US20090236260A1 - Chip Scale Package Tray - Google Patents

Chip Scale Package Tray Download PDF

Info

Publication number
US20090236260A1
US20090236260A1 US11/884,483 US88448307A US2009236260A1 US 20090236260 A1 US20090236260 A1 US 20090236260A1 US 88448307 A US88448307 A US 88448307A US 2009236260 A1 US2009236260 A1 US 2009236260A1
Authority
US
United States
Prior art keywords
frame
members
seat
seat members
support members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/884,483
Other languages
English (en)
Inventor
Myung-Jae Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WORLD PLATECH Co Ltd A Corp ORGANIZED UNDER LAWS OF REPUBLIC OF KOREA
Original Assignee
WORLD PLATECH Co Ltd A Corp ORGANIZED UNDER LAWS OF REPUBLIC OF KOREA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WORLD PLATECH Co Ltd A Corp ORGANIZED UNDER LAWS OF REPUBLIC OF KOREA filed Critical WORLD PLATECH Co Ltd A Corp ORGANIZED UNDER LAWS OF REPUBLIC OF KOREA
Assigned to WORLD PLATECH CO., LTD., A CORPORATION ORGANIZED UNDER THE LAWS OF THE REPUBLIC OF KOREA reassignment WORLD PLATECH CO., LTD., A CORPORATION ORGANIZED UNDER THE LAWS OF THE REPUBLIC OF KOREA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEE, MYUNG-JAE
Publication of US20090236260A1 publication Critical patent/US20090236260A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67333Trays for chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrates to be conveyed not being semiconductor wafers or large planar substrates, e.g. chips, lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67754Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a batch of workpieces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0408Incorporating a pick-up tool

Definitions

  • the present invention relates to a chip scale package tray, and more particularly to a chip scale tray which is capable of preventing semiconductor chips from being damaged when the chips are loaded on the tray, preventing the semiconductor chips from moving away from predetermined positions while they are loaded on the tray, so that the semiconductor chips can be smoothly adsorbed by a semiconductor chip suction device, preventing a working line in a manufacturing process from being interrupted, thereby improving work efficiency, preventing slippage between trays when a plurality of trays loaded with semiconductor chips are stacked and handled, and allowing the rear side inspection of the semiconductor chips as well as the front side inspection of the semiconductor chips after the chips are loaded on the trays, the rear side inspection being performed by turning the trays upside down.
  • semiconductor chips include CFP type chips, VGFP type chips, POFP chips, VSOP type chips, BGA type chips, etc. After the manufacturing of such semiconductor chips is completed, they are inputted into a manufacturing line for applying them, or they are delivered to the outside. In order to prevent the damage of semiconductor chips caused by external impact or the like occurring in the process of handling the semiconductor chips in a manufacturing process or while delivering the semiconductor chips, semiconductor chip loading trays are employed.
  • Such a semiconductor chip loading tray includes a rectangular frame, a plurality of chip loading recesses arranged in a grid pattern on the top of the frame, and a plurality of semiconductor chip support projections arranged along the periphery of each of the chip loading recesses with a space on all sides, wherein the rectangular semiconductor chips are delivered to a manufacturing line for applying them in a state in which the semiconductor chips are respectively loaded in the chip loading recesses and supported by the support projections.
  • Semiconductor chips are very sensitive electronic parts. With the above-mentioned conventional semiconductor chip tray, semiconductor chips collide with the hard support projections around the chip loading recesses on the frame while the semi-conductor chips are introduced into the chip loading recesses. As a result, the semi-conductor chips are easily damaged. In addition, while being transported after packaged in the final manufacturing line, the semiconductor chips may also be damaged.
  • the semiconductor chips may be easily moved out of the chip loading recesses. Therefore, the semi-conductor chips may not be adsorbed by a suction device so well, even if they are loaded on a tray so as to adsorb them at once by the suction device for a subsequent process. Even if the semiconductor chips are adsorbed at once, it is difficult to properly perform the subsequent process because the semiconductor chips are adsorbed in a misaligned state.
  • trays are typically used in a stacked state rather than individually used.
  • slippage is caused between stacked trays.
  • various obstructions are caused in a subsequent manufacturing process.
  • the front side inspection of the semiconductor chips is allowed but the rear side inspection of the semiconductor chips is not possible. That is, if a plurality of trays loaded with semiconductor chips are stacked, a gap is produced between the bottom of an upper tray and the top of an adjacent lower tray, whereby if the trays loaded with the semiconductor chips are turned upside down, the semiconductor chips are moved due to the gaps existing between the trays.
  • the present invention has been made to solve the above-mentioned problems occurring in the prior art, and the present invention provides a chip scale package tray which is capable of preventing semiconductor chips from being damaged when the chips are loaded on the tray, preventing the semiconductor chips from moving away from predetermined positions while they are loaded on the tray, so that the semiconductor chips can be smoothly adsorbed by a semiconductor chip suction device, preventing an operation line in a manufacturing process from being interrupted, thereby improving work efficiency, preventing slippage between trays when a plurality of trays loaded with semiconductor chips are stacked and handled, and allowing the rear side inspection of the semiconductor chips as well as the front side inspection of the semiconductor chips after the chips are loaded on a plurality of trays, the rear side inspection being performed by turning the trays upside down.
  • the present invention a chip scale tray, has an advantageous effects which is capable of preventing semiconductor chips from being damaged when the chips are loaded on the tray, preventing the semiconductor chips from moving away from pre-determined positions while they are loaded on the tray, so that the semiconductor chips can be smoothly adsorbed by a semiconductor chip suction device, preventing a working line in a manufacturing process from being interrupted, thereby improving work efficiency, preventing slippage between trays when a plurality of trays loaded with semiconductor chips are stacked and handled, and allowing the rear side inspection of the semiconductor chips as well as the front side inspection of the semi-conductor chips after the chips are loaded on the trays, the rear side inspection being performed by turning the trays upside down.
  • FIG. 1 is a top side perspective view showing the configuration of the inventive chip scale package tray
  • FIG. 2 is a bottom side perspective view of the inventive chip scale package tray of FIG. 1 ;
  • FIG. 3 is a top plan view of the inventive chip scale package tray.
  • FIG. 4 and FIG. 5 are cross-sectional views taken along lines A-A and B-B in FIG. 3 , respectively.
  • a chip scale package tray including: a rectangular frame; a plurality of seat members formed from a material relatively soft and superior in frictional force as compared to the frame, the seat members being arranged on the top of the frame in a grid pattern, a semiconductor chip being loaded on the top of each of the seat members; and a plurality of support members formed from a material relatively soft and superior in frictional force as compared to the frame, the support members being attached to the bottom of the frame to be opposed to the seat members.
  • Each of the seat members which is formed from a material relatively soft and superior in frictional force as compared to the frame, such as an elastic rubber or silicone, is fabricated to have a configuration having a seat area and a plurality of chip support pieces arranged around the periphery of the seat area.
  • the frame is formed by introducing a synthetic resin into cavities of a first set of molds and curing the synthetic material in the cavities
  • the seat members are formed by interposing the frame between the cavities of a second set of molds, introducing a material relatively soft and superior in frictional force as compared to the frame between the top of the frame and the cavities of one of the second set of molds in a molten state, and curing the material in the cavities
  • the support member is formed by introducing a material relatively soft and superior in frictional force as compared to the frame between the bottom of the frame and the cavities of the other of the second set of molds in a molten state, and curing the material in the cavities, whereby the frame, the seat members and the support members form a triple injection-molded structure.
  • a first set of fastening projections are integrally formed with the respective seat members on the bottom sides of the seat members to be opposed to the seat areas or the chip support pieces, and a first set of fastening holes are formed through the frame, so that the first set of the fastening projections can be fitted in the first set of the fastening holes on the top of the frame.
  • a second set of fastening projections are integrally formed with the respective support members on the top sides of the support members to be opposed to the semiconductor chip contact areas or engagement projections, and a second set of fastening holes are formed through the frame, so that the second set of the fastening projections can be fitted in the fastening holes on the bottom of the frame.
  • Each of the first set of the fastening projections of the seat members is formed in a cross-sectional shape with the diameter increasing when moving from the bottom end to the top end thereof, while each of the second set of the fastening holes in the frame is formed in a specific shape with the diameter decreasing when moving from the bottom end to the top end thereof.
  • each of the second set of the fastening projections of the support members is formed in a shape of a circular cross-section with the diameter increasing when moving from the top end to the bottom end thereof, while each of the second set of the fastening holes in the frame is formed in a specific shape with the diameter decreasing when moving from the top end to the bottom end thereof.
  • the seat members and the support members are additionally provided with conductive particles.
  • FIG. 1 is a top side perspective view showing the configuration of the present invention
  • FIG. 2 is a bottom side perspective view corresponding to FIG. 1
  • FIG. 3 is a top plan view
  • FIG. 4 and FIG. 5 are cross-sectional views taken along lines A-A and B-B in FIG. 3 , respectively.
  • the inventive chip scale package tray includes a rectangular frame 10 with a plurality of seat members 20 arranged on the top of the frame 10 in a grid pattern, and a plurality of support members 30 arranged on the bottom of the frame 10 in a grid pattern.
  • the frame 10 is fabricated in a rectangular (i.e., right-angled tetragonal) plate shape from a hard synthetic resin.
  • the peripheral edge of the top of the frame 10 is formed with a rim 11 projecting upward.
  • Referential numeral 13 indicates view windows.
  • the seat members 20 are formed from a material relatively soft and superior in frictional force as compared to the frame 10 . That is, as being formed from a material, such as an elastic rubber, silicone, urethane, etc., that is softer than a conventional hard synthetic resin, thereby being superior in elasticity and frictional force, the seat members 20 are relatively softer than the frame 10 , thereby being superior in frictional force as compared to the frame 10 .
  • each of the seat members 20 includes a seat area 22 formed in a rectangular shape corresponding to a rectangular semiconductor chip, and a plurality of chip support pieces 24 arranged along the periphery of the seat area 22 (i.e., along the left, right, front and rear edges of the seat area 22 ) to be spaced from each other and integrally molded with the seat area 22 , and a chip mount recess defined by the inner sides of the chip support pieces 24 and the seat area 22 . That is, when a semiconductor chip (not shown) is loaded on a seat area 22 of such a seat member 20 , the chip support pieces 24 support the side areas of the semiconductor chip in such a manner that the semiconductor chip is prevented from moving.
  • the seat member 20 also has fastening projections 26 which are integrally molded on the bottom side of the seat member to be opposed to the seat area 22 or the chip support pieces 24 .
  • the fastening projections 26 are formed on the bottom side of the seat member 20 to be opposed to both of the seat area 22 and the chip support pieces 24 .
  • the support members 30 are formed from a material relatively soft and superior in frictional force as compared to the frame 10 . That is, as being formed from a material, such as an elastic rubber, silicone, urethane, etc., that is softer than a conventional hard synthetic resin, thereby being superior in elasticity and frictional force, the support members 30 are relatively softer than the frame 10 , thereby being superior in frictional force as compared to the frame 10 .
  • each of the support members 30 includes a substantially rectangular semiconductor chip contact area 32 , and a plurality of engagement projections 34 arranged along the periphery of the semiconductor chip contact area 32 to be spaced from each other.
  • each of the support members 30 also has fastening projections 36 which are integrally molded on and project from the top side of the support member to be opposed to the semiconductor contact area 32 or the engagement projections 34 .
  • the fastening projections 36 are formed on and project from the top side of each of the support members to be opposed to both of the semiconductor contact area 32 and the engagement projections 34 .
  • the frame 10 is formed by introducing a synthetic resin into cavities of a first set of molds and curing the synthetic resin in the cavities
  • the seat members 20 are formed by interposing the frame 10 between cavities of a second set of molds, introducing a soft and frictional material (a first material) between the cavities of one of the second set of molds and the top of the frame 10 in a molten state, and curing the material in the cavities
  • the support member 30 is formed by introducing a soft and frictional material (a second material) between the cavities of the other of the second set of molds and the bottom of the frame 10 in a molten state, and curing the material in the cavities.
  • the frame 10 is molded by introducing an ordinary synthetic resin into the cavities of the first set of molds and curing the synthetic resin in the cavities.
  • a soft and frictional material such as an elastic rubber, silicone, and urethane is introduced in a molten state and cured between the top of the frame 10 and the cavities of one of the second set of molds through runners (runners communicating with cavities arranged in a grid pattern having negative shapes for the seat members 20 to be formed on the top of the frame 10 ), so that the soft and frictional seat members 20 can be integrally molded on the top of the frame 10 in the grid pattern.
  • a soft and frictional material such as an elastic rubber, silicone, and urethane, is introduced in a molten state and cured between the bottom of the frame 10 and the cavities of the other of the second set of molds through runners (runners communicating with cavities having negative shapes for the support members 30 and arranged in a grid pattern), so that the soft and frictional support members 30 can be integrally molded on the bottom of the frame 10 in the grid pattern.
  • a soft and frictional material such as an elastic rubber, silicone, and urethane
  • a chip scale package tray with a triple injection-molded structure wherein seat members 20 which are relatively soft and superior in frictional force as compared to the frame 10 are integrally molded on the top of the frame 10 in a grid pattern, and support members 30 which are relatively soft and superior in frictional force as compared to the frame 10 are integrally molded on the bottom of the frame 10 at the positions corresponding to those of the seat members 20 in a grid pattern.
  • Each of the seat members 20 has a plurality of chip support pieces 24 arranged along and upwardly projecting from the periphery of a rectangular seat area 22 , and a plurality of fastening projections 26 integrally molded on the bottom side of the seat member to be opposed to the seat area 22 and the chip support pieces 24 .
  • Fastening holes 16 corresponding to the fastening projections 26 are formed through the frame 10 from the top of the frame 10 , so that the fastening projections 16 on the bottom sides of the seat members 20 are fitted in the fastening holes 16 in the frame 10 , respectively.
  • the fastening projections 26 on the bottom sides of the seat members 20 are formed by being automatically filled in the fastening holes 16 of the frame 10 during the process of triple injection-molding. Consequently, the bottom sides of the seat members 20 are automatically fastened to the top of the frame 10 .
  • each of the support members 30 has a plurality of engagement projections 34 arranged along and downwardly projecting from the periphery of a rectangular semiconductor chip contact area 32 , and a plurality of fastening projections 36 integrally molded on the top side of each support member to be opposed to the semiconductor chip contact area 32 and the engagement projections 34 .
  • Fastening holes 18 corresponding to the fastening projections 36 of the support members 30 are formed through the frame 10 from the top of the frame 10 , so that the fastening projections 36 on the top sides of the support members 30 are fitted in the fastening holes 18 in the frame 10 , respectively.
  • the fastening projections 36 on the top sides of the support members 30 are formed by being automatically filled in the fastening holes 16 of the frame 10 during the process of triple injection molding. Consequently, the top sides of the seat members 30 are automatically fastened to the bottom of the frame 10 .
  • the seat members 20 and the support members 30 are formed from a material relatively soft and superior in frictional force as compared to the frame 10 formed from a conventional synthetic resin, it is possible to prevent semiconductor chips from being easily damaged in the course of loading the semiconductor chips on the seat members 20 . That is, even if the semiconductor chips bump against the upwardly projecting chip support pieces 24 in the course of loading the semiconductor chips on the seat areas 22 of the seat members 20 , the seat members 20 dampen the shock applied to the semiconductor chips because the seat members 20 are formed from a material relatively soft as compared to the hard frame 10 , whereby it is possible to prevent the semiconductor chips, which are sensitive to shock, from being easily damaged in the course of loading the semiconductor chips.
  • the seat members 20 are formed from a material relatively soft and thus superior in frictional force as compared to the frame 10 , the semiconductor chips are not removed so easily from the seat members 20 (i.e., from the semi-conductor chip loading recesses) by external force applied while handling the semi-conductor chip loading trays so as to stack the trays on a working die in a manufacturing line.
  • a semiconductor chip suction device it is possible to allow a semiconductor chip suction device to adsorb and remove all the semiconductor chips from a tray at once for the subsequent manufacturing process, whereby the subsequent manufacturing process can be smoothly performed.
  • the support members 30 as well as the seat members 20 are formed from a material relatively soft and thus superior in frictional force as compared to the frame 10 , slippage does not occur between the trays in the course of transporting a plurality of stacked trays or performing other operations. As a result, it is possible to prevent in advance various obstructions which may be caused in a fabricating process.
  • each of the fastening projections 26 formed on and projecting from the bottom sides of the seat members 20 has a cross-sectional shape with the diameter increasing when moving from the top to bottom thereof, and each of the upper fastening holes 16 of the frame 10 , in which the fastening projections 26 are fitted, respectively, is formed in a specific shape with the diameter decreasing when moving from the bottom to top thereof.
  • each of the fastening projections 36 formed on and projecting from the top sides of the support members 30 has a cross-sectional shape with the diameter decreasing when moving from the top to bottom thereof, and each of the lower fastening holes 18 of the frame 10 , in which the fastening projections 36 are fitted, respectively, is formed in a specific shape with the diameter decreasing when moving from the top to bottom thereof.
  • the seat members 20 and the support members 30 are additionally provided with a plurality of conductive particles 40 . Therefore, even if static electricity is produced when a plurality of trays loaded with semiconductor chips are handled, the static electricity flows to the outside of the semiconductor chips through the conductive particles 40 without affecting the semiconductor chips. As a result, it is possible to prevent the semiconductor chips from being damaged by static electricity.
  • the seat members on which semiconductor chips are loaded, and the support members which come into contact with the top surfaces of the semiconductor chips are formed from a material relatively soft and thus superior in frictional force as compared to the frame formed from a conventional synthetic resin.
  • the semiconductor chips are not removed from the seat members so easily by external force applied in the course of handling the semi-conductor chips loaded on the tray for a subsequent process.
  • a semiconductor chip suction device it is possible for a semiconductor chip suction device to adsorb and remove all the semiconductor chips at once from the tray. Due to this feature, subsequent semiconductor manufacturing processes can be smoothly performed.
  • the seat members and the support members are formed from a rubber which is soft and thus superior in frictional force. Therefore, while transporting a plurality of stacked trays or performing any other operation, no slippage occurs between the trays. Consequently, it is possible to prevent in advance various obstructions which may be caused in manufacturing processes.
  • the present invention a chip scale tray, has an industrial applicability for preventing semiconductor chips from being damaged when the chips are loaded on the tray, preventing the semiconductor chips from moving away from predetermined positions while they are loaded on the tray. Therefore, the semiconductor chips can be smoothly adsorbed by a semiconductor chip suction device, preventing a working line in a manufacturing process from being interrupted, thereby improving work efficiency, preventing slippage between trays when a plurality of trays loaded with semiconductor chips are stacked and handled, and allowing the rear side inspection of the semi-conductor chips as well as the front side inspection of the semiconductor chips after the chips are loaded on the trays, the rear side inspection being performed by turning the trays upside down.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Packaging Frangible Articles (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
US11/884,483 2006-06-30 2007-06-26 Chip Scale Package Tray Abandoned US20090236260A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2006-0061042 2006-06-30
KR1020060061042A KR100676736B1 (ko) 2006-06-30 2006-06-30 칩스케일 패키지용 트레이
PCT/KR2007/003079 WO2008002051A1 (en) 2006-06-30 2007-06-26 Chip scale package tray

Publications (1)

Publication Number Publication Date
US20090236260A1 true US20090236260A1 (en) 2009-09-24

Family

ID=38104965

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/884,483 Abandoned US20090236260A1 (en) 2006-06-30 2007-06-26 Chip Scale Package Tray

Country Status (5)

Country Link
US (1) US20090236260A1 (ko)
JP (1) JP2008544582A (ko)
KR (1) KR100676736B1 (ko)
TW (1) TW200826221A (ko)
WO (1) WO2008002051A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090300911A1 (en) * 2008-06-05 2009-12-10 Shinko Electric Industries Co., Ltd. Method of manufacturing wiring substrate and chip tray
US20110221072A1 (en) * 2010-03-09 2011-09-15 Chee Keong Chin Integrated circuit packaging system with via and method of manufacture thereof
CN102244024A (zh) * 2011-06-14 2011-11-16 天水华天集成电路包装材料有限公司 一种用于lqfp封装集成电路的托盘
WO2024051021A1 (zh) * 2022-09-07 2024-03-14 苏州东昊塑胶五金有限公司 一种托盘结构及托盘结构的包胶工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101378838B1 (ko) 2012-05-25 2014-03-31 한국기술교육대학교 산학협력단 실리콘 웨이퍼를 이용한 솔라 웨이퍼 트레이
JP6393596B2 (ja) * 2014-11-19 2018-09-19 リンテック株式会社 整列装置および整列方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5131535A (en) * 1986-06-27 1992-07-21 Symtek Systems, Inc. Electrical device transport medium
US5927503A (en) * 1995-03-28 1999-07-27 Micron Technology, Inc. Tray for processing and/or shipping integrated circuit device
US20010027933A1 (en) * 1998-11-26 2001-10-11 Keiichi Sasamura Accommodation container, accommodation container for accommodating semiconductor devices and method of carrying semiconductor devices
US20010030144A1 (en) * 2000-04-12 2001-10-18 Masahisa Nemoto Chip tray
US6651857B1 (en) * 2000-05-19 2003-11-25 Ching Tsung Tsai Combinatorial multi-use tape dispenser

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305984A (ja) * 1991-03-26 1993-11-19 Hitachi Ltd 半導体装置輸送用トレー
KR20010028962A (ko) * 1999-09-28 2001-04-06 윤종용 칩 스케일 패키지용 트레이
KR20060023661A (ko) * 2004-09-10 2006-03-15 삼성전자주식회사 반도체 패키지용 트레이

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5131535A (en) * 1986-06-27 1992-07-21 Symtek Systems, Inc. Electrical device transport medium
US5927503A (en) * 1995-03-28 1999-07-27 Micron Technology, Inc. Tray for processing and/or shipping integrated circuit device
US20010027933A1 (en) * 1998-11-26 2001-10-11 Keiichi Sasamura Accommodation container, accommodation container for accommodating semiconductor devices and method of carrying semiconductor devices
US20010030144A1 (en) * 2000-04-12 2001-10-18 Masahisa Nemoto Chip tray
US6651857B1 (en) * 2000-05-19 2003-11-25 Ching Tsung Tsai Combinatorial multi-use tape dispenser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090300911A1 (en) * 2008-06-05 2009-12-10 Shinko Electric Industries Co., Ltd. Method of manufacturing wiring substrate and chip tray
US20110221072A1 (en) * 2010-03-09 2011-09-15 Chee Keong Chin Integrated circuit packaging system with via and method of manufacture thereof
US8541886B2 (en) * 2010-03-09 2013-09-24 Stats Chippac Ltd. Integrated circuit packaging system with via and method of manufacture thereof
CN102244024A (zh) * 2011-06-14 2011-11-16 天水华天集成电路包装材料有限公司 一种用于lqfp封装集成电路的托盘
WO2024051021A1 (zh) * 2022-09-07 2024-03-14 苏州东昊塑胶五金有限公司 一种托盘结构及托盘结构的包胶工艺

Also Published As

Publication number Publication date
KR100676736B1 (ko) 2007-02-01
TW200826221A (en) 2008-06-16
WO2008002051A1 (en) 2008-01-03
JP2008544582A (ja) 2008-12-04

Similar Documents

Publication Publication Date Title
US20090236260A1 (en) Chip Scale Package Tray
KR101898134B1 (ko) 리드 프레임 이송용 매거진
KR102093202B1 (ko) 웨이퍼 운송장치
US9472440B2 (en) Integrated circuit package strip insert assembly
JP2013522885A (ja) 薄型ウェーハシッパー
KR101415162B1 (ko) 반도체 제조장치용 흡착유닛
US7257887B2 (en) Die holding apparatus for bonding systems
TWI726230B (zh) 保持構件、保持構件的製造方法、保持機構以及製品的製造裝置
US20080164646A1 (en) Workholder for supporting electronic devices
JP2007246170A (ja) 半導体パッケージ用収納トレーおよびその製作方法
KR100614619B1 (ko) 칩스케일 패키지용 트레이
JP2004247734A (ja) 印刷回路基板モジュールの両面モールディング方法及びこれに使われるモールド
KR102401363B1 (ko) 반도체 패키지들을 진공 흡착하기 위한 진공 테이블
TWI290121B (en) Carrier with tacky surfaces
KR102556329B1 (ko) 반도체 기판을 지지하는 진공척
US20110171338A1 (en) Apparatus and method for molding compound
KR101391706B1 (ko) 진공흡착 테이블 및 그 제조방법
KR100769926B1 (ko) 칩스케일 패키지용 트레이
US20140103511A1 (en) Semiconductor device, semiconductor device storage method, semiconductor device manufacturing method, and semiconductor manufacturing apparatus
CN107731715B (zh) 封装料带的堆叠方法及其防翘曲治具
JP2007161314A (ja) 電子部品搬送用トレイ
US20040075191A1 (en) Support substrate for integrated circuit chip adapted to be placed in a mould
KR102158819B1 (ko) 반도체 패키지 픽업 장치
KR101712075B1 (ko) 쏘잉소터시스템의 턴테이블 장치
KR101845376B1 (ko) 칩 몰딩 장치

Legal Events

Date Code Title Description
AS Assignment

Owner name: WORLD PLATECH CO., LTD., A CORPORATION ORGANIZED U

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEE, MYUNG-JAE;REEL/FRAME:022956/0659

Effective date: 20070712

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION