US20090050082A1 - Cooling system for motor vehicle - Google Patents

Cooling system for motor vehicle Download PDF

Info

Publication number
US20090050082A1
US20090050082A1 US12/222,271 US22227108A US2009050082A1 US 20090050082 A1 US20090050082 A1 US 20090050082A1 US 22227108 A US22227108 A US 22227108A US 2009050082 A1 US2009050082 A1 US 2009050082A1
Authority
US
United States
Prior art keywords
pump
electric motor
electric
cooling
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/222,271
Other languages
English (en)
Inventor
Mitsuru Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to CALSONIC KANSEI CORPORATION reassignment CALSONIC KANSEI CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IWASAKI, MITSURU
Publication of US20090050082A1 publication Critical patent/US20090050082A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/027Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/12Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows

Definitions

  • the present invention relates to a cooling system that includes an electric fan and an electrically drivable pump and is mounted on a motor vehicle.
  • a cooling medium is circulated in a cooling circuit of a motor vehicle by a water pump driven by an engine, and it is cooled down in a heat exchanger cooled by an electric fan and/or ram airflow due to heat transfer between the cooling medium and the air, such as an airflow generated when the motor vehicle is running and/or an airflow generated by an electric fan supplied with electric power, while it passes through an inside of a heat exchanger.
  • the conventional electric fan is disclosed in Japanese patent applications laid-open Publication No. 2000-333411 and No. 2002-300751.
  • Another cooling system is used for cooling an intercooler in a motor vehicle with a turbocharger for example.
  • Japanese patent application laid-open Publication No. 2004-132277 discloses a cooling system having a water-cooled intercooler for cooling an intake air, which is compressed by a turbocharger, to be supplied to an engine, so as to improve its supercharging efficiency.
  • a conventional intercooler pump is driven by an electric motor. Such a conventional one is disclosed in Japanese patent application laid-open Publication No. 2005-315224, although this pump is not used in an intercooler cooling circuit.
  • the electrically driven pump is suitable for a cooling circuit of an intercooler of a turbocharger because of its easy controllability.
  • the conventional cooling system using the electrically-driven pump encounters a problem in that the cooling system exhausts much electricity power and becomes large-sized.
  • This conventional cooling system for cooling the intercooler requires an additional electric motor to drive an intercooler pump, thus increasing its size, manufacturing costs and electric power consumption.
  • the cooling medium always needs to be circulated to ensure a quick response to a sudden rise of engine output, thus further increasing the electric power consumption.
  • an object of the present invention to provide a cooling system of a motor vehicle which overcomes the foregoing drawbacks and can decrease electric power consumption of the electric motor and use a downsized electric motor at low cost, cooling the cooling medium in the cooling circuit.
  • a cooling system for a motor vehicle including a cooling circuit where a cooling medium is capable of flowing therein, a pump for pressurizing the cooling medium to circulate in the cooling circuit, an electric fan having a plurality of blade portions, an electric motor that is connected with the electric fan to be capable of driving the electric fan to rotate, and a controller for controlling the electric motor.
  • the pump is capable of being driven by the electric fan that receives a ram airflow generated when the motor vehicle is running.
  • the controller controls the electric motor to be shifted between in a first operation state where electric power is supplied to the electric motor and in a second operation state where no electric power is supplied to the electric motor.
  • the pump is driven by a rotating torque of the ram airflow and a rotating torque of the electric motor in the first operation state, while the pump is driven by the rotating torque generated by the ram airflow without the rotating torque of the electric motor in the second operation state.
  • FIG. 1 is a schematic view showing a cooling system adapted for a motor vehicle of a first embodiment according to the present invention
  • FIG. 2 is a cross sectional view showing an electric fan and a pump which are constructed as one unit and used in the cooling system shown in FIG. 1 ;
  • FIG. 3 is a flow chart showing a flow of a pump drive control executed in the cooling system of the first embodiment
  • FIG. 4 is a front perspective view showing an electric fan with a pump used in a cooling system of a second embodiment according to the present invention
  • FIG. 5 is a rear perspective view showing the electric fan with the pump shown in FIG. 4 ;
  • FIG. 6 is a partly cross-sectional rear perspective view showing the electric fan with the pump shown in FIG. 4 ;
  • FIG. 7 is an exploded front perspective view showing the electric fan with the pump shown in FIG. 4 .
  • FR means “forward” and “RR” means “rearward”.
  • FIGS. 1 to 3 of the drawings there are shown cooling systems provided on a motor vehicle equipped with an engine 1 equipped with a turbocharger 8 , where the cooling systems include the cooling system of the first embodiment.
  • the cooling systems has a main radiator 2 , an engine pump 4 , a water-cooled intercooler 5 , a sub radiator 6 , an intercooler pump 13 , an electric fan 11 and a plurality of pipes 9 a to 9 o , thereby forming an engine cooling circuit R 1 for cooling the engine 1 , an intercooler cooling circuit R 2 for cooling the air to be supplied to the engine 1 and a turbocharger gas circuit R 3 for actuating the turbocharger 8 and supplying the air to the engine 1 .
  • the intercooler cooling circuit R 2 corresponds to a cooling circuit of the present invention.
  • the engine cooling circuit R 1 has a first pipe 9 a , a second pipe 9 b , a third pipe 9 c , a fourth pipe 9 d , a fifth pipe 9 e and a sixth pipe 9 f , where the first and second pipes 9 a and 9 b fluidically connect the engine 1 and the main radiator 2 , the third pipe 3 c fluidically connects the engine 1 and the thermostat 3 , the fourth pipe 9 d fluidically connects the thermostat 3 and the engine pump 4 , namely a water pump, the fifth pipe fluidically connects the engine pump 4 and the engine 1 , and the sixth pipe 9 f fluidically connects an intermediate portion of the fourth pipe 9 d and a connected portion of the first and second pipes 9 a and 9 b .
  • the engine pump 4 is driven by the engine 1 , and a not shown electric fan is provided behind the main radiator 2 to cool coolant flowing therein.
  • the coolant at high temperature is discharged from the engine 1 and is introduced to the main radiator 2 through the first and second pipes 9 a and 9 b .
  • the main radiator 2 cools the coolant due to heat transfer between the coolant and airflow generated when the motor vehicle is running (and/or airflow generated by the electric fan 11 supplied with electric power) while the coolant passes through the main radiator 2 .
  • the cooled coolant discharged from the main radiator 2 is conducted to the thermostat 3 through the third pipe 9 c , then to the engine pump 4 through the fourth pipe 9 d , where the engine pump 4 pressures the coolant to enter the engine 1 through the fifth pipe 9 e so as to cool the engine 1 .
  • the thermostat 3 is closed its valve, when a temperature of the coolant is low, so as to circulate the coolant in the first, sixth, fourth and fifth pipes 9 a , 9 f , 9 d and 9 e in turn, preventing the coolant discharged from the engine 1 from being introduced to the main radiator 2 . This avoids overcooling of the engine 1 .
  • flow directions of the coolant in the first to sixth pipes 9 a to 9 f are indicated by arrows in FIG. 1 , respectively.
  • the intercooler cooling circuit R 2 has a seventh pipe 9 g , an eighth pipe 9 h and a ninth pipe 9 i , where the seventh pipe 9 g fluidically communicates the intercooler 5 and the sub radiator 6 , the eighth pipe 9 h fluidically connects the sub radiator 6 and the intercooler pump 13 , and the ninth pipe fluidically connects the intercooler pump 13 and the intercooler 5 .
  • the seventh pipe 9 g and the ninth pipe 9 i are fluidically communicated with an inner chamber 5 c formed between an intercooler casing 5 a and a heat exchanging part 5 b .
  • the intercooler pump 13 is capable of being driven by the electric motor 12 and/or by an airflow generated when the motor vehicle is running.
  • intercooler pump 13 This airflow generated when the vehicle is running is called as ram airflow.
  • the intercooler pump 13 corresponds to a pump of the present invention.
  • a coolant at high temperature is discharged from the intercooler 5 , and is introduced to the sub radiator 2 through the seventh pipe 9 g , where the sub radiator 2 cools the coolant due to heat transfer between the coolant and the ram airflow (and/or the airflow generated by the electric fan 11 supplied with the electric power).
  • the cooled coolant is discharged from the sub radiator 6 to be conducted to the intercooler pump 13 through the eighth pipe 9 h , where it is pressurized to enter the intercooler 5 through the ninth pipe 9 i , where the intercooler 5 cools the air, pressurized by the turbocharger 8 , to be supplied to the engine 1 .
  • the seventh pipe 9 g is provided at its intermediate portion with a temperature sensor C 1 for detecting a temperature of the coolant.
  • the temperature sensor C 1 is electrically connected to a controller 20 and outputs a temperature signal.
  • the controller 20 is also electrically connected to an electric motor 12 , shown in FIG. 2 , of the electric fan 11 .
  • the temperature sensor C 1 may be located at any appropriate position.
  • the coolant in the intercooler cooling circuit R 2 corresponds to a cooling medium of the present invention.
  • the turbocharger gas circuit R 3 has a tenth pipe 9 j , an eleventh pipe 9 k and twelfth pipe 9 m , where the tenth pipe 9 j fluidically connects a not-shown air cleaner and a compressor chamber 8 a of the turbocharger 8 , the eleventh pipe 9 m fluidically connects the compressor chamber 8 a of the turbocharger and the heat exchanging part 5 b of the intercooler 5 .
  • the outside air is introduced to the compressor chamber 8 a of the turbocharger 8 through the air cleaner so as to be pressurized.
  • the air becomes hot due to compression by a not-shown compressor in the compressor chamber 8 a , and it is introduced to the inner chamber 5 c of the intercooler 5 .
  • the intercooler 5 cools the air due to heat transfer between the air and the coolant in the inner chamber 5 c when it passes through the heat exchanging part 5 b .
  • the cooled air is delivered to not-shown cylinders of the engine 1 with fuel through the twelfth pipe 9 m and not-shown intake manifold to activate the engine 1 .
  • the fuel is burned in the cylinders to be outputted as an exhaust gas, which is discharged from the engine 1 through a not-shown exhaust manifold and a thirteenth pipe 9 n to a turbine chamber 8 b of the turbocharger 8 .
  • a not-shown turbine in the turbine chamber 8 b is driven by the discharged exhaust gas to drive the compressor of the turbocharger 8 .
  • the exhaust gas is then discharged to the outside through the fourteenth pipe 9 o , a not-shown catalytic converter, main muffler and so forth.
  • the main radiator 2 and the sub radiator 6 are assembled with each other so that the sub radiator 6 is placed on the main radiator 2 , although they are illustrated so that they are offset in a forward and rearward direction (a longitudinal direction of the motor vehicle). They may be constructed as one unit so that the sub radiator 6 is an upper part of a radiator and the main radiator 2 is a lower part thereof.
  • the sub radiator 6 may be constructed with a not-shown condenser as one unit to be an upper part thereof, and may be separated from the main radiator 2 and the condenser, being apart therefrom.
  • the intercooler 5 may have a construction similar to a housing-type oil cooler or a housingless-type oil cooler.
  • the intercooler pump 13 and the electric fan 11 are combined with each other as one unit to form the integrated pump-fan 10 .
  • the electric fan 11 includes the electric motor 12 and a fan main body 15 which is capable of being driven when electric power is supplied to the electric motor 12 .
  • the electric motor 12 is a typical brush-type motor, like described in Japanese Patent Application Laid-open No. 2000-350429 for example.
  • the electric motor 12 is constructed to have a motor housing 12 a , a pair of permanent magnets 12 b , a rotor core 12 d , a plurality set of coils 12 e , a commutator 12 f and a plurality of brushes 12 g .
  • the motor housing 12 a is formed like a cylinder integrally formed with a dish flange portion that covers one end opening of the motor housing 12 a .
  • the permanent magnets 12 b are formed like a part of a ring and are fixed on an inner surface of a cylinder portion of the motor housing 12 , symmetrically relative to a center of the cylinder portion.
  • the motor housing 12 a is fixed to one end portion of a pump housing 13 b by using screws 13 d.
  • the rotor core 12 d has the plurality sets of coils 12 e electrically connected to the commutator 12 f that is apart from the rotor core 12 d toward the pump housing 13 b .
  • the rotor core 12 d is fixed on an intermediate portion of a rotary shaft 14 in the permanent magnet 12 b .
  • the brushes 12 g are capable of being contacted with the commutator 12 f , being radially slidably inserted into brush holders 12 h .
  • the brushes 12 g are elastically pushed onto an outer surface of the commutator 12 f by springs 12 i to shift directions of electric current according to a rotation angle of the rotor core 12 d .
  • the other end opening of the motor housing 12 a is closed by an end plate 12 fixed to the pump housing 13 b through the motor hosing 12 a by the screws 13 d .
  • the end plate 12 is not indispensable.
  • the rotary shaft 14 is arranged along a center axis of the cylinder portion of the motor housing 12 a , being inserted through a central portion of the dish flange portion of the cylinder portion, a central portion of the end plate 12 and a central boss portion of the pump housing 13 b .
  • a bearing 12 c is placed on a central portion of the dish flange portion to rotatably support the rotary shaft 14 .
  • the rotary shaft 14 is fixed with the fan main body 15 at its one end portion by a nut 15 a and is also fixed with an impeller 16 of the intercooler pump 13 at the other end portion thereof by a nut 13 c .
  • a speed sensor 21 for detecting a rotational speed of the rotary shaft 14 to output a rotational speed signal, and is electrically connected to the controller 20 .
  • the fan main body 15 has a fixing plate 15 b , a boss portion 5 c and a plurality of blade portions 15 d , where the fixing plate 15 b is formed like a disc and is fixed to the one end portion of the rotary shaft 14 , the boss portion 15 c contains a part of the electric motor 12 , and the blade portions 15 d are formed on an outer peripheral surface of the boss portion 15 c as one unit to extend outwardly radially.
  • the fixing plate 15 b and the boss portion 15 c are integrally formed with each other by using an insert molding.
  • the blade portions 15 d are arranged behind the sub radiator 6 so that it can pull the air through the sub radiator 6 .
  • the intercooler pump 13 has the pump housing 13 b forming a pump chamber 13 a inside thereof, and the impeller 16 having a plurality of blade portions 16 a extending outwardly radially in the pump chamber 13 a .
  • a mechanical seal 13 e is inserted by the rotary shaft 14 and is placed in the boss portion of the pump housing 13 b to keep the pump chamber 13 a liquid-tight from the exterior.
  • the pump housing 13 b is formed with an inlet port 13 g in an axial direction of the rotary shaft 14 and an outlet port 13 h in a radial direction of the rotary shaft 14 , where the inlet port 13 g fluidically connects the pump chamber 13 a and the eighth pipe 9 h with each other, and the outlet port 13 h fluidically connects the pump chamber 13 a and the tenth pipe 9 i with each other.
  • a cooling hole 17 is formed, by machining, in the rotary shaft 14 , extending in the axial direction thereof, and also in the nut 13 c so as to be fluidically communicated with the pump chamber 13 a , while an end portion of the cooling hole 17 is closed.
  • the coolant in the pump chamber 13 a enters the cooling hole 17 from the pump chamber 13 a to cool the electric motor 12 .
  • the cooling hole 17 may be formed in any appropriate shape.
  • the integrated pump-motor 10 is provided with a not-shown bracket, with which it is fixed to a not-shown fan stay of a fan shroud attached on a rear side of the radiators 2 and 6 .
  • the electric fan 11 and the intercooler pump 13 are joined with each other by connecting the rotary shaft 14 of the electric motor 12 and the impeller 16 with each other.
  • the rotary shaft 14 can be driven by a first rotating torque of the fan main body 15 receiving the ram airflow generated when the vehicle is running and/or a second rotating torque generated by the electric motor 12 , the fan main body 15 is rotated to pull the air through the sub radiator 6 , thereby cooling the coolant in the intercooler cooling circuit R 2 .
  • the impeller 16 of the intercooler pump 13 is also rotated to pressurize the coolant, entered through the inlet port 13 g , in the pump chamber 13 a to output the pressurized coolant to the ninth pipe 9 i through the outlet port 13 h .
  • This flow of the coolant is indicated by dashed-dotted lined arrows in FIG. 2 .
  • the coolant, outputted from the intercooler pump 13 enters the inner space 5 c of the intercooler 5 , where the air, pressurized by the compressor of the turbocharger 8 , to be supplied to the engine 1 is cooled.
  • the coolant in the cooling hole 17 formed in the rotary shaft 14 effectively cools the electric motor 12 from its inside, although the bushes 12 g easily rise the temperatures of the electric motor 12 .
  • the coolant in the main radiator 2 is also cooled by using the not-shown electric fan to cool the engine 1 .
  • the pump drive control is executed by the controller 20 repeatedly at certain intervals during engine running.
  • step S 1 the controller 20 receives the temperature signal outputted from the temperature sensor C 1 to detect a temperature Tc of the coolant in the intercooler cooling circuit R 2 , and then the flow goes to step S 2 .
  • the controller 20 judges whether or not the detected coolant temperature Tc is smaller than a first predetermined value X 1 . If the judgment is YES, the flow returns to the step S 1 , while if it is NO, the flow goes to step S 3 .
  • the controller 20 receives the rotational speed signal outputted from the speed sensor 21 to detect a rotational speed Nf of the rotary shaft 14 , corresponding to that of the fan main body 15 , and then the flow goes to step S 4 .
  • the controller 20 judges whether or not the detected rotational speed is lower than a second predetermined value X 2 . If the judgment is YES, the flow goes to step S 5 , while if it is NO, the flow goes to step S 7 .
  • an assist amount is calculated based on the rotational speed detected at the step S 3 , where the assist amount corresponds to a deficient rotational speed of the main shaft 14 connected with the impeller 16 .
  • the assist amount corresponds to a difference between the detected rotational speed of the rotary shaft 14 and a target rotational speed thereof for obtaining a necessary pump performance of the intercooler pump 13 .
  • the relationships among the rotational speed of the rotary shaft 14 , the pump performance and the temperature of the coolant in the intercooler cooling circuit R 2 are set in advance by experiments. Then the flow goes to step S 6 .
  • the controller 20 controls the electric motor 12 to be supplied with the electric power so that the rotational speed becomes larger by the assist amount than the detected rotational speed. Accordingly, the electric motor 12 drives the rotary shaft 14 , connected with the impeller 16 , to increase up to the target rotational speed that is sufficient for obtaining necessary pump performance. Therefore, the impeller 16 is driven at the target rotating speed by rotating torque generated by the electric motor 12 supplied with the electric power, in addition to rotating torque of the fan main body 15 driven by the ram airflow generated when the vehicle is running, thereby increasing cooling capability of the intercooler cooling circuit R 2 to cool the coolant therein. This can cool the hot air pressurized by the turbocharger 8 .
  • the step S 6 corresponds to a first operation state of the present invention. Then, the flow returns to the step S 1 .
  • the controller 20 controls the electric motor 12 to be supplied with no electric power, so that the rotary shaft 14 and the impeller 16 are rotated only by the rotating torque of the fan main body 15 which is driven by the ram airflow. This can decrease electric power consumption of the cooling system.
  • the step S 7 corresponds to a second operation state of the present invention. Then, the flow returns to the step S 1 .
  • the first and second predetermined values X 1 and X 2 may be set appropriately.
  • An electrically operating rate of the electric motor 12 becomes higher, as the first predetermined value X 1 is set to be smaller and the second predetermined value X 2 is set to be larger.
  • the controller 20 detects the temperature Tc of the coolant in the intercooler cooling circuit R 2 (at the step S 1 ).
  • the controller 20 further detects the rotational speed Nf of the fan main body 15 , corresponding to the rotational speed of the rotary shaft 14 (at the steps 2 and 3 ). If the rotational speed Nf is smaller than the predetermined value X 2 , the controller 20 judges that vehicle-running wind is weak and the rotational speed thereof is not one that is sufficient for obtaining the necessary pump performance (at the step S 4 ).
  • the assist amount of the rotary shaft 14 is calculated to supply its corresponding electric power to the electric motor 12 so that its electrically generated rotating torque is applied to the rotary shaft 14 to increase the rotational speed of the impeller 16 , in addition to the rotating torque of the fan main body 15 moving due to the ram airflow (at the steps 5 and 6 ). Therefore, actuations of the electric motor 12 and the electric fan 11 strongly cools the coolant, since the impeller 16 forcibly circulates the coolant and the fan main body 15 enhances a cooling performance of the sub radiator 6 . The airflow generated by the fan main body 15 also strongly cools the coolant in the main radiator 2 . The electric power consumption is reduced because of utilization of the rotating torque generated by the fan main body 15 due to the ram airflow.
  • the vehicle-running wind is strong so that the fan main body 15 driven by the ram airflow can sufficiently rotate the rotary shaft 14 and the impeller 16 to obtain the necessary pump performance of the impeller pump 13 and no electric power is supplied to the electric motor 12 (at the steps 4 and 7 ).
  • the impeller 16 and the fan man body 15 are driven only by the rotating torque generated by the ram airflow, to circulate the coolant in the intercooler cooling circuit R 2 and cool the coolant in the sub radiator 6 .
  • the electric motor 12 is not activated, which results in no electric power consumption, improvement in durability of the bushes 22 g of the electric motor 12 and reduction in noise such as motor running noise.
  • the cooling system of the first embodiment can cool the coolant by the intercooler 6 , driving the intercooler pump 13 to circulate it.
  • the coolant in the intercooler cooling circuit R 2 is always kept under the temperature of the first predetermined value X 1 , so that a heat exchanger effectiveness of the intercooler 5 . Accordingly, when the turbocharger 8 starts and the coolant temperature in the intercooler cooling circuit R 2 rises, the coolant is forcibly cooled.
  • the coolant temperature can be rapidly reduced immediately after the actuation end of the turbocharger 8 , which brings the heat exchanger effectiveness of the intercooler 5 to be higher when the turbocharger 8 restarts.
  • the cooling system of the first embodiment produces a remarkable effect, especially in operations where the turbocharger 8 repeats starting and stopping in a short period of time.
  • the pump drive control is not executed while the coolant temperature is below the first predetermined value X 1 , since during that period the intercooler pump 13 does not need to be driven and the drive thereof due to the ram airflow does not any problem.
  • the rotational speed of the fan main body 15 when it receives the ran airflow at a normal vehicle speed, becomes higher than that of the DC12V, 100 W electric motor, and is sufficient to drive the impeller pump 13 , correspondingly to an electric motor of appropriately DC12V, 50 W.
  • the electric motor 12 is normally sufficient to be driven with the electric power only when the motor vehicle is stopped and when it runs at very low vehicle speed where the vehicle-running wind cannot drive the fan main body 15 . This shows an advantage of the cooling system of the first embodiment in reduction in the electric power consumption of the electric motor 12 .
  • fan drive control is executed similarly to conventional one executed in conventional engines with a turbocharger, and it is omitted herein.
  • the pump drive control is not limited to the above described example.
  • the electric motor 12 may be supplied with the electric power to decrease the rotational speed of the rotary shaft 14 when the ram airflow is too large to drive the impeller 6 .
  • a threshold for determining the electric drive of the intercooler pump 13 a temperature of the air in the turbocharger gas circuit R 3 , vehicle speed and so forth may be used instead of the coolant temperature.
  • the cooling system of the first embodiment has the following advantages.
  • the cooling system of the first embodiment can decrease the electric power consumption of the electric motor 12 due to usage of the ram airflow as the rotating torque to drive the impeller 6 , also reducing a size of the electric motor 12 .
  • the impeller 6 is connected with the rotary shaft 14 of the electric motor 12 , which can decrease design changes thereof and manufacturing costs.
  • the cooling system of the first embodiment is applied to the intercooler cooling circuit R 2 , which enables the electric motor 12 to decrease the electric power consumption, thus being downsized.
  • the fan main body 15 , the electric motor 12 and the intercooler pump 13 are constructed as one unit. Therefore, the intercooler cooling circuit R 2 can be easily arranged in an engine room.
  • the coolant in the cooling hole 17 formed in the rotary shaft 14 can sufficiently cool the electric motor 12 from its inner side.
  • An intercooler cooling circuit of the second embodiment is constructed similarly to that of the first embodiment.
  • FIGS. 4 to 7 there is shown an integrated pump-fan 30 that is used in the intercooler cooling circuit.
  • an electric motor 12 of an electric fan 31 and an intercooler pump 32 are radially stacked relative to each other so that they are overlapped in the axial direction so that the intercooler pump 32 surrounds an outer periphery of the electric motor 12 .
  • the electric motor 12 has in an axial length longer than that of the first embodiment, and is equipped with a rotary shaft 14 therein.
  • a rear end portion of the rotary shaft 14 a is contained in and supported by a rear portion of the motor housing 12 a , and a front end portion thereof is projected forward from a front portion of the motor hosing 12 a.
  • a fan main body 15 is what is called a ring fan, having a plurality of blade portions 15 d , whose radially outer end portions are integrally connected with a fan ring 33 and their radially inner end portions are integrally connected with a boss portion 15 c .
  • the boss portion 15 c is a cylinder with a front end portion closing a front end opening thereof, and a fixing plate 15 b is fixed on a rear surface of the front end portion at this center to fix the front end portion of the rotary shaft 14 and the boss portion 15 c of the fan main body 15 with each other.
  • a fan-side magnet 34 is shaped like a ring and has cross section shaped in a U-letter having a front side opening. A rear end portion of the boss portion 15 c of the fan main body 15 is inserted into the front opening of the fan-side magnet 34 , so that the fan-side magnet 34 is fixed to the boss portion 15 c of the fan main body 15 so as to rotate together.
  • the intercooler pump 33 includes a pump housing 32 b , an impeller-side magnet 35 and an impeller 36 .
  • the pump housing 32 b is formed like a cylinder, which has an outer cylindrical portion 32 d and an inner cylindrical portion 32 c that form a pump chamber 32 a therebetween.
  • the outer and inner cylindrical portions 32 d and 32 c are integrally connected by a front side portion at their front end positions, and are attached with a rear side plate 32 g to close their rear opening.
  • the pump housing 32 b is fitted on an outer periphery of the motor housing 12 a , being apart from the fan-side magnet 34 in an axial direction thereof by a predetermined clearance.
  • the pump housing 32 b is provided with an inlet port 32 and an outlet port 32 f , where the inlet port 32 e is fluidically connected with an outlet port of a sub radiator 6 through an eighth pipe 9 i , which are shown in FIG. 1 , and the outlet port 32 f is fluidically connected with an inlet port of an intercooler 5 through a ninth pipe 9 i , which are also shown in FIG. 9 .
  • the inlet port 32 e and the outlet port 32 f are provided with not-shown check valves, respectively.
  • the pump housing 32 b forming the pump chamber 32 a may be constructed appropriately.
  • the front side portion may be separated from the cylindrical portions 32 e and 32 f as a front side plate, and the rear side plate is integrally formed therewith as a rear side portion.
  • the impeller 36 has a plurality of bade portions 36 a , and is fixed with the impeller-side magnet 35 at a front end portion of the impeller 36 .
  • the impeller 36 is placed in the pump chamber 32 a , slidably in a rotational direction relative to the outer and inner cylindrical portions 32 d and 32 c , so that the impeller-side magnet 35 is located between the front side portion and the front end portion of the impeller 36 to face the fan-side magnet 34 .
  • the electric fan 31 and the intercooler pump 32 are magnetically connected with each other because of the fan-side magnet 34 and the impeller-side magnet 35 .
  • the fan main body 15 When the fan main body 15 is driven by ram airflow generated when a motor vehicle is running and/or by airflow generated by the electric motor 12 supplied with electric power, the fan main body 15 cools the coolants in a main radiator 2 and the sub radiator 6 , and the impeller 36 is driven to rotate to circulate the coolant in the intercooler cooling circuit R 2 .
  • pump drive control similar to that of the first embodiment is executed, and its description is omitted.
  • the integrated pump-fan 30 of the second embodiment has the following advantages.
  • the cooling system of the second embodiment can decrease the electric power consumption of the electric motor 12 due to usage of the ram airflow as the rotating torque to drive the impeller 36 , also reducing a size of the electric motor 12 .
  • the cooling system of the second embodiment is applied to the intercooler cooling circuit R 2 , which enables the electric motor 12 to decrease the electric power consumption, thus being downsized.
  • the fan main body 15 , the electric motor 12 and the intercooler pump 32 are assembled as one unit.
  • the electric motor 12 and the intercooler pump 32 are arranged in the radial direction to overlap in the axial direction to reduce an axial length of the integrated pump-fan 30 . Therefore, the intercooler cooling circuit R 2 can be easily arranged in an engine room.
  • the coolant in the pump chamber 32 a can sufficiently cool the electric motor 12 from its outer side.
  • a connecting structure of the electric motor and the intercooler pump may be set appropriately in a detail configuration, a position and others as long as the pump can be driven by the fan main body rotated by ram airflow.
  • the cooling system may be applied not only to those of hybrid electric motor vehicles and fuel-cell electric vehicle to cool batteries, but also to motor vehicles without a turbocharger.
  • the pump and the electric fan may be connected with each other.
  • a variable speed change mechanism and/or a clutch may be provided between the fan main body and the impeller.
  • the variable speed change mechanism changes a rotational speed ratio of those of the electric fan and the pump.
  • the clutch can control the fan main body and the impeller to be shifted between in an engaging state and in a disengaging state thereof, and/or rotation of one of them may be stopped
US12/222,271 2007-08-22 2008-08-06 Cooling system for motor vehicle Abandoned US20090050082A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007216436A JP2009047136A (ja) 2007-08-22 2007-08-22 ポンプ一体型モータファン
JP2007-216436 2007-08-22

Publications (1)

Publication Number Publication Date
US20090050082A1 true US20090050082A1 (en) 2009-02-26

Family

ID=39791291

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/222,271 Abandoned US20090050082A1 (en) 2007-08-22 2008-08-06 Cooling system for motor vehicle

Country Status (4)

Country Link
US (1) US20090050082A1 (de)
EP (1) EP2028373A2 (de)
JP (1) JP2009047136A (de)
CN (1) CN101373919A (de)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080217080A1 (en) * 2007-03-09 2008-09-11 Oliver Maier Noise-comfort function for cooling systems with proportional variable speed fans
US20110030929A1 (en) * 2009-08-10 2011-02-10 Denso International America, Inc. Self-powered heat exchanger
US20110072782A1 (en) * 2008-05-29 2011-03-31 Komatsu Ltd. Exhaust Gas Purifying System for Internal Combustion Engine and Soot Filter Regenerating Method
US20110189037A1 (en) * 2009-04-18 2011-08-04 Karl Armstrong Pump Assembly For Evaporative Cooler
US20130039784A1 (en) * 2010-04-19 2013-02-14 Kolektor Magnet Technology Gmbh Electric motor vehicle coolant pump
CN103767631A (zh) * 2012-10-19 2014-05-07 科沃斯机器人科技(苏州)有限公司 清洗机
CN105545802A (zh) * 2016-02-25 2016-05-04 太仓钰丰机械工程有限公司 一种流线型硅油风扇离合器
US20160146090A1 (en) * 2014-11-20 2016-05-26 Hyundai Motor Company Apparatus and method for controlling cooling fan speed
US20170122186A1 (en) * 2015-10-28 2017-05-04 Hyundai Motor Company Hybrid intercooler system and control method thereof
US20170152790A1 (en) * 2015-11-26 2017-06-01 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
CN108999688A (zh) * 2018-08-22 2018-12-14 东风商用车有限公司 一种组合式风扇车用冷却系统及其使用方法
US10547070B2 (en) 2018-03-09 2020-01-28 Toyota Motor Engineering & Manufacturing North America, Inc. STL actuation-path planning
US10590942B2 (en) 2017-12-08 2020-03-17 Toyota Motor Engineering & Manufacturing North America, Inc. Interpolation of homotopic operating states
US10665875B2 (en) 2017-12-08 2020-05-26 Toyota Motor Engineering & Manufacturing North America, Inc. Path control concept
US10714767B2 (en) 2017-12-07 2020-07-14 Toyota Motor Engineering & Manufacturing North America, Inc. Fuel cell air system safe operating region
US10871519B2 (en) 2017-11-07 2020-12-22 Toyota Motor Engineering & Manufacturing North America, Inc. Fuel cell stack prediction utilizing IHOS
US10971748B2 (en) 2017-12-08 2021-04-06 Toyota Motor Engineering & Manufacturing North America, Inc. Implementation of feedforward and feedback control in state mediator
US10985391B2 (en) 2018-03-06 2021-04-20 Toyota Motor Engineering & Manufacturing North America, Inc. Real time iterative solution using recursive calculation
US11482719B2 (en) 2017-12-08 2022-10-25 Toyota Jidosha Kabushiki Kaisha Equation based state estimate for air system controller

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8529191B2 (en) * 2009-02-06 2013-09-10 Fluid Equipment Development Company, Llc Method and apparatus for lubricating a thrust bearing for a rotating machine using pumpage
JP2012095404A (ja) * 2010-10-25 2012-05-17 Mitsuba Corp 車両用電動ファン
JP5942453B2 (ja) * 2012-02-07 2016-06-29 マツダ株式会社 車両用エンジンの吸気装置
KR101472040B1 (ko) 2013-10-01 2014-12-15 (주)새천빛이앤지 모터 일체형 펌프
CN105990958B (zh) * 2015-03-03 2018-07-24 重庆通用工业(集团)有限责任公司 一种集成散热式电机系统
DE102016115368A1 (de) 2016-08-18 2018-02-22 Eberspächer Climate Control Systems GmbH & Co. KG Förderanordnung zum Bereitstellen zweier voneinander getrennt geführter Mediumströme, insbesondere bei einem brennstoffbetriebenen Fahrzeugheizgerät
CN207499962U (zh) * 2017-09-29 2018-06-15 苏州驿力机车科技股份有限公司 冷却组件和车辆智能冷却系统
TWI663337B (zh) * 2018-05-04 2019-06-21 雙鴻科技股份有限公司 雙扇葉驅動裝置以及應用此雙扇葉驅動裝置之水冷散熱裝置
JP7044053B2 (ja) * 2018-12-26 2022-03-30 マツダ株式会社 過給機付エンジンの吸気温度制御装置
CN113612334A (zh) * 2021-07-09 2021-11-05 湖州龙浩汽车零部件有限公司 一种带智能温控散热的起动机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4095922A (en) * 1976-10-20 1978-06-20 Tecumseh Products Company Electro-mechanical device
US5143516A (en) * 1989-02-06 1992-09-01 Paccar Inc. Recirculation shield and fan shroud assembly
US5215044A (en) * 1991-02-11 1993-06-01 Behr Gmbh & Co. Cooling system for a vehicle having an internal-combustion engine
US5279503A (en) * 1990-07-09 1994-01-18 Deco-Grand, Inc. Ram air electric drive water pump
US20070110594A1 (en) * 2005-11-02 2007-05-17 Behr Gmbh & Co. Kg Controllable drive for a motor vehicle, in particular for a coolant pump

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000333411A (ja) 1999-05-21 2000-11-30 Mitsuba Corp ファンモータの冷却構造
JP2000350429A (ja) 1999-06-07 2000-12-15 Sankyo Seiki Mfg Co Ltd ブラシ付きモータ
JP2002300751A (ja) 2001-03-30 2002-10-11 Mitsuba Corp 車両用のファンモータ
JP2004132277A (ja) 2002-10-10 2004-04-30 Toyo Radiator Co Ltd 多板型水冷インタークーラ
JP2005315224A (ja) 2004-04-30 2005-11-10 Yamada Seisakusho Co Ltd 電動ウォーターポンプ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4095922A (en) * 1976-10-20 1978-06-20 Tecumseh Products Company Electro-mechanical device
US5143516A (en) * 1989-02-06 1992-09-01 Paccar Inc. Recirculation shield and fan shroud assembly
US5279503A (en) * 1990-07-09 1994-01-18 Deco-Grand, Inc. Ram air electric drive water pump
US5215044A (en) * 1991-02-11 1993-06-01 Behr Gmbh & Co. Cooling system for a vehicle having an internal-combustion engine
US20070110594A1 (en) * 2005-11-02 2007-05-17 Behr Gmbh & Co. Kg Controllable drive for a motor vehicle, in particular for a coolant pump

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7793746B2 (en) * 2007-03-09 2010-09-14 Gm Global Technology Operations, Inc. Noise-comfort function for cooling systems with proportional variable speed fans
US8047319B2 (en) 2007-03-09 2011-11-01 GM Global Technology Operations LLC Noise-comfort function for cooling systems with proportional variable speed fans
US20080217080A1 (en) * 2007-03-09 2008-09-11 Oliver Maier Noise-comfort function for cooling systems with proportional variable speed fans
US20110072782A1 (en) * 2008-05-29 2011-03-31 Komatsu Ltd. Exhaust Gas Purifying System for Internal Combustion Engine and Soot Filter Regenerating Method
US8556595B2 (en) * 2009-04-18 2013-10-15 Karl Armstrong Pump assembly for evaporative cooler
US20110189037A1 (en) * 2009-04-18 2011-08-04 Karl Armstrong Pump Assembly For Evaporative Cooler
US20110030929A1 (en) * 2009-08-10 2011-02-10 Denso International America, Inc. Self-powered heat exchanger
US20130039784A1 (en) * 2010-04-19 2013-02-14 Kolektor Magnet Technology Gmbh Electric motor vehicle coolant pump
US10180142B2 (en) * 2010-04-19 2019-01-15 Pierburg Pump Technology Gmbh Electric motor vehicle coolant pump
CN103767631A (zh) * 2012-10-19 2014-05-07 科沃斯机器人科技(苏州)有限公司 清洗机
US20160146090A1 (en) * 2014-11-20 2016-05-26 Hyundai Motor Company Apparatus and method for controlling cooling fan speed
US10054031B2 (en) * 2014-11-20 2018-08-21 Hyundai Motor Company Apparatus and method for controlling cooling fan speed
US10378429B2 (en) * 2015-10-28 2019-08-13 Hyundai Motor Company Hybrid intercooler system and control method thereof
US20170122186A1 (en) * 2015-10-28 2017-05-04 Hyundai Motor Company Hybrid intercooler system and control method thereof
US20170152790A1 (en) * 2015-11-26 2017-06-01 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
US9957877B2 (en) * 2015-11-26 2018-05-01 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
CN105545802A (zh) * 2016-02-25 2016-05-04 太仓钰丰机械工程有限公司 一种流线型硅油风扇离合器
US10871519B2 (en) 2017-11-07 2020-12-22 Toyota Motor Engineering & Manufacturing North America, Inc. Fuel cell stack prediction utilizing IHOS
US10714767B2 (en) 2017-12-07 2020-07-14 Toyota Motor Engineering & Manufacturing North America, Inc. Fuel cell air system safe operating region
US10590942B2 (en) 2017-12-08 2020-03-17 Toyota Motor Engineering & Manufacturing North America, Inc. Interpolation of homotopic operating states
US10665875B2 (en) 2017-12-08 2020-05-26 Toyota Motor Engineering & Manufacturing North America, Inc. Path control concept
US10971748B2 (en) 2017-12-08 2021-04-06 Toyota Motor Engineering & Manufacturing North America, Inc. Implementation of feedforward and feedback control in state mediator
US11482719B2 (en) 2017-12-08 2022-10-25 Toyota Jidosha Kabushiki Kaisha Equation based state estimate for air system controller
US10985391B2 (en) 2018-03-06 2021-04-20 Toyota Motor Engineering & Manufacturing North America, Inc. Real time iterative solution using recursive calculation
US10547070B2 (en) 2018-03-09 2020-01-28 Toyota Motor Engineering & Manufacturing North America, Inc. STL actuation-path planning
CN108999688A (zh) * 2018-08-22 2018-12-14 东风商用车有限公司 一种组合式风扇车用冷却系统及其使用方法

Also Published As

Publication number Publication date
EP2028373A2 (de) 2009-02-25
CN101373919A (zh) 2009-02-25
JP2009047136A (ja) 2009-03-05

Similar Documents

Publication Publication Date Title
US20090050082A1 (en) Cooling system for motor vehicle
US10215085B2 (en) Turbocharger
US11143204B2 (en) Air compressor
US6102672A (en) Motor-driven centrifugal air compressor with internal cooling airflow
JP6530596B2 (ja) 自動車の冷却装置
KR100386066B1 (ko) 내연기관구동식차량용토털냉각조립체
US8608452B2 (en) Variable coolant pump
JP4539487B2 (ja) 電動機付過給機
KR101646128B1 (ko) 냉각수 제어밸브를 갖는 엔진시스템
KR101408341B1 (ko) 영구 자석 모터 및 이를 구비한 유체 과급 장치
JP2006283683A (ja) ハイブリッド圧縮機
JP4215276B2 (ja) 自動車用クーラントポンプ
US11339707B2 (en) Fan assembly for a motor vehicle
US20100163215A1 (en) Dual volute electric pump, cooling system and pump assembly method
KR19990068855A (ko) 내연기관용모터보조식터보냉각시스템
EP3440328B1 (de) Elektrische aufladungsvorrichtung mit rotorkühlung
WO2000020736A1 (en) Flow-through controllable air charger
KR20180126280A (ko) 전동슈퍼차저 및 이를 이용하는 과급시스템
JP5760386B2 (ja) 電動アシストターボチャージャの冷却装置
KR101534713B1 (ko) 자동차의 에어 덕트 및 냉각 장치
CN209472502U (zh) 基于新型冷却结构的电机及气悬浮流体机械设备
JP2004132264A (ja) 回転電機付きターボチャージャ
JP5799495B2 (ja) 電動アシストターボチャージャの冷却装置
JP4013621B2 (ja) 電動ウォータポンプ
CN110036217B (zh) 用于引擎的冷却系统

Legal Events

Date Code Title Description
AS Assignment

Owner name: CALSONIC KANSEI CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IWASAKI, MITSURU;REEL/FRAME:021798/0887

Effective date: 20081031

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION