US20090123361A1 - High Density Storage of Ammonia - Google Patents

High Density Storage of Ammonia Download PDF

Info

Publication number
US20090123361A1
US20090123361A1 US11/815,146 US81514606A US2009123361A1 US 20090123361 A1 US20090123361 A1 US 20090123361A1 US 81514606 A US81514606 A US 81514606A US 2009123361 A1 US2009123361 A1 US 2009123361A1
Authority
US
United States
Prior art keywords
ammonia
storage
solid
solid material
compacted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/815,146
Other languages
English (en)
Inventor
Tue Johannessen
Claus Hviid Christensen
Jens Kehlet Norskov
Ulrich Quaade
Rasmus Zink Sorensen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amminex Emissions Technology AS
Original Assignee
Amminex AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amminex AS filed Critical Amminex AS
Assigned to AMMINEX A/S reassignment AMMINEX A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NORSKOV, JENS KEHLET, SORENSEN, RAMUS ZINK, CHRISTENSEN, CLAUS HVIID, JOHANNESSEN, TUE, ULRICH, QUAADE
Assigned to AMMINEX A/S reassignment AMMINEX A/S CORRECTIVE ASSIGNMENT TO CORRECT THE ADDRESS OF ASSIGNEE TO GLADSAXEVEJ 363, SOBORG, DENMARK 2860 PREVIOUSLY RECORDED ON REEL 019894 FRAME 0226. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: NORSKOV, JENS KEHLET, SORENSEN, RAMUS ZINK, CHRISTENSEN, CLAUS HVIID, JOHANNESSEN, TUE, ULRICH, QUAADE
Publication of US20090123361A1 publication Critical patent/US20090123361A1/en
Assigned to JYSKE BANK A/S reassignment JYSKE BANK A/S PATENT SECURITY AGREEMENT Assignors: AMMINEX A/S
Assigned to AMMINEX EMISSIONS TECHNOLOGY A/S reassignment AMMINEX EMISSIONS TECHNOLOGY A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AMMINEX A/S
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/046Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing halogens, e.g. halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/003Storage or handling of ammonia
    • C01C1/006Storage or handling of ammonia making use of solid ammonia storage materials, e.g. complex ammine salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/20Halides
    • C01F11/24Chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/14Complexes with ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/12Complexes with ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/12Complexes with ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/06Adding substances to exhaust gases the substance being in the gaseous form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to safe and compact storage for storing ammonia, a method for producing a compact storage for storing ammonia, systems comprising a compact storage for delivery of ammonia to ammonia consuming units and use
  • the present invention relates generally to the use of using solids for reversible storage of ammonia in solid form.
  • ammonia can be transported safely, efficiently and can be released by thermal desorption and used in various applications such as fuel cells and in controlled delivery in selective catalytic reduction of NO x using ammonia as reducing agent.
  • Transporting ammonia as a pressurized liquid is hazardous if the container bursts caused by an accident or if a valve or tube breaks.
  • the safety issues are much less critical since a small amount of heat is required to release the ammonia and the equilibrium pressure at room temperature can be—if a proper solid material is chosen—well below 1 bar.
  • the invention relates to the storing ammonia in solids for the purpose of ammonia storage, transport and delivery to stationary and mobile applications such as catalytic removal of NO x (selective catalytic reduction using ammonia).
  • the present invention is especially suitable as a source for providing ammonia in selective catalytic reduction in exhaust gasses for reduction of emission from stationary and mobile combustion engines or power plants fuelled by methanol, ethanol, hydrogen, methane, ethane or any other synthetic fuel.
  • Mobile combustion engines for which the invention is suitable are may e.g. be automobiles, trucks, trains, ships or any other motorised vehicle.
  • the invention is particularly suitable for use in connection with reduction of NO x in combustion gases from automobiles and trucks.
  • Stationary power plants for which the invention is suitable are preferably power plants generating electricity.
  • the solid ammonia storage material can be used as energy carrier applied in the field of fuel cell technology.
  • Ammonia can be catalytically decomposed into N 2 and H 2 for the use in PEM fuel cells and alkaline fuel cells or directly as ammonia in SOFC's (Solis Oxide Fuel Cells) and alkaline fuel cells.
  • SOFC's Solis Oxide Fuel Cells
  • alkaline fuel cells With a high ammonia storage density, the energy required to desorb and decompose ammonia still makes it a well-suited candidate for indirect hydrogen storage.
  • the critical part of preparing a useful solid ammonia storage medium is to obtain sufficiently high ammonia content—in particular with respect to the amount of ammonia per unit volume of the storage medium. This can be related to the demands from DOE (US Department of Energy) for hydrogen storage. Efficient ammonia storage can just as well be considered as an efficient hydrogen storage material due to the high hydrogen content in NH 3 .
  • WO 90/10491 control of volumetric expansion of e.g. ammonia complexes of salts during adsorption and desorption in order to maintain heat transfer and reaction rates. This is obtained by compression by means of an outer barrier limiting the volumetric expansion during chemisorption.
  • the invention in a first aspect relates to a solid ammonia storage and delivery material comprising an ammonia absorbing/desorbing solid material, said storage and delivery material having been compacted to a density above 50% of the theoretic skeleton density.
  • the invention in a second aspect relates to a method for storing ammonia in a solid material comprising steps of:
  • the invention in a third aspect relates to a system for delivery of ammonia to an ammonia consuming unit wherein the system comprises a discharge chamber for delivery of ammonia, said chamber comprising an ammonia absorbing/desorbing solid material, said material having been compacted to a density above 50% of the theoretic skeleton density, means for heating the storage, and means for conveying the delivered ammonia from the storage chamber to one or more ammonia consuming units.
  • FIG. 1 schematically shows a device for compression of an ammonia delivery material
  • FIG. 2 schematically shows an embodiment of an ammonia delivery device of the invention
  • FIG. 3 schematically shows another embodiment of an ammonia delivery device of the invention
  • FIG. 4 schematically shows a system according to the invention for delivery of ammonia to fuel cells
  • FIG. 5 schematically shows another system according to the invention for delivery of hydrogen to fuel cells
  • FIG. 6 schematically shows a further embodiment of an ammonia delivery device of the invention
  • FIG. 7 is a graphical representation of the formation of pores during the desorption of ammonia from MgCl 2 .
  • FIG. 8 shows photographs of a tablet of the invention before and after release of ammonia.
  • the present invention relates to the compaction of a solid storage material containing absorbed or chemically coordinated ammonia.
  • the present invention relates to the use of metal-ammine salts as solid storage media for ammonia.
  • Ammonia can form an ammine salt by exposing an anhydrous metal salt, e.g. CaCl 2 , SrCl 2 or MgCl 2 , to gaseous ammonia in a saturation unit.
  • anhydrous metal salt e.g. CaCl 2 , SrCl 2 or MgCl 2
  • gaseous ammonia in a saturation unit.
  • the lattice of the salt crystal grains expands significantly and the initial grains of the salt partly disintegrates and forms a brittle structure of fine powder, which can be difficult to handle.
  • the hexa-coordinated ammine salt (Mg(NH 3 ) 6 Cl 2 ) has a skeleton density of 1.25 g/cm 3 .
  • the mass fraction of ammonia in saturated metal ammine salts is generally high.
  • the maximal (theoretical) ammonia capacity is approximately 0.65 g NH 3 /cm 3 .
  • the as-prepared Mg(NH 3 ) 6 Cl 2 has a density of roughly 0.2-0.3 g/cm 3 due to a large internal porosity and thus a volumetric ammonia density of roughly 0.1 to 0.15 g NH 3 /cm 3 .
  • the present invention relates to a solid ammonia storage and delivery material comprising an ammonia absorbing/desorbing solid material, said storage and delivery material having been compacted to a density above 50% of the theoretic skeleton density.
  • the storage and delivery material has been compacted to a density above 70% of the theoretic skeleton density, more preferred to a density above 75% such as above 80% and most preferred above 85% of the theoretic skeleton density.
  • skeleton density is used in the present context to define the density of an “ideal” single crystal with no internal void, which density is determined by the distance between the ions (lattice constants) in the material and the masses of the involved atoms (the skeleton density is the density of the solid material without any internal porosity).
  • the real bulk density is easily 4-8 times lower due to the large void between the individual crystal grains. It has been found that it is possible to compact the ammonia-saturated material to a very high density—very close to the upper theoretical limit, which is set by the theoretical crystal skeleton density.
  • ammonia is absorbed in a solid ammonia storage and delivery material which is then compacted under a high pressure of several tons/cm 2 to reach nearly the theoretical density, whereafter desorption takes place essentially without counter pressure.
  • the storage and delivery material comprises ammonia adsorbed or chemically bonded or coordinated as a chemical complex in the form of a solid material that has been compressed into a block or tablet or a pellet of a desired shape.
  • Forming complexes and compacting according to the invention provides solids having a high volumetric density as opposed to “simple” absorption resulting in solids that are rather porous and, consequently, the volumetric ammonia density (moles NH 3 /m 3 or kg NH 3 /m 3 ) can as low as 10-50% of the theoretical value due to the internal porosity in the saturated material.
  • tablettes is used in the present context to designate smaller tablets, monoliths or larger blocks or solid bodies of any convenient shape such as a ring.
  • the solid material is a salt that binds ammonia in the form of a chemical complex as such salts have proven special advantages as will explained below.
  • M is one or more cations selected from alkali metals such as Li, Na, K or Cs, alkaline earth metals such as Mg, Ca or Sr, aluminium and transition metals such as V, Cr, Mn, Fe, Co, Ni, Cu or Zn or combinations thereof such as NaAl, KAl, K 2 Zn, CsCu or K 2 Fe
  • X is one or more anions selected from fluoride, chloride, bromide, iodide, nitrate, thiocyanate, sulphate, molybdate and phosphate ions
  • a is the number of cations per salt molecule
  • z is the number of anions per salt molecule
  • n is the coordination number of 2 to 12.
  • the solid material comprises at least one salt in the form of at least one chloride or sulphide of at least one alkaline earth metal as these compounds are relatively cheap and readily absorbs and desorbs ammonia under controlled conditions. These materials also have relatively low molecular masses and the resulting ammonia density calculated as a mass fraction will be higher.
  • the solid materials are MgCl 2 , CaCl 2 and SrCl 2 and mixtures thereof, especially MgCl 2 due to the especially advantageous properties.
  • the solid material is mixed with a binder in order to enhance the mechanical stability of the compacted solid or to facilitate the compaction procedure itself.
  • Suitable binders are inert fibres that do not adversely affect the absorption/desorption of ammonia, e.g. fibres from SiO 2 , which will provide cohesion to the structure on larger length scales than just the individual crystal grains of the compacted material.
  • the compacted material can easily be handled during transport and during and after the final application.
  • a powdered ammonia delivery material of the present invention has a very low vapour pressure of ammonia at room temperature may be compacted to a very high density using several different methods for shaping of the material into a desired form and still be capable of delivery of ammonia at a sufficient rate to be suitable for use as a source of ammonia for a SCR reduction of NOx in e.g. automotive vehicles, boilers and furnaces.
  • Such methods are e.g. pressing, extrusion, and injection moulding.
  • a pressure might be applied in several different ways in a manner known per se.
  • the material is compressed to shapes like dense blocks or tablets by placing the saturated salt in a groove/dent/hole/pit in a metal block (e.g. in a cylindrical hole) and applying pressure to compress the material using a piston.
  • the metal-ammine salts constitute a solid storage medium for ammonia, which represent a safe, practical and compact option for storage and transportation of ammonia.
  • a single-crystalline compound of Mg(NH 3 ) 6 Cl 2 has an ammonia density of 38 kmole NH 3 /M 3 , whereas that of liquid ammonia is only slightly higher (40 kmole NH 3 /m 3 ).
  • Ammonia may be released from the metal ammine salt by heating the salt to temperatures in the range from 10° C. to the melting point of the metal salt ammine complex, preferably to a temperature from 30 to 700° C., more preferred to a temperature from 100 to 500° C.
  • the resulting salt of formula M a (NH 3 ) m X z can usually be converted back into the salt of the formula M a (NH 3 ) n X z by treatment with a gas containing ammonia.
  • anhydrous MgCl 2 absorbs up to six moles of NH3 (Gmelins Handbuch, 1939; Liu, 2004) according to reactions 1 to 3:
  • Typical ammonia contents of the metal ammine complexes are in the range of 20-60 wt %, and preferred complexes comprise above 30 wt % ammonia, more preferred above 40 wt % ammonia.
  • the inexpensive compound Mg(NH 3 ) 6 Cl 2 contains 51.7 wt % ammonia.
  • a similar inexpensive compound based on CaCl2, i.e. Ca(NH3) 8 Cl 2 contains 55% by weight ammonia.
  • the present invention offers ammonia storage at significantly higher densities (both on a volume and a weight basis) than both aqueous ammonia and aqueous urea.
  • ammonia is directly delivered into the exhaust pipe as a gas, which is an advantage in itself—both for the simplicity of the flow control system and for an efficient mixing of reducing agent, ammonia, in the exhaust gas—but it also eliminates possible difficulties related to blocking of the dosing system because of precipitation in the liquid-based system.
  • the compacted Mg(NH 3 ) 6 Cl 2 complex offers a further advantage in that the vapour pressure of ammonia above a solid salt phase is below 0.1 bar at room temperature, preferably below 0.01 bar and even as low as 0.002 bar at room temperature and atmospheric pressure. In practice, this eliminates any noxious effect of the ammonia as the release of ammonia is as low as or lower than the release from common cleaning materials containing ammonia.
  • the partial pressure of ammonia at room temperature is 0.002 bar. Even though a partial pressure of ammonia of 0.002 bar at ambient temperature in itself could cause health problems, the compacted material according to the invention saturated with ammonia releases ammonia at a very slow rate at ambient temperature and an equilibrium pressure of 0.002 bar will only be obtained after a considerable span of time, even if the material is placed in a very confined space. However, when raising the temperature e.g. in the delivery device, a quite quick desorption of ammonia is observed as discussed above.
  • an ammonia delivery device comprising a container containing the metal ammine complex as such a container may easily be separated from mobile unit and replaced by a fresh at suitable intervals.
  • the metal ammine containers are recycled and recharged with ammonia in a separate recharging unit.
  • the material is re-saturated with ammonia in situ or on-board by connecting a source of ammonia (e.g. a large tank containing liquid ammonia) to the storage container and thus exposing the ammonia-depleted salt in the container to gaseous or liquid ammonia.
  • the invention in a second aspect relates to a method for storing ammonia in a solid material comprising steps of:
  • the present invention is related to the compaction and shaping of the saturated ammonia storage and delivery material.
  • the solid material suitably consists of a granular material, a porous material, a crystalline material, an amorphous material or a combination thereof.
  • the saturated solid e.g. Mg(NH 3 ) 6 Cl 2 can be compacted significantly by several different methods, which also includes shaping of the material into a desired form. Such methods include: pressing, extrusion and injection moulding. In the case of pressing, a pressure might be applied in several different ways. In one embodiment, the material is compressed to shapes like dense blocks or tablets by placing the saturated salt in a groove/dent/hole/pit in a metal block (e.g. in a cylindrical hole) and applying pressure to compress the material using a piston pressed against the initially porous or powdery solid.
  • the solid material is compacted and shaped in a mould using mechanical pressure.
  • Compacting and shaping of the solid material may suitably be carried out in a manner known per se such as injection moulding, extrusion or monolith preparation.
  • the compacted solid ammonia storage material can be prepared e.g. in the form of cylinders, rods, cubes, rectangular shaped blocks or other shapes having overall dimensions suitable to the desired ammonia consumption in the ammonia consuming unit.
  • the weight of the compacted storage unit may be below 10 g.
  • the rods/blocks/cylinders (or other shapes) may even be above 100 kg in size.
  • the corresponding volume of the units may also vary from below 1 cm 3 to above 1000 litres. Examples of different sizes and shapes (but mot limited to those) are:
  • the more regular shapes bodies are preferred when several pieces of compacted materials are to be placed in a common container as the space may then be utilized more efficiently than e.g. packing of spheres.
  • the solid material binds ammonia by absorption, and ammonia is preferably bound in solid material in the form of a chemical complex.
  • the invention relates to a method of producing a solid ammonia storage and delivery material comprising an ammonia absorbing salt, wherein the ammonia absorbing salt is an ionic salt of the general formula:
  • M is one or more cations selected from alkali metals such as Li, Na, K or Cs, alkaline earth metals such as Mg, Ca or Sr, Al and transition metals such as V, Cr, Mn, Fe, Co, Ni, Cu or Zn or combinations thereof such as NaAl, KAl, K 2 Zn, CsCu or K 2 Fe
  • X is one or more anions selected from fluoride, chloride, bromide, iodide, nitrate, thiocyanate, sulphate, molybdate and phosphate ions
  • a is the number of cations per salt molecule
  • z is the number of anions per salt molecule
  • n is the coordination number of 2 to 12, said method comprising the steps of
  • saturated is used in the present context to define a state in which the material cannot take up more ammonia according to the absorption reactions or the capacity of the solid in general.
  • the material is fully saturated when six NH 3 molecules are coordinated around each MgCl 2 -unit, i.e. Mg(NH 3 ) 6 Cl 2 .
  • CaCl 2 can take up 8 molecules of ammonia per unit CaCl 2 .
  • a powdery ammonia saturated material may be prepared by exposing the dry salt to gaseous ammonia in a manner known per se.
  • the ammonia saturated delivery material as prepared is powdery and rather “fluffy” and difficult to handle or transport and may be—during transport or use—transformed into small particle fragments thereby potentially blocking the dosing system of a device or give rise to hazardous dust into the environment. Furthermore, the powder has a low bulk density.
  • the ammonia salt complex is compressed to a density of 1.0 to 1.3 g/cm 3 , more preferred to a density of 1.1 to 1.3 g/cm 3
  • the solid material comprises at least one salt in the form of at least one chloride or sulphide of at least one alkaline earth metal.
  • Such materials have proven very suitable for the purpose of the present invention, are readily available and are relatively safe to use.
  • the solid material is preferably MgCl 2 , CaCl 2 or SrCl 2 or mixtures thereof.
  • the method further comprises the step of mixing the solid material with a binder before compacting the solid material in order to enhance the mechanical stability of the compacted solid or to facilitate the compaction procedure itself and to provide cohesion to the structure.
  • ammonia is conveyed by normal pressure-driven flow through connection tubes to the ammonia-consuming units and wherein the pressure is controlled directly by heating the chamber containing the compact ammonia storage material.
  • the method further comprises the step
  • a method of the invention comprises the steps of
  • liquid ammonia it is preferred to carry out the re-saturation with ammonia by providing liquid ammonia to the storage material or storage container, after it has been depleted for ammonia.
  • liquid ammonia accelerates the re-saturation because the endothermic evaporation of liquid ammonia takes up part of the heat evolved when ammonia is absorbed in the depleted material.
  • the necessary capacity of heat exchange for carrying out fast resaturation in larger units is minimised when heat evolvement from the resaturation process is utilized for evaporation of the liquid ammonia. This renders it possible to re-saturate in situ.
  • the invention in a third aspect relates to a system for delivery of ammonia to an ammonia consuming unit wherein the system comprises a discharge chamber for delivery of ammonia, said chamber comprising an ammonia absorbing/desorbing solid material, means for heating the storage material, and means for conveying the delivered ammonia from the storage chamber to one or more ammonia consuming units.
  • the ammonia consuming unit may suitably be a system wherein ammonia is used for catalytic removal of NO x .
  • the ammonia consuming unit is an internal combustion engine fuelled by ammonia, a fuel cell capable of using ammonia as a fuel.
  • the ammonia consuming unit may a catalytic reactor decomposing the ammonia into hydrogen and nitrogen, and such unit suitably comprises means for conveying the hydrogen to one or more fuel cells using hydrogen as fuel.
  • the system comprises a feeding system for continuous feeding of solid ammonia storage and delivery material into the discharge chamber wherein ammonia is released by thermal desorption.
  • the system further comprises:—a feeding system comprising a number of compartments where each compartment comprises one or more unit(s) of solid ammonia storage and delivery material, which feeding system is adapted to introducing the units sequentially into the discharge chamber wherein ammonia is released by thermal desorption.
  • the system comprises a feeding system in which the total amount of ammonia storage material is divided into minor parts or sections being heated separately, thus avoiding the need of heating the entire mass of storage material simultaneously in order to release ammonia and to introduce new units of ammonia storage material when the ammonia content of one unit is discharged.
  • the system preferably further comprised means for supplying ammonia to the storage chamber for re-saturate the material in situ.
  • a system of the invention typically comprises a container comprising an ammonia absorbing salt, said container being provided with one or more closable outlet opening(s) connected to a pipe and further being provided with means for heating the container and the ammonia absorbing salt for release of gaseous ammonia as a source for ammonia.
  • the closable outlet opening(s) may be in the form of one or more valve(s).
  • Heating means may be in the form of an electrical resistive heating device.
  • the heating means may alternatively be provided as heat produced by chemical reactions or as heat from hot exhaust gas from a combustion process.
  • a metal ammine salt complex for delivery of ammonia is normally heated to temperatures in the range from 10° C. to the melting point of the metal salt ammine complex, preferably to a temperature from 30 to 700° C., more preferred to a temperature from 100 to 500° C.
  • the release rate of ammonia is controlled by accurate control of the heating of the container and the ammonia absorbing salt for release of gaseous ammonia.
  • the release of ammonia is preferably further controlled by reduction valves, flow controllers or similar equipment or units.
  • the release may be further controlled by introducing a buffer volume between the storage container and the ammonia consuming unit in order to be able to compensate for a rapidly fluctuating dosing of ammonia to the ammonia consuming unit.
  • the invention relates to a device for providing ammonia for a selective catalytic reduction of NO x in an oxygen-containing exhaust gas of a combustion engine or combustion process by using gaseous ammonia and a reduction catalyst, the device comprising:
  • the invention relates to a method of producing a solid ammonia storage and delivery material comprising an ammonia absorbing salt, said method comprising the steps of
  • the compacted ammonia storage solid is particularly useful for application such as:
  • a power generating device comprising:
  • a power generating device comprising:
  • the invention relates to the use of a solid ammonia storage and delivery material comprising an ammonia absorbing/desorbing solid material, said storage and delivery material having been compacted to a density above 50% of the theoretic skeleton density as a source of ammonia in one or more ammonia consuming units.
  • the invention relates to the use of a solid ammonia storage and delivery material comprising an ammonia absorbing/desorbing solid material, said storage and delivery material having been compacted to a density above 50% of the theoretic skeleton density as a source of ammonia as the reducing agent in selective catalytic reduction (SCR) of NO x in exhaust gases from combustion processes.
  • SCR selective catalytic reduction
  • M is one or more cations selected from alkali metals such as Li, Na, K or Cs, alkaline earth metals such as Mg, Ca or Sr, Al and transition metals such as V, Cr, Mn, Fe, Co, Ni, Cu or Zn or combinations thereof such as NaAl, KAl, K 2 Zn, CsCu or K 2 Fe
  • X is one or more anions selected from fluoride, chloride, bromide, iodide, nitrate, thiocyanate, sulphate, molybdate and phosphate ions
  • a is the number of cations per salt molecule
  • z is the number of anions per salt molecule
  • n is the coordination number of 2 to 12.
  • SCR M is Mg.
  • an ammonia delivery device comprising a container comprising an ammonia absorbing salt, wherein the ammonia absorbing salt is an ionic salt of the general formula:
  • M is one or more cations selected from alkali metals such as Li, Na, K or Cs, alkaline earth metals such as Mg, Ca or Sr, aluminium and transition metals such as V, Cr, Mn, Fe, Co, Ni, Cu or Zn or combinations thereof such as NaAl, KAl, K 2 Zn, CsCu or K 2 Fe
  • X is one or more anions selected from fluoride, chloride, bromide, iodide, nitrate, thiocyanate, sulphate, molybdate and phosphate ions
  • a is the number of cations per salt molecule
  • z is the number of anions per salt molecule
  • n is the coordination number of 2 to 12
  • said container being provided with one or more closable outlet opening(s) connected to a pipe and further being provided with means for heating the container and the ammonia absorbing salt for release of gaseous ammonia is used as a source for ammonia in selective catalytic
  • the invention relates to the use of a solid ammonia storage and delivery material comprising a complex ammonia absorbing/desorbing solid material, said storage and delivery material having been compacted to a density above 50% of the theoretic skeleton density in connection with a PEM fuel cell, wherein the ammonia storage material has an ammonia pressure in the range of 0.1-15 bar between room temperature and the operating temperature of a fuel cell.
  • the complex solid ammonia storage and delivery material is CaCl 2 , SrCl 2 or a mixture thereof.
  • Such solid ammonia storage and delivery material has a suitable supply-pressure of ammonia at temperatures obtainable when using waste heat from a conventional PEM-fuel cell or alkaline fuel cells as a source of heat which reduces or eliminates the need of an external source of heat for the desorption of ammonia.
  • the term “absorb” has been used to designate the binding of ammonia to a solid material. This is not considered as a limitation of the invention to the physical absorption to the extent that adsorption to the surface of a solid material will provide the same option of desorbing the material in a controlled manner using heat.
  • the ammonia carrier Mg(NH 3 ) 6 Cl 2
  • MgCl 2 powder was prepared by placing a batch of MgCl 2 powder for several days in a glove-bag containing ammonia gas at atmospheric pressure. The degree of saturation was checked by temperature programmed desorption (TPD) and verified to be near 100% of the theoretical amount. The absorption/desorption was found to be fully reversible.
  • TPD temperature programmed desorption
  • FIG. 1 schematically shows a device according to the present invention for compression of the solid ammonia storage medium.
  • the solid ammonia storage medium is compressed in a chamber by applying mechanical force to a piston acting on the porous storage medium.
  • the storage medium is in the shape of a tablet, and has a density above 80% of the theoretical crystal density.
  • FIG. 1 schematically shows a device according to one embodiment of the invention for compression of 1 gram of the solid ammonia delivery material for the preparation of cylindrical tablets (dimensions: 13 mm in diameter; 10 mm high).
  • the solid ammonia delivery material was compressed in a chamber by applying a pressure of 2-4 tons/cm 2 using a piston compressing the powdered saturated storage material.
  • the chamber and the piston were made from stainless steel.
  • the delivery material was in the desired shape of e.g. a tablet, a cylinder or a rod, and had a density above 80% of the theoretical crystal density.
  • the tablets have densities in the range of 1.1-1.2 g/cm 3 , which is roughly an increase in effective density of the as-prepared powder by a factor of 4.
  • the resulting tablet or block is compact, easy-to-handle and represents a safe ammonia storage material.
  • the structure of the densified storage tablet was verified by recording an XRD spectrum of the hexa-coordinated ammine salt after tablet pressing.
  • the tablet was placed in a testing unit, which slowly degasses the ammonia by thermal desorption.
  • the total ammonia content in terms of mass fraction was verified to be above 99% of the theoretical amount.
  • the invention provides the possibility of making an ammonia storage material with an ammonia density above 0.6 g NH 3 /cm 3 .
  • the hydrogen capacity is well above 6 % w/w.
  • the hydrogen density is 9.1% w/w and with the obtained solid density of the material the hydrogen density is 0.1-0.11 g H 2 /cm 3 .
  • the demonstrated density of at least 0.6 grams NH 3 /cm 3 is above 90% of the volumetric density of liquid ammonia stores under a pressure (8 bar) at room temperature.
  • FIG. 2 schematically shows an embodiment of an ammonia delivery device of the invention for desorption of the compressed delivery material.
  • one or more tablets of solid ammonia delivery material 1 are placed in a container 2 , which can be heated by a heating device 3 .
  • Desorbed ammonia leaves the container through a nozzle 4 .
  • Heat for the heating device 3 may be provided by e.g. resistive electric heating or chemical reactions. Such chemical reactions could be generated e.g. by combustion of a part of the released ammonia or hydrogen produced by reforming of the released ammonia into hydrogen and nitrogen. If the delivery device is used in connection with SCR of NOx in exhaust gases, waste heat from the engine producing the gases can also be applied.
  • the degassing of ammonia from the compacted storage medium can be carried of in a sequential manner as follows:
  • Such a system has a significant advantage since only a minor fraction of the total mass has to be heated in order to release the continuous need for ammonia down-stream in the process.
  • FIG. 3 schematically shows a preferred embodiment where only a part of the stored solid ammonia storage medium 1 is heated at a time.
  • the solid storage material is stored in compressed form, and introduced into a hot chamber 2 one at the time at intervals corresponding to the requirement for gaseous ammonia.
  • the hot chamber is heated by a heating device 3 operated after the same principles as described for FIG. 2 .
  • Gaseous ammonia leaves the hot chamber through a nozzle 4 , and when all ammonia is desorbed from a tablet of solid ammonia storage material 5 , it is discarded into a separate container 6 .
  • the entire storage material is separated into a number of compartments each having their own heating source so that it is possible to have complete desorption of a given fraction of the material without using any moving parts to replace saturated/unsaturated salt e.g. on-board the vehicle during use.
  • FIG. 4 describes schematically an embodiment of a system according to the invention, wherein ammonia is desorbed from the compacted solid storage medium 1 and led directly into a power generating unit in the form of an ammonia fuelled fuel cell 11 .
  • the power generating unit is be a fuel cell of the SOFC type or an alkaline type fuel cell.
  • FIG. 5 another embodiment of a system according to the present invention is described, wherein a compacted ammonia storage medium 1 is heated in a container 2 by a heating device 3 . Desorption takes place in the same way as described in connection with FIGS. 2 and 3 .
  • the ammonia After leaving the container 2 through the pipe 4 the ammonia enters a catalytic reactor 7 wherein it is decomposed to hydrogen and nitrogen. Any residual ammonia may be removed in an optional purification unit 8 .
  • the resulting hydrogen and nitrogen are rare then fed through pipe 9 into an electrochemical power generating device in the form of a hydrogen fuelled fuel cell 10 .
  • the fuel cell is a fuel cell of the PEM or alkaline type.
  • FIG. 6 schematically shows a further embodiment of an ammonia delivery device of the invention which comprises a number of individual containers ( 2 ) (Container 1 , 2 , . . . , N) each comprising an ammonia storage and delivery material ( 1 ) according to the invention and individual sources of heat (Heat 1 , Heat 2 , . . . , Heat N) for heating the individual containers sequentially and individual valves for opening the outlet ( 4 ) of the container from which ammonia is released.
  • individual containers 2
  • Container 1 , 2 , . . . , N each comprising an ammonia storage and delivery material ( 1 ) according to the invention and individual sources of heat (Heat 1 , Heat 2 , . . . , Heat N) for heating the individual containers sequentially and individual valves for opening the outlet ( 4 ) of the container from which ammonia is released.
  • rings or larger blocks of more complicated shapes of the storage material may be produced.
  • rings having an outer diameter of 52 millimetres and a central hole having a diameter of 27 millimetres were made using the procedure described in Example 1 using corresponding moulds made from stainless steel.
  • 20 grams of the solid ammonia delivery material were compressed for the preparation of rings (dimensions: outer diameter of 52 millimetres, a central hole having a diameter of 27 millimetres and thickness (height) 13 millimetres).
  • the solid ammonia delivery material was compressed in a chamber by applying a pressure of 25 tons (about 1.57 tons/cm 2 ) using a piston compressing the powdered saturated storage material in a compression ratio of about 6.3. When the piston was removed, the delivery material was in the desired shape of a ring, and had a density above 80% of the theoretical crystal density.
  • FIG. 7 is a graphical representation showing the formation of pores during desorption of ammonia from the compacted and saturated Mg(NH 3 ) 6 Cl 2 before and after the transformation into a porous block of MgCl 2 .
  • the pore size distribution was measured using a Micromeritics ASAP 2010 apparatus during desorption as a function of the degree of release, and it appears that although nearly no porosity was present initially, the size of the pores increase with increasing degree of desorption facilitating the further desorption of ammonia. This enables the release of ammonia from large blocks or rods or similar shapes of the saturated ammonia storage material even though initially there is essentially no pore system in the material.
  • FIG. 8 shows a photograph of a tablet of Mg(NH 3 ) 6 Cl 2 , which is (left) fully saturated with ammonia and a fractured surface thereof. It can be seen that the overall structure of the tablet is retained after desorption (right) but the internally, the tablet has become porous in accordance with to the pore volume measurements presented in FIG. 7 . In other words, the dense, saturated tablet has been transformed into a porous “sponge” of depleted salt.
  • a low density means that the entire storage system would require more space.
  • This problem was in this example solved by compressing Mg(NH 3 ) 6 Cl 2 into solid rods having a density of 1219 kg/m 3 (97% of the solid density) as disclosed in Example 1.
  • TPD experiments confirmed that it was possible to desorp all ammonia from this tablet, thus increasing the potential storage capacity by a factor of 3.7 (on a molar basis) to approximately 93% of the volumetric ammonia storage capacity of liquid ammonia.
  • a nearly quantitative desorption of ammonia from the dense material was possible because the front of desorption leaves behind a porous layer of anhydrous MgCl 2 . This automatically generates the required pore system needed for mass-transfer through the structure.
US11/815,146 2005-02-03 2006-02-03 High Density Storage of Ammonia Abandoned US20090123361A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DKPA200500166 2005-02-03
DKPA200500166 2005-02-03
DKPA200500926 2005-06-24
DKPA200500926 2005-06-24
PCT/DK2006/000059 WO2006081824A2 (fr) 2005-02-03 2006-02-03 Stockage a densite elevee d'ammoniac

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/DK2006/000059 A-371-Of-International WO2006081824A2 (fr) 2005-02-03 2006-02-03 Stockage a densite elevee d'ammoniac

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/577,921 Division US7964163B2 (en) 2005-02-03 2009-10-13 High density storage of ammonia

Publications (1)

Publication Number Publication Date
US20090123361A1 true US20090123361A1 (en) 2009-05-14

Family

ID=36777588

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/815,146 Abandoned US20090123361A1 (en) 2005-02-03 2006-02-03 High Density Storage of Ammonia
US12/577,921 Expired - Fee Related US7964163B2 (en) 2005-02-03 2009-10-13 High density storage of ammonia

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/577,921 Expired - Fee Related US7964163B2 (en) 2005-02-03 2009-10-13 High density storage of ammonia

Country Status (9)

Country Link
US (2) US20090123361A1 (fr)
EP (2) EP2263975B1 (fr)
JP (1) JP5305661B2 (fr)
KR (1) KR20070100786A (fr)
AU (1) AU2006209949B2 (fr)
CA (1) CA2595965C (fr)
NO (1) NO20073962L (fr)
RU (2) RU2395335C2 (fr)
WO (1) WO2006081824A2 (fr)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100089118A1 (en) * 2008-10-09 2010-04-15 Felix Mayer Method for measuring a fluid composition parameter by means of a flow sensor
US20100172816A1 (en) * 2009-01-02 2010-07-08 Felix Mayer Ammonia storage system
US20110192559A1 (en) * 2006-05-01 2011-08-11 Balan Venkatesh Methods for pretreating biomass
WO2011133752A1 (fr) * 2010-04-21 2011-10-27 International Engine Intellectual Property Company, Llc Dispositif et procédé de recharge pour cartouche de nh3
EP2386523A1 (fr) * 2010-05-13 2011-11-16 Kabushiki Kaisha Toyota Jidoshokki Dispositif d'approvisionnement en ammoniac, procédé d'approvisionnement en ammoniac et système de purification de gaz d'échappement
US20120014852A1 (en) * 2010-07-13 2012-01-19 Kevin Huang Membranes and Reactors for CO2 Separation
US20120174616A1 (en) * 2011-01-11 2012-07-12 Tai Chang-Hsien Generator
CN102728319A (zh) * 2012-07-11 2012-10-17 中国第一汽车股份有限公司 一种含有膨胀石墨的多孔活性储氨活性混合物制备
CN102728312A (zh) * 2012-07-11 2012-10-17 中国第一汽车股份有限公司 一种含有硅溶胶的多孔活性储氨活性混合物制备
CN102728317A (zh) * 2012-07-11 2012-10-17 中国第一汽车股份有限公司 含有活性碳的储氨混合物多孔固体样块及其制备方法
CN102794155A (zh) * 2012-07-11 2012-11-28 中国第一汽车股份有限公司 一种用于储氨的多孔固体样块及其制备方法
FR2975641A1 (fr) * 2011-05-27 2012-11-30 Peugeot Citroen Automobiles Sa Reservoir a plusieurs compartiments, procede de fabrication et vehicule automobile correspondant
US20130047584A1 (en) * 2011-08-30 2013-02-28 Hyundai Motor Company Solid scr system and heating method for solid scr reductant using the same
US8394177B2 (en) 2010-06-01 2013-03-12 Michigan Biotechnology Institute Method of separating components from a gas stream
US20130327027A1 (en) * 2012-06-06 2013-12-12 Faurecia Systemes D'echappement Device for Storing and Supplying Ammonia and Exhaust Line Equipped With Such a Device
US20140075922A1 (en) * 2012-09-14 2014-03-20 Faurecia Systemes D'echappement Ammonia storage device and exhaust line equipped with such a device
WO2014167128A1 (fr) * 2013-04-12 2014-10-16 Aaqius & Aaqius Sa Structure de stockage d'ammoniac et systemes associes
CN104121076A (zh) * 2014-08-11 2014-10-29 吉林省众鑫汽车装备有限公司 一种固体储氨装置
US8916300B2 (en) * 2012-09-07 2014-12-23 Bloom Energy Corporation Ammonia fueled SOFC system
US8945245B2 (en) 2009-08-24 2015-02-03 The Michigan Biotechnology Institute Methods of hydrolyzing pretreated densified biomass particulates and systems related thereto
US9039792B2 (en) 2009-08-24 2015-05-26 Board Of Trustees Of Michigan State University Methods for producing and using densified biomass products containing pretreated biomass fibers
US9206446B2 (en) 2006-05-01 2015-12-08 Board Of Trustees Of Michigan State University Extraction of solubles from plant biomass for use as microbial growth stimulant and methods related thereto
US20160030886A1 (en) * 2013-03-29 2016-02-04 Plastic Omnium Advanced Innovation And Research A tank for selective catalytic reduction purification of the exhaust gases of a combustion engine of a vehicle
US9400064B2 (en) 2007-05-23 2016-07-26 Amminex A/S Method and device for ammonia storage and delivery using in-situ re-saturation of a delivery unit
WO2017062670A1 (fr) * 2015-10-06 2017-04-13 Entegris, Inc. Frittage à froid de précurseurs solides
US9650657B2 (en) 2010-04-19 2017-05-16 Board Of Trustees Of Michigan State University Methods for producing extracted and digested products from pretreated lignocellulosic biomass
US9724685B2 (en) 2011-12-02 2017-08-08 Cummins Inc. Solid storage media charging with ammonia for use in selective catalytic reduction
US20170356695A1 (en) * 2014-10-21 2017-12-14 University Of Utah Research Foundation Climate control system and associated methods
US10457810B2 (en) 2009-08-24 2019-10-29 Board Of Trustees Of Michigan State University Densified biomass products containing pretreated biomass fibers

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004289539C1 (en) 2003-11-14 2012-06-07 Lorus Therapeutics Inc. Aryl imidazoles and their use as anti-cancer agents
US8148392B2 (en) 2005-05-25 2012-04-03 Lorus Therapeutics Inc. 2-indolyl imidazo [4,5-d] phenanthroline derivatives and their use in the treatment of cancer
CN101454064A (zh) 2006-02-27 2009-06-10 氨合物股份公司 存储和输送氨的方法和电磁辐射用于从化学络合物中脱附氨的用途
JP4853810B2 (ja) * 2006-06-13 2012-01-11 太平洋セメント株式会社 水素貯蔵材料およびその製造方法
JP2010513812A (ja) 2006-12-22 2010-04-30 アムミネクス・アー/エス アンモニアの安全貯蔵及び安全運搬の方法及び装置、並びにアンモニア貯蔵材料の使用
EP1992397B1 (fr) 2007-05-16 2011-09-07 Amminex A/S Procédé et dispositif de stockage sécurisé et utilisation de matériaux de stockage d'ammoniac volatile
JP2010513004A (ja) * 2006-12-22 2010-04-30 アムミネクス・アー/エス 供給ユニットの現場再飽和を利用するアンモニアの貯蔵および供給のための方法ならびにデバイス
DE102006061370A1 (de) 2006-12-22 2008-06-26 Amminex A/S Verfahren und Vorrichtung zur Ammoniakspeicherung und -zufuhr unter Verwendung von in-situ-Wiedersättigung einer Zufuhreinheit
US8314220B2 (en) 2007-01-26 2012-11-20 Agilent Technologies, Inc. Methods compositions, and kits for detection of microRNA
DE602007010728D1 (de) * 2007-03-30 2011-01-05 Amminex As System zur Lagerung von Ammoniak in und zu seiner Abgabe aus einem Lagerungsmaterial und Verfahren zur Lagerung und Abgabe von Ammoniak
US8034499B2 (en) 2007-04-05 2011-10-11 Delphi Technologies, Inc. Energy conversion device including a solid oxide fuel cell fueled by ammonia
US20100003184A1 (en) * 2008-02-22 2010-01-07 Toyota Jidosha Kabushiki Kaisha Method for storing solar thermal energy
JP5365037B2 (ja) 2008-03-18 2013-12-11 トヨタ自動車株式会社 水素生成装置、アンモニア燃焼内燃機関、及び燃料電池
DE102008002281A1 (de) * 2008-06-06 2009-12-10 Robert Bosch Gmbh Verfahren zur Beladung eines Gasspeichers
DE102008002612A1 (de) 2008-06-24 2009-12-31 Robert Bosch Gmbh Abgasnachbehandlungseinrichtung für eine Brennkraftmaschine
KR101039972B1 (ko) * 2008-08-13 2011-06-09 주식회사 포스코 배가스 중의 황산화물 건식 제거 방법
US8916493B2 (en) 2008-09-08 2014-12-23 Amminex Emissions Technology A/S Additives for highly compacted ammonia storage materials
WO2010025947A1 (fr) 2008-09-08 2010-03-11 Amminex A/S Saturation de matières de stockage d'ammoniac dans des récipients
EP2181963B1 (fr) * 2008-10-06 2018-12-12 Amminex Emissions Technology A/S Libération d'ammoniac stocké au démarrage
DE102009000411B4 (de) * 2009-01-26 2017-06-08 Robert Bosch Gmbh Vorrichtung zum Speichern und Abgeben von Ammoniak sowie Antriebsvorrichtung mit einer derartigen Vorrichtung
EP2236784B1 (fr) * 2009-03-18 2012-06-06 Amminex A/S Procédé amélioré pour stocker et fournir de l'ammoniac à partir de matériaux de stockage solide utilisant une pompe sous vide
WO2010118853A1 (fr) 2009-04-15 2010-10-21 Amminex A/S Production de matières de stockage d'ammoniac saturées
EP2241535B1 (fr) 2009-04-15 2013-07-10 Amminex Emissions Technology A/S Production de matériaux de stockage à ammoniac saturé
US8084008B2 (en) 2009-04-16 2011-12-27 Amminex A/S Production of saturated ammonia storage materials
FR2950651A1 (fr) 2009-09-29 2011-04-01 Peugeot Citroen Automobiles Sa Dispositif d'injection dans une ligne d'echappement d'un agent reducteur gazeux
FR2956156B1 (fr) 2010-02-09 2016-02-12 Peugeot Citroen Automobiles Sa Dispositif d'injection dans une ligne d'echappement, d'un agent reducteur gazeux
WO2011107279A1 (fr) 2010-03-02 2011-09-09 Amminex A/S Apppreil pour générer de l'hydrogène à partir de l'ammoniac contenu dans des matériaux solides et intégration de cet appareil dans des piles à combustible basse température
FR2957270B1 (fr) * 2010-03-12 2012-04-20 Peugeot Citroen Automobiles Sa Dispositif de stockage d'un reducteur gazeux pour la reduction catalytique selective d'oxydes d'azotes
FR2957970B1 (fr) 2010-03-29 2013-01-11 Peugeot Citroen Automobiles Sa Dispositif d'injection dans une ligne d'echappement d'un agent reducteur gazeux
FR2961557B1 (fr) 2010-06-22 2014-01-24 Peugeot Citroen Automobiles Sa Strategie d'injection dans une ligne d'echappement d'un agent reducteur selectif des oxydes d'azote
FR2962122B1 (fr) * 2010-07-01 2012-08-10 Faurecia Sys Echappement Procede de fabrication d'une cartouche de stockage d'ammoniaque, notamment pour systeme d'echappement de gaz de vehicule automobile
JP5625627B2 (ja) * 2010-08-30 2014-11-19 株式会社豊田中央研究所 アンモニア吸蔵装置および選択的触媒還元システム
EP2428490B1 (fr) 2010-09-10 2014-10-22 Aaqius & Aaqius S.A. Système pour réduire la quantité de NOx dans les gaz d'échappement d'un véhicule à moteur
US8473226B2 (en) 2010-09-17 2013-06-25 Amminex A/S Method of determining the filling level of a solid ammonia storage medium in an ammonia storage container
WO2012034706A1 (fr) 2010-09-17 2012-03-22 Amminex A/S Procédé de détermination du niveau de saturation d'un milieu de stockage d'ammoniac solide situé dans un récipient de stockage d'ammoniac
FR2966817B1 (fr) 2010-10-28 2013-04-12 Peugeot Citroen Automobiles Sa Procede de recharge en ammoniac d'une cartouche comportant un sel susceptible d'absorber de l'ammoniac gazeux
EP2617681A1 (fr) * 2012-01-23 2013-07-24 Amminex A/S Procédé de réduction de la friction
AU2014235962A1 (en) 2013-03-20 2015-09-10 Aptose Biosciences Inc. 2-substituted imidazo[4,5-d]phenanthroline derivatives and their use in the treatment of cancer
US10347769B2 (en) * 2013-03-25 2019-07-09 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with multi-layer source/drain electrodes
FR3004436B1 (fr) * 2013-04-12 2016-10-21 Aaqius & Aaqius Sa Structure de stockage d'ammoniac et systemes associes
FR3004435B1 (fr) * 2013-04-12 2016-10-21 Aaqius & Aaqius Sa Structure de stockage d'ammoniac et systemes associes
WO2015051302A1 (fr) 2013-10-04 2015-04-09 Aptose Biosciences Inc. Compositions et procédés de traitement de cancers
KR101518850B1 (ko) 2013-10-14 2015-05-13 한국기계연구원 고체 암모늄염 카트리지 및 그 제조 방법
US9429060B2 (en) 2013-10-28 2016-08-30 Cummins Emission Solutions Inc. Systems and methods for control of engine NOx emissions using liquid and dry reductant sources
US9914645B2 (en) 2013-11-07 2018-03-13 Regents Of The University Of Minnesota Process for making ammonia
DE102014006371A1 (de) * 2014-05-05 2015-11-05 Gkn Sinter Metals Engineering Gmbh Wasserstoffspeicher-Herstellvorrichtung nebst Verfahren hierzu und Wasserstoffspeicher
FR3028556A1 (fr) 2014-11-14 2016-05-20 Inergy Automotive Systems Res (Societe Anonyme) Procede de fabrication d'une structure de stockage d'un gaz
ES2705079T3 (es) * 2015-04-09 2019-03-21 Amminex Emissions Tech A/S Reducción de las fuerzas de expansión creadas por materiales de almacenamiento de amoníaco
EP3223004A1 (fr) 2016-03-25 2017-09-27 Plastic Omnium Advanced Innovation and Research Système et procédé de détection capacitive du degré de saturation d'ammonia dans un milieu de stockage solide
EP3607182B1 (fr) 2017-04-04 2021-10-27 BASF Corporation Génération d'ammoniac et d'hydrogène embarquée dans un véhicule
JP2020515768A (ja) 2017-04-04 2020-05-28 ビーエーエスエフ コーポレーション 車載型水素発生および排気流中で使用する方法
US11125133B2 (en) 2017-04-04 2021-09-21 Basf Corporation Hydrogen-assisted integrated emission control system
BR112019020432A2 (pt) 2017-04-04 2020-04-28 Basf Corp sistemas de controle de emissões e de tratamento de emissões e método para tratar uma corrente de gás de escape
WO2018185666A1 (fr) 2017-04-04 2018-10-11 Basf Corporation Système intégré de régulation d'émission
WO2018185661A1 (fr) 2017-04-04 2018-10-11 Basf Corporation Réducteur à hydrogène pour réduction catalytique de la pollution
WO2019089511A1 (fr) 2017-10-30 2019-05-09 Aptose Biosciences Inc. Arylimidazoles pour le traitement du cancer
US10392989B1 (en) 2018-10-19 2019-08-27 Faurecia Emissions Control Technologies, Usa, Llc Automotive exhaust aftertreatment system having an ammonia distributor
JP2020131115A (ja) * 2019-02-20 2020-08-31 国立大学法人千葉大学 アンモニア吸蔵材
DE202019106605U1 (de) 2019-11-27 2020-03-30 Oligo Lichttechnik Gmbh Netzteil für eine Pendelleuchte
DE202019106606U1 (de) 2019-11-27 2020-03-30 Oligo Lichttechnik Gmbh Leuchte
FR3107702B1 (fr) * 2020-02-28 2022-05-13 Plastic Omnium Advanced Innovation & Res Procédé de charge ou recharge en ammoniac de cartouche de stockage d’ammoniac et cartouche de stockage d’ammoniac pour un système de conversion d’ammoniac en énergie
US11203966B1 (en) 2020-09-30 2021-12-21 Faurecia Emissions Control Technologies, Usa, Llc Circular sampling device for an exhaust gas sensor
US20220403775A1 (en) 2021-05-14 2022-12-22 Amogy Inc. Systems and methods for processing ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
KR20240020274A (ko) 2021-06-11 2024-02-14 아모지 인크. 암모니아의 가공처리를 위한 시스템 및 방법
US11539063B1 (en) 2021-08-17 2022-12-27 Amogy Inc. Systems and methods for processing hydrogen
US11840447B1 (en) 2022-10-06 2023-12-12 Amogy Inc. Systems and methods of processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2019356A (en) * 1930-05-14 1935-10-29 Normelli Wulff Berzelius Refrigerating machine operating with a solid absorbent
US2431470A (en) * 1943-04-30 1947-11-25 Fawkes Walter Hugh Ammonia evolving composition
US3432295A (en) * 1966-12-08 1969-03-11 Hittman Associates Inc Method for making oriented fiber or whisker composites
US3510357A (en) * 1967-05-05 1970-05-05 Nat Union Electric Corp Thermally activated ammonia vapor battery
US3669743A (en) * 1969-04-14 1972-06-13 Melpar Inc Rechargeable electrochemical cell with solid zinc salt complex electrolyte
US4848994A (en) * 1987-11-02 1989-07-18 Uwe Rockenfeller System for low temperature refrigeration and chill storage using ammoniated complex compounds
US5384101A (en) * 1989-03-08 1995-01-24 Rocky Research Method and apparatus for achieving high reaction rates in solid-gas reactor systems
US5408847A (en) * 1993-05-26 1995-04-25 Erickson; Donald C. Rotary solid sorption heat pump with embedded thermosyphons
US5441716A (en) * 1989-03-08 1995-08-15 Rocky Research Method and apparatus for achieving high reaction rates
US6301879B1 (en) * 1998-06-22 2001-10-16 Hjs Fahrzeugtechnik Gmbh & Co. Exhaust gas purification system for denoxing exhaust gases from combustion units
US20010053342A1 (en) * 1997-07-03 2001-12-20 Armin Marko Method and device for selective catalytic nox reduction
US20020023433A1 (en) * 2000-08-09 2002-02-28 Christian Goerigk Method and system for feeding a reducing agent into a catalyst device
US20030234011A1 (en) * 2002-05-03 2003-12-25 Norbert Breuer Combustion system having an emission control device

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3342557A (en) * 1967-09-19 Process of regenerating granular ma- terials impregnated with active com- ponents in a cyclic process of produc- ing chlorine
NL45782C (fr) * 1936-07-09
DE1596038A1 (de) 1964-04-13 1971-04-01 Engelhard Ind Inc Verfahren und Brennstoffzelle zur Erzeugung elektrischer Energie
US3812236A (en) * 1972-06-22 1974-05-21 Standard Oil Co Removal of ammonia and organic impurities from an ammonia plant effluent
US4190622A (en) * 1978-05-04 1980-02-26 Standard Oil Company (Ohio) Process for prilling urea
US4750453A (en) * 1980-06-30 1988-06-14 Valdespino Joseph M Internal combustion engine
US4478177A (en) * 1980-06-30 1984-10-23 Valdespino Joseph M Internal combustion engine
US4480595A (en) * 1982-01-18 1984-11-06 Hobby William M Internal combustion engine
FR2615602B1 (fr) * 1987-05-22 1989-08-04 Faiveley Ets Procede pour produire du froid par reaction solide-gaz et dispositif s'y rapportant
US5628205A (en) * 1989-03-08 1997-05-13 Rocky Research Refrigerators/freezers incorporating solid-vapor sorption reactors capable of high reaction rates
FR2710553B1 (fr) * 1993-09-30 1995-11-10 Elf Aquitaine Procédé de réalisation d'un composite actif.
US5882381A (en) * 1996-03-28 1999-03-16 Modern Equipment Company, Inc. Thermal desorption system
AU4293397A (en) 1996-09-30 1998-04-24 Arthur Flueck Ammonia adsorption/desorption
US5929282A (en) * 1997-03-17 1999-07-27 Alliedsignal Inc. System and method for disposal of hydrazine propellants and other energetic materials
US5809775A (en) * 1997-04-02 1998-09-22 Clean Diesel Technologies, Inc. Reducing NOx emissions from an engine by selective catalytic reduction utilizing solid reagents
US20020028171A1 (en) * 2000-05-12 2002-03-07 Goetsch Duane A. Production of hydrogen by autothermic decomposition of ammonia
WO2002008117A1 (fr) * 2000-07-25 2002-01-31 Apollo Energy Systems, Incorporated Craqueur d'ammoniac pour la production d'hydrogene
US6477856B1 (en) * 2001-07-24 2002-11-12 Rocky Research Recuperation in solid-vapor sorption system using sorption energy and vapor mass flow
US6824914B2 (en) * 2001-08-20 2004-11-30 Energetics, Inc. Amine-based fuel cell/battery with high specific energy density
US6845619B2 (en) * 2002-12-11 2005-01-25 Advanced Technology Materials, Inc. Integrated system and process for effluent abatement and energy generation
DE10313998A1 (de) 2003-03-27 2004-10-07 Hjs Fahrzeugtechnik Gmbh & Co. Vorrichtung zum Zuführen von Ammoniak an einen in den Abgasstrang einer Brennkraftmaschine eingeschalteten Reduktionskatalysator
US7544435B2 (en) * 2003-05-15 2009-06-09 The Gillette Company Electrochemical cell systems comprising fuel consuming agents
US7157166B2 (en) * 2003-06-13 2007-01-02 Hrl Laboratories, Llc Ammonia fuel cell
CA2542313C (fr) * 2003-10-10 2012-12-04 Ohio University Electrocatalyseurs d'oxydation de l'ammoniac dans des milieux alcalins
EP1728290B1 (fr) * 2004-03-23 2008-12-10 Amminex A/S Utilisation d'un dispositif de stockage d'ammoniac dans la production d'energie
AU2005240661C1 (en) * 2004-05-05 2011-06-30 Graupner, Robert K Guanidine based composition and system for same
EP1778586B1 (fr) 2004-08-03 2017-04-05 Amminex Emissions Technology A/S Matiere de stockage d'ammoniac solide et matiere de distribution associee
US7094384B1 (en) * 2005-09-19 2006-08-22 University Of Central Florida Research Foundation, Inc. Combined methane decomposition and ammonia formation cell
CN101454064A (zh) * 2006-02-27 2009-06-10 氨合物股份公司 存储和输送氨的方法和电磁辐射用于从化学络合物中脱附氨的用途

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2019356A (en) * 1930-05-14 1935-10-29 Normelli Wulff Berzelius Refrigerating machine operating with a solid absorbent
US2431470A (en) * 1943-04-30 1947-11-25 Fawkes Walter Hugh Ammonia evolving composition
US3432295A (en) * 1966-12-08 1969-03-11 Hittman Associates Inc Method for making oriented fiber or whisker composites
US3510357A (en) * 1967-05-05 1970-05-05 Nat Union Electric Corp Thermally activated ammonia vapor battery
US3669743A (en) * 1969-04-14 1972-06-13 Melpar Inc Rechargeable electrochemical cell with solid zinc salt complex electrolyte
US4848994A (en) * 1987-11-02 1989-07-18 Uwe Rockenfeller System for low temperature refrigeration and chill storage using ammoniated complex compounds
US5384101A (en) * 1989-03-08 1995-01-24 Rocky Research Method and apparatus for achieving high reaction rates in solid-gas reactor systems
US5441716A (en) * 1989-03-08 1995-08-15 Rocky Research Method and apparatus for achieving high reaction rates
US5408847A (en) * 1993-05-26 1995-04-25 Erickson; Donald C. Rotary solid sorption heat pump with embedded thermosyphons
US20010053342A1 (en) * 1997-07-03 2001-12-20 Armin Marko Method and device for selective catalytic nox reduction
US6301879B1 (en) * 1998-06-22 2001-10-16 Hjs Fahrzeugtechnik Gmbh & Co. Exhaust gas purification system for denoxing exhaust gases from combustion units
US20020023433A1 (en) * 2000-08-09 2002-02-28 Christian Goerigk Method and system for feeding a reducing agent into a catalyst device
US20030234011A1 (en) * 2002-05-03 2003-12-25 Norbert Breuer Combustion system having an emission control device

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9644222B2 (en) 2006-05-01 2017-05-09 Board Of Trustees Of Michigan State University Methods for pretreating biomass
US8968515B2 (en) 2006-05-01 2015-03-03 Board Of Trustees Of Michigan State University Methods for pretreating biomass
US20110192559A1 (en) * 2006-05-01 2011-08-11 Balan Venkatesh Methods for pretreating biomass
US9206446B2 (en) 2006-05-01 2015-12-08 Board Of Trustees Of Michigan State University Extraction of solubles from plant biomass for use as microbial growth stimulant and methods related thereto
US9400064B2 (en) 2007-05-23 2016-07-26 Amminex A/S Method and device for ammonia storage and delivery using in-situ re-saturation of a delivery unit
US8408050B2 (en) 2008-10-09 2013-04-02 Sensirion Ag Method for measuring a fluid composition parameter by means of a flow sensor
US20100089118A1 (en) * 2008-10-09 2010-04-15 Felix Mayer Method for measuring a fluid composition parameter by means of a flow sensor
US8771598B2 (en) 2009-01-02 2014-07-08 Sensirion Ag Ammonia storage system
US20100172816A1 (en) * 2009-01-02 2010-07-08 Felix Mayer Ammonia storage system
US10457810B2 (en) 2009-08-24 2019-10-29 Board Of Trustees Of Michigan State University Densified biomass products containing pretreated biomass fibers
US8945245B2 (en) 2009-08-24 2015-02-03 The Michigan Biotechnology Institute Methods of hydrolyzing pretreated densified biomass particulates and systems related thereto
US9039792B2 (en) 2009-08-24 2015-05-26 Board Of Trustees Of Michigan State University Methods for producing and using densified biomass products containing pretreated biomass fibers
US9458482B2 (en) 2009-08-24 2016-10-04 The Michigan Biotechnology Institute Methods of hydrolyzing pretreated densified biomass particulates and systems related thereto
US9650657B2 (en) 2010-04-19 2017-05-16 Board Of Trustees Of Michigan State University Methods for producing extracted and digested products from pretreated lignocellulosic biomass
WO2011133752A1 (fr) * 2010-04-21 2011-10-27 International Engine Intellectual Property Company, Llc Dispositif et procédé de recharge pour cartouche de nh3
US9021790B2 (en) * 2010-04-21 2015-05-05 International Engine Intellectual Property Company, Llc. Recharge device and method for NH3 cartridge
US20130205757A1 (en) * 2010-04-21 2013-08-15 International Engine Intellectual Property Company Llc Recharge device and method for nh3 cartridge
EP2386523A1 (fr) * 2010-05-13 2011-11-16 Kabushiki Kaisha Toyota Jidoshokki Dispositif d'approvisionnement en ammoniac, procédé d'approvisionnement en ammoniac et système de purification de gaz d'échappement
US8394177B2 (en) 2010-06-01 2013-03-12 Michigan Biotechnology Institute Method of separating components from a gas stream
US20120014852A1 (en) * 2010-07-13 2012-01-19 Kevin Huang Membranes and Reactors for CO2 Separation
US8506677B2 (en) * 2010-07-13 2013-08-13 University Of South Carolina Membranes and reactors for CO2 separation
US20120174616A1 (en) * 2011-01-11 2012-07-12 Tai Chang-Hsien Generator
FR2975641A1 (fr) * 2011-05-27 2012-11-30 Peugeot Citroen Automobiles Sa Reservoir a plusieurs compartiments, procede de fabrication et vehicule automobile correspondant
US8893484B2 (en) * 2011-08-30 2014-11-25 Hyundai Motor Company Solid SCR system and heating method for solid SCR reductant using the same
US20130047584A1 (en) * 2011-08-30 2013-02-28 Hyundai Motor Company Solid scr system and heating method for solid scr reductant using the same
US9724685B2 (en) 2011-12-02 2017-08-08 Cummins Inc. Solid storage media charging with ammonia for use in selective catalytic reduction
US20130327027A1 (en) * 2012-06-06 2013-12-12 Faurecia Systemes D'echappement Device for Storing and Supplying Ammonia and Exhaust Line Equipped With Such a Device
US8938951B2 (en) * 2012-06-06 2015-01-27 Faurecia Systemes D'echappement Device for storing and supplying ammonia and exhaust line equipped with such a device
CN102794155A (zh) * 2012-07-11 2012-11-28 中国第一汽车股份有限公司 一种用于储氨的多孔固体样块及其制备方法
CN102728319A (zh) * 2012-07-11 2012-10-17 中国第一汽车股份有限公司 一种含有膨胀石墨的多孔活性储氨活性混合物制备
CN102728312A (zh) * 2012-07-11 2012-10-17 中国第一汽车股份有限公司 一种含有硅溶胶的多孔活性储氨活性混合物制备
CN102728317A (zh) * 2012-07-11 2012-10-17 中国第一汽车股份有限公司 含有活性碳的储氨混合物多孔固体样块及其制备方法
US8916300B2 (en) * 2012-09-07 2014-12-23 Bloom Energy Corporation Ammonia fueled SOFC system
US20140075922A1 (en) * 2012-09-14 2014-03-20 Faurecia Systemes D'echappement Ammonia storage device and exhaust line equipped with such a device
US20160030886A1 (en) * 2013-03-29 2016-02-04 Plastic Omnium Advanced Innovation And Research A tank for selective catalytic reduction purification of the exhaust gases of a combustion engine of a vehicle
FR3004440A1 (fr) * 2013-04-12 2014-10-17 Aaqius & Aaqius Sa Structure de stockage d'ammoniac et systemes associes
WO2014167128A1 (fr) * 2013-04-12 2014-10-16 Aaqius & Aaqius Sa Structure de stockage d'ammoniac et systemes associes
US10329158B2 (en) 2013-04-12 2019-06-25 Aaqius & Aaqius Sa Ammonia storage structure and associated systems
CN104121076A (zh) * 2014-08-11 2014-10-29 吉林省众鑫汽车装备有限公司 一种固体储氨装置
US20170356695A1 (en) * 2014-10-21 2017-12-14 University Of Utah Research Foundation Climate control system and associated methods
WO2017062670A1 (fr) * 2015-10-06 2017-04-13 Entegris, Inc. Frittage à froid de précurseurs solides
US11035038B2 (en) 2015-10-06 2021-06-15 Entegris, Inc. Cold sintering of solid precursors

Also Published As

Publication number Publication date
CA2595965A1 (fr) 2006-08-10
WO2006081824A2 (fr) 2006-08-10
EP2263975B1 (fr) 2018-04-04
RU2395335C2 (ru) 2010-07-27
NO20073962L (no) 2007-10-05
WO2006081824A3 (fr) 2006-12-07
EP1868941B9 (fr) 2017-02-15
RU2010113320A (ru) 2011-10-20
JP2008528431A (ja) 2008-07-31
EP1868941B1 (fr) 2016-11-02
EP2263975A3 (fr) 2015-12-09
RU2007129782A (ru) 2009-03-10
JP5305661B2 (ja) 2013-10-02
US20100024403A1 (en) 2010-02-04
EP2263975A2 (fr) 2010-12-22
KR20070100786A (ko) 2007-10-11
US7964163B2 (en) 2011-06-21
AU2006209949B2 (en) 2011-09-29
EP1868941A2 (fr) 2007-12-26
CA2595965C (fr) 2013-07-09
AU2006209949A1 (en) 2006-08-10

Similar Documents

Publication Publication Date Title
US7964163B2 (en) High density storage of ammonia
CN101128394B (zh) 氨的高密度存储
US9889403B2 (en) Solid ammonia storage and delivery material
EP1901831B1 (fr) Procédé et dispositif pour la fourniture sans danger et contrôlée d ammoniac à partir d un support de stockage d ammoniac solide
US7640896B2 (en) Ammonia storage for on-vehicle engine
WO2005091418A2 (fr) Utilisation d'un dispositif de stockage d'ammoniac dans la production d'energie
Vegge et al. Indirect hydrogen storage in metal ammines
US8951437B2 (en) Connected heat conducting structures in solid ammonia storage systems
EP2051798B1 (fr) Procédé et dispositif pour stocker et distribuer de l'ammoniac à partir d'un milieu de stockage d'ammoniac solide
US9079779B2 (en) Connected heat conducting structures in solid ammonia storage systems
CN101076495A (zh) 存储和输送氨的固体材料
JP4615240B2 (ja) 気体精製装置
Shezad et al. 3D-printed zeolite 13X-Strontium chloride units as ammonia carriers
CN102744032A (zh) 一种多孔储氨活性混合物固体样块及其制备方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMMINEX A/S, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JOHANNESSEN, TUE;CHRISTENSEN, CLAUS HVIID;NORSKOV, JENS KEHLET;AND OTHERS;REEL/FRAME:019894/0226;SIGNING DATES FROM 20070827 TO 20070831

AS Assignment

Owner name: AMMINEX A/S, DENMARK

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDRESS OF ASSIGNEE TO GLADSAXEVEJ 363, SOBORG, DENMARK 2860 PREVIOUSLY RECORDED ON REEL 019894 FRAME 0226;ASSIGNORS:JOHANNESSEN, TUE;CHRISTENSEN, CLAUS HVIID;NORSKOV, JENS KEHLET;AND OTHERS;REEL/FRAME:022541/0463;SIGNING DATES FROM 20070827 TO 20070831

AS Assignment

Owner name: JYSKE BANK A/S, DENMARK

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:AMMINEX A/S;REEL/FRAME:026544/0780

Effective date: 20110621

AS Assignment

Owner name: AMMINEX EMISSIONS TECHNOLOGY A/S, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AMMINEX A/S;REEL/FRAME:029726/0653

Effective date: 20130117

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION