US20090260982A1 - Wafer processing deposition shielding components - Google Patents
Wafer processing deposition shielding components Download PDFInfo
- Publication number
- US20090260982A1 US20090260982A1 US12/423,444 US42344409A US2009260982A1 US 20090260982 A1 US20090260982 A1 US 20090260982A1 US 42344409 A US42344409 A US 42344409A US 2009260982 A1 US2009260982 A1 US 2009260982A1
- Authority
- US
- United States
- Prior art keywords
- inches
- band
- cylindrical
- lower shield
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000012545 processing Methods 0.000 title claims abstract description 43
- 230000008021 deposition Effects 0.000 title claims description 64
- 239000000758 substrate Substances 0.000 claims abstract description 92
- 238000004544 sputter deposition Methods 0.000 claims abstract description 40
- 230000002093 peripheral effect Effects 0.000 claims abstract description 23
- 238000005477 sputtering target Methods 0.000 claims abstract description 17
- 230000000284 resting effect Effects 0.000 claims abstract description 9
- 238000000151 deposition Methods 0.000 claims description 64
- 229910052782 aluminium Inorganic materials 0.000 claims description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 18
- 230000003746 surface roughness Effects 0.000 claims description 8
- 238000005507 spraying Methods 0.000 claims description 7
- 229910001220 stainless steel Inorganic materials 0.000 claims description 7
- 239000010935 stainless steel Substances 0.000 claims description 7
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000011324 bead Substances 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 55
- 230000008569 process Effects 0.000 abstract description 54
- 239000004065 semiconductor Substances 0.000 abstract description 13
- 239000007789 gas Substances 0.000 description 35
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 11
- 238000005240 physical vapour deposition Methods 0.000 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910010293 ceramic material Inorganic materials 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000005086 pumping Methods 0.000 description 4
- 238000003754 machining Methods 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000005289 physical deposition Methods 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 208000000659 Autoimmune lymphoproliferative syndrome Diseases 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229940082150 encore Drugs 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 238000004969 ion scattering spectroscopy Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000000462 isostatic pressing Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- -1 tungsten nitride Chemical class 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
- C23C16/4585—Devices at or outside the perimeter of the substrate support, e.g. clamping rings, shrouds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/50—Substrate holders
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/564—Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32623—Mechanical discharge control means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32623—Mechanical discharge control means
- H01J37/32633—Baffles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3402—Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
- H01J37/3405—Magnetron sputtering
- H01J37/3408—Planar magnetron sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3441—Dark space shields
Definitions
- Embodiments described herein generally relate to components for a semiconductor processing chamber, a process kit for a semiconductor processing chamber, and a semiconductor processing chamber having a process kit. More specifically, embodiments described herein relate to a process kit that includes a ring assembly and multiple shields suitable for use in a physical vapor deposition chamber.
- a substrate such as a semiconductor wafer or display panel, is placed in a substrate processing chamber and processing conditions are set in the chamber to deposit or etch material on the substrate.
- a typical process chamber comprises chamber components that include an enclosure wall that encloses a process zone, a gas supply to provide a process gas in the chamber, a gas energizer to energize the process gas to process the substrate, a gas exhaust to remove spent gas and maintain a gas pressure in the chamber, and a substrate support to hold the substrate.
- Such chambers can include, for example, sputtering (PVD), chemical vapor deposition (CVD), and etching chambers.
- PVD sputtering
- CVD chemical vapor deposition
- etching chambers etching chambers.
- PVD a target is sputtered by energized gas to sputter target material which then deposits on the substrate facing the target.
- the material sputtered from the target also deposits on the edges of chamber components surrounding the target which is undesirable.
- the peripheral target regions have a dark-space region in which sputtered material redeposit as a result of ion scattering in this area. Accumulation and build-up of the sputtered material in this region is undesirable as such accumulated deposits require disassembly and cleaning or replacement of the target and surrounding components, can result in plasma shorting, and can cause arcing between the target and the chamber wall. These deposits also often debond and flake off due to thermal stresses to fall inside and contaminate the chamber and its components.
- a process kit comprising a shield, cover ring and deposition ring arranged about the substrate support and chamber sidewalls, is often used to receive the excess sputtered material to protect and prevent deposition on the chamber walls and other component surfaces. Periodically, the process kit components are dismantled and removed from the chamber for cleaning off accumulated deposits.
- process kit components which are designed to receive and tolerate ever larger amounts of accumulated deposits without sticking to each other or to the substrate, or resulting in flaking off of the deposits between process clean cycles. It is further desirable to have a process kit comprising fewer parts or components, as well as having components that are shaped and arranged in relationship to one another to reduce the amounts of sputtered deposits formed on the internal surfaces of the process chamber.
- a high-conductance gas flow pathway is needed to both supply the necessary process gasses to the process cavity and to properly exhaust spent process gas.
- the shields and other chamber components of the process kit that line the chamber walls can substantially reduce gas conductance flows. Placing apertures in these components while increasing gas conductance therethrough, also allow line-of-sight sputtering deposits to exit the process zone through the gas conductance holes to deposit on the chamber walls. Such holes can also cause plasma leakage from within the processing cavity to surrounding chamber regions.
- chamber components that incorporate such holes have other shortcomings including, but not limited to, requirement of additional parts, their relative flimsiness, tolerance stack-ups of multiple parts, and poor thermal conductivity at interfaces.
- process kit components that increase thermal conductivity while reducing the flaking of process deposits from component surfaces. It is further desirable to control the temperature of the shields and liners so that they do not cycle between excessively high and low temperatures during plasma processing. It is also desirable to increase overall gas conductance while preventing line-of-sight deposition outside the process zone and reduce plasma leakage.
- Embodiments described herein generally relate to components for a semiconductor processing chamber, a process kit for a semiconductor processing chamber, and a semiconductor processing chamber having a process kit.
- a lower shield for encircling a sputtering target and a substrate support is provided.
- the lower shield comprises a cylindrical outer band having a first diameter dimensioned to encircle the sputtering surface of the sputtering target and the substrate support, the cylindrical band comprising a top wall that surrounds a sputtering surface of a sputtering target and a bottom wall that surrounds the substrate support, a support ledge comprising a resting surface and extending radially outward from the cylindrical outer band, a base plate extending radially inward from the bottom wall of the cylindrical band, and a cylindrical inner band coupled with the base plate and partially surrounding a peripheral edge of the substrate support.
- a deposition ring for encircling a peripheral wall of a substrate support in a processing chamber.
- the deposition ring comprises an annular band for surrounding the peripheral wall of the substrate support, the annular band comprising an inner lip which extends transversely from the annular band and is substantially parallel to the peripheral wall of the substrate support, wherein the inner lip defines an inner perimeter of the deposition ring which surrounds the periphery of the substrate and substrate support to protect regions of the support that are not covered by the substrate during processing to reduce or even entirely preclude deposition of sputtering deposits on the peripheral wall, and a v-shaped protuberance that extends along a central portion of the band with a first radially inward recess adjacent to the inner lip and a second radially inward recess on either side of the v-shaped protuberance.
- a cover ring for encircling and at least partially shadowing a deposition ring from sputtering deposits.
- the deposition ring comprises an annular wedge comprising a top surface, an inclined top surface sloped radially inward and coupled with the top surface having an inner periphery and an outer periphery, a bottom surface to rest upon a ledge of a deposition ring, wherein the top surface is substantially parallel to the bottom surface, and a projecting brim coupled with the top surface by the inclined top surface in cooperation with the projecting brim block line-of-sight deposition from exiting the interior volume and entering the chamber body cavity, and an inner cylindrical band extending downward from the annular wedge, the inner cylindrical band having a smaller height than the outer cylindrical band.
- a process kit for a semiconductor processing chamber comprises a lower shield, a middle shield, and a ring assembly positioned about a substrate support in a processing chamber to reduce deposition of process deposits on the internal chamber components and an overhanging edge of the substrate is provided.
- the lower shield comprises an outer cylindrical band having a top wall that surrounds a sputtering target and a bottom wall that surrounds the substrate support, a support ledge, and an inner cylindrical band surrounding the substrate support.
- the ring assembly comprises a deposition ring and a cover ring.
- FIG. 1 is a simplified sectional view of a semiconductor processing system having one embodiment of a process kit described herein;
- FIG. 2 is a partial sectional view of a process kit interfaced with a target and adapter of FIG. 1 ;
- FIG. 3A is a cross-sectional view of a lower shield according to one embodiment described herein;
- FIG. 3B is a partial sectional view of the lower shield of FIG. 3A ;
- FIG. 3C is a top view of the lower shield of FIG. 3A ;
- FIG. 4A is a cross-sectional view of a deposition ring according to one embodiment described herein;
- FIG. 4B is a partial sectional view of the deposition ring according to one embodiment described herein;
- FIG. 4C is a top view of the deposition ring of FIG. 4A ;
- FIG. 5A is a partial section view of a middle shield according to one embodiment described herein;
- FIG. 5B is a top view of the middle shield of FIG. 5A ;
- FIGS. 6A is a partial sectional view of a cover ring according to one embodiment described herein;
- FIG. 6B is a cross-sectional view of the cover ring of FIG. 6A ;
- FIG. 6C is a top view of the cover ring of FIG. 6A .
- Embodiments described herein generally provide a process kit for use in a physical deposition chamber (PVD) chamber.
- the process kit has advantageously provided a reduction in RF harmonics and stray plasma outside the process cavity, which promotes greater process uniformity and repeatability along with longer chamber component service life.
- FIG. 1 depicts an exemplary semiconductor processing chamber 100 having one embodiment of a process kit 150 capable of processing a substrate 105 .
- the process kit 150 includes a one-piece lower shield 160 , an interleaving cover ring 170 , a deposition ring 180 , and a middle shield 190 .
- the processing chamber 100 comprises a sputtering chamber, also called a physical deposition or PVD chamber, capable of depositing titanium, aluminum oxide, aluminum, copper, tantalum, tantalum nitride, tungsten, or tungsten nitride on a substrate.
- PVD chambers examples include the ALPS® Plus and SIP ENCORE® PVD processing chambers, both commercially available from Applied Materials, Inc., Santa Clara, of Calif. It is contemplated that processing chambers available from other manufactures may also be utilized to perform the embodiments described herein.
- the processing chamber 100 includes a chamber body 101 having enclosure walls 102 and sidewalls 104 , a bottom wall 106 , and a lid assembly 108 that enclose an interior volume 110 or plasma zone.
- the chamber body 101 is typically fabricated from welded plates of stainless steel or a unitary block of aluminum.
- the sidewalls 104 generally contain a slit valve (not shown) to provide for entry and egress of a substrate 105 from the processing chamber 100 .
- a pumping port 120 disposed in the sidewalls 104 is coupled to a pumping system 122 that exhausts and controls the pressure of the interior volume 110 .
- the lid assembly 108 of the processing chamber 100 works in cooperation with the lower shield 160 that interleaves with the cover ring 170 , the middle shield 190 , and an upper shield 195 to confine a plasma formed in the interior volume 110 to the region above the substrate.
- a pedestal assembly 124 is supported from the bottom wall 106 of the chamber 100 .
- the pedestal assembly 124 supports the deposition ring 180 along with the substrate 105 during processing.
- the pedestal assembly 124 is coupled to the bottom wall 106 of the chamber 100 by a lift mechanism 126 that is configured to move the pedestal assembly 124 between an upper and lower position. Additionally, in the lower position, lift pins may be moved through the pedestal assembly 124 to space the substrate 105 from the pedestal assembly 124 to facilitate exchange of the substrate 105 with a wafer transfer mechanism disposed exterior to the processing chamber 100 , such as a single blade robot (not shown).
- a bellows 129 is typically disposed between the pedestal assembly 124 and the chamber bottom wall 106 to isolate the interior volume 110 of the chamber body 101 from the interior of the pedestal assembly 124 and the exterior of the chamber.
- the pedestal assembly 124 generally includes a substrate support 128 sealingly coupled to a platform housing 130 .
- the platform housing 130 is typically fabricated from a metallic material such as stainless steel or aluminum.
- a cooling plate (not shown) is generally disposed within the platform housing 130 to thermally regulate the substrate support 128 .
- One pedestal assembly 124 that may be adapted to benefit from the invention is described in U.S. Pat. No. 5,507,499, issued Apr. 16, 1996 to Davenport et al., which is incorporated herein by reference in its entirety.
- the substrate support 128 may be comprised of aluminum or ceramic.
- the substrate support 128 has a substrate receiving surface 132 that receives and supports the substrate 105 during processing, the substrate receiving surface 132 having a plane substantially parallel to a sputtering surface 134 of a sputtering target 136 .
- the support 128 also has a peripheral wall 138 that terminates before an overhanging edge 107 of the substrate 105 .
- the substrate support 128 may be an electrostatic chuck, a ceramic body, a heater or a combination thereof.
- the substrate support 128 is an electrostatic chuck that includes a dielectric body having a conductive layer embedded therein.
- the dielectric body is typically fabricated from a high thermal conductivity dielectric material such as pyrolytic boron nitride, aluminum nitride, silicon nitride, alumina or an equivalent material.
- the lid assembly 108 generally includes the target 136 and a magnetron 140 .
- the lid assembly 108 is supported by the sidewalls 104 when in a closed position, as shown in FIG. 1 .
- An isolator ring 142 is disposed between the target 136 and the upper shield 195 to prevent vacuum leakage therebetween and reduce electrical shorts between the chamber walls and the target 136 .
- the upper shield 195 comprises a material such as aluminum or stainless steel.
- the target 136 is coupled to the lid assembly 108 and exposed to the interior volume 110 of the processing chamber 100 .
- the target 136 provides material which is deposited on the substrate during a PVD process.
- the isolator ring 142 is disposed between the target 136 and chamber body 101 to electrically isolate the target 136 from the chamber body 101 .
- the isolator ring 142 comprises a ceramic material.
- the target 136 and pedestal assembly 124 are biased relative to each other by a power source 144 .
- a gas such as argon, is supplied to the interior volume 110 from a gas source 146 via conduits 148 .
- the gas source 146 may comprise a non-reactive gas such as argon or xenon, which is capable of energetically impinging upon and sputtering material from the target 136 .
- the gas source 146 may also include a reactive gas, such as one or more of an oxygen-containing gas and a nitrogen-containing gas, that are capable of reacting with the sputtering material to form a layer on a substrate.
- Spent process gas and byproducts are exhausted from the chamber 100 through pumping port 120 that receive spent process gas and pass the spent process gas to an exhaust conduit 121 having a throttle valve to control the pressure of the gas in the chamber 100 .
- the exhaust conduit 148 is connected to the pumping system 122 .
- the pressure of the sputtering gas in the chamber 100 is set to sub-atmospheric levels, such as a vacuum environment, for example, gas pressures of 1 mTorr to 400 mTorr.
- Plasma is formed between the substrate 105 and the target 136 from the gas. Ions within the plasma are accelerated toward the target 136 and cause material to become dislodged from the target 136 . The dislodged target material is deposited on the substrate 105 .
- the magnetron 140 is coupled to the lid assembly 108 on the exterior of the processing chamber 100 .
- the magnetron 140 includes at least one rotating magnet assembly (not shown) that promotes uniform consumption of the target 136 during the PVD process.
- One magnetron which may be utilized is described in U.S. Pat. No. 5,953,827, issued Sep. 21, 1999 to Or et al., which is hereby incorporated by reference in its entirety.
- the chamber 100 is controlled by a controller 196 that comprises program code having instruction sets to operate components of the chamber 100 to process substrates in the chamber 100 .
- the controller 196 can comprise program code that includes a substrate positioning instruction set to operate the substrate support 128 ; a gas flow control instruction set to operate gas flow control valves to set a flow of sputtering gas to the chamber 100 ; a gas pressure control instruction set to operate a throttle valve to maintain a pressure in the chamber 100 ; a temperature control instruction set to control a temperature control system (not shown) in the support 128 or sidewall 104 to set temperatures of the substrate or sidewalls 104 , respectively; and a process monitoring instruction set to monitor the process in the chamber 100 .
- a collimator 197 is coupled with the lower shield 160 , thereby grounding the collimator.
- the collimator may be a metal ring and includes an outer tubular section and at least one inner concentric tubular section, for example, three concentric tubular sections linked by struts.
- the chamber 100 also contains a process kit 150 which comprises various components that can be easily removed from the chamber 100 , for example, to clean sputtering deposits off the component surfaces, replace or repair eroded components, or to adapt the chamber 100 for other processes.
- the process kit 150 comprises a lower shield 160 , a middle shield 190 , and a ring assembly 202 for placement about a peripheral wall 138 of the substrate support 128 that terminates before an overhanging edge 107 of the substrate 105 .
- the ring assembly 202 comprises the deposition ring 180 and the cover ring 170 .
- the deposition ring 180 comprises an annular band 402 surrounding the support 128 .
- the cover ring 170 at least partially covers the deposition ring 180 .
- the deposition ring 180 and the cover ring 170 cooperate with one another to reduce formation of sputter deposits on the peripheral wall 138 of the support 128 and the overhanging edge 107 of the substrate 105 .
- the lower shield 160 encircles the sputtering surface 134 of the sputtering target 136 that faces the substrate support 128 and the peripheral wall 138 of the substrate support 128 .
- the lower shield 160 covers and shadows the sidewalls 104 of the chamber 100 to reduce deposition of sputtering deposits originating from the sputtering surface 134 of the sputtering target 136 onto the components and surfaces behind the lower shield 160 .
- the lower shield 160 can protect the surfaces of the support 128 , the overhanging edge 107 of the substrate 105 , sidewalls 104 and bottom wall 106 of the chamber 100 .
- FIGS. 3A and 3B are partial sectional views of a lower shield according to one embodiment described herein.
- FIG. 3C is a top view of the lower shield of FIG. 3A .
- the lower shield 160 is of unitary construction and comprises a cylindrical outer band 310 having a diameter dimensioned to encircle the sputtering surface 134 of the sputtering target 136 and the substrate support 128 .
- the cylindrical outer band 310 has a top wall 312 that surrounds the sputtering surface 134 of the sputtering target 136 .
- a support ledge 313 extends radially outward from the top wall 312 of the cylindrical outer band 310 .
- the support ledge 313 comprises a resting surface 314 to rest upon a first annular adapter 172 surrounding the sidewalls 104 of the chamber 100 .
- the resting surface 314 may have a plurality of slots shaped to receive a pin to align the lower shield 160 to the first annular adapter 172 .
- the top wall 312 comprises an inner periphery 326 and an outer periphery 328 .
- the outer periphery 328 extends to form a sloped step 330 .
- the sloped step 330 is angled radially outward between about 5 degrees and about 10 degrees from vertical, for example, about 8 degrees from vertical.
- the inner periphery 326 is angled radially inward between about 2 degrees and about 5 degrees, for example, about 3.5 degrees from vertical.
- the first annular adapter 172 supports the lower shield 160 and can serve as a heat exchanger about the sidewall 104 of the substrate processing chamber 100 .
- the first annular adapter 172 and shield 160 form an assembly that allows for better heat transfer from the shield 160 to the adapter 172 and which reduces thermal expansion stresses on the material deposited on the shield. Portions of the shield 160 can become excessively heated by exposure to the plasma formed in the substrate processing chamber, resulting in thermal expansion of the shield and causing sputtering deposits formed on the shield to flake off from the shield and fall upon and contaminate the substrate 105 .
- the first adapter 172 has a contact surface 174 that contacts the resting surface 314 of the lower shield 160 to allow good thermal conductivity between the shield 160 and the adapter 172 .
- the resting surface 314 of the shield 160 and the contact surface 174 of the first adapter 172 each have a surface roughness of from about 10 to about 80 microinches, or even from about 16 to about 63 microinches, or in one embodiment an average surface roughness of about 32 microinches.
- the first adapter 172 further comprises conduits for flowing a heat transfer fluid therethrough to control the temperature of the first adapter 172 .
- a bottom wall 316 that surrounds the substrate support 128 .
- a base plate 318 extends radially inward from the bottom wall 316 of the cylindrical outer band 310 .
- a cylindrical inner band 320 is coupled with the base plate 318 and at least partially surrounding the peripheral wall 138 of the substrate support 128 .
- the cylindrical inner band 320 , the base plate 318 , and the cylindrical outer band 310 form a U-shaped channel.
- the cylindrical inner band 320 comprises a height that is less than the height of the cylindrical outer band 310 . In one embodiment, the height of the inner band 320 is about one fifth of the height of the cylindrical outer band 310 .
- the bottom wall 316 has a notch 322 .
- the cylindrical outer band 310 has a series of gas holes 324 .
- the cylindrical outer band 310 , the top wall 312 , the support ledge 313 , the bottom wall 316 , and the inner cylindrical band 320 comprise a unitary structure.
- the entire lower shield 160 can be made from 300 series stainless steel, or in another embodiment, aluminum.
- a unitary lower shield 160 is advantageous over prior shields which included multiple components, often two or three separate pieces to make up the complete lower shield.
- a single piece shield is more thermally uniform than a multiple-component shield, in both heating and cooling processes.
- the single piece lower shield 160 has only one thermal interface to the first adapter 172 , allowing for more control over the heat exchange between the shield 160 and the first adapter 172 .
- a shield 160 with multiple components makes it more difficult and laborious to remove the shield for cleaning.
- the single piece shield 160 has a continuous surface exposed to the sputtering deposits without interfaces or corners that are more difficult to clean out.
- the single piece shield 160 also more effectively shields the sidewalls 104 from sputter deposition during process cycles.
- the exposed surfaces of the lower shield 160 are treated with CLEANCOATTM, which is commercially available from Applied Materials, Santa Clara, Calif.
- CLEANCOATTM is a twin-wire aluminum arc spray coating that is applied to substrate processing chamber components, such as the lower shield 160 , to reduce particle shedding of deposits on the lower shield 160 and thus prevent contamination of a substrate 105 in the chamber 100 .
- the twin-wire aluminum arc spray coating on the lower shield 160 has a surface roughness of from about 600 to about 2300 microinches.
- the lower shield 160 has exposed surfaces facing the interior volume 110 in the chamber 100 .
- the exposed surfaces are bead blasted to have a surface roughness of 175 ⁇ 75 microinches.
- the texturized bead blasted surfaces serve to reduce particle shedding and prevent contamination within the chamber 100 .
- the surface roughness average is the mean of the absolute values of the displacements from the mean line of the peaks and valleys of the roughness features along the exposed surface.
- the roughness average, skewness, or other properties may be determined by a profilometer that passes a needle over the exposed surface and generates a trace of the fluctuations of the height of the asperities on the surface, or by a scanning electron microscope that uses an electron beam reflected from the surface to generate an image of the surface.
- the deposition ring 180 comprises an annular band 402 that extends about and surrounds the peripheral wall 138 of the support 128 as shown in FIG. 2 .
- the annular band 402 comprises an inner lip 404 which extends transversely from the band 402 and is substantially parallel to the peripheral wall 138 of the support 128 .
- the inner lip 404 terminates immediately below the overhanging edge 107 of the substrate 105 .
- the inner lip 404 defines an inner perimeter of the deposition ring 180 which surrounds the periphery of the substrate 105 and substrate support 128 to protect regions of the support 128 that are not covered by the substrate 105 during processing.
- the inner lip 404 surrounds and at least partially covers the peripheral wall 138 of the support 128 that would otherwise be exposed to the processing environment, to reduce or even entirely preclude deposition of sputtering deposits on the peripheral wall 138 .
- the deposition ring 180 can be easily removed to clean sputtering deposits from the exposed surfaces of the ring 180 so that the support 128 does not have to be dismantled to be cleaned.
- the deposition ring 180 can also serve to protect the exposed side surfaces of the support 128 to reduce their erosion by the energized plasma species.
- the annular band 402 of the deposition ring 180 has a v-shaped protuberance 406 that extends along the central portion of the band 402 with a first radially inward recess 408 a and a second radially inward recess 408 b on either side of the v-shaped protuberance 406 .
- the opposing surfaces of the v-shaped protuberance 406 form an angle “ ⁇ ”. In one embodiment, the angle “ ⁇ ” is between about 25° and about 30°. In another embodiment, the angle “ ⁇ ” is between about 27° and about 28°.
- the first radially inward recess 408 a is located in a horizontal plane slightly below the horizontal plane of the second radially inward recess 408 b.
- the second radially inward recess 408 b has a width between about 0.8 inches and about 0.9 inches.
- the second radially inward recess 408 b has a width between about 0.83 inches and about 0.84 inches.
- the first radially inward recess 408 a and the second radially inward recess 408 b are substantially parallel to a bottom surface 420 of the deposition ring 180 .
- the second radially inward recess 408 b is spaced apart from the cover ring 170 to form an arc-shaped channel 410 therebetween which acts as a labyrinth to reduce penetration of plasma species into the arc-shaped channel 410 , as shown in FIG. 2 .
- An open inner channel 412 lies between the inner lip 404 and the v-shaped protuberance 406 .
- the open inner channel 412 extends radially inward to terminate at least partially below the overhanging edge 107 of the substrate 105 .
- the open inner channel 412 facilitates the removal of sputtering deposits from these portions during cleaning of the deposition ring 180 .
- the deposition ring 180 also has a ledge 414 which extends outward and is located radially outward of the V-shaped protuberance 406 .
- the ledge 414 serves to support the cover ring 170 .
- the bottom surface 420 of the annular band 402 has a notch 422 which extends from the inner lip 404 under the V-shaped protuberance 406 .
- the notch has a width between about 0.6 inches and about 0.75 inches.
- the notch has a width between about 0.65 inches and about 0.69 inches.
- the notch has a height between about 0.020 inches and 0.030 inches.
- the notch has a height between about 0.023 inches and about 0.026 inches.
- the second radially inward recess 408 b has an outer diameter shown by arrows “A”. In one embodiment, the diameter “A” of the second radially inward recess 408 b may be between about 13 inches and about 13.5 inches. In another embodiment, the diameter “A” of the second radially inward recess 408 b may be between about 13.1 inches and about 13.2 inches. In one embodiment, the second radially inward recess 408 b has an inner diameter shown by arrows “E”. In one embodiment, the diameter “E” of the second radially inward recess 408 b may be between about 12 inches and about 12.5 inches. In another embodiment, the diameter “E” may be between about 12.2 inches and 12.3 inches.
- the annular band 402 has a diameter as shown by arrows “D”. In one embodiment, the diameter “D” of the annular band 402 may be between about 11 inches and about 12 inches. In another embodiment, the diameter “D” of the annular band 402 may be between about 11.25 inches and about 11.75 inches. In yet another embodiment, the diameter “D” of the annular band 402 may be between about 11.40 inches and about 11.60 inches. In one embodiment, the annular band 402 has an outer diameter as shown by arrows “F”. In one embodiment, the diameter “F” of the annular band 402 may be between about 13 inches and about 14 inches. In another embodiment, the diameter “F” of the annular band 402 may be between about 13.25 inches and about 13.75 inches. In yet another embodiment, the diameter “F” may be between 13.40 inches and about 13.60 inches.
- the top of the v-shaped protuberance has a diameter shown by arrows “B”.
- the diameter “B” may be between about 12 inches and about 12.3 inches. In another embodiment, the diameter “B” may be between about 12.1 inches and about 12.2 inches.
- the inner lip 404 has an outer diameter shown by arrows “C”.
- the diameter “C” may be between about 11 inches and about 12 inches. In another embodiment, the diameter “C” may be between about 11.5 inches and about 11.9 inches. In yet another embodiment, the diameter “C” may be between about 11.7 inches and about 11.8 inches.
- the deposition ring 180 can be made by shaping and machining a ceramic material, such as aluminum oxide.
- the aluminum oxide has a purity of at least about 99.5 percent to reduce contamination of the chamber 100 by undesirable elements such as iron.
- the ceramic material is molded and sintered using conventional techniques such as isostatic pressing, followed by machining of the molded sintered preform using suitable machining methods to achieve the shape and dimensions required.
- the annular band 402 of the deposition ring 180 may comprise an exposed surface that is grit blasted. Grit blasting is performed with a grit size suitable to achieve the predefined surface roughness.
- a surface of the deposition ring 180 is treated with a twin-wire aluminum arc-spray coating, such as, for example, CLEANCOATTM, to reduce particle shedding and contamination.
- FIG. 5A is a partial section view of a middle shield 190 according to one embodiment described herein.
- the middle shield 190 encircles the sputtering surface 134 of the sputtering target 136 that faces the substrate support 128 .
- the middle shield 190 covers and shadows the top wall 312 of the lower shield 160 and the sidewalls 104 of the chamber 100 to reduce deposition of sputtering deposits originating from the sputtering surface 134 of the sputtering target 136 onto the components and surfaces behind the middle shield 160 .
- the middle shield 160 is of unitary construction and comprises a cylindrical band 510 having a first diameter D 1 dimensioned to encircle the upper shield 195 .
- the cylindrical outer band 310 has a top wall 512 that surrounds the upper shield 195 , a middle wall 517 , and a bottom wall 518 .
- a mounting flange 514 extends radially outward from the top wall 512 of the cylindrical band 510 .
- the mounting flange 514 comprises a resting surface 516 to rest upon a second annular adapter 176 surrounding the sidewalls 104 of the chamber 100 .
- the resting surface may comprise a plurality of slots shaped to receive a pin to align the middle shield 190 to the adapter 176 .
- the middle wall 517 is an extension of the top wall 512 .
- the middle wall 517 is sloped radially inward from the top wall 512 beginning at a transition point between the top wall 512 and the middle wall 517 .
- the middle wall 517 is angled between about 5° and about 10° from vertical, for example, about 7° from vertical.
- the middle wall 517 of the cylindrical band forms a second diameter D 2 .
- the second diameter D 2 is dimensioned to fit within the sloped portion of the top wall 312 of the lower shield 160 .
- the bottom wall 518 is an extension of the middle wall 517 .
- the bottom wall 518 is sloped radially outward relative to the middle wall 517 beginning at a transition point between the middle wall 517 and the bottom wall 518 .
- the bottom wall 518 is angled between about 1° and about 5° from vertical, for example, about 4° from vertical.
- the top wall 512 , the middle wall 517 , the bottom wall 518 , and the mounting flange 514 comprise a unitary structure.
- the entire middle shield 190 can be made from 300 series stainless steel, or in another embodiment, aluminum.
- the cover ring 170 encircles and at least partially covers the deposition ring 180 to receive, and thus, shadow the deposition ring 180 from the bulk of the sputtering deposits.
- the cover ring 170 is fabricated from a material that can resist erosion by the sputtering plasma, for example, a metallic material such as stainless steel, titanium or aluminum, or a ceramic material, such as aluminum oxide.
- the cover ring 170 is composed of titanium having a purity of at least about 99.9 percent.
- a surface of the cover ring 170 is treated with a twin-wire aluminum arc-spray coating, such as, for example, CLEANCOATTM, to reduce particle shedding from the surface of the cover ring 170 .
- the cover ring has an outer diameter shown by arrows “H”. In one embodiment, the diameter “H” is between about 14.5 inches and about 15 inches. In another embodiment, the diameter “H” is between about 14.8 inches and about 14.9 inches.
- the cover ring has an inner diameter shown by arrows “I”. In one embodiment, the diameter “I” is between about 11.5 inches and about 12.5 inches. In another embodiment, the diameter “I” is between about 11.8 inches and about 12.2 inches. In yet another embodiment, the diameter “I” is between about 11.9 inches and about 12.0 inches.
- the cover ring 170 comprises an annular wedge 602 .
- the annular wedge comprises a top surface 603 and a bottom surface 604 to rest upon the ledge 414 of the deposition ring 180 .
- the top surface 603 is substantially parallel to the bottom surface 604 .
- An inclined top surface 603 couples the top surface 603 with a projecting brim 610 .
- the inclined top surface 605 is sloped radially inwards and encircles the substrate support 128 .
- the inclined top surface 605 of the annular wedge 602 has an inner and outer periphery 606 , 608 .
- the inner periphery 606 comprises the projecting brim 610 which overlies the second radially inward recess 408 b of the deposition ring 180 forming an arc shaped channel 410 of the deposition ring 180 .
- the projecting brim 610 reduces deposition of sputtering deposits on the arc shaped channel 410 of the deposition ring 180 .
- the projecting brim 610 projects a distance corresponding to at least about half the width of the open inner channel 412 formed with the deposition ring 180 .
- the projecting brim 610 is sized, shaped, and positioned to cooperate with and complement the arc-shaped channel 410 and open inner channel 412 to form a convoluted and constricted flow path between the cover ring 170 and deposition ring 180 that inhibits the flow of process deposits onto the peripheral wall 138 .
- the constricted flow path of the arc-shaped channel 410 restricts the build-up of low-energy sputter deposits on the mating surfaces of the deposition ring 180 and the cover ring 170 , which would otherwise cause them to stick to one another or to the peripheral overhanging edge of the substrate 105 .
- the open inner channel 412 of the deposition ring 180 which extends underneath the overhanging edge 107 of the substrate 105 is designed in conjunction with shadowing from the projecting brim 610 of the cover ring 170 to collect, for example, aluminum sputter deposits in an aluminum sputtering chamber, while reducing or even substantially precluding sputter deposition on the mating surfaces of the two rings 170 , 180 .
- the inclined top surface 605 in cooperation with the projecting brim 610 , block line-of-sight deposition from exiting the interior volume 110 and entering the chamber body cavity.
- the inclined top surface 605 may be slanted at an angle relative to the top surface 603 as shown by angle “ ⁇ ”. In one embodiment, the angle “ ⁇ ” may be between about 5 degrees and about 15 degrees. In another embodiment, the angle “ ⁇ ” is between about 9 degrees and about 11 degrees. In one embodiment, the angle “ ⁇ ” is about 10 degrees.
- the angle of the inclined top surface 605 of the cover ring 170 is designed, for example, to minimize the buildup of sputter deposits nearest to the overhanging edge 107 of the substrate 105 , which would otherwise negatively impact the deposition uniformity obtained across the substrate 105 .
- the cover ring 170 further comprises a sloped step 612 located below the inclined top surface 605 of the annular wedge 602 .
- the sloped step 612 couples the projecting brim 610 with the bottom surface 604 .
- the sloped step 612 extends downwardly from the annular wedge 602 and radially outward from the inner periphery 606 .
- the sloped step 612 may be slanted at an angle relative to the bottom surface as shown by angle “ ⁇ ”. In one embodiment, angle “ ⁇ ” may be between about 40 degrees and about 50 degrees. In another embodiment, angle “ ⁇ ” may be between about 42 degrees and about 48 degrees. In yet another embodiment, angle “ ⁇ ” may be between about 44 degrees and about 46 degrees.
- the sloped step has an inner diameter shown by arrows “J”. In one embodiment, the diameter “J” of the sloped step 612 is between about 12 inches and about 13 inches. In another embodiment, the diameter “J” of the sloped step 612 is between about 12.2 and about 12.5 inches. In yet another embodiment, the diameter “J” of the sloped step 612 is between about 12.3 inches and about 12.4 inches.
- the sloped step 612 also has a diameter shown by arrows “K”. In one embodiment, the diameter “K” of the sloped step 612 is between about 12.5 and about 13 inches. In another embodiment, the diameter “K” of the sloped step 612 is between about 12.7 inches and about 12.8 inches. In one embodiment, the diameter “K” of the sloped step 612 functions as the inner diameter of the bottom surface 604 .
- the bottom surface has an outer diameter shown by arrows “L”.
- the diameter “L” of the bottom surface is between about 13.5 and about 13.8 inches. In another embodiment, the diameter “L” is between about 13.4 inches and about 13.5 inches.
- the cover ring 170 further comprises an inner cylindrical band 614 a and an outer cylindrical band 614 b that extend downwardly from the annular wedge 602 , with a gap 616 therebetween.
- the gap 616 has a width between 0.5 inches and about 1 inch. In another embodiment, the gap 616 has a width between about 0.7 inches and about 0.8 inches.
- the inner and outer cylindrical bands 614 a, 614 b are substantially vertical. The cylindrical bands 614 a, 614 b are located radially outward of the sloped step 612 of the wedge 602 . An inner periphery 618 of the inner cylindrical band 614 a is coupled with the bottom surface 604 .
- the inner periphery 618 of the inner cylindrical band 614 a may be slanted at an angle “ ⁇ ” from vertical. In one embodiment, the angle “ ⁇ ” is between about 10 degrees and about 20 degrees. In another embodiment, the angle “ ⁇ ” is between about 14 degrees and about 16 degrees.
- the inner cylindrical band 614 a has a height that is smaller than the outer cylindrical band 614 b.
- the height of the outer cylindrical band 614 b is at least about 2 times the height of the inner cylindrical band 614 a.
- the height of the outer cylindrical band 614 b is between about 0.4 inches and about 1 inch.
- the height of the outer cylindrical band 614 b is between 0.6 inches and 0.7 inches.
- the height of the inner cylindrical band 614 a is between about 0.2 inches and 0.6 inches.
- the height of the inner cylindrical band 614 a is between about 0.3 inches and 0.4 inches.
- the outer diameter “L” of the bottom surface functions as the inner diameter of the inner cylindrical band 614 a.
- the inner cylindrical band 614 a has an outer diameter shown by arrows “M”. In one embodiment, the diameter “M” of the inner cylindrical band 614 a is between about 13.5 inches and about 14.2 inches. In another embodiment, the diameter “M” of the inner cylindrical band 614 a is between about 13.7 and 14 inches. In yet another embodiment, the diameter “M” of the inner cylindrical band is between about 13.8 inches and about 13.9 inches.
- the outer cylindrical band 614 b has an inner diameter as shown by arrows “N”. In one embodiment, the diameter “N” is between about 14 inches and about 15 inches. In another embodiment, the diameter “N” of the outer cylindrical band 614 b is between about 14.2 inches and about 14.8 inches. In another embodiment, the diameter “N” of the outer cylindrical band 614 b is between about 14.5 inches and about 14.6 inches. In one embodiment, the diameter “H” of the cover ring functions as the outer diameter of the outer cylindrical band “H”.
- the cover ring 170 is adjustable and effectively shields conductance holes in the lower shield 160 at a range of different heights.
- the cover ring 170 is capable of being raised and lowered to adjust the height of the cover ring 170 in relationship to the substrate support 128 in the chamber 100 .
- the space or gap between the lower shield 160 and cover ring 170 forms a convoluted S-shaped pathway or labyrinth for plasma to travel.
- the shape of the pathway is advantageous, for example, because it hinders and impedes ingress of plasma species into this region, reducing undesirable deposition of sputtered material.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physical Vapour Deposition (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Optics & Photonics (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/423,444 US20090260982A1 (en) | 2008-04-16 | 2009-04-14 | Wafer processing deposition shielding components |
US13/457,441 US8696878B2 (en) | 2008-04-16 | 2012-04-26 | Wafer processing deposition shielding components |
US13/524,859 US9062379B2 (en) | 2008-04-16 | 2012-06-15 | Wafer processing deposition shielding components |
US14/204,873 US9476122B2 (en) | 2008-04-16 | 2014-03-11 | Wafer processing deposition shielding components |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US4555608P | 2008-04-16 | 2008-04-16 | |
US4933408P | 2008-04-30 | 2008-04-30 | |
US12/423,444 US20090260982A1 (en) | 2008-04-16 | 2009-04-14 | Wafer processing deposition shielding components |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/457,441 Division US8696878B2 (en) | 2008-04-16 | 2012-04-26 | Wafer processing deposition shielding components |
US13/524,859 Continuation US9062379B2 (en) | 2008-04-16 | 2012-06-15 | Wafer processing deposition shielding components |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090260982A1 true US20090260982A1 (en) | 2009-10-22 |
Family
ID=41200217
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/423,444 Abandoned US20090260982A1 (en) | 2008-04-16 | 2009-04-14 | Wafer processing deposition shielding components |
US13/457,441 Active US8696878B2 (en) | 2008-04-16 | 2012-04-26 | Wafer processing deposition shielding components |
US14/204,873 Active US9476122B2 (en) | 2008-04-16 | 2014-03-11 | Wafer processing deposition shielding components |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/457,441 Active US8696878B2 (en) | 2008-04-16 | 2012-04-26 | Wafer processing deposition shielding components |
US14/204,873 Active US9476122B2 (en) | 2008-04-16 | 2014-03-11 | Wafer processing deposition shielding components |
Country Status (6)
Country | Link |
---|---|
US (3) | US20090260982A1 (ja) |
JP (1) | JP5916384B2 (ja) |
KR (6) | KR20200067957A (ja) |
CN (1) | CN102007572B (ja) |
TW (1) | TWI502670B (ja) |
WO (1) | WO2009154853A2 (ja) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100218785A1 (en) * | 2009-02-27 | 2010-09-02 | Applied Materials, Inc. | In situ plasma clean for removal of residue from pedestal surface without breaking vacuum |
US20110036709A1 (en) * | 2009-08-11 | 2011-02-17 | Applied Materials, Inc. | Process kit for rf physical vapor deposition |
US20110186426A1 (en) * | 2010-01-29 | 2011-08-04 | Applied Materials, Inc. | Adjustable process spacing, centering, and improved gas conductance |
US20120042825A1 (en) * | 2010-08-20 | 2012-02-23 | Applied Materials, Inc. | Extended life deposition ring |
US20120103257A1 (en) * | 2010-10-29 | 2012-05-03 | Applied Materials, Inc. | Deposition ring and electrostatic chuck for physical vapor deposition chamber |
CN102634762A (zh) * | 2011-02-11 | 2012-08-15 | Spts技术有限公司 | 复合屏蔽 |
US20120205241A1 (en) * | 2008-05-02 | 2012-08-16 | Applied Materials, Inc. | Process kit for rf physical vapor deposition |
US20130042812A1 (en) * | 2011-02-11 | 2013-02-21 | Spts Technologies Limited | Composite shielding |
US20130055952A1 (en) * | 2011-03-11 | 2013-03-07 | Applied Materials, Inc. | Reflective deposition rings and substrate processing chambers incorporting same |
JP2013528706A (ja) * | 2010-05-14 | 2013-07-11 | アプライド マテリアルズ インコーポレイテッド | 改善された粒子低減のためのプロセスキットシールド |
US20130206070A1 (en) * | 2012-02-10 | 2013-08-15 | Well Thin Technology, Ltd. | Deposition ring |
US20130277203A1 (en) * | 2012-04-24 | 2013-10-24 | Applied Materials, Inc. | Process kit shield and physical vapor deposition chamber having same |
US20130334038A1 (en) * | 2008-04-16 | 2013-12-19 | Applied Materials, Inc. | Wafer processing deposition shielding components |
US20140261182A1 (en) * | 2011-12-22 | 2014-09-18 | Canon Anelva Corporation | Substrate processing apparatus |
US20150267300A1 (en) * | 2014-03-19 | 2015-09-24 | Applied Materials, Inc. | Thermal processing chamber |
WO2016028478A1 (en) * | 2014-08-22 | 2016-02-25 | Applied Materials, Inc. | Methods and apparatus for maintaining low non-uniformity over target life |
CN105624634A (zh) * | 2014-11-04 | 2016-06-01 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 反应腔室及半导体加工设备 |
CN108604533A (zh) * | 2015-12-20 | 2018-09-28 | 应用材料公司 | 用于处理基板的方法和设备 |
CN110062950A (zh) * | 2016-12-06 | 2019-07-26 | 应用材料公司 | 物理气相沉积腔室中的颗粒减量 |
USD868124S1 (en) * | 2017-12-11 | 2019-11-26 | Applied Materials, Inc. | Target profile for a physical vapor deposition chamber target |
USD869409S1 (en) | 2016-09-30 | 2019-12-10 | Applied Materials, Inc. | Target profile for a physical vapor deposition chamber target |
USD877101S1 (en) | 2018-03-09 | 2020-03-03 | Applied Materials, Inc. | Target profile for a physical vapor deposition chamber target |
USD894137S1 (en) | 2017-10-05 | 2020-08-25 | Applied Materials, Inc. | Target profile for a physical vapor deposition chamber target |
CN111602235A (zh) * | 2018-01-29 | 2020-08-28 | 应用材料公司 | 用于在pvd处理中减少颗粒的处理配件几何形状 |
USD908645S1 (en) | 2019-08-26 | 2021-01-26 | Applied Materials, Inc. | Sputtering target for a physical vapor deposition chamber |
USD937329S1 (en) | 2020-03-23 | 2021-11-30 | Applied Materials, Inc. | Sputter target for a physical vapor deposition chamber |
USD940765S1 (en) | 2020-12-02 | 2022-01-11 | Applied Materials, Inc. | Target profile for a physical vapor deposition chamber target |
US11315768B2 (en) * | 2017-06-30 | 2022-04-26 | Beijing Naura Microelectronics Equipment Co., Ltd. | Loading apparatus and physical vapor deposition apparatus |
US11339466B2 (en) * | 2020-03-20 | 2022-05-24 | Applied Materials, Inc. | Heated shield for physical vapor deposition chamber |
CN114763602A (zh) * | 2021-01-13 | 2022-07-19 | 台湾积体电路制造股份有限公司 | 晶圆处理设备与制造半导体装置的方法 |
USD1007449S1 (en) | 2021-05-07 | 2023-12-12 | Applied Materials, Inc. | Target profile for a physical vapor deposition chamber target |
EP4307339A1 (en) * | 2022-07-15 | 2024-01-17 | Samsung Electronics Co., Ltd. | Focus ring, substrate processing apparatus including the same, and semiconductor fabrication method using the same |
US11915918B2 (en) | 2021-06-29 | 2024-02-27 | Applied Materials, Inc. | Cleaning of sin with CCP plasma or RPS clean |
US11961723B2 (en) | 2018-12-17 | 2024-04-16 | Applied Materials, Inc. | Process kit having tall deposition ring for PVD chamber |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013026493A1 (en) * | 2011-08-25 | 2013-02-28 | Applied Materials, Inc. | Corner cut mask |
US9376752B2 (en) * | 2012-04-06 | 2016-06-28 | Applied Materials, Inc. | Edge ring for a deposition chamber |
KR102117234B1 (ko) * | 2012-08-30 | 2020-06-01 | 어플라이드 머티어리얼스, 인코포레이티드 | 반사성 증착 링들 및 그를 포함하는 기판 프로세싱 챔버들 |
CN103911585A (zh) * | 2013-01-08 | 2014-07-09 | 旭晖应用材料股份有限公司 | 遮罩 |
KR102072044B1 (ko) * | 2013-09-26 | 2020-01-31 | 주성엔지니어링(주) | 기판 처리 장치 |
KR102346064B1 (ko) * | 2014-03-12 | 2021-12-30 | 어플라이드 머티어리얼스, 인코포레이티드 | 반도체 챔버에서의 웨이퍼 회전 |
US20150354054A1 (en) * | 2014-06-06 | 2015-12-10 | Applied Materials, Inc. | Cooled process tool adapter for use in substrate processing chambers |
CN105779932B (zh) * | 2014-12-26 | 2018-08-24 | 北京北方华创微电子装备有限公司 | 用于处理腔室的工艺内衬和物理气相沉积设备 |
US10658222B2 (en) | 2015-01-16 | 2020-05-19 | Lam Research Corporation | Moveable edge coupling ring for edge process control during semiconductor wafer processing |
CN107406973A (zh) * | 2015-01-19 | 2017-11-28 | 欧瑞康表面解决方案股份公司,普费菲孔 | 用于提高热输出的带有特别设计的真空腔 |
US10903055B2 (en) * | 2015-04-17 | 2021-01-26 | Applied Materials, Inc. | Edge ring for bevel polymer reduction |
JP7008509B2 (ja) * | 2015-05-27 | 2022-02-10 | アプライド マテリアルズ インコーポレイテッド | 高成長率のepiチャンバのための遮熱リング |
US10755902B2 (en) * | 2015-05-27 | 2020-08-25 | Tokyo Electron Limited | Plasma processing apparatus and focus ring |
KR102709082B1 (ko) | 2015-07-03 | 2024-09-23 | 어플라이드 머티어리얼스, 인코포레이티드 | 높은 증착 링 및 증착 링 클램프를 갖는 프로세스 키트 |
US10103012B2 (en) | 2015-09-11 | 2018-10-16 | Applied Materials, Inc. | One-piece process kit shield for reducing the impact of an electric field near the substrate |
US9953812B2 (en) | 2015-10-06 | 2018-04-24 | Applied Materials, Inc. | Integrated process kit for a substrate processing chamber |
KR20240127488A (ko) | 2015-10-27 | 2024-08-22 | 어플라이드 머티어리얼스, 인코포레이티드 | Pvd 스퍼터 챔버를 위한 바이어스가능 플럭스 최적화기/콜리메이터 |
JP6888007B2 (ja) | 2016-01-26 | 2021-06-16 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | ウェハエッジリングの持ち上げに関する解決 |
WO2017131927A1 (en) | 2016-01-26 | 2017-08-03 | Applied Materials, Inc. | Wafer edge ring lifting solution |
WO2018008681A1 (ja) * | 2016-07-06 | 2018-01-11 | 株式会社アルバック | 成膜装置、プラテンリング |
US10446420B2 (en) | 2016-08-19 | 2019-10-15 | Applied Materials, Inc. | Upper cone for epitaxy chamber |
CN109804455B (zh) * | 2016-10-14 | 2022-03-15 | 瑞士艾发科技 | 溅射源 |
US10923385B2 (en) * | 2016-11-03 | 2021-02-16 | Lam Research Corporation | Carrier plate for use in plasma processing systems |
CN110073463B (zh) * | 2016-11-18 | 2022-05-24 | 应用材料公司 | 用于在物理气相沉积腔室中的准直器 |
JP7117300B2 (ja) * | 2016-11-19 | 2022-08-12 | アプライド マテリアルズ インコーポレイテッド | 浮遊シャドウリングを有するプロセスキット |
US10886113B2 (en) * | 2016-11-25 | 2021-01-05 | Applied Materials, Inc. | Process kit and method for processing a substrate |
US9947517B1 (en) | 2016-12-16 | 2018-04-17 | Applied Materials, Inc. | Adjustable extended electrode for edge uniformity control |
US10553404B2 (en) | 2017-02-01 | 2020-02-04 | Applied Materials, Inc. | Adjustable extended electrode for edge uniformity control |
CN108456860B (zh) * | 2017-02-22 | 2020-12-08 | 北京北方华创微电子装备有限公司 | 一种沉积腔室和膜层沉积装置 |
US11043364B2 (en) * | 2017-06-05 | 2021-06-22 | Applied Materials, Inc. | Process kit for multi-cathode processing chamber |
US11075105B2 (en) | 2017-09-21 | 2021-07-27 | Applied Materials, Inc. | In-situ apparatus for semiconductor process module |
TWI760111B (zh) * | 2017-11-21 | 2022-04-01 | 美商蘭姆研究公司 | 底部和中間邊緣環 |
WO2019103722A1 (en) * | 2017-11-21 | 2019-05-31 | Lam Research Corporation | Bottom and middle edge rings |
TWI722257B (zh) * | 2017-11-21 | 2021-03-21 | 美商蘭姆研究公司 | 底部和中間邊緣環 |
US11043400B2 (en) | 2017-12-21 | 2021-06-22 | Applied Materials, Inc. | Movable and removable process kit |
WO2019204185A1 (en) * | 2018-04-18 | 2019-10-24 | Applied Materials, Inc. | Two piece shutter disk assembly with self-centering feature |
US10790123B2 (en) | 2018-05-28 | 2020-09-29 | Applied Materials, Inc. | Process kit with adjustable tuning ring for edge uniformity control |
US11935773B2 (en) | 2018-06-14 | 2024-03-19 | Applied Materials, Inc. | Calibration jig and calibration method |
KR102067820B1 (ko) * | 2018-07-24 | 2020-01-17 | (주)선익시스템 | 가변형 아크억제수단이 마련된 증착장비 |
CN110838429B (zh) * | 2018-08-15 | 2022-07-22 | 北京北方华创微电子装备有限公司 | 腔体内衬、等离子体反应腔室和等离子体设备 |
US11289310B2 (en) | 2018-11-21 | 2022-03-29 | Applied Materials, Inc. | Circuits for edge ring control in shaped DC pulsed plasma process device |
US11551965B2 (en) | 2018-12-07 | 2023-01-10 | Applied Materials, Inc. | Apparatus to reduce polymers deposition |
CN113169024A (zh) * | 2018-12-19 | 2021-07-23 | 瑞士艾发科技 | 沉积化合物层的真空系统和方法 |
US11486038B2 (en) | 2019-01-30 | 2022-11-01 | Applied Materials, Inc. | Asymmetric injection for better wafer uniformity |
JP7329940B2 (ja) * | 2019-03-22 | 2023-08-21 | 株式会社アルバック | 成膜装置及びその製造方法。 |
WO2020214327A1 (en) | 2019-04-19 | 2020-10-22 | Applied Materials, Inc. | Ring removal from processing chamber |
US12009236B2 (en) | 2019-04-22 | 2024-06-11 | Applied Materials, Inc. | Sensors and system for in-situ edge ring erosion monitor |
CN110066981B (zh) * | 2019-06-17 | 2023-11-28 | 浙江晶驰光电科技有限公司 | 正装基片定位装置及基片装载方法 |
CN110273134B (zh) * | 2019-07-25 | 2024-06-21 | 深圳清华大学研究院 | 全口径薄膜沉积夹具 |
KR20210061639A (ko) * | 2019-11-20 | 2021-05-28 | 캐논 톡키 가부시키가이샤 | 성막 장치, 이를 사용한 성막 방법 및 전자 디바이스 제조 방법 |
CN111235535B (zh) * | 2020-01-22 | 2021-11-16 | 北京北方华创微电子装备有限公司 | 一种溅射反应腔室的工艺组件及其溅射反应腔室 |
US11581166B2 (en) * | 2020-07-31 | 2023-02-14 | Applied Materials, Inc. | Low profile deposition ring for enhanced life |
US11996315B2 (en) | 2020-11-18 | 2024-05-28 | Applied Materials, Inc. | Thin substrate handling via edge clamping |
US12100579B2 (en) * | 2020-11-18 | 2024-09-24 | Applied Materials, Inc. | Deposition ring for thin substrate handling via edge clamping |
USD1038049S1 (en) | 2020-11-18 | 2024-08-06 | Applied Materials, Inc. | Cover ring for use in semiconductor processing chamber |
CN115110042B (zh) * | 2021-03-22 | 2024-03-01 | 台湾积体电路制造股份有限公司 | 物理气相沉积反应室及其使用方法 |
CN114672780B (zh) * | 2022-03-22 | 2023-09-19 | 颀中科技(苏州)有限公司 | 晶圆托盘及晶圆片溅渡设备 |
KR102649810B1 (ko) * | 2023-08-30 | 2024-03-21 | 주식회사 코미코 | 증착 공정용 챔버의 코팅방법 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5690795A (en) * | 1995-06-05 | 1997-11-25 | Applied Materials, Inc. | Screwless shield assembly for vacuum processing chambers |
US5942042A (en) * | 1997-05-23 | 1999-08-24 | Applied Materials, Inc. | Apparatus for improved power coupling through a workpiece in a semiconductor wafer processing system |
US6059945A (en) * | 1996-08-23 | 2000-05-09 | Applied Materials, Inc. | Sputter target for eliminating redeposition on the target sidewall |
US20020090464A1 (en) * | 2000-11-28 | 2002-07-11 | Mingwei Jiang | Sputter chamber shield |
US6582569B1 (en) * | 1999-10-08 | 2003-06-24 | Applied Materials, Inc. | Process for sputtering copper in a self ionized plasma |
US6699375B1 (en) * | 2000-06-29 | 2004-03-02 | Applied Materials, Inc. | Method of extending process kit consumable recycling life |
US6723214B2 (en) * | 1998-10-29 | 2004-04-20 | Applied Materials, Inc. | Apparatus for improved power coupling through a workpiece in a semiconductor wafer processing system |
US6730174B2 (en) * | 2002-03-06 | 2004-05-04 | Applied Materials, Inc. | Unitary removable shield assembly |
US6743340B2 (en) * | 2002-02-05 | 2004-06-01 | Applied Materials, Inc. | Sputtering of aligned magnetic materials and magnetic dipole ring used therefor |
US6797131B2 (en) * | 2002-11-12 | 2004-09-28 | Applied Materials, Inc. | Design of hardware features to facilitate arc-spray coating applications and functions |
US6899798B2 (en) * | 2001-12-21 | 2005-05-31 | Applied Materials, Inc. | Reusable ceramic-comprising component which includes a scrificial surface layer |
US20050199491A1 (en) * | 2001-11-14 | 2005-09-15 | Tza-Jing Gung | Shields usable with an inductively coupled plasma reactor |
US7041200B2 (en) * | 2002-04-19 | 2006-05-09 | Applied Materials, Inc. | Reducing particle generation during sputter deposition |
US7520969B2 (en) * | 2006-03-07 | 2009-04-21 | Applied Materials, Inc. | Notched deposition ring |
US7981262B2 (en) * | 2007-01-29 | 2011-07-19 | Applied Materials, Inc. | Process kit for substrate processing chamber |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0784162B2 (ja) | 1988-07-25 | 1995-09-13 | 東海興業株式会社 | ウェザーストリップ、及びその成形方法 |
US5803977A (en) * | 1992-09-30 | 1998-09-08 | Applied Materials, Inc. | Apparatus for full wafer deposition |
JP3563095B2 (ja) * | 1993-10-28 | 2004-09-08 | 株式会社ルネサステクノロジ | 半導体装置の製造方法 |
US5632873A (en) | 1995-05-22 | 1997-05-27 | Stevens; Joseph J. | Two piece anti-stick clamp ring |
JP3545123B2 (ja) * | 1996-01-26 | 2004-07-21 | アプライド マテリアルズ インコーポレイテッド | ウエハ加熱器用成膜防護具 |
US6051122A (en) * | 1997-08-21 | 2000-04-18 | Applied Materials, Inc. | Deposition shield assembly for a semiconductor wafer processing system |
US6034863A (en) * | 1997-11-12 | 2000-03-07 | Applied Materials, Inc. | Apparatus for retaining a workpiece in a process chamber within a semiconductor wafer processing system |
JP2001140054A (ja) | 1999-11-15 | 2001-05-22 | Nec Kagoshima Ltd | 真空成膜装置のクリーニング方法及び真空成膜装置 |
KR100342395B1 (ko) * | 2000-06-28 | 2002-07-02 | 황인길 | 반도체 소자 제조 장치 |
US7026009B2 (en) * | 2002-03-27 | 2006-04-11 | Applied Materials, Inc. | Evaluation of chamber components having textured coatings |
KR20050069452A (ko) * | 2003-12-31 | 2005-07-05 | 동부아남반도체 주식회사 | 스퍼터링 장치의 실드구조 |
US20060054090A1 (en) | 2004-09-15 | 2006-03-16 | Applied Materials, Inc. | PECVD susceptor support construction |
US7670436B2 (en) * | 2004-11-03 | 2010-03-02 | Applied Materials, Inc. | Support ring assembly |
KR20070045060A (ko) * | 2005-10-26 | 2007-05-02 | 삼성전자주식회사 | 증착 링 및 이를 세정하는 방법 |
US9127362B2 (en) * | 2005-10-31 | 2015-09-08 | Applied Materials, Inc. | Process kit and target for substrate processing chamber |
JP4954542B2 (ja) | 2005-12-09 | 2012-06-20 | 三菱マテリアル株式会社 | 掘削ロッド、掘削ビット及び掘削工具 |
-
2009
- 2009-04-14 KR KR1020207016388A patent/KR20200067957A/ko active Application Filing
- 2009-04-14 WO PCT/US2009/040487 patent/WO2009154853A2/en active Application Filing
- 2009-04-14 KR KR1020157032979A patent/KR20150136142A/ko not_active Application Discontinuation
- 2009-04-14 KR KR1020167005975A patent/KR102025330B1/ko active IP Right Grant
- 2009-04-14 CN CN2009801135361A patent/CN102007572B/zh active Active
- 2009-04-14 KR KR1020107025606A patent/KR101571558B1/ko active IP Right Grant
- 2009-04-14 US US12/423,444 patent/US20090260982A1/en not_active Abandoned
- 2009-04-14 KR KR1020167023767A patent/KR101939640B1/ko active IP Right Grant
- 2009-04-14 JP JP2011505129A patent/JP5916384B2/ja active Active
- 2009-04-14 KR KR1020197022619A patent/KR102134276B1/ko active IP Right Grant
- 2009-04-16 TW TW098112664A patent/TWI502670B/zh active
-
2012
- 2012-04-26 US US13/457,441 patent/US8696878B2/en active Active
-
2014
- 2014-03-11 US US14/204,873 patent/US9476122B2/en active Active
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5690795A (en) * | 1995-06-05 | 1997-11-25 | Applied Materials, Inc. | Screwless shield assembly for vacuum processing chambers |
US6059945A (en) * | 1996-08-23 | 2000-05-09 | Applied Materials, Inc. | Sputter target for eliminating redeposition on the target sidewall |
US5942042A (en) * | 1997-05-23 | 1999-08-24 | Applied Materials, Inc. | Apparatus for improved power coupling through a workpiece in a semiconductor wafer processing system |
US6723214B2 (en) * | 1998-10-29 | 2004-04-20 | Applied Materials, Inc. | Apparatus for improved power coupling through a workpiece in a semiconductor wafer processing system |
US7163607B2 (en) * | 1998-10-29 | 2007-01-16 | Applied Materials, Inc. | Process kit for improved power coupling through a workpiece in a semiconductor wafer processing system |
US6582569B1 (en) * | 1999-10-08 | 2003-06-24 | Applied Materials, Inc. | Process for sputtering copper in a self ionized plasma |
US6699375B1 (en) * | 2000-06-29 | 2004-03-02 | Applied Materials, Inc. | Method of extending process kit consumable recycling life |
US20020090464A1 (en) * | 2000-11-28 | 2002-07-11 | Mingwei Jiang | Sputter chamber shield |
US20050199491A1 (en) * | 2001-11-14 | 2005-09-15 | Tza-Jing Gung | Shields usable with an inductively coupled plasma reactor |
US6899798B2 (en) * | 2001-12-21 | 2005-05-31 | Applied Materials, Inc. | Reusable ceramic-comprising component which includes a scrificial surface layer |
US20040216998A1 (en) * | 2002-02-05 | 2004-11-04 | Jianming Fu | Cover ring and shield supporting a wafer ring in a plasma reactor |
US6743340B2 (en) * | 2002-02-05 | 2004-06-01 | Applied Materials, Inc. | Sputtering of aligned magnetic materials and magnetic dipole ring used therefor |
US7294245B2 (en) * | 2002-02-05 | 2007-11-13 | Applied Materials, Inc. | Cover ring and shield supporting a wafer ring in a plasma reactor |
US6730174B2 (en) * | 2002-03-06 | 2004-05-04 | Applied Materials, Inc. | Unitary removable shield assembly |
US7041200B2 (en) * | 2002-04-19 | 2006-05-09 | Applied Materials, Inc. | Reducing particle generation during sputter deposition |
US6797131B2 (en) * | 2002-11-12 | 2004-09-28 | Applied Materials, Inc. | Design of hardware features to facilitate arc-spray coating applications and functions |
US7520969B2 (en) * | 2006-03-07 | 2009-04-21 | Applied Materials, Inc. | Notched deposition ring |
US7981262B2 (en) * | 2007-01-29 | 2011-07-19 | Applied Materials, Inc. | Process kit for substrate processing chamber |
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9062379B2 (en) * | 2008-04-16 | 2015-06-23 | Applied Materials, Inc. | Wafer processing deposition shielding components |
US20130334038A1 (en) * | 2008-04-16 | 2013-12-19 | Applied Materials, Inc. | Wafer processing deposition shielding components |
US8668815B2 (en) * | 2008-05-02 | 2014-03-11 | Applied Materials, Inc. | Process kit for RF physical vapor deposition |
US20120205241A1 (en) * | 2008-05-02 | 2012-08-16 | Applied Materials, Inc. | Process kit for rf physical vapor deposition |
US8900471B2 (en) | 2009-02-27 | 2014-12-02 | Applied Materials, Inc. | In situ plasma clean for removal of residue from pedestal surface without breaking vacuum |
US9818585B2 (en) | 2009-02-27 | 2017-11-14 | Applied Materials, Inc. | In situ plasma clean for removal of residue from pedestal surface without breaking vacuum |
US20100218785A1 (en) * | 2009-02-27 | 2010-09-02 | Applied Materials, Inc. | In situ plasma clean for removal of residue from pedestal surface without breaking vacuum |
US20110036709A1 (en) * | 2009-08-11 | 2011-02-17 | Applied Materials, Inc. | Process kit for rf physical vapor deposition |
US9978569B2 (en) | 2010-01-29 | 2018-05-22 | Applied Materials, Inc. | Adjustable process spacing, centering, and improved gas conductance |
US9096926B2 (en) | 2010-01-29 | 2015-08-04 | Applied Materials, Inc. | Adjustable process spacing, centering, and improved gas conductance |
US9464349B2 (en) | 2010-01-29 | 2016-10-11 | Applied Materials, Inc. | Adjustable process spacing, centering, and improved gas conductance |
US8580092B2 (en) | 2010-01-29 | 2013-11-12 | Applied Materials, Inc. | Adjustable process spacing, centering, and improved gas conductance |
US20110186426A1 (en) * | 2010-01-29 | 2011-08-04 | Applied Materials, Inc. | Adjustable process spacing, centering, and improved gas conductance |
JP2013528706A (ja) * | 2010-05-14 | 2013-07-11 | アプライド マテリアルズ インコーポレイテッド | 改善された粒子低減のためのプロセスキットシールド |
US20150190835A1 (en) * | 2010-08-20 | 2015-07-09 | Applied Materials, Inc. | Extended life deposition ring |
US20120042825A1 (en) * | 2010-08-20 | 2012-02-23 | Applied Materials, Inc. | Extended life deposition ring |
US9689070B2 (en) | 2010-10-29 | 2017-06-27 | Applied Materials, Inc. | Deposition ring and electrostatic chuck for physical vapor deposition chamber |
US20120103257A1 (en) * | 2010-10-29 | 2012-05-03 | Applied Materials, Inc. | Deposition ring and electrostatic chuck for physical vapor deposition chamber |
US8911601B2 (en) * | 2010-10-29 | 2014-12-16 | Applied Materials, Inc. | Deposition ring and electrostatic chuck for physical vapor deposition chamber |
EP2487275A1 (en) * | 2011-02-11 | 2012-08-15 | SPTS Technologies Limited | Composite shielding |
KR101946066B1 (ko) * | 2011-02-11 | 2019-02-08 | 에스피티에스 테크놀러지스 리미티드 | 컴포지트 실드 |
US20130042812A1 (en) * | 2011-02-11 | 2013-02-21 | Spts Technologies Limited | Composite shielding |
TWI554631B (zh) * | 2011-02-11 | 2016-10-21 | Spts科技公司 | 複合屏蔽總成、沉積室及高功率沉積裝置 |
US9957608B2 (en) * | 2011-02-11 | 2018-05-01 | Spts Technologies Limited | Composite shielding |
CN102634762A (zh) * | 2011-02-11 | 2012-08-15 | Spts技术有限公司 | 复合屏蔽 |
US9905443B2 (en) * | 2011-03-11 | 2018-02-27 | Applied Materials, Inc. | Reflective deposition rings and substrate processing chambers incorporating same |
US20130055952A1 (en) * | 2011-03-11 | 2013-03-07 | Applied Materials, Inc. | Reflective deposition rings and substrate processing chambers incorporting same |
US20140261182A1 (en) * | 2011-12-22 | 2014-09-18 | Canon Anelva Corporation | Substrate processing apparatus |
US9822450B2 (en) * | 2011-12-22 | 2017-11-21 | Canon Anelva Corporation | Substrate processing apparatus |
US20130206070A1 (en) * | 2012-02-10 | 2013-08-15 | Well Thin Technology, Ltd. | Deposition ring |
US20130277203A1 (en) * | 2012-04-24 | 2013-10-24 | Applied Materials, Inc. | Process kit shield and physical vapor deposition chamber having same |
US10053777B2 (en) * | 2014-03-19 | 2018-08-21 | Applied Materials, Inc. | Thermal processing chamber |
US20150267300A1 (en) * | 2014-03-19 | 2015-09-24 | Applied Materials, Inc. | Thermal processing chamber |
WO2016028478A1 (en) * | 2014-08-22 | 2016-02-25 | Applied Materials, Inc. | Methods and apparatus for maintaining low non-uniformity over target life |
US10283334B2 (en) | 2014-08-22 | 2019-05-07 | Applied Materials, Inc. | Methods and apparatus for maintaining low non-uniformity over target life |
CN105624634A (zh) * | 2014-11-04 | 2016-06-01 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 反应腔室及半导体加工设备 |
CN108604533A (zh) * | 2015-12-20 | 2018-09-28 | 应用材料公司 | 用于处理基板的方法和设备 |
USD869409S1 (en) | 2016-09-30 | 2019-12-10 | Applied Materials, Inc. | Target profile for a physical vapor deposition chamber target |
CN110062950A (zh) * | 2016-12-06 | 2019-07-26 | 应用材料公司 | 物理气相沉积腔室中的颗粒减量 |
US11315768B2 (en) * | 2017-06-30 | 2022-04-26 | Beijing Naura Microelectronics Equipment Co., Ltd. | Loading apparatus and physical vapor deposition apparatus |
USD894137S1 (en) | 2017-10-05 | 2020-08-25 | Applied Materials, Inc. | Target profile for a physical vapor deposition chamber target |
USD868124S1 (en) * | 2017-12-11 | 2019-11-26 | Applied Materials, Inc. | Target profile for a physical vapor deposition chamber target |
USD946638S1 (en) | 2017-12-11 | 2022-03-22 | Applied Materials, Inc. | Target profile for a physical vapor deposition chamber target |
CN111602235A (zh) * | 2018-01-29 | 2020-08-28 | 应用材料公司 | 用于在pvd处理中减少颗粒的处理配件几何形状 |
USD877101S1 (en) | 2018-03-09 | 2020-03-03 | Applied Materials, Inc. | Target profile for a physical vapor deposition chamber target |
USD902165S1 (en) | 2018-03-09 | 2020-11-17 | Applied Materials, Inc. | Target profile for a physical vapor deposition chamber target |
USD1040304S1 (en) | 2018-12-17 | 2024-08-27 | Applied Materials, Inc. | Deposition ring for physical vapor deposition chamber |
US11961723B2 (en) | 2018-12-17 | 2024-04-16 | Applied Materials, Inc. | Process kit having tall deposition ring for PVD chamber |
USD908645S1 (en) | 2019-08-26 | 2021-01-26 | Applied Materials, Inc. | Sputtering target for a physical vapor deposition chamber |
US11339466B2 (en) * | 2020-03-20 | 2022-05-24 | Applied Materials, Inc. | Heated shield for physical vapor deposition chamber |
USD970566S1 (en) | 2020-03-23 | 2022-11-22 | Applied Materials, Inc. | Sputter target for a physical vapor deposition chamber |
USD937329S1 (en) | 2020-03-23 | 2021-11-30 | Applied Materials, Inc. | Sputter target for a physical vapor deposition chamber |
USD966357S1 (en) | 2020-12-02 | 2022-10-11 | Applied Materials, Inc. | Target profile for a physical vapor deposition chamber target |
USD940765S1 (en) | 2020-12-02 | 2022-01-11 | Applied Materials, Inc. | Target profile for a physical vapor deposition chamber target |
CN114763602A (zh) * | 2021-01-13 | 2022-07-19 | 台湾积体电路制造股份有限公司 | 晶圆处理设备与制造半导体装置的方法 |
USD1007449S1 (en) | 2021-05-07 | 2023-12-12 | Applied Materials, Inc. | Target profile for a physical vapor deposition chamber target |
US11915918B2 (en) | 2021-06-29 | 2024-02-27 | Applied Materials, Inc. | Cleaning of sin with CCP plasma or RPS clean |
US12027354B2 (en) | 2021-06-29 | 2024-07-02 | Applied Materials, Inc. | Cleaning of SIN with CCP plasma or RPS clean |
EP4307339A1 (en) * | 2022-07-15 | 2024-01-17 | Samsung Electronics Co., Ltd. | Focus ring, substrate processing apparatus including the same, and semiconductor fabrication method using the same |
Also Published As
Publication number | Publication date |
---|---|
KR20200067957A (ko) | 2020-06-12 |
KR102025330B1 (ko) | 2019-09-25 |
CN102007572A (zh) | 2011-04-06 |
KR101939640B1 (ko) | 2019-01-17 |
CN102007572B (zh) | 2013-01-16 |
JP2011518255A (ja) | 2011-06-23 |
KR20110007195A (ko) | 2011-01-21 |
JP5916384B2 (ja) | 2016-05-11 |
US20120211359A1 (en) | 2012-08-23 |
TW201003819A (en) | 2010-01-16 |
KR102134276B1 (ko) | 2020-07-15 |
US8696878B2 (en) | 2014-04-15 |
KR20150136142A (ko) | 2015-12-04 |
US20140190822A1 (en) | 2014-07-10 |
TWI502670B (zh) | 2015-10-01 |
WO2009154853A2 (en) | 2009-12-23 |
US9476122B2 (en) | 2016-10-25 |
WO2009154853A3 (en) | 2010-02-25 |
KR20190092628A (ko) | 2019-08-07 |
KR20160105989A (ko) | 2016-09-08 |
KR20160030343A (ko) | 2016-03-16 |
KR101571558B1 (ko) | 2015-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9476122B2 (en) | Wafer processing deposition shielding components | |
US9978569B2 (en) | Adjustable process spacing, centering, and improved gas conductance | |
US8668815B2 (en) | Process kit for RF physical vapor deposition | |
US7981262B2 (en) | Process kit for substrate processing chamber | |
US9689070B2 (en) | Deposition ring and electrostatic chuck for physical vapor deposition chamber | |
US9062379B2 (en) | Wafer processing deposition shielding components | |
US20130087452A1 (en) | Process kit for rf physical vapor deposition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: APPLIED MATERIALS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RIKER, MARTIN LEE;MILLER, KEITH A.;SUBRAMANI, ANANTHA;REEL/FRAME:022809/0189 Effective date: 20090515 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |