【0014】
【発明の実施の態様】以下、請求項1、2又は3記載の
発明の一実施例を図1に示す。図1(a)は本発明の層
構成、(b)は空気極1と固体電解質4の組成変化を示
している。図1(b)中の(i) は空気極1の材料の中間
領域における組成比の変化を示し、図1(b)中の(ii)
は固体電解質4の材料の中間領域における組成比の変化
を示している。 (実施例1)まず、ランタンマンガネート系酸化物粉末
を押出成形・焼成して多孔質の基体管6を作製して、そ
の外周部にランタンマンガネート系酸化物を大気中でプ
ラズマ溶射し、多孔質の空気極1を成膜した。高周波プ
ラズマ溶射法としたのは、多孔質にするためである。膜
厚は、200μmになるように作成した。空気極1の成
膜のための材料としては、La0.8 Sr0.2 MnO
x (xは約3.0)の組成のランタンマンガネート系酸
化物を用いた。空気極1の成膜後、固体電解質4成膜に
用いる粒度5〜25μmのイットリア安定化ジルコニア
(YSZ)粉末を用意して、これをランタンマンガネー
ト系酸化物粉末と共に供給して大気中でプラズマ溶射に
より空気極1の上に中間領域3を成膜した。溶射装置に
供給する粉末量の割合は、溶射装置の先端にあるプラズ
マ内に粉末原料を供給する装置により供給総量は一定に
したまま夫々の粉末の量を適宜変えることによって行
う。中間領域3の膜厚は、100μmであった。その
後、固体電解質4は、前記混合粉のみを用意して、減圧
下(100torr)でプラズマ溶射により空気極1の上に
成膜した。減圧下(100torr) のプラズマ溶射とした
のは、緻密な膜を形成するためである。次いで、固体電
解質4の上、イットリア安定化ジルコニア(YSZ)粉
末と酸化ニッケル粉末の混合粉を大気中で溶射して、燃
料極2を多孔質に成膜した固体電解質型燃料電池7とし
た。
【0015】(比較例1)中間領域3を有する以外は、
実施例1と全部同じ材料、同じ方法で固体電解質型燃料
電池7を作製した。 (実施例2)請求項1、3又は4記載の発明を実施例1
と全部同じ材料、同じ方法で作製した。但し、中間領域
3作製時に供する粉末の割合を変えて指数関数的な組成
の傾斜にした。この時の組成比の推移を図2に示してい
る。
【0016】実施例1の固体電解質型燃料電池7は、1
000時間の連続発電によっても、300mA/cm2
の電流密度における電圧は初期電圧0.75Vから0.
5%低下した。実施例2の固体電解質型燃料電池7は、
同様に、1000時間の連続発電によっても、300m
A/cm2 の電流密度における電圧は初期電圧0.75
Vから0.5%低下した。これに対して比較例は、10
00時間の連続発電によって、300mA/cm2 の電
流密度における電圧は初期電圧0.70Vから65.0
%低下した。
【0017】
【発明の効果】以上説明したように、請求項1、2、3
又は4記載の中間領域を設けることによって、固体電解
質型燃料電池の空気極と固体電解質の組成の急激に変化
する界面の発生を防ぎ、高温で使用する場合の界面を挟
んだ両者の熱膨張率の差による剥離を防止して初期界面
の状態を保つことにより内部電気抵抗、分極抵抗の増加
による電圧・電流値の低下を防ぎ寿命特性の向上を図る
ことができた。また、請求項5記載の製造方法によっ
て、効率的かつ容易に組成が急激に変化しない中間領域
を得ることができた。
【図面の簡単な説明】
【図1】直線的に傾斜した中間領域を模式的に表した図
である。 a) 中間領域の層構成を示している。 b) 組成変化を示している。
【図2】指数関数的に傾斜した中間領域を模式的に表し
た図である。 a) 中間領域の層構成を示している。 b) 組成変化を示している。
【図3】縦縞円筒方式の固体電解質型燃料電池を模式的
に表した図である。
【図4】中間領域のない従来例として図3中のAで示す
部分を拡大して模式的に表した図である。
【符号の説明】
1 空気極 2 燃料極 3 中間領域 4 固体電解質 5 インターコネクタ 6 多孔質基体管 7 固体電解質型燃料電池
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山岡 悟 東京都江東区木場一丁目五番地一号 株式 会社フジクラ内

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 固体電解質を挟んだ燃料極と空気極によ
    って構成される固体電解質型燃料電池において、空気極
    と固体電解質間で空気極材料と固体電解質材料の組成比
    を傾斜的に変化させた中間領域を有することを特徴とす
    る固体電解質型燃料電池。
  2. 【請求項2】 空気極と固体電解質間の中間領域におけ
    る空気極材料と固体電解質材料の組成比の傾斜が直線的
    であることをを特徴とする請求項1記載の固体電解質型
    燃料電池。
  3. 【請求項3】 空気極と固体電解質間の中間領域におけ
    る空気極材料と固体電解質材料の組成比の傾斜が指数関
    数的であることをを特徴とする請求項1記載の固体電解
    質型燃料電池。
  4. 【請求項4】 空気極と固体電解質間の中間領域の厚さ
    が50〜150μmの範囲であることを特徴とする請求
    項1、2又は3記載の固体電解質型燃料電池。
  5. 【請求項5】 前記中間領域の作成を溶射法によること
    を特徴とする請求項1、2、3又は4記載の固体電解質
    型燃料電池の製造方法。
JP8076766A 1996-03-29 1996-03-29 固体電解質型燃料電池及びその製造方法 Pending JPH09266000A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8076766A JPH09266000A (ja) 1996-03-29 1996-03-29 固体電解質型燃料電池及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8076766A JPH09266000A (ja) 1996-03-29 1996-03-29 固体電解質型燃料電池及びその製造方法

Publications (1)

Publication Number Publication Date
JPH09266000A true JPH09266000A (ja) 1997-10-07

Family

ID=13614729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8076766A Pending JPH09266000A (ja) 1996-03-29 1996-03-29 固体電解質型燃料電池及びその製造方法

Country Status (1)

Country Link
JP (1) JPH09266000A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073272A (ja) * 2005-09-05 2007-03-22 Noritake Co Ltd 非電子伝導性組成傾斜型固体電解質膜
WO2008023805A1 (fr) * 2006-08-24 2008-02-28 Kyocera Corporation Cellule de pile à combustible, pile de cellules de pile à combustible et pile à combustible
JP2008078126A (ja) * 2006-08-24 2008-04-03 Kyocera Corp 燃料電池セルおよび燃料電池セルスタック、ならびに燃料電池
JP2008226654A (ja) * 2007-03-13 2008-09-25 Kyocera Corp 燃料電池セルおよび燃料電池セルスタック、ならびに燃料電池
JP2008226653A (ja) * 2007-03-13 2008-09-25 Kyocera Corp 燃料電池セルおよび燃料電池セルスタック、ならびに燃料電池
CN102412408A (zh) * 2011-09-16 2012-04-11 西安交通大学 一种sofc电解质表面微凸结构的制备方法及其产品
JP2018026339A (ja) * 2016-07-27 2018-02-15 日本碍子株式会社 電気化学セル

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073272A (ja) * 2005-09-05 2007-03-22 Noritake Co Ltd 非電子伝導性組成傾斜型固体電解質膜
WO2008023805A1 (fr) * 2006-08-24 2008-02-28 Kyocera Corporation Cellule de pile à combustible, pile de cellules de pile à combustible et pile à combustible
JP2008078126A (ja) * 2006-08-24 2008-04-03 Kyocera Corp 燃料電池セルおよび燃料電池セルスタック、ならびに燃料電池
US9780382B2 (en) 2006-08-24 2017-10-03 Kyocera Corporation Fuel cell, fuel cell stack, and fuel cell apparatus
JP2008226654A (ja) * 2007-03-13 2008-09-25 Kyocera Corp 燃料電池セルおよび燃料電池セルスタック、ならびに燃料電池
JP2008226653A (ja) * 2007-03-13 2008-09-25 Kyocera Corp 燃料電池セルおよび燃料電池セルスタック、ならびに燃料電池
CN102412408A (zh) * 2011-09-16 2012-04-11 西安交通大学 一种sofc电解质表面微凸结构的制备方法及其产品
JP2018026339A (ja) * 2016-07-27 2018-02-15 日本碍子株式会社 電気化学セル

Similar Documents

Publication Publication Date Title
US5993989A (en) Interfacial material for solid oxide fuel cell
US8921003B2 (en) Solid oxide fuel cell and manufacturing method thereof
US20060024547A1 (en) Anode supported sofc with an electrode multifunctional layer
EP1284519B1 (en) Solid electrolyte fuel cell and related manufacturing method
US8211587B2 (en) Plasma sprayed ceramic-metal fuel electrode
US20060057455A1 (en) High-temperature solid electrolyte fuel cell comprising a composite of nanoporous thin-film electrodes and a structured electrolyte
JPH11154525A (ja) 固体電解質型燃料電池とその製造方法
JPH08213029A (ja) 固体電解質型燃料電池の燃料電極
US20100325878A1 (en) Bi Containing Solid Oxide Fuel Cell System With Improved Performance and Reduced Manufacturing Costs
JPH09266000A (ja) 固体電解質型燃料電池及びその製造方法
JP2000030728A (ja) 緻密質焼結膜の作製方法及びそれを用いた固体電解質型燃料電池の製造方法
JPH09265999A (ja) 固体電解質型燃料電池及びその製造方法
JPH1074528A (ja) 固体電解質型燃料電池およびその製造方法
JP5550223B2 (ja) セラミック電解質の処理方法および関連製品
JP3128099B2 (ja) 低温動作型固体燃料電池用空気極材料
JP2004355814A (ja) 固体酸化物形燃料電池用セル及びその製造方法
JPH1012252A (ja) 固体電解質型燃料電池とその製造方法
JPH04324251A (ja) 固体電解質燃料電池用インターコネクターの製造方法
CA2560769C (en) Electrolyte electrode assembly and method of producing the same
JP2000182635A (ja) 固体電解質型燃料電池
JPH11126617A (ja) 固体電解質型燃料電池とその製造方法
JPH076768A (ja) 固体電解質型燃料電池におけるニッケル−スカンジア安定化ジルコニア系サーメット燃料極
JP2003288912A (ja) 固体酸化物形燃料電池
JP2003263997A (ja) 固体酸化物型燃料電池
JPH07201340A (ja) 固体電解質型燃料電池

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106