US20090214541A1 - Combination Therapy Using Anti-EGFR and Anti-HER2 Antibodies - Google Patents

Combination Therapy Using Anti-EGFR and Anti-HER2 Antibodies Download PDF

Info

Publication number
US20090214541A1
US20090214541A1 US12/086,725 US8672506A US2009214541A1 US 20090214541 A1 US20090214541 A1 US 20090214541A1 US 8672506 A US8672506 A US 8672506A US 2009214541 A1 US2009214541 A1 US 2009214541A1
Authority
US
United States
Prior art keywords
her2
egfr
antibody
cancer
tumor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/086,725
Other languages
English (en)
Inventor
Stephen D. Gillies
David Azria
Christel Larbouret
Andre Pelegrin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
L INSTITUT NATIONAL de la SANTE ET de la RECHERCHE MEDICALE
L'INSTITUT NATIONAL de la SANTE ET de la RECHERECHE MEDICALE
Institut National de la Sante et de la Recherche Medicale INSERM
Original Assignee
Institut National de la Sante et de la Recherche Medicale INSERM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37876938&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20090214541(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Institut National de la Sante et de la Recherche Medicale INSERM filed Critical Institut National de la Sante et de la Recherche Medicale INSERM
Assigned to MERCK PATENT GMBH reassignment MERCK PATENT GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GILLIES, STEPHEN D.
Assigned to L INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE reassignment L INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AZRIA, DAVID, LARBOURET, CHRISTEL, PELEGRIN, ANDRE
Publication of US20090214541A1 publication Critical patent/US20090214541A1/en
Assigned to L'INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERECHE MEDICALE reassignment L'INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERECHE MEDICALE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MERCK PATENT GMBH
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • A61K2039/507Comprising a combination of two or more separate antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific

Definitions

  • the invention relates to the combined use of an anti-EGFR (ErbB1) antibody and an anti-Her2 (ErbB2) antibody for the treatment of cancer.
  • the invention furthermore relates to the treatment of tumor in an individual with said antibodies, wherein the tumor cells express high levels of the EGFR type and low or no significant levels of HER2.
  • the invention refers to the combination treatment using monoclonal antibody trastuzumab” (HERCEPTIN®) directed against HER2 receptor and “matuzumab” (hmAb 425, EMD 72000) directed against EGF receptor, or another anti-EGFR antibody.
  • the combination treatment is preferably suitable for patients suffering from a cancer, the tissue of which do not overexpress HER2 or express HER2 in low amounts, but do overexpress EGFR.
  • Subclass I of the receptor tyrosine kinase (RTK) super family consists of ErbB receptors and comprises four members: EGFR/ErbB1, HER2/ErbB2, ErbB3 and ErbB4. All members have an extracellular ligand-binding region, a single membrane-spanning region and a cytoplasmic tyrosine-kinase-containing domain.
  • Tyrosine kinases are a class of enzymes that catalyze the transfer of the terminal phosphate of adenosine triphosphate to tyrosine residues in protein substrates.
  • the ErbB receptors are expressed in various tissues of epithelial, mesenchymal and neuronal origin. Under normal conditions, activation of the ErbB receptors is controlled by the spatial and temporal expression of their ligands, which are members of the EGF family of growth factors. Ligand binding to ErbB receptors induces the formation of receptor homo- and heterodimers and activation of the intrinsic kinase domain, resulting in phosphorylation on specific tyrosine kinase residues within the cytoplasmic tail. These phosphorylated residues serve as docking sites for various proteins, the recruitment of which leads to the activation of intracellular signaling pathways.
  • HER2 is the only HER family member that does not bind a known specific ligand, its principal biological function, as a signal transducer, appears to result from its participation in heterodimeric receptor complexes with EGFR or other HER receptors (e.g. Konecny et al., 2006, Cancer Res. 96, 1630).
  • Receptor dimerization is mediated by receptor-receptor interactions in which a loop protruding from neighboring receptors mediates receptor dimerization and activation. Receptor dimerization is essential for stimulating of the intrinsic catalytic activity and for the self-phosphorylation of growth factor receptors on tyrosine residues.
  • receptor protein tyrosine kinases are able to undergo both homo- and heterodimerization, wherein homodimeric receptor combinations are less mitogenic and transforming (no or weak initiation of signaling) than the corresponding heterodimeric combinations.
  • Heterodimers containing ErbB2 are the most potent complexes (Yarden and Sliwkowski, 2001, Nature Reviews, Molecular cell Biology, volume 2, 127-137; Tzahar and Yarden, 1998, BBA 1377, M25-M37).
  • ErbB inhibitor Two important types of ErbB inhibitor are in clinical use: chimeric, humanized or fully human antibodies directed against the extracellular domain of EGFR or ErbB2, and small-molecule tyrosine-kinase inhibitors (TKIs) that compete with the ATP in the tyrosine-kinase domain of the receptor.
  • TKIs small-molecule tyrosine-kinase inhibitors
  • anti-HER/ErbB antibodies there are several anti-HER/ErbB antibodies in clinical studies and already approved and on market, for example matuzumab, cetuximab, panitumumab and trastuzumab.
  • Humanized monoclonal antibody 425 also designated as matuzumab (hMAb 425, U.S. Pat. No. 5,558,864; EP 0531 472) and chimeric monoclonal antibody 225 (cMAb 225), both directed to the EGF receptor, have shown their efficacy in clinical trials.
  • the mouse antibody 4D5 directed to the HER2/ErbB2 was further found to sensitize ErbB2-expressing breast tumor cell lines to the cytotoxic effects of TNF ⁇ (U.S. Pat. No. 5,677,171).
  • a recombinant humanized version designated as huMAb4D5-8, rhuMAb HER2, trastuzumab, or HERCEPTIN® (U.S. Pat. No. 5,821,337) is clinically active in patients with ErbB2-overexpressing metastatic breast cancers that have received extensive prior anti-cancer therapy (Baselga et al., J. Clin. Oncol. 14:737-744 (1996)).
  • HERCEPTIN® received marketing approval in 1998 for the treatment of patients with metastatic breast cancer whose tumors overexpress the ErbB2 protein.
  • trastuzumab in breast carcinoma is well demonstrated, it is strictly limited and only approved for 30% of breast cancer patients whose tumor overexpress HER2.70% of the breast cancer patients do not or insufficiently respond to trastuzumab because their individual tumor do not overexpress or do not sufficiently express HER2.
  • HER2 is overexpressed in a significant percentage of cases ranging from 43-69%, whereas EGFR is usually overexpressed in a range from 45-95%.
  • the levels of HER2 expression are in principal low in the majority of tumors.
  • Panitumumab (VECTIBIX®) is a fully human anti-EGFR antibody and has recently received marked approval in the US (Schwartz et al., 2002, Proc. Am Soc Clin Oncol 21, 24).
  • Adenocarcinomas of the pancreas remain one of the most difficult malignancies to treat. The incidence has steadily increased over the past four decades, and its prognosis is still dismal, despite tremendous efforts in early diagnosis and therapy. At the time of diagnosis, the majority of patients (80-90%) have locally or metastatic tumors. Even with a complete surgical resection, the five-year survival rate is less than 20% (Wagner et al., Br J Surg 2004; 91: 586-94).
  • pancreatic adenocarcinomas and displasias frequently overexpress tyrosine kinase receptors.
  • Overexpression of EGFR in pancreatic cancer is associated with advanced disease at presentation and reduced median survival time.
  • the significance of HER2 expression/overexpression in pancreatic cancer prognosis is not as clear. Indeed, no correlation between tumor differentiation degree and the level of HER2 expression in human pancreatic specimens has been reported (Dugan et al., Pancreas 1997; 14: 229-36). This might be explained by recalling that the level of HER2 does not mediate mitogenesis by itself and that heterodimerisation has to be activated.
  • an anti-HER2 antibody such as trastuzumab
  • an anti-EGFR antibody such as matuzumab
  • Such a different expression pattern between said ErbB receptors can be found in many cancers, such as pancreatic cancer.
  • the different expression pattern of a specific tumor tissue may be also an individual property. In other words, it is possible, that a specific tumor develops a different expression pattern regarding said HER/ErbB receptors in different individuals/patients suffering from said tumor.
  • an anti-Her2 antibody such as trastuzumab
  • a suitable anti-EGFR antibody such as matuzumab
  • the combined treatment of an anti-Her2 antibody such as trastuzumab, with a suitable anti-EGFR antibody, such as matuzumab, for cancer therapy is strongly synergistic, if the treated cancer overexpresses EGFR but not HER2, or, if the treated cancer does not or not significantly express HER2 (low level expression) and does express EGFR with levels higher than in corresponding normal (non-tumor) tissue.
  • trastuzumab Herceptin
  • matuzumab EMD72000
  • trastuzumab and another anti-Her2 antibody found synergistically. Since pertuzumab is known to inhibit HER2 dimerization, anti-EGFR antibody matuzumab, and any other functionally similar anti-EGFR antibody, could surprisingly play according to this invention an analogous role in EGFR dimerization.
  • pancreatic carcinoma both EGFR and HER2 are known to be expressed in a significant percentage of the cases (e.g. Tobita et al., 2003, Int J Mol Med 11, 305) and expression of these receptors has been shown to be involved in the initiation and progression of this tumor.
  • results presented herein represent the first time in vivo experimental demonstration of a long expected new improvement of cancer therapy by the synergistic action of two anti-EGFR and HER2 mAbs. Furthermore, the results presented here suggest that a patient having breast carcinoma with moderate expression of HER2, who could not be treated with anti-HER2 mAb therapy, might benefit from the synergic treatment of the two anti-HER/ErbB mAbs, provided that the tumor also expresses EGFR.
  • HER2 Based on the quite low expression level of HER2 on the BxPC-3 tumor cells and on the biodistribution results the limited tumor activity of trastuzumab obtained in vitro and in vivo could be expected. Indeed, overexpression of HER2 is an established diagnostic tool to evaluate breast cancer patients for trastuzumab therapy (Slamon et al., 2001, Semin Oncol; 28, 13), and accordingly, only patients with immunohistochemical 3+HER2-tumor expression benefit from this targeting therapy.
  • trastuzumab Infrequent HER2/neu overexpression may explain why trastuzumab is not currently used in the clinic for the treatment of pancreatic cancer. Studies confirmed the incapacity of monotherapy of trastuzumab to slow tumor growth presenting low HER2 expression. It should be noted that the doses of trastuzumab used in these studies are three-to-twelve fold higher than those used in the experiments according to the invention.
  • the time tumor progression curves from the same experiment ( FIG. 3B ) confirm that the time to reach a threefold larger tumor is significantly longer (P ⁇ 0.001) for the combined treatment group, than for the two single mAb treatments.
  • the same comparison between single and combined mAb injections is tested on the reference ovarian carcinoma line SK-OV-3, known to overexpress both EGF and HER-2 receptors.
  • the therapy consisting of 200 ⁇ g of either anti-EGFR or anti-HER-2 mAb, or the two mAbs in combination, was initiated in four groups of six mice (including an untreated control) when the SK-OV-3 xenograft had a median volume of 42 ⁇ 4 mm 3 .
  • matuzumab or trastuzumab used alone or in combination to inhibit the tyrosine kinase activity of EGFR and HER2 on BxPC-3 and MiaPaCa-2 cells in vitro can be assessed by western blot with quantification of the phosphorylated proteins by densitometry and analysis using the NIH imager 6.3 ( FIG. 5 ).
  • Analysis on the two pancreatic carcinoma cell lines are compared after a 48-h incubation with the two mAbs, either alone or in combination, followed by a 10-min activation with EGF. It should be noted first, that both cell lines show a relatively high phosphorylation base line for the EGFR and the HER2 receptor.
  • the effect of the combined antibodies is clearly synergistic in the BxPC-3 model and not a mere additive effect calculated from the efficacies of the single components. This effect is particularly striking during the four-week treatment period, where no tumor progression can be observed in the combined treatment group. Similar efficacy of this treatment can be observed on both small and large pancreatic tumors.
  • the term “overexpressed” means according to the invention, that the corresponding receptor is expressed on the surface of the tumor cells with a higher, preferably significantly higher rate and/or amount than on the surface of normal, non-tumor cells preferably deriving from the same tissue.
  • EGFR and HER2 are expressed in very low up to low rates on many normal tissue cells, depending on the specific tissue and specimen. In or on tumor tissue these rates are, as a rule, significantly higher, especially with regard to EGFR. With respect to breast cancer, for example, HER2 is significantly overexpressed in at least 30% of the patients and is expressed with a higher level than EGFR. In pancreatic cancer the situation is, as a rule, vice versa. In many cases the situation seems also to be dependent on the genetic predisposition of the individual to be treated. Thus, the terms “moderate expression”, “significant expression”, etc. are relative terms and must be seen in context of the specific situation.
  • the term “low expression” means, if not otherwise specified, not “overexpressed” in the sense as indicated above.
  • the term “moderate expression” or “significant” expression means, as not otherwise indicated, “overexpressed” in a lower/moderate or significant/higher rate.
  • “Significant” means in this context that the corresponding tumor cells express the receptor in an amount which is measurably higher than normal non-tumor cells of a specific individual do.
  • a “receptor” or “receptor molecule” is a soluble or membrane bound/associated protein or glycoprotein comprising one or more domains to which a ligand binds to form a receptor-ligand complex. By binding the ligand, which may be an agonist or an antagonist the receptor is activated or inactivated and may initiate or block pathway signaling.
  • ErbB receptor is a receptor protein tyrosine kinase which belongs, as already specified above, to the ErbB receptor family and includes EGFR/HER1 (ErbB1), HER2 (ErbB2), ErbB3 and ErbB4 receptors and other members of this family to be identified in the future.
  • the ErbB receptor will generally comprise an extracellular domain, which may bind an ErbB ligand; a lipophilic transmembrane domain; a conserved intracellular tyrosine kinase domain; and a carboxyl-terminal signaling domain harboring several tyrosine residues which can be phosphorylated.
  • tyrosine kinase antagonist/inhibitor refers according to this invention to natural or synthetic agents that are enabled to inhibit or block tyrosine kinases, receptor tyrosine kinases included.
  • the term includes per se ErbB receptor antagonists/inhibitors as defined above.
  • more preferable tyrosine kinase antagonist agents under this definition are chemical compounds which have shown efficacy in mono-drug therapy for breast and prostate cancer.
  • the dosage of the chemical tyrosine kinase inhibitors as defined above is from 1 pg/kg to 1 g/kg of body weight per day. More preferably, the dosage of tyrosine kinase inhibitors is from 0.01 mg/kg to 100 mg/kg of body weight per day.
  • the invention relates not only to the anti-HER/ErbB antibodies as mentioned but also to their biologically active fragments and to immunoconjugates as specified below, especially immunocytokines.
  • intact antibodies can be assigned to different “antibody (immunoglobulin) classes”.
  • antibody immunoglobulin
  • the heavy-chain constant domains that correspond to the different classes of antibodies are called ⁇ , ⁇ , ⁇ , ⁇ and ⁇ respectively.
  • Preferred major class for antibodies according to the invention is IgG, in more detail IgG1 and IgG2.
  • monoclonal antibody refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to polyclonal antibody preparations which include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen.
  • Monoclonal antibodies include the hybridoma method described by Kohler and Milstein (1975, Nature 256, 495) and in “Monoclonal Antibody Technology, The Production and Characterization of Rodent and Human Hybridomas” (1985, Burdon et al., Eds, Laboratory Techniques in Biochemistry and Molecular Biology, Volume 13, Elsevier Science Publishers, Amsterdam), or may be made by well known recombinant DNA methods (see, e.g., U.S. Pat. No. 4,816,567). Monoclonal antibodies may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature, 352:624-628 (1991) and Marks et al., J. Mol. Biol., 222:58, 1-597 (1991), for example.
  • chimeric antibody means antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (e.g.: U.S. Pat. No. 4,816,567; Morrison et al., Proc. Nat. Acad. Sci. USA, 81:6851-6855 (1984)). Methods for making chimeric and humanized antibodies are also known in the art.
  • chimeric antibodies include those described in patents by Boss (Celltech) and by Cabilly (Genentech) (U.S. Pat. No. 4,816,397; U.S. Pat. No. 4,816,567).
  • Antibody fragments comprise a portion of an intact antibody, preferably comprising the antigen-binding or variable region thereof.
  • antibody fragments include Fab, Fab′, F(ab′)2, Fv and Fc fragments, diabodies, linear antibodies, single-chain antibody molecules; and multispecific antibodies formed from antibody fragment(s).
  • An “intact” antibody is one which comprises an antigen-binding variable region as well as a light chain constant domain (CL) and heavy chain constant domains, CH1, CH2 and CH3.
  • the intact antibody has one or more effector functions.
  • Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, each comprising a single antigen-binding site and a CL and a CH1 region, and a residual “Fc” fragment, whose name reflects its ability to crystallize readily.
  • the “Fc” region of the antibodies comprises, as a rule, a CH2, CH3 and the hinge region of an IgG1 or IgG2 antibody major class.
  • the hinge region is a group of about 15 amino acid residues which combine the CH1 region with the CH2-CH3 region.
  • Pepsin treatment yields an “F(ab′)2” fragment that has two antigen-binding sites and is still capable of cross-linking antigen.
  • FV is the minimum antibody fragment which contains a complete antigen-recognition and antigen-binding site. This region consists of a dimer of one heavy chain and one light chain variable domain in tight, non-covalent association. It is in this configuration that the three hypervariable regions (CDRs) of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the six hypervariable regions confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three hypervariable regions specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.
  • the “Fab” fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain and has one antigen-binding site only.
  • “Fab′” fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region.
  • F(ab′)2 antibody fragments originally were produced as pairs of Fab′ fragments which have hinge cysteines between them.
  • Other chemical couplings of antibody fragments are also known (see e.g. Hermanson, Bioconjugate Techniques, Academic Press, 1996; U.S. Pat. No. 4,342,566).
  • BAbs are single, divalent antibodies (or immunotherapeutically effective fragments thereof) which have two differently specific antigen binding sites.
  • BAbs are characterized as BAb ⁇ MAb 1, MAb 2>, wherein ⁇ MAb 1> and ⁇ MAb 2> designates the antigen-binding sites deriving from MAb 1 and MAb 2.
  • the first antigen binding site is directed to an angiogenesis receptor (e.g. integrin or VEGF receptor)
  • the second antigen binding site is directed to an ErbB receptor (e.g. EGFR or HER2).
  • Bispecific antibodies can be produced by chemical techniques (see e.g., Kranz et al. (1981) Proc. Natl. Acad.
  • Bispecific antibodies can also be prepared from single chain antibodies (see e.g., Huston et al. (1988) Proc. Natl. Acad. Sci. 85, 5879; Skerra and Plueckthun (1988) Science 240, 1038). These are analogues of antibody variable regions produced as a single polypeptide chain. To form the bispecific binding agent, the single chain antibodies may be coupled together chemically or by genetic engineering methods known in the art.
  • bispecific antibodies it is also possible to produce bispecific antibodies according to this invention by using leucine zipper sequences.
  • the sequences employed are derived from the leucine zipper regions of the transcription factors Fos and Jun (Landschulz et al., 1988, Science 240, 1759; for review, see Maniatis and Abel, 1989, Nature 341, 24).
  • Leucine zippers are specific amino acid sequences about 20-40 residues long with leucine typically occurring at every seventh residue. Such zipper sequences form amphipathic ⁇ -helices, with the leucine residues lined up on the hydrophobic side for dimer formation.
  • Peptides corresponding to the leucine zippers of the Fos and Jun proteins form heterodimers preferentially (O'Shea et al., 1989, Science 245, 646). Zipper containing bispecific antibodies and methods for making them are also disclosed in WO 92/10209 and WO 93/11162.
  • immunoconjugate refers to a fusion protein and means an antibody or immunoglobulin, respectively, or a immunologically effective fragment thereof, which is fused by covalent linkage to a non-immunologically effective molecule.
  • this fusion partner is a peptide or a protein, which may be glycosylated.
  • Said non-antibody molecule can be linked to the C-terminal of the constant heavy chains of the antibody or to the N-terminals of the variable light and/or heavy chains.
  • the fusion partners can be linked via a linker molecule, which is, as a rule, a 3-15 amino acid residues containing peptide.
  • Immunoconjugates are fusion proteins consisting of an immunoglobulin or immunotherapeutically effective fragment thereof, directed to an ErbB receptor, and preferably a cytokine, such as TNF ⁇ , IFN ⁇ or IL-2, or another toxic agent.
  • cytokine such as TNF ⁇ , IFN ⁇ or IL-2
  • these peptide- or protein-based molecules are linked with their N-terminal to the C-terminal of said immunoglobulin, which is the Fc portion thereof.
  • cytokine is a generic term for proteins released by one cell population which act on another cell as intercellular mediators. Examples of such cytokines are lymphokines, monokines, and traditional polypeptide hormones.
  • cytokines include growth hormone such as human growth hormone, N-methionyl human growth hormone, and bovine growth hormone; parathyroid hormone; thyroxine; insulin; proinsulin; relaxin; prorelaxin; glycoprotein hormones such as follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), and luteinizing hormone (LH); hepatic growth factor; fibroblast growth factor; prolactin; placental lactogen; mouse gonadotropin-associated peptide; inhibin; activin; vascular endothelial growth factor (VEGF); integrin; thrombopoietin (TPO); nerve growth factors such as NGF ⁇ ; platelet-growth factor; transforming growth factors (TGFs) such as TGF ⁇ and TGFR ⁇ ; erythropoietin (EPO); interferons such as IFN ⁇ , IFN ⁇ , and IFN ⁇ ; colony stimulating factors such as M-CSF, GM-CSF and G-CSF;
  • immunotherapeutically or immunobiologically effective refers to biological molecules which cause an immune response in a mammal. More specifically, the term refers to molecules which may recognize and bind an antigen. Typically, antibodies, antibody fragments and antibody fusion proteins comprising their antigen binding sites (complementary determining regions, CDRs) are immunotherapeutically effective.
  • the therapeutic approach of this invention includes as a specific embodiment the administration of further therapeutically effective agents, which support the desired effect, e.g. tumor toxicity or cytostatic efficacy, or diminish or prevent undesired side effects.
  • the invention includes the combination of such agents with the pharmaceutical composition defined and claimed above and below, wherein said agents may be other ErbB receptor antagonists, VEGF receptor antagonists, cytokines, cytokine-immunoconjugates, anti-angiogenic agents, anti-hormonal agents, or cytotoxic agents in general. It is also an object of this invention to combine the compositions as defined herein with radiotherapy according to known methods.
  • cytotoxic agent as used in this context is defined very broadly and refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells (cell death), and/or exerts anti-neoplastic/anti-proliferative effects, for example, prevents directly or indirectly the development, maturation or spread of neoplastic tumor cells.
  • the term includes expressively also such agents that cause a cytostatic effect only and not a mere cytotoxic effect.
  • chemotherapeutic agent is a subset of the term “cytotoxic agent” and means specifically chemical agents that exert anti-neoplastic effects, preferably directly on the tumor cell, and less indirectly through mechanisms such as biological response modification. Suitable chemotherapeutic agents according to the invention are preferably natural or synthetic chemical compounds. There are large numbers of anti-neoplastic chemical agents available in commercial use, in clinical evaluation and in pre-clinical development, which could be included in the present invention for treatment of tumors/neoplasia by combination therapy with the receptor antagonists as claimed and described in this invention.
  • the term includes especially agents as specified below, as well as other ErbB antagonists (such as anti-ErbB antibodies), anti-angiogenic agents, tyrosine kinase inhibitors, protein kinase A inhibitors, members of the cytokine family, radioactive isotopes, and toxins such as enzymatically active toxins of bacterial, fungal, plant or animal origin.
  • ErbB antagonists such as anti-ErbB antibodies
  • anti-angiogenic agents such as anti-ErbB antibodies
  • tyrosine kinase inhibitors such as anti-ErbB antibodies
  • protein kinase A inhibitors include members of the cytokine family, radioactive isotopes, and toxins such as enzymatically active toxins of bacterial, fungal, plant or animal origin.
  • Preferred chemotherapeutic agents are amifostine (ethyol), cisplatin, dacarbazine (DTIC), dactinomycin, mechlorethamine (nitrogen mustard), streptozocin, cyclophosphamide, carrnustine (BCNU), lomustine (CCNU), doxorubicin (adriamycin), doxorubicin lipo (doxil), gemcitabine (gemzar), daunorubicin, daunorubicin lipo (daunoxome), procarbazine, mitomycin, cytarabine, etoposide, methotrexate, 5-fluorouracil (5-FU), vinblastine, vincristine, bleomycin, paclitaxel (taxol), docetaxel (taxotere), aldesleukin, asparaginase, busulfan, carboplatin, cladribine, camptothecin, CPT-11, 10-hydroxy-7-
  • chemotherapeutic agents are cisplatin, gemcitabine, doxorubicin, paclitaxel (taxol) and bleomycin.
  • tumors refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth.
  • tumors can be treated such as tumors of the breast, heart, lung, small intestine, colon, spleen, kidney, bladder, head and neck, ovary, prostate, brain, pancreas, skin, bone, bone marrow, blood, thymus, uterus, testicles, cervix, and liver.
  • Tumors which can be preferably be treated with the antibody molecules according to the invention are solid tumors or tumor metastases that express ErbB receptors, especially ErbB1 receptors, in high amounts, such as breast cancer, prostate cancer head and neck cancer, SCLC, pancreas cancer but with respect to ErbB2 (HER2) receptors also in lower amounts.
  • ErbB receptors especially ErbB1 receptors
  • biologically/functionally effective refers to a drug/molecule which causes a biological function or a change of a biological function in vivo or in vitro, and which is effective in a specific amount to treat a disease or disorder in a mammal, preferably in a human.
  • Radiotherapy According to the invention the tumors can additionally be treated with radiation or radiopharmaceuticals.
  • the source of radiation can be either external or internal to the patient being treated.
  • the therapy is known as external beam radiation therapy (EBRT).
  • EBRT external beam radiation therapy
  • the treatment is called brachytherapy (BT).
  • BT brachytherapy
  • Some typical radioactive atoms that have been used include radium, cesium-137, and iridium-192, americium-241 and gold-198, Cobalt-57; Copper-67; Technetium-99; Iodide-123; Iodide-131; and Indium-111. It is also possible to label the agents according to the invention with radioactive isotopes.
  • Today radiation therapy is the standard treatment to control unresectable or inoperable tumors and/or tumor metastases. Improved results have been seen when radiation therapy has been combined with chemotherapy.
  • “Pharmaceutical treatment” The agents of this invention can be administered parenterally by injection or by gradual infusion over time. Although the tissue to be treated can typically be accessed in the body by systemic administration and therefore most often treated by intravenous administration of therapeutic compositions, other tissues and delivery means are contemplated where there is a likelihood that the tissue targeted contains the target molecule. Thus, the agents of this invention can be administered intraocularly, intravenously, intraperitoneally, intramuscularly, subcutaneously, intracavity, transdermally, by orthotopic injection and infusion, and can also be delivered by peristaltic means. Therapeutic compositions of the present invention contain a physiologically tolerable carrier together with the relevant agent as described herein, dissolved or dispersed therein as an active ingredient.
  • compositions, carriers, diluents and reagents which represent materials that are capable of administration to or upon a mammal without the production of undesirable physiological effects such as nausea, dizziness, gastric upset and the like.
  • the preparation of a pharmacological composition that contains active ingredients dissolved or dispersed therein is well understood in the art and need not be limited based on formulation.
  • such compositions are prepared as injectables either as liquid solutions or suspensions, however, solid forms suitable for solution, or suspensions, in liquid prior to use can also be prepared.
  • the preparation can also be emulsified.
  • the active ingredient can be mixed with excipients which are pharmaceutically acceptable and compatible with the active ingredient and in amounts suitable for use in the therapeutic methods described herein.
  • Suitable excipients are, for example, water, saline, dextrose, glycerol, ethanol or the like and combinations thereof.
  • the composition can contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents and the like which enhance the effectiveness of the active ingredient.
  • the therapeutic composition of the present invention can include pharmaceutically acceptable salts of the components therein.
  • Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the polypeptide) that are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, tartaric, mandelic and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine, procaine and the like. Physiologically tolerable carriers are well known in the art.
  • liquid carriers are sterile aqueous solutions that contain no materials in addition to the active ingredients and water, or contain a buffer such as sodium phosphate at physiological pH value, physiological saline or both, such as phosphate-buffered saline. Still further, aqueous carriers can contain more than one buffer salt, as well as salts such as sodium and potassium chlorides, dextrose, polyethylene glycol and other solutes. Liquid compositions can also contain liquid phases in addition to and to the exclusion of water. Exemplary of such additional liquid phases are glycerin. vegetable oils such as cottonseed oil, and water-oil emulsions.
  • a therapeutically effective amount of an immunotherapeutic agent for example, in the form of an ErbB (ErbB1, ErbB2) receptor blocking antibody or a corresponding antibody conjugate is an amount such that, when administered in physiologically tolerable composition, is sufficient to achieve a plasma concentration of from about 0.01 microgram ( ⁇ g) per milliliter (ml) to about 100 ⁇ g/ml, preferably from about 1 ⁇ g/ml to about 5 ⁇ g/ml and usually about 5 ⁇ g/ml. Stated differently.
  • the dosage can vary from about 0.1 mg/kg to about 300 mg/kg, preferably from about 0.2 mg/kg to about 200 mg/kg, most preferably from about 0.5 mg/kg to about 20 mg/kg, in one or more dose administrations daily for one or several days.
  • the immunotherapeutic agent is in the form of a fragment of a monoclonal antibody or a conjugate
  • the amount can readily be adjusted based on the mass of the fragment/conjugate relative to the mass of the whole antibody.
  • a preferred plasma concentration in molarity is from about 2 micromolar ( ⁇ M) to about 5 millimolar (mM) and preferably, about 100 ⁇ M to 1 mM antibody antagonist.
  • the typical dosage of an active agent which is a preferably a chemical cytotoxic or chemotherapeutic agent according to the invention (neither an immunotherapeutic agent nor a non-immunotherapeutic peptide/protein) is 10 mg to 1000 mg, preferably about 20 to 200 mg, and more preferably 50 to 100 mg per kilogram body weight per day.
  • compositions of the invention can comprise phrase encompasses treatment of a subject with agents that reduce or avoid side effects associated with the combination therapy of the present invention (“adjunctive therapy”), including, but not limited to, those agents, for example, that reduce the toxic effect of anticancer drugs, e.g., bone resorption inhibitors, cardioprotective agents.
  • adjunctive agents prevent or reduce the incidence of nausea and vomiting associated with chemotherapy, radiotherapy or operation, or reduce the incidence of infection associated with the administration of myelosuppressive anticancer drugs.
  • Adjunctive agents are well known in the art.
  • the immunotherapeutic agents according to the invention can additionally administered with adjuvants like BCG and immune system stimulators.
  • compositions may include immunotherapeutic agents or chemotherapeutic agents which contain cytotoxic effective radio-labeled isotopes, or other cytotoxic agents, such as a cytotoxic peptides (e.g. cytokines) or cytotoxic drugs and the like.
  • cytotoxic agents such as a cytotoxic peptides (e.g. cytokines) or cytotoxic drugs and the like.
  • BxPC-3 and MiaPaCa-2 Human pancreatic (BxPC-3 and MiaPaCa-2), ovarian (SK-OV-3), and vulvar epidermoid (A-431) carcinoma cell lines were obtained from the American Type Culture Collection (ATCC; Rockville, Md., USA).
  • the BxPC-3 cell line was cultured in RPMI-1640 medium (Gibco, Paisley, UK); the MiaPaCa-2, SK-OV-3, and A-431 cell lines were cultured in DMEM medium (Gibco). The culture media were supplemented as recommended by ATCC.
  • FIG. 1 Immunocytochemical and flow cytometry analyses of EGFR and HER2 expression on the two pancreatic carcinoma cell lines, BxPC-3 and MiaPaCa-2, and on the two reference cell lines, A-431 and SK-OV-3 used as positive controls for EGFR and HER2, respectively.
  • NC negative controls: tissues incubated only with the immunoperoxidase conjugate.
  • black and gray peaks depict cell surface staining with the anti-EGFR and the anti-HER2 antibodies, respectively.
  • the white peaks represent controls, obtained with cells incubated only with the FITC-labeled second antibody.
  • FIG. 2 Effects of trastuzumab and matuzumab alone or in combination on the growth of small size BxPC-3 xenografts in nude mice (experiment S). Mean pretreatment tumor volumes were 77 ⁇ 49 mm 3 . Mice (eight per group) received i.p. injections of 50 ng of each mAb twice a week for four weeks. Results are expressed as tumor progression: [(final volume)-(initial volume)]/(initial volume).
  • C control
  • T trastuzumab
  • M matuzumab
  • T+M trastuzumab+matuzumab.
  • FIG. 3 Effects of trastuzumab and matuzumab alone or in combination on the growth of large-size BxPC-3 xenografts in nude mice (experiment L). Mean pretreatment tumor volumes were 502 ⁇ 205 mm 3 . Mice (five per group) received i.p. injections of 50 ng or 200 ng of each mAb twice a week for four weeks. A, Kaplan-Meier survival curves obtained as a function of time adapted for primary tumor to reach a volume of 1500 mm 3 .
  • T trastuzumab (200 ⁇ g per injection); M: matuzumab (200 ⁇ g per injection); T+M: trastuzumab+matuzumab (50 or 200 ⁇ g of each mAb per injection).
  • B results from the same experiments, expressed as tumor progression curves. Double head arrows indicate the treatment period.
  • FIG. 4 A. Effects of trastuzumab and matuzumab alone or in combination on the growth of MiaPaCa-2 xenografts in nude mice. Mean (six per group) pretreatment tumor volumes were 64 ⁇ 5 mm 3 . Mice received i.p. injections of 50 ⁇ g of each mAb twice a week for four weeks from day 15 to 43. A Kaplan-Meier survival curves obtained as a function of time adapted for primary tumor to reach a volume of 2000 mm 3 .
  • C control; T: trastuzumab; M: matuzumab; T+M: trastuzumab+matuzumab.
  • B Effects of trastuzumab and matuzumab alone or in combination on the growth of SK-OV-3 xenografts in nude mice.
  • Mean (six per group) pretreatment tumor volumes were 42 ⁇ 4 mm3.
  • Mice received i.p. injections of 200 ⁇ g of each mAb twice a week for four weeks from day 11 to 40.
  • C control; T: trastuzumab; M: matuzumab; T+M: trastuzumab+matuzumab.
  • FIG. 5 In vitro effect of trastuzumab and matuzumab alone or in combination on EGFR and HER2 phosphorylation on BxPC-3 and MiaPaCa-2 cell lines.
  • Cells were incubated with 10 ng/ml of each mAb for 48 h followed by 10 min with 100 ng/ml of EGF or no EGF.
  • Lower panel quantification of receptor phosphorylation, expressed in percent of control and plotted as a bar graph, show the inhibition induced by the indicated treatment conditions.
  • C control; T: trastuzumab; M: matuzumab; T/M: trastuzumab+matuzumab.
  • FIG. 6 Tumor localization and biodistribution of radiolabeled matuzumab and trastuzumab antibodies in athymic NMRI mice bearing human pancreatic carcinoma BxPC-3 (A) or MiaPaCa-2 (B) xenografts.
  • Mice received an i.v. co-injection of 125 I-matuzumab and 131 I-trastuzumab.
  • Mice were sacrificed forty-eight hours post-injection.
  • the tumor, and all normal organs were weighed, and the differential radioactivity was measured in a dual channel scintillation counter. The results are expressed as the percentage of the injected dose of radioactivity present per gram of tissue (% ID/g).
  • mice 6-8-week-old female athymic NMRI mice and BALB/c athymic mice were purchased from Janvier, Le Genest (St Isle, France) and Charles Rivers Laboratories (L'Arbresle, France), respectively.
  • BxPC-3 3.5 ⁇ 10 6
  • MiaPaCa-2 5 ⁇ 10 6
  • SK-OV-3 5 ⁇ 10 6 cells were injected subcutaneously (s.c.) in to the right flank of athymic NMRI (BxPC-3 model) and BALB/c (MiaPaCa-2 and SK-OV-3) nude mice.
  • MiaPaCa-2 cells were suspending in 50% culture medium and 50% Matrigel (BD biosciences, Le Pont De claix, France). Tumor-bearing mice were randomized in the different treatment groups when the tumors reached an approximate volume indicated in each experiment.
  • effects of antibody treatments were studied on small tumor (experiment S) and on large tumor (experiment L).
  • the mice were treated by intraperitoneal injections (i.p.) with 0.9% NaCl, trastuzumab, matuzumab, or both mAbs at a ratio of 1:1.
  • the amounts of each injected mAb were 50 ng or 200 ng per injection depending on the experiment, twice a week for four weeks consecutively.
  • Tumor dimensions were measured twice weekly with a caliper and the volumes calculated by the formula: D1 ⁇ D2 ⁇ D3/2. Tumor progression was calculated using the formula: [(final volume) ⁇ (initial volume)]/(initial volume).
  • the results were also expressed by an adapted Kaplan-Meier survival curve, using the time taken for the tumor to reach a determined volume of 1000 mm 3 for SK-OV-3, 1500 mm 3 for BxPC-3 and 2000 mm 3 for MiaPaCa-2 xenografts, depending on the rapidity of growth of the tumors.
  • a median delay was defined as the time at which 50% of the mice had a tumor reaching the determined volume.
  • an increment factor during the treatment period was calculated by dividing the tumor volume at the end of treatment (day 55) by that at the beginning of the treatment (day 27).
  • EGFR expression was analyzed in paraffin-embedded cells fixed in AFA (alcohol formol acetic acid). Analysis of EGFR expression was performed by using the EGFR pharmDx kit (DakoCytomation, Carpinteria, Calif., USA) according to the manufacturer's recommendations. Diaminobenzidine (Dakocytomation) was used as the chromogen, and the sections were lightly counterstained with hematoxylin. The primary antibody used for the detection of HER2 was a rabbit polyclonal antibody (Dakocytomation).
  • BxPC-3 and MiaPaCa-2 cells plated at 10 6 cells for 24 h in Petri dishes were starved for two days in a medium without growth factors (SM medium) and treated with 10 Ng/ml of trastuzumab, matuzumab or both antibodies at a fixed 1:1 ratio (or controls without antibody). After a 48-h incubation, cells were incubated for 10 min in the SM medium with or without 100 ng/ml of EGF, washed twice, and lysed with buffer (CliniSciences SA, Montrouge France)-1-containing 100 NM PMSF, 100 mM sodium fluorure, 1 mM sodium orthovanate, and one complete protease inhibitor mixture tablet (Sigma, St Louis, Mo.).
  • buffer CliniSciences SA, Montrouge France
  • trastuzumab and/or EMD72000 were evaluated using a tetrazolium salt (MTS) and an electron coupling reagent (PMSF) assay.
  • MTS tetrazolium salt
  • PMSF electron coupling reagent
  • BxPC-3 cells were plated in 96-well microtiter plates at 10,000 cells/well in 100 HI of medium. After 24 h, the cells were treated with antibodies at concentrations ranging from 5 to 100 Hg/ml. After incubation of 96 h, cells were exposed to MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) reagent and incubated at 37° C. for 2 h. Absorbance was measured at 490 nm, and the percent inhibition of viability was calculated as the percent of proliferating cells compared with untreated cultures. All experiments were performed in triplicate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
US12/086,725 2006-01-04 2006-12-15 Combination Therapy Using Anti-EGFR and Anti-HER2 Antibodies Abandoned US20090214541A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06000107.0 2006-01-04
EP06000107 2006-01-04
PCT/EP2006/012133 WO2007076923A1 (en) 2006-01-04 2006-12-15 Combination therapy using anti-egfr and anti-her2 antibodies

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/012133 A-371-Of-International WO2007076923A1 (en) 2006-01-04 2006-12-15 Combination therapy using anti-egfr and anti-her2 antibodies

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/536,854 Continuation US9522956B2 (en) 2006-01-04 2014-11-10 Combination therapy using anti-EGFR and anti-HER2 antibodies

Publications (1)

Publication Number Publication Date
US20090214541A1 true US20090214541A1 (en) 2009-08-27

Family

ID=37876938

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/086,725 Abandoned US20090214541A1 (en) 2006-01-04 2006-12-15 Combination Therapy Using Anti-EGFR and Anti-HER2 Antibodies
US14/536,854 Expired - Fee Related US9522956B2 (en) 2006-01-04 2014-11-10 Combination therapy using anti-EGFR and anti-HER2 antibodies

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/536,854 Expired - Fee Related US9522956B2 (en) 2006-01-04 2014-11-10 Combination therapy using anti-EGFR and anti-HER2 antibodies

Country Status (13)

Country Link
US (2) US20090214541A1 (enExample)
EP (1) EP1968633B2 (enExample)
JP (1) JP2009522316A (enExample)
KR (1) KR20080110987A (enExample)
CN (1) CN101365486B (enExample)
AR (1) AR059127A1 (enExample)
AU (1) AU2006332212B8 (enExample)
BR (1) BRPI0620888A2 (enExample)
CA (1) CA2636074A1 (enExample)
EA (1) EA015173B1 (enExample)
MX (1) MX2008008564A (enExample)
WO (1) WO2007076923A1 (enExample)
ZA (1) ZA200806723B (enExample)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080069820A1 (en) * 2006-08-30 2008-03-20 Genentech, Inc. Multispecific antibodies
US20100322946A1 (en) * 2008-09-03 2010-12-23 Genentech, Inc. Multispecific antibodies
US20110217305A1 (en) * 2010-03-04 2011-09-08 Symphogen A/S Anti-her2 antibodies and compositions
US20130017200A1 (en) * 2009-12-04 2013-01-17 Genentech, Inc. Multispecific antibodies, antibody analogs, compositions, and methods
WO2014153018A1 (en) * 2013-03-14 2014-09-25 Crown Bioscience, Inc. Use of egfr biomarkers for the treatment of gastric cancer with anti-egfr agents
WO2014160336A1 (en) * 2013-03-13 2014-10-02 University Of Kentucky Research Foundation METHODS OF ADMINISTERING IgG1 ANTIBODIES AND METHODS OF SUPPRESSING ANGIOGENESIS
US9023356B2 (en) 2007-03-15 2015-05-05 Ludwig Institute For Cancer Research Ltd Treatment method using EGFR antibodies and SRC inhibitors and related formulations
US9072798B2 (en) 2009-02-18 2015-07-07 Ludwig Institute For Cancer Research Ltd. Specific binding proteins and uses thereof
US9090693B2 (en) 2007-01-25 2015-07-28 Dana-Farber Cancer Institute Use of anti-EGFR antibodies in treatment of EGFR mutant mediated disease
US9283276B2 (en) 2007-08-14 2016-03-15 Ludwig Institute For Cancer Research Ltd. Monoclonal antibody 175 targeting the EGF receptor and derivatives and uses thereof
US9562102B2 (en) 2001-05-11 2017-02-07 Ludwig Institute For Cancer Research Specific binding proteins and uses thereof
US10273303B2 (en) 2013-11-13 2019-04-30 Zymeworks Inc. Monovalent antigen binding constructs targeting EGFR and/or HER2 and uses thereof
CN110099926A (zh) * 2016-12-28 2019-08-06 豪夫迈·罗氏有限公司 晚期her2表达性癌症的治疗
US10683353B2 (en) * 2013-07-11 2020-06-16 The Scripps Research Institute Coiled coil immunoglobulin fusion proteins and compositions thereof
CN117430707A (zh) * 2023-10-25 2024-01-23 北京润州生物科技有限公司 一种cik细胞的制备方法及其在治疗癌症中的用途

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2237792B1 (en) * 2007-12-26 2017-05-24 Vaccinex, Inc. Anti-c35 antibody combination therapies and methods
US8883149B2 (en) 2008-09-15 2014-11-11 Yeda Research And Development Co. Ltd. Antibody combinations and use of same for treating cancer
US8728479B2 (en) * 2009-03-31 2014-05-20 The Trustees Of The University Of Pennsylvania Antigen-binding proteins comprising recombinant protein scaffolds
US9155802B2 (en) 2010-11-01 2015-10-13 Symphogen A/S Pan-HER antibody composition
US9040047B2 (en) 2011-05-16 2015-05-26 Yeda Research And Development Co. Ltd. Combinations of anti ErbB antibodies for the treatment of cancer
WO2013164689A2 (en) 2012-05-02 2013-11-07 Lantto, Johan Humanized pan-her antibody compositions
AU2015308527C1 (en) * 2014-08-29 2021-07-15 F. Hoffmann-La Roche Ag Combination therapy of tumor-targeted IL-2 variant immunocytokines and antibodies against human PD-L1
CN104991065B (zh) * 2015-07-07 2017-01-11 复旦大学附属金山医院 一种用于诊断乳腺癌的三联标志物及其应用
JP2018062980A (ja) * 2016-10-12 2018-04-19 株式会社ジェイテクト ボールネジ装置、ボールネジ装置の製造方法及びステアリング装置
WO2023011650A1 (zh) * 2021-08-06 2023-02-09 甘李药业股份有限公司 一种多特异性抗体及其用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558864A (en) * 1991-03-06 1996-09-24 Merck Patent Gesellschaft Mit Beschrankter Haftung Humanized and chimeric anti-epidermal growth factor receptor monoclonal antibodies
US5677171A (en) * 1988-01-12 1997-10-14 Genentech, Inc. Monoclonal antibodies directed to the HER2 receptor
US5821337A (en) * 1991-06-14 1998-10-13 Genentech, Inc. Immunoglobulin variants
US6270765B1 (en) * 1995-06-07 2001-08-07 Medarex, Inc. Therapeutic compounds comprised of anti-Fc receptor antibodies
US20070020261A1 (en) * 2005-07-22 2007-01-25 Sliwkowski Mark X Combination therapy of her expressing tumors
US7226592B2 (en) * 2002-10-10 2007-06-05 Merck Patent Gmbh Bispecific anti-Erb-B antibodies and their use in tumor therapy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4128089A (en) 1988-09-15 1990-03-22 Rorer International (Overseas) Inc. Monoclonal antibodies specific to human epidermal growth factor receptor and therapeutic methods employing same
US20030086924A1 (en) 1999-06-25 2003-05-08 Genentech, Inc. Treatment with anti-ErbB2 antibodies
EP1713502A1 (de) * 2004-02-12 2006-10-25 MERCK PATENT GmbH Hochkonzentrierte, flüssige formulierungen von anti-egfr-antikörpern

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677171A (en) * 1988-01-12 1997-10-14 Genentech, Inc. Monoclonal antibodies directed to the HER2 receptor
US5558864A (en) * 1991-03-06 1996-09-24 Merck Patent Gesellschaft Mit Beschrankter Haftung Humanized and chimeric anti-epidermal growth factor receptor monoclonal antibodies
US5821337A (en) * 1991-06-14 1998-10-13 Genentech, Inc. Immunoglobulin variants
US6270765B1 (en) * 1995-06-07 2001-08-07 Medarex, Inc. Therapeutic compounds comprised of anti-Fc receptor antibodies
US7226592B2 (en) * 2002-10-10 2007-06-05 Merck Patent Gmbh Bispecific anti-Erb-B antibodies and their use in tumor therapy
US20070020261A1 (en) * 2005-07-22 2007-01-25 Sliwkowski Mark X Combination therapy of her expressing tumors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Motoyama et al (Cancer Research, 2002, 62:3151-3158) *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9562102B2 (en) 2001-05-11 2017-02-07 Ludwig Institute For Cancer Research Specific binding proteins and uses thereof
US11008401B2 (en) 2006-08-30 2021-05-18 Genentech, Inc. Multispecific antibodies
US11851501B2 (en) 2006-08-30 2023-12-26 Genentech, Inc. Multispecific antibodies
US10118970B2 (en) 2006-08-30 2018-11-06 Genentech, Inc. Multispecific antibodies
US20080069820A1 (en) * 2006-08-30 2008-03-20 Genentech, Inc. Multispecific antibodies
US9090693B2 (en) 2007-01-25 2015-07-28 Dana-Farber Cancer Institute Use of anti-EGFR antibodies in treatment of EGFR mutant mediated disease
US9023356B2 (en) 2007-03-15 2015-05-05 Ludwig Institute For Cancer Research Ltd Treatment method using EGFR antibodies and SRC inhibitors and related formulations
US9283276B2 (en) 2007-08-14 2016-03-15 Ludwig Institute For Cancer Research Ltd. Monoclonal antibody 175 targeting the EGF receptor and derivatives and uses thereof
US9017686B2 (en) 2008-09-03 2015-04-28 Genentech, Inc. Multispecific antibodies
US9522960B2 (en) 2008-09-03 2016-12-20 Genentech, Inc. Multispecific antibodies
US8193321B2 (en) 2008-09-03 2012-06-05 Genentech, Inc. Multispecific antibodies
US20100322946A1 (en) * 2008-09-03 2010-12-23 Genentech, Inc. Multispecific antibodies
US9072798B2 (en) 2009-02-18 2015-07-07 Ludwig Institute For Cancer Research Ltd. Specific binding proteins and uses thereof
US20130017200A1 (en) * 2009-12-04 2013-01-17 Genentech, Inc. Multispecific antibodies, antibody analogs, compositions, and methods
US10584181B2 (en) * 2009-12-04 2020-03-10 Genentech, Inc. Methods of making and using multispecific antibody panels and antibody analog panels
US8609095B2 (en) 2010-03-04 2013-12-17 Symphogen A/S Anti-HER2 antibodies and compositions
US20110217305A1 (en) * 2010-03-04 2011-09-08 Symphogen A/S Anti-her2 antibodies and compositions
US10562974B2 (en) 2013-03-13 2020-02-18 University Of Kentucky Research Foundation Methods of administering IgG1 antibodies and methods of suppressing angiogenesis
WO2014160336A1 (en) * 2013-03-13 2014-10-02 University Of Kentucky Research Foundation METHODS OF ADMINISTERING IgG1 ANTIBODIES AND METHODS OF SUPPRESSING ANGIOGENESIS
WO2014153018A1 (en) * 2013-03-14 2014-09-25 Crown Bioscience, Inc. Use of egfr biomarkers for the treatment of gastric cancer with anti-egfr agents
US10442862B2 (en) 2013-03-14 2019-10-15 Crown Bioscience, Inc. (Taicang) Use of EGFR biomarkers for the treatment of gastric cancer with anti-EGFR agents
US10683353B2 (en) * 2013-07-11 2020-06-16 The Scripps Research Institute Coiled coil immunoglobulin fusion proteins and compositions thereof
US11673959B2 (en) 2013-07-11 2023-06-13 The Scripps Research Institute Coiled coil immunoglobulin fusion proteins and compositions thereof
US10273303B2 (en) 2013-11-13 2019-04-30 Zymeworks Inc. Monovalent antigen binding constructs targeting EGFR and/or HER2 and uses thereof
CN110099926A (zh) * 2016-12-28 2019-08-06 豪夫迈·罗氏有限公司 晚期her2表达性癌症的治疗
CN117430707A (zh) * 2023-10-25 2024-01-23 北京润州生物科技有限公司 一种cik细胞的制备方法及其在治疗癌症中的用途

Also Published As

Publication number Publication date
EA015173B1 (ru) 2011-06-30
WO2007076923A1 (en) 2007-07-12
AU2006332212B8 (en) 2013-05-30
JP2009522316A (ja) 2009-06-11
CN101365486B (zh) 2012-10-31
US20150132308A1 (en) 2015-05-14
MX2008008564A (es) 2009-01-29
ZA200806723B (en) 2009-09-30
US9522956B2 (en) 2016-12-20
KR20080110987A (ko) 2008-12-22
CN101365486A (zh) 2009-02-11
AR059127A1 (es) 2008-03-12
CA2636074A1 (en) 2007-07-12
BRPI0620888A2 (pt) 2011-11-29
EP1968633A1 (en) 2008-09-17
EP1968633B1 (en) 2014-02-12
EA200870141A1 (ru) 2009-02-27
EP1968633B2 (en) 2017-11-01
AU2006332212B2 (en) 2013-03-28
AU2006332212A1 (en) 2007-07-12

Similar Documents

Publication Publication Date Title
US9522956B2 (en) Combination therapy using anti-EGFR and anti-HER2 antibodies
KR101088661B1 (ko) Erb-b1 수용체를 표적으로 하는 약학적 조성물
CA2436326C (en) Combination therapy using receptor tyrosine kinase inhibitors and angiogenesis inhibitors
AU2002219221A1 (en) Combination therapy using receptor tyrosine kinase inhibitors and angiogenesis inhibitors
KR20200018785A (ko) 유방암 치료를 위한 ErbB-2/ErbB-3 이중특이적 항체와 내분비 치료의 조합
IL300388A (en) Treatment with drug-conjugated antibodies specific for the HER2 site
CN100408097C (zh) 双特异性抗erb-b抗体及其在肿瘤治疗中的用途
EP4005593A1 (en) Multivariable dosing method for use in treating high-egfr expression cancer
KR20250148463A (ko) 담도암의 치료를 위한 항-her2/항-4-1bb 이중 특이 항체
HK1081449B (en) Pharmaceutical compositions directed to erb-b1 receptors
HK1081448B (en) Bispecific anti-erb-b antibodies and their use in tumor therapy
ZA200503706B (en) Pharmaceutical compositions directed to Erb-B1 receptors

Legal Events

Date Code Title Description
AS Assignment

Owner name: MERCK PATENT GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GILLIES, STEPHEN D.;REEL/FRAME:022530/0018

Effective date: 20090118

Owner name: L INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AZRIA, DAVID;LARBOURET, CHRISTEL;PELEGRIN, ANDRE;REEL/FRAME:022530/0045

Effective date: 20080818

AS Assignment

Owner name: L'INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERECH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MERCK PATENT GMBH;REEL/FRAME:028175/0582

Effective date: 20120416

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION