US20090131583A1 - Use Of Poly(Biphenyl Ether Sulfone)s - Google Patents

Use Of Poly(Biphenyl Ether Sulfone)s Download PDF

Info

Publication number
US20090131583A1
US20090131583A1 US12/158,508 US15850806A US2009131583A1 US 20090131583 A1 US20090131583 A1 US 20090131583A1 US 15850806 A US15850806 A US 15850806A US 2009131583 A1 US2009131583 A1 US 2009131583A1
Authority
US
United States
Prior art keywords
poly
polymer composition
ether ketone
aryl ether
recurring units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/158,508
Other languages
English (en)
Inventor
Mohammad Jamal El-Hibri
Shari Weinberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/158,508 priority Critical patent/US20090131583A1/en
Publication of US20090131583A1 publication Critical patent/US20090131583A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • C08L71/123Polyphenylene oxides not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides

Definitions

  • the present invention relates to a new use of poly(biphenyl ether sulfone)s.
  • Poly(biphenyl ether sulfone)s form a specific class of poly(aryl ether sulfone)s. These amorphous technopolymers are materials of choice notably for the ultimate in toughness with rather good chemical resistance, superior to most of commercially available transparent resins but lower than that of ultra-performance polymers like poly(aryl ether ketone)s.
  • poly(aryl ether ketone)s offer an exceptional balance of technical properties, namely high melting point, excellent thermal stability, high stiffness and strength, good toughness and really excellent chemical resistance, including excellent resistance to environmental stress rupture resistance.
  • high melting point namely high melting point
  • high stiffness and strength namely high stiffness and strength
  • good toughness namely excellent chemical resistance, including excellent resistance to environmental stress rupture resistance.
  • the somewhat low glass transition of these materials limits theirs use in certain specific applications where the use temperature is above 170° C.: this is primarily because of the loss of modulus as the glass transition is traversed.
  • these blends at intermediate compositions (such as 50 parts of PPSU and 50 parts of PEEK), exhibit an “interesting” balance of properties, in particular an intermediate toughness and modulus (thus intermediate load bearing capabilities) in the range between the (low) poly(aryl ether ketone) T g and the (high) poly(biphenyl ether sulfone) T g , and an intermediate chemical resistance (including an intermediate environmental stress rupture resistance) in certain chemical environments (ethyl acetate, 1,1,1-trichloroethane, toluene and acetone) in the range between the (high) chemical resistance of the poly(aryl ether ketone) and the (substantially lower) chemical resistance of the poly(biphenyl ether sulfone).
  • intermediate toughness and modulus thus intermediate load bearing capabilities
  • an intermediate chemical resistance including an intermediate environmental stress rupture resistance
  • a first aspect of the present invention is directed to the use of an effective amount ( ⁇ ) of a poly(biphenyl ether sulfone) (P2) for diluting a poly(aryl ether ketone) (P1) contained in a polymer composition (C1) consisting of the poly(aryl ether ketone) (P1) and, optionally in addition, one or more ingredients (A) other than the poly(aryl ether ketone) (P1) and the poly(biphenyl ether sulfone) (P2), while at least substantially maintaining the chemical resistance of the polymer composition (C1) in a chemical environment (E) which is more aggressive against the poly(biphenyl ether sulfone) (P2) than against the poly(aryl ether ketone) (P1).
  • Another aspect of the present invention is directed to a method for diluting a poly(aryl ether ketone) (P1) contained in a polymer composition (C1) while at least substantially maintaining the chemical resistance of the polymer composition (C1) in the need thereof,
  • said polymer composition (C1) consisting of the poly(aryl ether ketone) (P1) and, optionally in addition, one or more ingredients (A) other than the poly(aryl ether ketone) (P1) and a poly(biphenyl ether sulfone) (P2), said chemical resistance of the polymer composition (C1) being at least substantially maintained in a chemical environment (E) which is more aggressive against the poly(biphenyl ether sulfone) (P2) than against the poly(aryl ether ketone) (P1),
  • said method comprising diluting the poly(aryl ether ketone) (P1) by an effective amount (s) of the poly(biphenyl ether sulfone) (P2).
  • the polymer composition (C1) may be in the form of a shaped article or part of a shaped article (S1).
  • (C2) the polymer composition which can be obtained after the dilution of the poly(aryl ether ketone) (P1), in contrast with (C1) which denotes the polymer composition before the dilution.
  • a polymer composition (C1) consisting of 100 parts by weight (pbw.) of the poly(aryl ether ketone) (P1) and, optionally in addition, one or more ingredients (A) other than the poly(aryl ether ketone) (P1) and the poly(biphenyl ether sulfone) (P2)
  • a polymer composition (C2) consisting of:
  • Still another aspect of the present invention is directed to a shaped article or to a part of a shaped article (S2) composed of the polymer composition (C2) as above described.
  • a last aspect of the present invention is directed to an article assembly comprising said part.
  • the expression “for diluting a poly(aryl ether ketone) (P1) contained in a polymer composition (C1)” should herein be understood in its broad sense, namely: “for reducing the concentration of the poly(aryl ether ketone) (P1) contained in the polymer composition (C1)”.
  • such dilution can be achieved by replacing part of the poly(aryl ether ketone) (P1) by the poly(biphenyl ether sulfone) (P2).
  • a frequent benefit resulting from the dilution of the “concentrated” polymer composition [namely, the polymer composition (C1)] is that the so-obtained “diluted” polymer composition [namely, the polymer composition (C2)] is more cost-attractive, because poly(biphenyl ether sulfone) (s) are usually not as expensive as poly(aryl ether ketone)s.
  • the polymer composition (C1) may have been prepared and its chemical resistance may have been assessed by a certain skilled person, before said skilled person uses the poly(biphenyl ether sulfone) (P2) for diluting the poly(aryl ether ketone) (P1) contained in the polymer composition (C1) in accordance with the presently invented use.
  • the chemical resistance of the polymer composition (C1) is at least essentially maintained, i.e. the polymer composition (C2) has usually a chemical resistance in the environment (E) which is the same or essentially the same as that of polymer concentration (C1), or it is greater than that of polymer concentration (C1).
  • any amount of poly(biphenyl ether sulfone) (P2) which, when used for diluting the poly(aryl ether ketone) (P1) contained in the polymer composition (C1), makes it possible to at least substantially maintain [i.e. does not substantially impair] the chemical resistance of the polymer composition (C1) in the environment (E) should be viewed as an effective amount ( ⁇ ), in the sense of the present invention.
  • the effective amount ( ⁇ ) of the poly(biphenyl ether sulfone) (P2) can dilute the poly(aryl ether ketone) (P1) contained in the polymer composition (C1) in an amount of 100 parts by weight (pbw.), by replacing, in said polymer composition (C1), ⁇ pbw. of the poly(aryl ether ketone) (P1) by ⁇ pbw. of the poly(biphenyl ether sulfone) (P2); thereby, a polymer composition (C2) containing (100- ⁇ ) pbw. of the poly(aryl ether ketone) (P1) and ⁇ pbw. of the poly(biphenyl ether sulfone) (P2) can be obtained.
  • can range between 0 and 100 pbw.
  • can be as low as technically feasible, but amounts ⁇ of poly(biphenyl ether sulfone) (P2), as defined in the previous paragraph, below than 1 pbw., are rarely desirable, because the so-achieved benefits of the dilution are in this case usually marginal.
  • the effective amount (s) of the poly(biphenyl ether sulfone) (P2) is preferably above 2 pbw.; very preferably, it is above 5 pbw.
  • the effective amount ( ⁇ ) should usually not exceed a certain upper limit, which depends notably on the nature of the poly(biphenyl ether sulfone), the nature of the poly(aryl ether ketone), the nature and amount of optional ingredient(s) (A), and the nature of environment (E).
  • the skilled in the art will often observe, that when replacing weight pro weight an increasing amount of the poly(aryl ether ketone) (P1) by the poly(biphenyl ether sulfone) (P2), the chemical resistance of the polymer composition (C1) is at least maintained or, at least substantially maintained [exhibiting a “plateau” or “quasi-plateau” behaviour], as long as the amount of the poly(biphenyl ether sulfone) (P2) does not exceed a critical limit, above which respectively the chemical resistance decreases substantially, sometimes in a sharp manner, to reach finally a level close to that of the poly(biphenyl ether sulfone) (P1) (see FIGS.
  • the polymer compositions (C1) and (C2) are susceptible of being temporarily or permanently in contact with the chemical environment (E); often, such temporary or permanent contact is effectively achieved.
  • Non limitative examples of chemical compounds (cE) susceptible of constituting or being part of the chemical environment (E) include: carboxylic acid esters, carboxylic acids, glycol ethers, aliphatic hydrocarbons, aromatic hydrocarbons such as benzene and toluene, monostyrene, phenols, epoxies, epoxy precursors such as propylene glycol monoether and ethylene glycol diglycidyl ether, ketones, chlorinated hydrocarbons and aqueous solutions of inorganic acids such as nitric acid and sulfuric acid.
  • the environment (E) contained a halogenated hydrocarbon, in particular a chlorinated hydrocarbon, such as carbon tetrachloride, chloroform and methylene chloride.
  • a chlorinated hydrocarbon such as carbon tetrachloride, chloroform and methylene chloride.
  • the chlorinated hydrocarbon may contain from 1 to 12 carbon atoms.
  • the ketone may be a C 3 -C 12 acyclic compound comprising at least one ketone group such as like methyl ethyl ketone and acetone; it may also be a homo- or heterocyclic compound (the cycle of which comprises preferably from 4 to 10 atoms, such as carbon or nitrogen atoms) comprising at least one ketone group, such as N-methylpyrrolidinone.
  • the weight of the chemical compound (cE), notably when (cE) is a halogenated hydrocarbon or a ketone, based on the total weight of the environment (E) may be higher than 10, 20, 50, 75 or 90%; in certain embodiments, the environment (E) may consist essentially of, or even consist of, the chemical compound (cE).
  • the chemical resistance of the polymer compositions (C1) and (C2) in the environment (E) can be assessed by any suitable parameter, and said parameter can itself be obtained by any suitable method.
  • suitable parameter is the “retention ratio”, namely the ratio of the value of a certain physical or chemical property of the polymer compositions (C1) and (C2) before they are contacted, temporarily or permanently, with the chemical environment (E), to the value of the same physical or chemical property of the polymer compositions (C1) and (C2) after they have been contacted with the same chemical environment (E).
  • the property of concern can be notably a mechanical property, such as the tensile strength, the tensile modulus, the flexural strength or the flexural modulus.
  • the tensile properties can be determined notably according to ASTM method D-638, while the flexural properties can be determined notably according to ASTM method D-790.
  • the polymer compositions (C1) and (C2) are not submitted to stress.
  • the polymer compositions (C1) and (C2) are submitted to stress; the case being, they may be submitted to stress either temporarily or permanently.
  • a poly(biphenyl ether sulfone) is intended to denote a polycondensation polymer of which more than 50 wt. % of the recurring units are recurring units (R2) of one or more formulae containing at least one p-biphenylene group:
  • recurring units (R2) are of one or more formulae of the general type:
  • R 1 through R 4 are —O—, —SO 2 —, —S—, —C( ⁇ O)—, with the proviso that at least one of R 1 through R 4 is —SO 2 — and at least one of R 1 through R 4 is —O—;
  • Ar 1 , Ar 2 and Ar 3 are arylene groups containing 6 to 24 carbon atoms, and are preferably phenylene or p-biphenylene; and a and b are either 0 or 1.
  • recurring units (R2) are chosen from
  • recurring units (R2) are:
  • a polyphenylsulfone (PPSU) polymer is intended to denote any polymer of which more than 50 wt. % of the recurring units are recurring units (R2) of formula (2).
  • the poly(biphenyl ether sulfone) (P2) may be notably a homopolymer, a random, alternate or block copolymer.
  • its recurring units may notably be composed of (i) recurring units (R2) of at least two different formulae chosen from formulae (2) to (6), or (ii) recurring units (R2) of one or more formulae (2) to (6) and recurring units (R2*), different from recurring units (R2), such as:
  • P2 poly(biphenyl ether sulfone)
  • P2 poly(biphenyl ether sulfone)
  • P2 was a PPSU homopolymer, i.e. a polymer of which essentially all, if not all, the recurring units are of formula (2).
  • RADEL® R polyphenylsulfone from Solvay Advanced Polymers, L.L.C. is an example of a PPSU homopolymer.
  • the poly(biphenyl ether sulfone) (P2) can be prepared by any method. Methods well known in the art are those described in U.S. Pat. Nos. 3,634,355; 4,008,203; 4,108,837 and 4,175,175, the whole content of which is herein incorporated by reference.
  • the polymer composition (C1) contains a poly(aryl ether ketone) (P1).
  • poly(aryl ether ketone) is intended to denote any polymer of which more than 50 wt. % of the recurring units are recurring units (R1) of one or more formulae containing at least one arylene group, at least one ether group (—O—) and at least one ketone group [—C( ⁇ O)—].
  • recurring units (R1) are chosen from:
  • recurring units (R1) are chosen from:
  • recurring (R1) are chosen from:
  • recurring units (R1) are:
  • a PEEK polymer is intended to denote any polymer of which more than 50 wt. % of the recurring units are recurring units (R1) of formula (VII).
  • the poly(aryl ether ketone) (P1) may be notably a homopolymer, a random, alternate or block copolymer.
  • the poly(aryl ether ketone) (P1) may notably contain (i) recurring units (R1) of at least two different formulae chosen form formulae (VI) to (XXI), or (ii) recurring units (R1) of one or more formulae (VI) to (XXI) and recurring units (R1*) different from recurring units (R1).
  • the poly(aryl ether ketone) (P1) has a reduced viscosity (RV) of advantageously at least 0.55 dl/g and preferably of at least 0.70 dl/g; besides, the RV of the poly(aryl ether ketone) (P1) is advantageously of at most 1.10 dl/g and preferably of at most 0.90 dl/g.
  • the poly(aryl ketone) (P1) can be prepared by any method.
  • One well known in the art method comprises reacting a substantially equimolar mixture of at least one bisphenol and at least one dihalobenzoid compound or at least one halophenol compound as described in Canadian Pat. No. 847,963.
  • Preferred bisphenols in such a process are hydroquinone, 4,4′-dihydroxybiphenyl and 4,4′-dihydroxybenzophenone;
  • preferred dihalobenzoid compounds in such a process are 4,4′-difluorobenzophenone, 4,4′-dichlorobenzophenone and 4-chloro-4′-fluorobenzophenone;
  • preferred halophenols compounds in such a process are 4-(4-chlorobenzoyl)phenol and (4-fluorobenzoyl)phenol.
  • PEEK homopolymers may notably be produced by the nucleophilic process as described in, for example, U.S. Pat. No. 4,176,222, the whole content of which is herein incorporated by reference.
  • PEEK homopolymers comprises electrophilically polymerizing phenoxyphenoxybenzoic acid or the like, using an alkane sulfonic acid as solvent and in the presence of a condensing agent, as the process described in U.S. Pat. No. 6,566,484, the whole content of which is herein incorporated by reference.
  • Other poly(aryl ether ketone)s may be produced by the same method, starting from other monomers than phenoxyphenoxybenzoic acid, such as those described in U.S. Pat. Appl. 2003/0130476, the whole content of which is also herein incorporated by reference.
  • the polymer compositions (C1) and (C2) may further contain conventional ingredients of poly(aryl ether ketone) compositions, including lubricating agents, heat stabilizers, anti-static agents, organic and/or inorganic pigments like TiO 2 , carbon black, acid scavengers, such as MgO, stabilizers, i.e., metal oxides and sulphides such as zinc oxide and zinc sulphide, antioxidants, flame retardants, smoke-suppressing agents, and fillers, collectively referred to as ingredients (A).
  • ingredients (A) collectively referred to as ingredients (A).
  • ingredients (A) are present, their weight, based on the total weight of the polymer composition (C1) [or based on the total weight of the polymer composition (C2)], is advantageously below 50%, preferably below 30 wt. %, more preferably below 10% and still more preferably below 5%. Excellent results were observed when the polymer compositions (C1) and (C2) were free of ingredients (A), i.e. they consisted of the poly(aryl ether ketone) (P1) and the poly(biphenyl ether sulfone) (P2).
  • the polymer compositions (C1) and (C2) are advantageously prepared by any conventional mixing method.
  • a preferred method comprises dry mixing the ingredients of the polymer compositions of concern in powder or granular form, using e.g. a mechanical blender, then extruding the mixture into strands and chopping the strands into pellets.
  • Non limitative examples of shaped articles or part of shaped articles susceptible of being in accordance with the present invention include parts of aircraft passenger service units, air return grills in aircrafts, parts of aicraft heating systems, parts of aircraft ventilation systems, parts encapsulating a dry transformer or a motor coil, food service equipments, dental cases, medical instruments, plumbing fittings, fixtures, ball bearings and ball bearing retainer cages, pump bearings, needles, medical trays, coatings, wire and cable coatings, insulative films and thrustwashers.
  • polymer compositions were prepared by blending PEEK with PPSU in various amounts, namely polymer compositions E1, E2, E3, E4 and E5.
  • the nature and amount of all the ingredients contained in the examplified polymer compositions are listed in table 1.
  • All polymer compositions were prepared by melt compounding the ingredients as listed in Table 1, using a Berstorff 25 mm twin screw extruder having eight barrel segments with seven heated zones and an overall length to diameter ratio of 33:1.
  • the extruder was equipped with a vacuum vent at barrel 6 which was maintained under vacuum during all the compounding runs.
  • the compositions were fed to the extruder by metering the ingredients into the feed throat of the extruder using gravimetric feeders which feed them at the appropriate rates to produce the desired blend ratio in each case.
  • Detailed compounding conditions are shown in Table 2.
  • the compounded resins were stranded into a water trough for cooling and solidification and was then diced into pellets.
  • each polymer composition E1, E2, E3, E4, E5, CE1 and CE2
  • the pellets of each polymer composition were then injection molded into ASTM 3.2 mm thick flexural bars using a 50 ton Sumitomo injection molding machine equipped with a 25 mm screw and having a 51 cm 3 shot capacity. Injection molding conditions were such that the resin melt temperature was maintained at 385-400° C. for all the samples and mold temperature was maintained at 170-180° C. All bars were then annealed at 200° C. for 1 hour prior to chemical resistance evaluations to ensure all parts were crystallized to the fullest extent possible.
  • the chemical resistance evaluation of the various compositions was conducted by measuring the flexural properties at room temperature (23° C.) on the as molded test bars, and on the same bars but following a 10-day and a day immersion exposure in 3 different solvents, namely methyl ethyl ketone (MEK), chloroform and N-methylpyrrolidinone (NMP). All these are well known to be aggressive solvents toward many plastics. NMP and chloroform are so aggressive that they can actually dissolve PPSU; MEK, while being a weak solvent of PPSU, is still detrimental to its mechanical integrity.
  • MEK methyl ethyl ketone
  • NMP N-methylpyrrolidinone
  • the bars were simply dried with paper towels after removal from the chemical exposure baths and before conducting the flexural property measurements.
  • the flexural property measurements before and after solvent exposure were all conducted according to ASTM method D-790.
  • FIG. 1 shows a graphical representation of the flexural strength retention ratios after 30 days of exposure to MEK.
  • the flexural strength retention ratios were plotted versus the PEEK wt. % of the different polymer blends tested.
  • the equivalence to PEEK in terms of retention of the flexural properties was unexpectedly achieved for PPSU/PEEK ratios at least as high as 50/50. Still more surprisingly, the Applicant has found that the retention ratio of certain blends even exceeded to some extent that of neat PEEK.
  • samples E1 to E3 maintained surpringly the level of their flexural properties “as molded” even after a 30-day immersion.
  • FIG. 2 shows a graphical representation of the flexural strength retention ratios after 30 days of exposure to chloroform.
  • the flexural strength retention ratios were plotted versus the PEEK wt. % of the different polymer blends tested.
  • chloroform as the chemical environment (E)
  • the equivalence to PEEK in terms of retention of the flexural properties was unexpectedly achieved for PPSU/PEEK ratios as high as 30/70.
  • samples E1 to E3 maintained unexperctedly the level of their flexural properties even after a 30-day immersion.
  • FIG. 3 shows a graphical representation of the flexural strength retention ratios after 30 days of exposure to NMP.
  • the flexural strength retention ratios were plotted versus the PEEK wt. % of the different polymer blends tested.
  • NMP as the chemical environment (E)
  • the equivalence to PEEK in terms of retention of flexural properties was again unexpectedly achieved for PPSU/PEEK ratios as high as 30/70.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
US12/158,508 2005-12-23 2006-12-22 Use Of Poly(Biphenyl Ether Sulfone)s Abandoned US20090131583A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/158,508 US20090131583A1 (en) 2005-12-23 2006-12-22 Use Of Poly(Biphenyl Ether Sulfone)s

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US75295105P 2005-12-23 2005-12-23
US75292205P 2005-12-23 2005-12-23
US12/158,508 US20090131583A1 (en) 2005-12-23 2006-12-22 Use Of Poly(Biphenyl Ether Sulfone)s
PCT/EP2006/070145 WO2007071780A1 (en) 2005-12-23 2006-12-22 New use of poly(biphenyl ether sulfone)s

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/070145 A-371-Of-International WO2007071780A1 (en) 2005-12-23 2006-12-22 New use of poly(biphenyl ether sulfone)s

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/365,382 Continuation US8802772B2 (en) 2005-12-23 2012-02-03 Use of poly(biphenyl ether sulfone)s

Publications (1)

Publication Number Publication Date
US20090131583A1 true US20090131583A1 (en) 2009-05-21

Family

ID=37836688

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/158,508 Abandoned US20090131583A1 (en) 2005-12-23 2006-12-22 Use Of Poly(Biphenyl Ether Sulfone)s
US12/158,411 Abandoned US20080275193A1 (en) 2005-12-23 2006-12-22 Use of Poly(Biphenyl Ether Sulfone)S
US13/365,382 Active US8802772B2 (en) 2005-12-23 2012-02-03 Use of poly(biphenyl ether sulfone)s

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/158,411 Abandoned US20080275193A1 (en) 2005-12-23 2006-12-22 Use of Poly(Biphenyl Ether Sulfone)S
US13/365,382 Active US8802772B2 (en) 2005-12-23 2012-02-03 Use of poly(biphenyl ether sulfone)s

Country Status (6)

Country Link
US (3) US20090131583A1 (ru)
EP (2) EP1966312A1 (ru)
JP (2) JP2009520857A (ru)
KR (2) KR20080083157A (ru)
EA (2) EA200870111A1 (ru)
WO (2) WO2007071779A1 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE484549T1 (de) * 2006-03-17 2010-10-15 Solvay Advanced Polymers Llc Neue polymerzusammensetzung
EP2225328B2 (en) 2007-12-18 2015-12-09 Solvay Specialty Polymers USA, LLC. Polyphenyl sulfone ketone copolymers
EP2290001B1 (en) 2009-08-20 2017-10-11 Solvay Specialty Polymers USA, LLC. Use of engineering polymer compositions for the manufacture of high performance films
US8668976B2 (en) * 2011-01-19 2014-03-11 Xerox Corporation Intermediate transfer member and composition
JP2014098064A (ja) * 2012-11-13 2014-05-29 Shin Etsu Polymer Co Ltd 被覆用フィルム、被覆用粘着フィルム、フィルム基材、粘着ラベル及び積層フィルム
JP7092661B2 (ja) * 2015-09-09 2022-06-28 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー 強靱化ポリ(アリールエーテルスルホン)/ポリ(アリールエーテルケトン)ブレンド
CN112534249A (zh) 2018-06-29 2021-03-19 陶氏环球技术有限责任公司 聚合物的无定形含量的测定
JP2023501975A (ja) * 2019-11-08 2023-01-20 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー ポリアリールエーテルケトンコポリマーのブレンド

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3634355A (en) * 1968-03-21 1972-01-11 Ici Ltd Aromatic polymers from dihalogenoben-zenoid compounds and alkali metal hydroxide
US4008203A (en) * 1962-11-06 1977-02-15 Imperial Chemical Industries Limited Polysulphones and method of preparation
US4108837A (en) * 1963-07-16 1978-08-22 Union Carbide Corporation Polyarylene polyethers
US4175175A (en) * 1963-07-16 1979-11-20 Union Carbide Corporation Polyarylene polyethers
US4176222A (en) * 1977-02-01 1979-11-27 Imperial Chemical Industries Limited Production of aromatic polyethers
US4713426A (en) * 1984-09-28 1987-12-15 Amoco Corporation Blends of a biphenyl containing poly(aryl ether sulfone) and a poly(aryl ether ketone)
US4804697A (en) * 1985-11-29 1989-02-14 Sumitomo Chemical Company, Limited Thermoplastic resin composition having an improved chemical resistance
US4804724A (en) * 1984-09-28 1989-02-14 Amoco Corporation Blends of a biphenyl containing poly (aryl ether sulfone) and a poly (aryl ether ketone)
US4957962A (en) * 1987-11-14 1990-09-18 Basf Aktiengesellschaft Fiber composites
US5852139A (en) * 1996-04-09 1998-12-22 Ticona Gmbh Mixtures of thermoplastics and oxidized polyarlene sulfides
US5916958A (en) * 1990-04-04 1999-06-29 Amoco Corporation Flame retardant thermoplastic compositions
US20030130476A1 (en) * 2000-02-11 2003-07-10 Kemmish David John Aromatic polyetherketones

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA847963A (en) 1970-07-28 Zutty Nathan Process for preparing polyarylene polyethers
CA1276740C (en) * 1984-09-28 1990-11-20 Lloyd Mahlon Robeson Blends of a biphenyl containing poly(aryl ether sulfone) and a poly(aryl ether ketone)
JPS6210161A (ja) * 1985-07-05 1987-01-19 Sumitomo Chem Co Ltd 樹脂組成物
GB8617989D0 (en) * 1986-07-23 1986-10-01 Ici Plc Polymer composition
JPS6440557A (en) * 1987-08-07 1989-02-10 Asahi Glass Co Ltd Poly(aryl ether ketone) resin composition
DE3807296A1 (de) * 1988-03-05 1989-09-14 Basf Ag Hochtemperaturbestaendige polyarylethersulfon-/polyaryletherketon- formmassen mit verbesserter phasenanbindung
CA2058626A1 (en) 1990-04-04 1991-10-05 William E. Kelly Poly(biphenyl ether sulfone) compositions
DE19513403A1 (de) * 1995-04-08 1996-10-10 Basf Ag Formmassen aus Polyarylenetherketonen, Polyarylenethersulfonen und flüssig-kristallinen Polymeren
US20040129388A1 (en) * 2002-12-20 2004-07-08 Brazil Bill Thomas Non-marring tire lever
ATE484549T1 (de) * 2006-03-17 2010-10-15 Solvay Advanced Polymers Llc Neue polymerzusammensetzung

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008203A (en) * 1962-11-06 1977-02-15 Imperial Chemical Industries Limited Polysulphones and method of preparation
US4108837A (en) * 1963-07-16 1978-08-22 Union Carbide Corporation Polyarylene polyethers
US4175175A (en) * 1963-07-16 1979-11-20 Union Carbide Corporation Polyarylene polyethers
US3634355A (en) * 1968-03-21 1972-01-11 Ici Ltd Aromatic polymers from dihalogenoben-zenoid compounds and alkali metal hydroxide
US4176222A (en) * 1977-02-01 1979-11-27 Imperial Chemical Industries Limited Production of aromatic polyethers
US4713426A (en) * 1984-09-28 1987-12-15 Amoco Corporation Blends of a biphenyl containing poly(aryl ether sulfone) and a poly(aryl ether ketone)
US4804724A (en) * 1984-09-28 1989-02-14 Amoco Corporation Blends of a biphenyl containing poly (aryl ether sulfone) and a poly (aryl ether ketone)
US4804697A (en) * 1985-11-29 1989-02-14 Sumitomo Chemical Company, Limited Thermoplastic resin composition having an improved chemical resistance
US4957962A (en) * 1987-11-14 1990-09-18 Basf Aktiengesellschaft Fiber composites
US5916958A (en) * 1990-04-04 1999-06-29 Amoco Corporation Flame retardant thermoplastic compositions
US5852139A (en) * 1996-04-09 1998-12-22 Ticona Gmbh Mixtures of thermoplastics and oxidized polyarlene sulfides
US20030130476A1 (en) * 2000-02-11 2003-07-10 Kemmish David John Aromatic polyetherketones

Also Published As

Publication number Publication date
US8802772B2 (en) 2014-08-12
EP1966312A1 (en) 2008-09-10
KR20080083157A (ko) 2008-09-16
KR20080078898A (ko) 2008-08-28
WO2007071779A1 (en) 2007-06-28
EP1966313B1 (en) 2014-09-10
JP2009520857A (ja) 2009-05-28
KR101361997B1 (ko) 2014-02-11
EA200870112A1 (ru) 2009-12-30
EP1966313A1 (en) 2008-09-10
EA200870111A1 (ru) 2009-12-30
US20080275193A1 (en) 2008-11-06
JP2009520858A (ja) 2009-05-28
US20120208944A1 (en) 2012-08-16
WO2007071780A1 (en) 2007-06-28

Similar Documents

Publication Publication Date Title
US8802772B2 (en) Use of poly(biphenyl ether sulfone)s
EP1999212B1 (en) New polymer composition
CN101395220B (zh) 新型聚亚芳基组合物
JP5252400B2 (ja) 新規なポリアリーレン組成物
US9145499B2 (en) Polyarylene composition
WO2017186922A1 (en) High-flow polyphenylsulfone compositions
KR101943064B1 (ko) 폴리에테르이미드 설폰 및 폴리(아릴렌 설파이드)의 블렌드
WO2018024744A1 (en) Poly(aryl ether ketone) (paek) compositions including a low molecular weight aromatic compound
US20190144609A1 (en) Polyarylene sulfide resin composition having excellent chemical resistance
JPS63500385A (ja) 新規なポリ(アリ−ルエ−テルケトン)類
EP1884538A1 (en) New polymer composition
EP0212805A2 (en) Polyether ketone/polysulphone resin composition
US11591451B2 (en) Poly(aryl ether ketone) (PAEK) compositions including a low molecular weight aromatic compound
US20190127582A1 (en) Compatibilized polymer compositions
US20230374304A1 (en) Thermoplastic polymer composition
US20190127581A1 (en) High-flow polyphenylsulfone compositions
WO2024082077A1 (en) Polymer composition suitable for electrostatic discharge applications
Tsen et al. Physical properties of polyblends of polyamide 6 polymer with cationic dyeable polyamide 6 polymer
JP2024146923A (ja) 樹脂組成物
JPH0364552B2 (ru)
JPS6211767A (ja) ポリエ−テルイミド樹脂組成物
JP2001098152A (ja) 熱可塑性樹脂組成物およびその成形体
JPH0326758A (ja) 新規組成物

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION