Connect public, paid and private patent data with Google Patents Public Datasets

Manufacturing method of semiconductor device

Download PDF

Info

Publication number
US20090011608A1
US20090011608A1 US12116940 US11694008A US2009011608A1 US 20090011608 A1 US20090011608 A1 US 20090011608A1 US 12116940 US12116940 US 12116940 US 11694008 A US11694008 A US 11694008A US 2009011608 A1 US2009011608 A1 US 2009011608A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
layer
oxygen
oxide
film
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12116940
Inventor
Toshihide Nabatame
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers
    • H01L21/314Inorganic layers
    • H01L21/3141Deposition using atomic layer deposition techniques [ALD]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers
    • H01L21/3105After-treatment
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31645Deposition of Hafnium oxides, e.g. HfO2
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Abstract

The transistor characteristics of a MIS transistor provided with a gate insulating film formed to contain oxide with a relative dielectric constant higher than that of silicon oxide are improved. After a high dielectric layer made of hafnium oxide is formed on a main surface of a semiconductor substrate, the main surface of the semiconductor substrate is heat-treated in a non-oxidation atmosphere. Next, an oxygen supplying layer made of hafnium oxide deposited by ALD and having a thickness smaller than that of the high dielectric layer is formed on the high dielectric layer, and a cap layer made of tantalum nitride is formed. Thereafter, the main surface of the semiconductor substrate is heat-treated.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • [0001]
    The present application claims priority from Japanese Patent Application No. JP2007-128692 filed on May 15, 2007, the content of which is hereby incorporated by reference into this application.
  • TECHNICAL FIELD OF THE INVENTION
  • [0002]
    The present invention relates to a technology for manufacturing a semiconductor device. More particularly, it relates to a technology effectively applied to the manufacture of a semiconductor device provided with a MIS (Metal Insulator Semiconductor) transistor having a gate insulating film formed to contain oxide whose relative dielectric constant is higher than that of silicon oxide (SiO2).
  • BACKGROUND OF THE INVENTION
  • [0003]
    In recent years, with the trend of scaling down the size of MIS transistors constituting a semiconductor integrated circuit, the thickness of a gate insulating film made of silicon oxide has been rapidly reduced. However, when the thickness of the gate insulating film is reduced to about 2 nm, a gate-leakage phenomenon in which electrons in a silicon substrate pass through a gate insulating film to escape to a gate electrode becomes conspicuous due to the quantum effect called direct tunneling.
  • [0004]
    Therefore, studies on the replacement of a gate insulating film material to a high dielectric material whose relative dielectric constant is higher than that of silicon oxide (SiO2) have been proceeding. This is because, when a high dielectric film is used to form a gate insulating film, even if the capacitance of an equivalent silicon oxide thickness is the same, the actual physical thickness can be increased by a factor of “dielectric constant of high dielectric film/dielectric constant of silicon oxide film”, and as a result, the gate-leakage current can be reduced. As a high dielectric material, oxides typified by hafnium-based oxides such as Hf—O, Hf—Si—O, Hf—Si—O—N, Hf—Al—O, and Hf—Al—O—N have been studied.
  • [0005]
    Incidentally, the inventor of the present invention has made a prior-art search based on the invented results, in the light of a first aspect of forming a gate insulating film made of a high dielectric material and a gate electrode made of a metal material and a second aspect of capping a high dielectric material forming a gate insulating film. As a result, Japanese Patent Application Laid-Open Publication No. 2006-080133 (Patent Document 1) has been extracted regarding the first aspect, and Japanese Patent Application Laid-Open Publication No. 2006-310801 (Patent Document 2) has been extracted regarding the second aspect.
  • [0006]
    The main subject of Japanese Patent Application Laid-Open Publication No. 2006-080133 (Patent Document 1) is to form a gate insulating film by using hafnium oxide which is a high dielectric material and form gate electrodes of an n channel MIS transistor and a p channel MIS transistor by using gate electrode materials suitable for the respective work functions as a whole, and metal materials are used therein for achieving the main subject. However, the Patent Document 1 does not describe the aspect of capping the high dielectric film forming the gate insulating film.
  • [0007]
    The main subject of Japanese Patent Application Laid-Open Publication No. 2006-310801 (Patent Document 2) is to solve a problem of trapping which occurs at an interface between a high dielectric film and a polysilicon film forming a gate electrode as a whole, and the gate insulating film is capped by an intermediate layer (so-called buffer layer) before forming the gate electrode for achieving the main subject.
  • SUMMARY OF THE INVENTION
  • [0008]
    A gate insulating film made of oxide such as hafnium-based oxide as a high dielectric material is deposited on a semiconductor substrate by Atomic Layer Deposition (ALD), Chemical Vapor Deposition (CVD), or sputtering. However, since impurities such as carbon generated from a raw material and impurities such as OH generated from H2O oxidant remain in a film deposited in this manner, a density of the film becomes relatively low, so that a dielectric constant thereof is lowered. Therefore, in the manufacture of a gate insulating film made of oxide, for example, it is necessary to perform the rapid heat treatment in a non-oxidation atmosphere after an oxide film is formed, or it is necessary to perform the heat treatment at a low temperature in an oxygen atmosphere after an oxide film is formed.
  • [0009]
    However, although an oxide film formed by the rapid heat treatment in the non-oxidation atmosphere has sufficient densification, such an oxide film has oxygen deficiency which can be one of the defect sites to cause the deterioration of transistor characteristics such as mobility. On the other hand, although an oxide film formed by the heat treatment in the oxygen atmosphere can suppress the oxygen deficiency in the heat treatment, oxygen diffuses in the oxide to reach a silicon substrate and form an interface silicon oxide layer, and as a result, the capacitance of an equivalent silicon oxide thickness is increased.
  • [0010]
    As described above, according to the studies made by the inventor of the present invention, it has been found that it is difficult to achieve both the high dielectric constant and the reduction of the oxygen deficiency in the gate insulating film formed to contain oxide deposited on a semiconductor substrate.
  • [0011]
    An object of the present invention is to provide a technology capable of improving the transistor characteristics of a MIS transistor provided with a gate insulating film formed to contain oxide whose relative dielectric constant is higher than that of silicon oxide.
  • [0012]
    Another object of the present invention is to provide a technology capable of achieving the high dielectric constant of an oxide film, the reduction of oxygen deficiency in the oxide film, and the suppression of the interface silicon oxide growth.
  • [0013]
    The above and other objects and novel characteristics of the present invention will be apparent from the description of this specification and the accompanying drawings.
  • [0014]
    The typical ones of the inventions disclosed in this application will be briefly described as follows.
  • [0015]
    According to an embodiment of the present invention, first, (a) a high dielectric layer made of oxide whose relative dielectric constant is higher than that of silicon oxide is formed on a main surface of a semiconductor substrate. Next, (b) the main surface of the semiconductor substrate is heat-treated in a non-oxidation atmosphere. Next, (c) an oxygen supplying layer made of oxide having an oxygen proportion higher than that in the high dielectric layer just after the step (b) is formed on the high dielectric layer. Then, (d) a cap layer made of metal which suppresses diffusion of oxygen is formed on the oxygen supplying layer. Next, (e) the main surface of the semiconductor substrate is heat-treated.
  • [0016]
    By this means, since the high dielectric layer is densified by the heat treatment at the step (b), the high dielectric layer with a high relative dielectric constant can be obtained. Also, since oxygen in the oxygen supplying layer is supplied to the high dielectric layer by the heat treatment at the step (e), the high dielectric layer in which the oxygen deficiency is reduced can be obtained. In other words, it is possible to obtain the oxide in which the high dielectric constant of an oxide film, the reduction of oxygen deficiency in the oxide film, and the suppression of the interface silicon oxide growth can be achieved.
  • [0017]
    Note that Japanese Patent Application Laid-Open Publication No. 2006-080133 (Patent Document 1) and Japanese Patent Application Laid-Open Publication No. 2006-310801 (Patent Document 2) do not describe the formation of the oxygen supplying layer for supplying oxygen to the high dielectric layer. Also, different from Japanese Patent Application Laid-Open Publication No. 2006-310801 (Patent Document 2), the cap layer is not used as an intermediate layer (so-called buffer layer) for preventing the trapping which occurs at an interface between a gate insulating film and a gate electrode, but it is used for preventing oxygen in the oxygen supplying layer from diffusing into the atmosphere opposite to the high dielectric layer. Since oxygen does not diffuse into the atmosphere owing to the cap layer, oxygen in the oxygen supplying layer is supplied to the high dielectric layer.
  • [0018]
    The effects obtained by typical aspects of the present invention will be briefly described below.
  • [0019]
    According to the embodiment, it is possible to improve the transistor characteristics of a MIS transistor provided with a gate insulating film formed to contain oxide whose relative dielectric constant is higher than that of silicon oxide.
  • BRIEF DESCRIPTIONS OF THE DRAWINGS
  • [0020]
    FIG. 1 is a cross-sectional view showing a semiconductor device in a manufacturing process according to a first embodiment of the present invention;
  • [0021]
    FIG. 2 is an enlarged cross-sectional view showing the semiconductor device in the manufacturing process continued from FIG. 1;
  • [0022]
    FIG. 3 is an enlarged cross-sectional view showing the semiconductor device in the manufacturing process continued from FIG. 2;
  • [0023]
    FIG. 4 is an enlarged cross-sectional view showing the semiconductor device in the manufacturing process continued from FIG. 3;
  • [0024]
    FIG. 5 is an enlarged cross-sectional view showing the semiconductor device in the manufacturing process continued from FIG. 4;
  • [0025]
    FIG. 6 is an enlarged cross-sectional view showing the semiconductor device in the manufacturing process continued from FIG. 5;
  • [0026]
    FIG. 7 is a cross-sectional view showing the semiconductor device in the manufacturing process continued from FIG. 6;
  • [0027]
    FIG. 8 is a cross-sectional view showing the semiconductor device in the manufacturing process continued from FIG. 7;
  • [0028]
    FIG. 9 is a cross-sectional view showing the semiconductor device in the manufacturing process continued from FIG. 8;
  • [0029]
    FIG. 10 is a graph showing the content of residual OH group relative to a thickness of a hafnium oxide film deposited by ALD;
  • [0030]
    FIG. 11 is a table showing the comparison between the transistor characteristics of an n channel MIS transistor (Qn) according to the first embodiment and the transistor characteristics of an n channel MIS transistor (Q′n) studied by the inventor of the present invention; and
  • [0031]
    FIG. 12 is a graph showing the content of OH group contained in various oxides deposited by ALD in a second embodiment of the present invention.
  • DESCRIPTIONS OF THE PREFERRED EMBODIMENTS
  • [0032]
    Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Note that components having the same function are denoted by the same reference numbers throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
  • First Embodiment
  • [0033]
    In the first embodiment, the present invention is applied to a manufacturing method of an n channel MIS transistor, which will be described with reference to FIG. 1 to FIG. 9. FIG. 1 to FIG. 9 are cross-sectional views schematically showing a semiconductor device in a manufacturing process, in which FIG. 2 to FIG. 6 show a principal part of the semiconductor device in an enlarged manner. Note that a p channel MIS transistor has an opposite polarity to that of an n channel MIS transistor, and the present invention can also be applied to a manufacturing method of a p channel MIS transistor.
  • [0034]
    As shown in FIG. 1, element isolation trenches ID are first formed in a main surface (element formation surface) of a semiconductor substrate (hereinafter, referred to as substrate) SUB made of, for example, p type single crystal silicon by the well-known STI (Shallow Trench Isolation) technique. Next, after boron is ion-implanted in an n channel MIS transistor formation region of the substrate SUB, an impurity for adjusting a threshold voltage of the MIS transistor is ion-implanted. Then, by heat-treating the main surface of the substrate SUB, the impurity is diffused in the substrate SUB, thereby forming a p well PW in the main surface of the substrate SUB. Next, by removing a natural oxide film on the surface of the substrate SUB (p well PW) using wet etching solution such as hydrofluoric acid, the surface (silicon surface) of the substrate SUB is exposed.
  • [0035]
    Subsequently, as shown in FIG. 2, after an interface layer IL made of silicon oxide (SiO2) is formed on the main surface (surface of the p well PW) of the substrate SUB, a high dielectric layer HK1 made of oxide whose relative dielectric constant is higher than that of silicon oxide is formed on the interface layer IL. The high dielectric layer HK1 forms a gate insulating film of an n channel MIS transistor, and it is made of, for example, hafnium oxide (HfO2). In the first embodiment, the interface layer IL is provided for reducing the defect generated when the high dielectric layer HK1 (hafnium oxide) is directly formed on the substrate SUB (single crystal silicon). Also, since the interface layer IL is included in the gate insulating film, it is preferable to reduce the film thickness of the interface layer IL as far as possible in order to obtain a gate insulating film with a high relative dielectric constant.
  • [0036]
    In the first embodiment, after a natural oxide film is removed using diluted hydrofluoric acid solution, the silicon oxide (SiO2) forming the interface layer IL is formed by performing the high temperature thermal oxidation to the main surface of the substrate SUB at 950° C. or higher, and a film thickness of the silicon oxide is, for example, 0.3 nm.
  • [0037]
    Further, the hafnium oxide (HfO2) forming the high dielectric film HK1 is deposited by Atomic Layer Deposition (ALD) using, for example, an O (oxygen) material of H2O (water) and an Hf (hafnium) material of TDMAH (Tetrakis-Dimethylamido-Hafnium: Hf(NMe2)4), and a film thickness thereof is, for example, 2.4 nm.
  • [0038]
    Here, oxides such as Hf—Si—O, Hf—Si—O—N, Hf—Al—O, Hf—Al—O—N, Hf—Ta—O, Hf—Ti—O, Hf—La—O, Hf—Y—O, Hf—Ta—Si—O, Hf—Ti—Si—O, Hf—La—Si—O and Hf—Y—Si—O can be applied as the high dielectric layer HK1 other than hafnium oxide (Hf—O). In the present invention, a material containing oxygen (O) and hafnium (Hf) and having relative dielectric constant higher than that of silicon oxide (SiO2) is referred to as “hafnium-based oxide”.
  • [0039]
    When the ALD is used for forming hafnium-based oxide, materials for the respective oxides are used in addition to the O material of H2O gas and the Hf material of TDMAH (Hf(NMe2)4). For example, TDMAS (Trisdimethlaminosilane: HSi(NMe2)3) is used as an Si (silicon) material. Also, TMA (Trimethylaluminum: AlMe3) is used as an Al (aluminum) material. Also, TAIDEAT (tertiaryamylimidotris (dimethlamido) tantalum: EtMe2CNTa(NMe2)3) is used as a Ta (tantalum) material. Also, TDMAT (Tetrakisdimethylaminotitanium: Ti(NMe2)3) is used as a Ti (titanium) material. Also, Trisethylcyclopentadienylyttrium: Y(EtCp)3 is used as a Y (yttrium) material. Also, Trisethylcyclopentadienyllanthanum: La(EtCp)3 is used as an La (lanthanum) material. Further, the nitridation of Hf—Si—O—N and Hf—Al—O—N is fabricated by the nitridation by the plasma nitrogen and the nitridation by the heat treatment using ammonia gas after depositing an Hf—Si—O film or an Hf—Al—O film by the ALD.
  • [0040]
    Also, in the first embodiment, the ALD is used for the formation of the high dielectric layer HK1, but the formation method of the high dielectric layer HK1 is not limited to this and the high dielectric layer HK1 can be formed by sputtering and CVD. Note that the oxygen supplying layer is formed at a later step by depositing the hafnium-based oxide, and the hafnium-based oxide is deposited by the ALD, not by the sputtering or CVD.
  • [0041]
    Subsequently, as shown in FIG. 3, the main surface of the substrate SUB is heat-treated in a non-oxidation atmosphere (for example, nitrogen, hydrogen, argon or the like) where an oxygen concentration is ppm (parts per million) or less in a temperature range of 600° C. to 1000° C. The high dielectric layer HK1 is densified at this step. The heat treatment for densifying the high dielectric layer HK1 is referred to as “densification annealing” in the present invention.
  • [0042]
    Since impurities such as carbon generated from a raw material and impurities such as OH generated from H2O oxidant remain in a film of the high dielectric layer HK1 just deposited, a density of the film becomes relatively low, so that the dielectric constant of the film is lowered. Therefore, by performing the densification annealing after the film formation, the densification and the high dielectric constant of the high dielectric layer HK1 can be achieved.
  • [0043]
    Further, by performing the densification annealing in a non-oxidation atmosphere, the formation of Si—O bonding at the interface of a substrate SUB (single crystal silicon) can be prevented. When the densification annealing is performed in an atmosphere containing oxygen (O), external oxygen diffuses in the high dielectric layer HK1 made of hafnium oxide and reaches the substrate SUB made of single crystal silicon, thereby forming Si—O bonding at an interface between the high dielectric layer HK1 and the substrate SUB made of single crystal silicon. As a result, a part of the gate insulating film changes to a silicon oxide film. In other words, the interface layer IL made of silicon oxide becomes thick, so that the dielectric constant of the gate insulating film lowers. Therefore, by performing the densification annealing in the non-oxidation atmosphere, the formation of Si—O bonding at an interface can be prevented.
  • [0044]
    Further, when the rapid heat treatment of Post Deposition Annealing (PDA) in which rapid heating and rapid cooling are performed (for example, 1000° C./sec) in the non-oxidation atmosphere is utilized in the densification annealing step, the high dielectric layer HK1 can be densified without increasing the film thickness of the interface layer IL made of silicon oxide.
  • [0045]
    However, if the densification annealing is performed, oxygen (O) is lost while maintaining the densification. FIG. 3 shows the case where the lost oxygen is discharged in the atmosphere, and oxygen deficient portions DP are generated in the high dielectric layer HK1. Note that the process for reducing the oxygen deficient portions DP is performed at a step (oxygen supplying annealing step) described later.
  • [0046]
    Subsequently, as shown in FIG. 4, an oxygen supplying layer HK2 made of oxide having an oxygen proportion higher than that in the high dielectric layer HK1 just after the densification annealing is formed. In the first embodiment, as the oxygen supplying layer HK2 having an oxygen proportion higher than that in the high dielectric layer HK1 just after the densification annealing in which oxygen deficiency has occurred, a hafnium-based oxide film deposited by the ALD using an O (oxygen) material of H2O and an Hf (hafnium) material of TDMAH (Hf(NMe2)4) may be applied. In the ALD, an atomic layer is deposited one by one on the substrate SUB placed in a chamber by repeating a cycle comprising the absorption of molecules of raw material compound by each monolayer, the film formation by the reaction thereof, the removal of excessive molecules by purge, the film formation by the reaction with H2O oxidant, and the removal of excessive molecules by purge. Therefore, a film thickness of the oxygen supplying layer HK2 made of a hafnium-based oxide film can be controlled by the number of cycles.
  • [0047]
    The hafnium-based oxide film deposited by the ALD quantitatively contains residual OH group. Therefore, a proportion of oxygen in the hafnium-based oxide film (oxygen supplying layer HK2) is higher than that in the hafnium-based oxide film (high dielectric layer HK1) just after the densification annealing in which oxygen deficiency has occurred. The residual oxygen functions to supplement (supply) the oxygen lost in the high dielectric layer HK1 at a step described later. In other words, the oxygen supplying layer HK2 functions as an oxygen supplying source, and an absolute supplying amount of oxygen can be adjusted by the film thickness of the oxygen supplying layer HK2. Therefore, the ALD which can control the film thickness in an atomic level is effective for the formation of the oxygen supplying layer HK2.
  • [0048]
    For example, since H2O is used as a raw material, the hafnium oxide film deposited by the ALD contains residual OH group of about 0.5%. FIG. 10 shows the content of residual OH group relative to a thickness of a hafnium oxide film deposited by the ALD. As shown in FIG. 10, it can be understood that the OH groups contained in the hafnium oxide film increase as the number of cycles, that is, the film thickness is increased. Accordingly, the absolute supplying amount is adjusted by the film thickness of the oxygen supplying layer HK2 made of hafnium oxide deposited by the ALD so that oxygen can be sufficiently supplied to the high dielectric layer HK1 in which the oxygen deficiency has occurred due to the densification annealing. In the first embodiment, the film thickness of the oxygen supplying layer HK2 made of a hafnium oxide film deposited by the ALD is adjusted to, for example, 4 Å.
  • [0049]
    Incidentally, as the method for forming hafnium-based oxide, the sputtering and the CVD are known in addition to the ALD. However, in the sputtering or the CVD, oxygen in the deposited film does not become excessive, so that the oxygen supplying layer HK2 having an oxygen proportion higher than that in the high dielectric layer HK1 just after the densification annealing in which oxygen deficiency has occurred cannot be formed. Therefore, the ALD using H2O as a material is used.
  • [0050]
    Subsequently, as shown in FIG. 5, a cap layer CL made of metal for preventing oxygen from diffusing is formed on the oxygen supplying layer HK2. In other words, the oxygen supplying layer HK2 is capped by the cap layer CL. The cap layer CL is made of a metal film (barrier metal film) provided for preventing oxygen from being discharged into atmosphere (forming a barrier) during heat treatment when the main surface of the substrate SUB is heat-treated at a later step (oxygen supplying annealing step). In the first embodiment, the cap layer CL is made of, for example, tantalum nitride (TaN) formed by sputtering, and a film thickness thereof is, for example, 20 nm.
  • [0051]
    Subsequently, as shown in FIG. 6, the main surface of the substrate SUB is heat-treated in a temperature range of 950° C. to 1150° C., for example, in nitrogen (N2) atmosphere. In this step, oxygen remaining in the oxygen supplying layer HK2 is supplied to the high dielectric layer HK1 to supplement the oxygen lost from the high dielectric HK1. In other words, the oxygen deficient portions DP which have occurred due to the densification annealing described with reference to FIG. 3 are reduced. Note that, in the present invention, the heat treatment for supplying oxygen to the high dielectric layer HK1 is referred to as “oxygen supplying annealing”.
  • [0052]
    The high dielectric layer HK1 supplemented with oxygen in this manner forms the gate insulating film GI together with the interface layer IL and the oxygen supplying layer HK2. In the first embodiment, the hafnium-based oxide is used as a material of the oxygen supplying layer HK2, but any oxide can be used as long as it has an oxygen proportion higher than that in the high dielectric layer HK1 just after the densification annealing. However, in order to obtain the gate insulating film GI with a high dielectric constant, it is desirable that a material of the oxygen supplying layer HK2 has a relative dielectric constant higher than that of silicon oxide like hafnium-based oxide.
  • [0053]
    Although the high dielectric layer HK1 can be densified by the densification annealing, since oxygen is lost from the high dielectric layer HK1, the oxygen density of the film is lowered. When such a film with a low oxygen density is applied to the gate insulating film GI, the higher gate-leakage current flows as compared with the case where a film having a high oxygen density is applied. Therefore, by performing the oxygen supplying annealing to supplement the oxygen lost from the high dielectric layer HK1, a film with a high oxygen density can be formed, so that it is possible to suppress the flow of the gate-leakage current. Also, since a film thickness of the oxygen supplying layer HK2, that is, an oxygen supplying amount can be adjusted in the oxygen supplying annealing, oxygen does not reach the interface of the substrate SUB (single crystal silicon), and it is also possible not to increase the thickness of the interface layer IL.
  • [0054]
    Through the above-described process including the densification annealing and the oxygen supplying annealing, both the high dielectric constant and the reduction of the oxygen deficiency of the high dielectric layer HK1 forming the gate insulating film GI can be achieved.
  • [0055]
    Subsequently, as shown in FIG. 7, a barrier metal film forming the cap layer CL is patterned to form a gate electrode GE made of the burrier metal film, and the gate insulating film GI other than that under the gate electrode GE is removed. Note that, in the first embodiment, the patterning for forming the gate electrode GE is performed after the oxygen supplying annealing, but it does not matter if the order is reversed.
  • [0056]
    In the first embodiment, the gate electrode GE is formed by patterning the barrier metal film forming the cap layer CL. Therefore, any barrier metal can be used for the cap layer CL as long as it functions to suppress the diffusion of oxygen and is suitable for the work function of the gate electrode GE. As the material of the cap layer CL of the n channel MIS transistor, aluminum (Al), titanium (Ti), tantalum (Ta), and the like can be used other than the tantalum nitride. Further, as the material of the cap layer CL of the p channel MIS transistor, ruthenium (Ru), platinum (Pt), nickel (Ni), and the like can be used.
  • [0057]
    Further, in the first embodiment, both the cap layer CL and the gate electrode GE are made of tantalum nitride, but the process is also available in which, after the oxygen supplying annealing is performed using tantalum nitride as the material of the cap layer CL, the tantalum nitride is removed and then the gate electrode GE is formed from a metal material having an optimal work function.
  • [0058]
    Subsequently, as shown in FIG. 8, phosphorus or arsenic is ion-implanted into a p well PW to form n semiconductor regions SA1. The n semiconductor regions SA1 are formed to form an LDD (Lightly Doped Drain) structure of the n channel MIS transistor.
  • [0059]
    Subsequently, as shown in FIG. 9, sidewall spacers SS are formed on the sidewalls of the gate electrode GE. The sidewall spacers SS are formed by depositing a silicon oxide film on the substrate SUB by CVD and then anisotropically etching the silicon oxide film. Next, after phosphorus or arsenic is ion-implanted into the p well PW, the heat treatment is performed to the main surface of the substrate SUB to diffuse the impurity, thereby forming n+ semiconductor regions (source, drain) SA2 in the p well PW. Thereafter, after a wiring step, the heat treatment (FGA: Forming Gas Annealing) is finally performed in a hydrogen atmosphere at a temperature of 400° C., so that a semiconductor device provided with an n channel MIS transistor is completed.
  • [0060]
    FIG. 11 is a table showing the comparison between the transistor characteristics of the n channel MIS transistor according to the first embodiment (Qn in the description in FIG. 11) and the transistor characteristics of the n channel MIS transistor which has been studied by the inventor of the present invention (Q′n). Note that the transistor Q′n is manufactured in the same manufacturing process as that of the transistor Qn except that the step of forming the oxygen supplying layer HK2 (hafnium oxide film with a film thickness of 4 Å deposited by the ALD) is omitted.
  • [0061]
    As shown in FIG. 11, the equivalent oxide thicknesses (EOT) of the gate insulating films GI of the transistor Qn and the transistor Q′n are about 1.1 nm and about 1.0 nm, respectively. Therefore, the transistor characteristics of the transistor Qn and the transistor Q′n can be compared. When comparing the gate-leakage current (Jg) and the electron mobility (μ) between the transistor Qn and the transistor Q′n as the transistor characteristics, the gate-leakage current of the transistor Qn is lower by about three orders of magnitude than that of the transistor Q′n, and the electron mobility of the transistor Qn is about two times higher than that of the transistor Q′n.
  • [0062]
    As described above, the MIS transistor according to the first embodiment can achieve both the high dielectric constant and the reduction of the oxygen deficiency of the high dielectric layer HK1 forming the gate insulating film GI by the process including the densification annealing and the oxygen supplying annealing. Also, by forming the MIS transistor having the gate insulating film GI in which the oxygen deficiency has been suppressed, the transistor characteristics can be improved. Further, since the growth of the interface layer IL can be suppressed in the oxygen supplying annealing, a MIS transistor having a gate insulating film GI with the EOT of 1 nm or less can be formed.
  • Second Embodiment
  • [0063]
    Although the case where hafnium-based oxide deposited by the ALD is used in the step of forming the oxygen supplying layer has been described in the first embodiment, the case where aluminum oxide (Al2O3) deposited by the ALD or tantalum oxide (Ta2O5) deposited by the ALD is applied to form the oxygen supplying layer will be described in the second embodiment. Note that the other steps in the second embodiment are similar to those in the first embodiment.
  • [0064]
    As described in the first embodiment, the oxygen supplying layer HK2 functions to supply oxygen to the high dielectric layer HK1 in the oxygen supplying annealing in order to supplement oxygen lost in the high dielectric layer HK1. Therefore, an oxygen supplying layer which has an oxygen concentration (oxygen proportion) higher than that in the high dielectric layer HK1 just after the densification annealing in which the oxygen deficiency has occurred can be used as the oxygen supplying layer HK2. Accordingly, the oxygen supplying layer HK2 is formed by depositing aluminum oxide (Al2O3) or tantalum oxide (Ta2O5) by the ALD using an H2O as a material.
  • [0065]
    In the second embodiment, aluminum oxide (Al2O3) is deposited by the ALD using, for example, an O (oxygen) material of H2O and TMA (Trimethylaluminum: AlMe3) as an Al (aluminum) material. Alternatively, tantalum oxide (Ta2O5) is deposited by the ALD using, for example, an O (oxygen) material of H2O and TAIDEAT (Tertiaryamylimidotris (dimethlamido) tantalum: EtMe2CNTa(NMe2)3) as a Ta (tantalum) material.
  • [0066]
    FIG. 12 is a graph showing the content of OH group contained in aluminum oxide (Al2O3) and tantalum oxide (Ta2O5) deposited by the ALD. FIG. 12 also shows the content of OH group contained in hafnium oxide (HfO2) used as the oxygen supplying layer HK2 in the first embodiment.
  • [0067]
    As shown in FIG. 12, it can be understood that about 0.5% of OH group is contained in HfO2, about 0.3% of OH group is contained in A1 2O3, and about 1% of OH group is contained in Ta2O5. The OH group acts as an oxygen supplying source, so that an absolute supplying amount relative to a certain amount of oxygen deficiency in the high dielectric layer HK1 just after the densification annealing can be adjusted by the film thickness. Note that, when oxygen is supplied to the high dielectric layer HK1 including a certain amount of oxygen deficiency, the film thickness of Ta2O5 containing about 1% of OH group may be about half the thickness of HfO2 containing about 0.5% of OH group.
  • [0068]
    Although the high dielectric layer HK1 can be densified by the densification annealing, since oxygen is lost from the high dielectric layer HK1, the oxygen density of the film is lowered. Therefore, by performing the oxygen supplying annealing to supplement the oxygen lost from the high dielectric layer HK1, a film with a high oxygen density can be formed, so that it is possible to suppress the flow of the gate-leakage current. In other words, by forming the gate insulating film GI in which the oxygen deficiency has been suppressed, the transistor characteristics can be improved.
  • [0069]
    In the foregoing, the invention made by the inventor of the present invention has been concretely described based on the embodiments. However, it is needless to say that the present invention is not limited to the foregoing embodiments and various modifications and alterations can be made within the scope of the present invention.
  • [0070]
    For example, in the above-mentioned embodiments, the hafnium-based oxide (Hf—O) has been shown as the material of the high dielectric layer. However, the high dielectric layer made of aluminum oxide (Al2O3), tantalum oxide (Ta2OS), titanium oxide (TiO2), lanthanum oxide (La2O3), or zirconium oxide (ZrO2) is also available. Similar to the hafnium-based oxide shown in the above-mentioned embodiments, the oxygen deficiency occurs due to the heat treatment in the high dielectric layer made of aluminum oxide, tantalum oxide, titanium oxide, lanthanum oxide, or zirconium oxide. However, oxygen in the oxygen supplying layer is supplied to aluminum oxide, tantalum oxide, titanium oxide, lanthanum oxide, and zirconium oxide forming the high dielectric layer, so that both the high dielectric constant of the high dielectric layer and the reduction of the oxygen deficiency in the high dielectric layer can be achieved.
  • [0071]
    The present invention is widely utilized in a manufacture of semiconductor devices. In particular, it is utilized for manufacturing semiconductor devices having excellent transistor characteristics in the 32-nm technology and beyond.

Claims (7)

1. A manufacturing method of a semiconductor device comprising the steps of: forming a gate insulating film of a MIS transistor on a semiconductor substrate; and forming a gate electrode of the MIS transistor on the gate insulating film,
wherein the step of forming the gate insulating film on the semiconductor substrate comprises the steps of:
(a) forming a first layer made of oxide with a relative dielectric constant higher than that of silicon oxide on a main surface of the semiconductor substrate;
(b) after the step (a), heat-treating the main surface of the semiconductor substrate in a non-oxidation atmosphere;
(c) forming, on the first layer, a second layer made of oxide having an oxygen proportion higher than that in the first layer just after the step (b);
(d) forming, on the second layer, a cap layer made of metal suppressing diffusion of oxygen; and
(e) after the step (d), heat-treating the main surface of the semiconductor substrate.
2. The manufacturing method of a semiconductor device according to claim 1,
wherein, in the step (c), a hafnium oxide film forming the second layer is formed on the first layer by ALD using water as an oxygen material.
3. The manufacturing method of a semiconductor device according to claim 1,
wherein, in the step (c), an aluminum oxide film forming the second layer is formed on the first layer by ALD using water as an oxygen material.
4. The manufacturing method of a semiconductor device according to claim 1,
wherein, in the step (c), a tantalum oxide film forming the second layer is formed on the first layer by ALD using water as an oxygen material.
5. The manufacturing method of a semiconductor device according to claim 1, further comprising the step of:
(f) forming the gate electrode made of the cap layer by patterning the cap layer.
6. The manufacturing method of a semiconductor device according to claim 1,
wherein, in the step (b), the first layer is densified.
7. The manufacturing method of a semiconductor device according to claim 1,
wherein, in the step (e), oxygen is supplied from the second layer to the first layer.
US12116940 2007-05-15 2008-05-07 Manufacturing method of semiconductor device Abandoned US20090011608A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JPJP2007-128692 2007-05-15
JP2007128692A JP5103056B2 (en) 2007-05-15 2007-05-15 A method of manufacturing a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12752828 US8168547B2 (en) 2007-05-15 2010-04-01 Manufacturing method of semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12752828 Continuation US8168547B2 (en) 2007-05-15 2010-04-01 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
US20090011608A1 true true US20090011608A1 (en) 2009-01-08

Family

ID=40147704

Family Applications (2)

Application Number Title Priority Date Filing Date
US12116940 Abandoned US20090011608A1 (en) 2007-05-15 2008-05-07 Manufacturing method of semiconductor device
US12752828 Active US8168547B2 (en) 2007-05-15 2010-04-01 Manufacturing method of semiconductor device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12752828 Active US8168547B2 (en) 2007-05-15 2010-04-01 Manufacturing method of semiconductor device

Country Status (2)

Country Link
US (2) US20090011608A1 (en)
JP (1) JP5103056B2 (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090280648A1 (en) * 2008-05-09 2009-11-12 Cyprian Emeka Uzoh Method and apparatus for 3d interconnect
US20100248464A1 (en) * 2009-03-26 2010-09-30 Tokyo Electron Limited METHOD FOR FORMING A HIGH-k GATE STACK WITH REDUCED EFFECTIVE OXIDE THICKNESS
US20100270626A1 (en) * 2009-04-27 2010-10-28 Raisanen Petri I Atomic layer deposition of hafnium lanthanum oxides
US20100301429A1 (en) * 2009-05-29 2010-12-02 Renesas Technology Corp. Semiconductor device and method of manufacturing the same
US8728832B2 (en) 2012-05-07 2014-05-20 Asm Ip Holdings B.V. Semiconductor device dielectric interface layer
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US8877655B2 (en) 2010-05-07 2014-11-04 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US8883270B2 (en) 2009-08-14 2014-11-11 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen—oxygen species
US8894870B2 (en) 2013-02-01 2014-11-25 Asm Ip Holding B.V. Multi-step method and apparatus for etching compounds containing a metal
US8921176B2 (en) * 2012-06-11 2014-12-30 Freescale Semiconductor, Inc. Modified high-K gate dielectric stack
US8933375B2 (en) 2012-06-27 2015-01-13 Asm Ip Holding B.V. Susceptor heater and method of heating a substrate
US8946830B2 (en) 2012-04-04 2015-02-03 Asm Ip Holdings B.V. Metal oxide protective layer for a semiconductor device
US8986456B2 (en) 2006-10-10 2015-03-24 Asm America, Inc. Precursor delivery system
US8993054B2 (en) 2013-07-12 2015-03-31 Asm Ip Holding B.V. Method and system to reduce outgassing in a reaction chamber
US9005539B2 (en) 2011-11-23 2015-04-14 Asm Ip Holding B.V. Chamber sealing member
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US9018111B2 (en) 2013-07-22 2015-04-28 Asm Ip Holding B.V. Semiconductor reaction chamber with plasma capabilities
US9021985B2 (en) 2012-09-12 2015-05-05 Asm Ip Holdings B.V. Process gas management for an inductively-coupled plasma deposition reactor
US9029253B2 (en) 2012-05-02 2015-05-12 Asm Ip Holding B.V. Phase-stabilized thin films, structures and devices including the thin films, and methods of forming same
US9096931B2 (en) 2011-10-27 2015-08-04 Asm America, Inc Deposition valve assembly and method of heating the same
US9117866B2 (en) 2012-07-31 2015-08-25 Asm Ip Holding B.V. Apparatus and method for calculating a wafer position in a processing chamber under process conditions
US9167625B2 (en) 2011-11-23 2015-10-20 Asm Ip Holding B.V. Radiation shielding for a substrate holder
US9169975B2 (en) 2012-08-28 2015-10-27 Asm Ip Holding B.V. Systems and methods for mass flow controller verification
US9202727B2 (en) 2012-03-02 2015-12-01 ASM IP Holding Susceptor heater shim
US9240412B2 (en) 2013-09-27 2016-01-19 Asm Ip Holding B.V. Semiconductor structure and device and methods of forming same using selective epitaxial process
US9324811B2 (en) 2012-09-26 2016-04-26 Asm Ip Holding B.V. Structures and devices including a tensile-stressed silicon arsenic layer and methods of forming same
US9341296B2 (en) 2011-10-27 2016-05-17 Asm America, Inc. Heater jacket for a fluid line
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US9396934B2 (en) 2013-08-14 2016-07-19 Asm Ip Holding B.V. Methods of forming films including germanium tin and structures and devices including the films
US9404587B2 (en) 2014-04-24 2016-08-02 ASM IP Holding B.V Lockout tagout for semiconductor vacuum valve
US9447498B2 (en) 2014-03-18 2016-09-20 Asm Ip Holding B.V. Method for performing uniform processing in gas system-sharing multiple reaction chambers
US9455138B1 (en) 2015-11-10 2016-09-27 Asm Ip Holding B.V. Method for forming dielectric film in trenches by PEALD using H-containing gas
US20160308000A1 (en) * 2014-09-19 2016-10-20 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
US9478415B2 (en) 2015-02-13 2016-10-25 Asm Ip Holding B.V. Method for forming film having low resistance and shallow junction depth
US9484191B2 (en) 2013-03-08 2016-11-01 Asm Ip Holding B.V. Pulsed remote plasma method and system
US9543180B2 (en) 2014-08-01 2017-01-10 Asm Ip Holding B.V. Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum
US9556516B2 (en) 2013-10-09 2017-01-31 ASM IP Holding B.V Method for forming Ti-containing film by PEALD using TDMAT or TDEAT
US9558931B2 (en) 2012-07-27 2017-01-31 Asm Ip Holding B.V. System and method for gas-phase sulfur passivation of a semiconductor surface
US9589770B2 (en) 2013-03-08 2017-03-07 Asm Ip Holding B.V. Method and systems for in-situ formation of intermediate reactive species
US9607837B1 (en) 2015-12-21 2017-03-28 Asm Ip Holding B.V. Method for forming silicon oxide cap layer for solid state diffusion process
US9605343B2 (en) 2013-11-13 2017-03-28 Asm Ip Holding B.V. Method for forming conformal carbon films, structures conformal carbon film, and system of forming same
US9627221B1 (en) 2015-12-28 2017-04-18 Asm Ip Holding B.V. Continuous process incorporating atomic layer etching
US9640416B2 (en) 2012-12-26 2017-05-02 Asm Ip Holding B.V. Single-and dual-chamber module-attachable wafer-handling chamber
US9647114B2 (en) 2015-08-14 2017-05-09 Asm Ip Holding B.V. Methods of forming highly p-type doped germanium tin films and structures and devices including the films
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US9711345B2 (en) 2015-08-25 2017-07-18 Asm Ip Holding B.V. Method for forming aluminum nitride-based film by PEALD
US9735024B2 (en) 2015-12-28 2017-08-15 Asm Ip Holding B.V. Method of atomic layer etching using functional group-containing fluorocarbon
US9754779B1 (en) 2016-02-19 2017-09-05 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US9793115B2 (en) 2013-08-14 2017-10-17 Asm Ip Holding B.V. Structures and devices including germanium-tin films and methods of forming same
US9793148B2 (en) 2011-06-22 2017-10-17 Asm Japan K.K. Method for positioning wafers in multiple wafer transport
US9793135B1 (en) 2016-07-14 2017-10-17 ASM IP Holding B.V Method of cyclic dry etching using etchant film
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5569253B2 (en) * 2010-08-24 2014-08-13 富士通セミコンダクター株式会社 A method of manufacturing a semiconductor device
CN103262250B (en) * 2010-12-08 2014-12-17 夏普株式会社 Semiconductor device and display apparatus
US8633118B2 (en) * 2012-02-01 2014-01-21 Tokyo Electron Limited Method of forming thin metal and semi-metal layers by thermal remote oxygen scavenging
US8865538B2 (en) 2012-03-30 2014-10-21 Tokyo Electron Limited Method of integrating buried threshold voltage adjustment layers for CMOS processing
EP2695966A1 (en) 2012-08-06 2014-02-12 Imec Insulator material for use in RRAM
KR20140032716A (en) 2012-09-07 2014-03-17 삼성전자주식회사 Semiconductor device and method for fabricating thereof
US8865581B2 (en) 2012-10-19 2014-10-21 Tokyo Electron Limited Hybrid gate last integration scheme for multi-layer high-k gate stacks

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020113261A1 (en) * 2001-02-19 2002-08-22 Tomio Iwasaki Semiconductor device
US20060051880A1 (en) * 2004-09-07 2006-03-09 Doczy Mark L Method for making a semiconductor device having a high-k gate dielectric
US20060211259A1 (en) * 2005-03-21 2006-09-21 Maes Jan W Silicon oxide cap over high dielectric constant films
US20070048989A1 (en) * 2005-08-30 2007-03-01 Micron Technology, Inc. Atomic layer deposition of GdScO3 films as gate dielectrics
US7323381B2 (en) * 2004-09-07 2008-01-29 Renesas Technology Corp. Semiconductor device and manufacturing method thereof
US7396777B2 (en) * 2004-04-19 2008-07-08 Samsung Electronics Co., Ltd. Method of fabricating high-k dielectric layer having reduced impurity
US20080251836A1 (en) * 2007-04-16 2008-10-16 Hynix Semiconductor Inc. Non-volatile memory device and method for fabricating the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466376A (en) * 1990-07-05 1992-03-02 Nissan Motor Co Ltd Automobile hood structure
JPH0574037A (en) * 1991-09-10 1993-03-26 Sony Corp Disk reproducing device
JP2001185548A (en) * 1999-12-22 2001-07-06 Fujitsu Ltd Semiconductor device and manufacturing method thereof
JP2001284345A (en) * 2000-03-29 2001-10-12 Fujitsu Ltd Method of forming tantalum pentoxide film
JP2002043565A (en) * 2000-07-26 2002-02-08 Toshiba Corp Manufacturing method of semiconductor device
JP3647785B2 (en) * 2001-09-28 2005-05-18 株式会社東芝 A method of manufacturing a semiconductor device
US6717226B2 (en) * 2002-03-15 2004-04-06 Motorola, Inc. Transistor with layered high-K gate dielectric and method therefor
JP2003273350A (en) * 2002-03-15 2003-09-26 Nec Corp Semiconductor device and method for manufacturing the same
JP3647850B2 (en) * 2002-07-02 2005-05-18 松下電器産業株式会社 Semiconductor device and manufacturing method thereof
JP4261276B2 (en) * 2003-08-15 2009-04-30 パナソニック株式会社 A method of manufacturing a semiconductor device
US20070023842A1 (en) * 2003-11-12 2007-02-01 Hyung-Suk Jung Semiconductor devices having different gate dielectric layers and methods of manufacturing the same
US8323754B2 (en) * 2004-05-21 2012-12-04 Applied Materials, Inc. Stabilization of high-k dielectric materials
JP2006086511A (en) * 2004-08-17 2006-03-30 Nec Electronics Corp Semiconductor device
KR100889362B1 (en) * 2004-10-19 2006-04-24 삼성전자주식회사 Transistor having multi-dielectric layer and fabrication method thereof
JP4128574B2 (en) * 2005-03-28 2008-07-30 富士通株式会社 A method of manufacturing a semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020113261A1 (en) * 2001-02-19 2002-08-22 Tomio Iwasaki Semiconductor device
US20030067046A1 (en) * 2001-02-19 2003-04-10 Hitachi, Ltd. Semiconductor device
US7396777B2 (en) * 2004-04-19 2008-07-08 Samsung Electronics Co., Ltd. Method of fabricating high-k dielectric layer having reduced impurity
US20060051880A1 (en) * 2004-09-07 2006-03-09 Doczy Mark L Method for making a semiconductor device having a high-k gate dielectric
US7323381B2 (en) * 2004-09-07 2008-01-29 Renesas Technology Corp. Semiconductor device and manufacturing method thereof
US20060211259A1 (en) * 2005-03-21 2006-09-21 Maes Jan W Silicon oxide cap over high dielectric constant films
US20070048989A1 (en) * 2005-08-30 2007-03-01 Micron Technology, Inc. Atomic layer deposition of GdScO3 films as gate dielectrics
US20080251836A1 (en) * 2007-04-16 2008-10-16 Hynix Semiconductor Inc. Non-volatile memory device and method for fabricating the same

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986456B2 (en) 2006-10-10 2015-03-24 Asm America, Inc. Precursor delivery system
US8076237B2 (en) 2008-05-09 2011-12-13 Asm America, Inc. Method and apparatus for 3D interconnect
US20090280648A1 (en) * 2008-05-09 2009-11-12 Cyprian Emeka Uzoh Method and apparatus for 3d interconnect
US20100248464A1 (en) * 2009-03-26 2010-09-30 Tokyo Electron Limited METHOD FOR FORMING A HIGH-k GATE STACK WITH REDUCED EFFECTIVE OXIDE THICKNESS
KR101639464B1 (en) 2009-03-26 2016-07-13 도쿄엘렉트론가부시키가이샤 Method for forming a high-k gate stack with reduced effective oxide thickness
KR20110123809A (en) * 2009-03-26 2011-11-15 도쿄엘렉트론가부시키가이샤 Method for forming a high-k gate stack with reduced effective oxide thickness
CN102365721A (en) * 2009-03-26 2012-02-29 东京毅力科创株式会社 Method for forming a high-k gate stack with reduced effective oxide thickness
US8313994B2 (en) * 2009-03-26 2012-11-20 Tokyo Electron Limited Method for forming a high-K gate stack with reduced effective oxide thickness
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8071452B2 (en) 2009-04-27 2011-12-06 Asm America, Inc. Atomic layer deposition of hafnium lanthanum oxides
US20100270626A1 (en) * 2009-04-27 2010-10-28 Raisanen Petri I Atomic layer deposition of hafnium lanthanum oxides
US20100301429A1 (en) * 2009-05-29 2010-12-02 Renesas Technology Corp. Semiconductor device and method of manufacturing the same
US8883270B2 (en) 2009-08-14 2014-11-11 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen—oxygen species
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US8877655B2 (en) 2010-05-07 2014-11-04 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US9793148B2 (en) 2011-06-22 2017-10-17 Asm Japan K.K. Method for positioning wafers in multiple wafer transport
US9096931B2 (en) 2011-10-27 2015-08-04 Asm America, Inc Deposition valve assembly and method of heating the same
US9341296B2 (en) 2011-10-27 2016-05-17 Asm America, Inc. Heater jacket for a fluid line
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US9167625B2 (en) 2011-11-23 2015-10-20 Asm Ip Holding B.V. Radiation shielding for a substrate holder
US9005539B2 (en) 2011-11-23 2015-04-14 Asm Ip Holding B.V. Chamber sealing member
US9340874B2 (en) 2011-11-23 2016-05-17 Asm Ip Holding B.V. Chamber sealing member
US9202727B2 (en) 2012-03-02 2015-12-01 ASM IP Holding Susceptor heater shim
US8946830B2 (en) 2012-04-04 2015-02-03 Asm Ip Holdings B.V. Metal oxide protective layer for a semiconductor device
US9384987B2 (en) 2012-04-04 2016-07-05 Asm Ip Holding B.V. Metal oxide protective layer for a semiconductor device
US9029253B2 (en) 2012-05-02 2015-05-12 Asm Ip Holding B.V. Phase-stabilized thin films, structures and devices including the thin films, and methods of forming same
US8728832B2 (en) 2012-05-07 2014-05-20 Asm Ip Holdings B.V. Semiconductor device dielectric interface layer
US9177784B2 (en) 2012-05-07 2015-11-03 Asm Ip Holdings B.V. Semiconductor device dielectric interface layer
US8921176B2 (en) * 2012-06-11 2014-12-30 Freescale Semiconductor, Inc. Modified high-K gate dielectric stack
US9299595B2 (en) 2012-06-27 2016-03-29 Asm Ip Holding B.V. Susceptor heater and method of heating a substrate
US8933375B2 (en) 2012-06-27 2015-01-13 Asm Ip Holding B.V. Susceptor heater and method of heating a substrate
US9558931B2 (en) 2012-07-27 2017-01-31 Asm Ip Holding B.V. System and method for gas-phase sulfur passivation of a semiconductor surface
US9117866B2 (en) 2012-07-31 2015-08-25 Asm Ip Holding B.V. Apparatus and method for calculating a wafer position in a processing chamber under process conditions
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US9169975B2 (en) 2012-08-28 2015-10-27 Asm Ip Holding B.V. Systems and methods for mass flow controller verification
US9021985B2 (en) 2012-09-12 2015-05-05 Asm Ip Holdings B.V. Process gas management for an inductively-coupled plasma deposition reactor
US9605342B2 (en) 2012-09-12 2017-03-28 Asm Ip Holding B.V. Process gas management for an inductively-coupled plasma deposition reactor
US9324811B2 (en) 2012-09-26 2016-04-26 Asm Ip Holding B.V. Structures and devices including a tensile-stressed silicon arsenic layer and methods of forming same
US9640416B2 (en) 2012-12-26 2017-05-02 Asm Ip Holding B.V. Single-and dual-chamber module-attachable wafer-handling chamber
US8894870B2 (en) 2013-02-01 2014-11-25 Asm Ip Holding B.V. Multi-step method and apparatus for etching compounds containing a metal
US9228259B2 (en) 2013-02-01 2016-01-05 Asm Ip Holding B.V. Method for treatment of deposition reactor
US9484191B2 (en) 2013-03-08 2016-11-01 Asm Ip Holding B.V. Pulsed remote plasma method and system
US9589770B2 (en) 2013-03-08 2017-03-07 Asm Ip Holding B.V. Method and systems for in-situ formation of intermediate reactive species
US9790595B2 (en) 2013-07-12 2017-10-17 Asm Ip Holding B.V. Method and system to reduce outgassing in a reaction chamber
US8993054B2 (en) 2013-07-12 2015-03-31 Asm Ip Holding B.V. Method and system to reduce outgassing in a reaction chamber
US9412564B2 (en) 2013-07-22 2016-08-09 Asm Ip Holding B.V. Semiconductor reaction chamber with plasma capabilities
US9018111B2 (en) 2013-07-22 2015-04-28 Asm Ip Holding B.V. Semiconductor reaction chamber with plasma capabilities
US9396934B2 (en) 2013-08-14 2016-07-19 Asm Ip Holding B.V. Methods of forming films including germanium tin and structures and devices including the films
US9793115B2 (en) 2013-08-14 2017-10-17 Asm Ip Holding B.V. Structures and devices including germanium-tin films and methods of forming same
US9240412B2 (en) 2013-09-27 2016-01-19 Asm Ip Holding B.V. Semiconductor structure and device and methods of forming same using selective epitaxial process
US9556516B2 (en) 2013-10-09 2017-01-31 ASM IP Holding B.V Method for forming Ti-containing film by PEALD using TDMAT or TDEAT
US9605343B2 (en) 2013-11-13 2017-03-28 Asm Ip Holding B.V. Method for forming conformal carbon films, structures conformal carbon film, and system of forming same
US9447498B2 (en) 2014-03-18 2016-09-20 Asm Ip Holding B.V. Method for performing uniform processing in gas system-sharing multiple reaction chambers
US9404587B2 (en) 2014-04-24 2016-08-02 ASM IP Holding B.V Lockout tagout for semiconductor vacuum valve
US9543180B2 (en) 2014-08-01 2017-01-10 Asm Ip Holding B.V. Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US20160308000A1 (en) * 2014-09-19 2016-10-20 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
US9673276B2 (en) * 2014-09-19 2017-06-06 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
US9891521B2 (en) 2014-11-19 2018-02-13 Asm Ip Holding B.V. Method for depositing thin film
US9478415B2 (en) 2015-02-13 2016-10-25 Asm Ip Holding B.V. Method for forming film having low resistance and shallow junction depth
US9892908B2 (en) 2015-03-17 2018-02-13 Asm America, Inc. Process feed management for semiconductor substrate processing
US9647114B2 (en) 2015-08-14 2017-05-09 Asm Ip Holding B.V. Methods of forming highly p-type doped germanium tin films and structures and devices including the films
US9711345B2 (en) 2015-08-25 2017-07-18 Asm Ip Holding B.V. Method for forming aluminum nitride-based film by PEALD
US9455138B1 (en) 2015-11-10 2016-09-27 Asm Ip Holding B.V. Method for forming dielectric film in trenches by PEALD using H-containing gas
US9607837B1 (en) 2015-12-21 2017-03-28 Asm Ip Holding B.V. Method for forming silicon oxide cap layer for solid state diffusion process
US9735024B2 (en) 2015-12-28 2017-08-15 Asm Ip Holding B.V. Method of atomic layer etching using functional group-containing fluorocarbon
US9627221B1 (en) 2015-12-28 2017-04-18 Asm Ip Holding B.V. Continuous process incorporating atomic layer etching
US9754779B1 (en) 2016-02-19 2017-09-05 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US9793135B1 (en) 2016-07-14 2017-10-17 ASM IP Holding B.V Method of cyclic dry etching using etchant film
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap

Also Published As

Publication number Publication date Type
JP2008288227A (en) 2008-11-27 application
US8168547B2 (en) 2012-05-01 grant
JP5103056B2 (en) 2012-12-19 grant
US20100187644A1 (en) 2010-07-29 application

Similar Documents

Publication Publication Date Title
US6303481B2 (en) Method for forming a gate insulating film for semiconductor devices
US6784101B1 (en) Formation of high-k gate dielectric layers for MOS devices fabricated on strained lattice semiconductor substrates with minimized stress relaxation
US6787413B2 (en) Capacitor structure forming methods
US7135361B2 (en) Method for fabricating transistor gate structures and gate dielectrics thereof
US7508648B2 (en) Atomic layer deposition of Dy doped HfO2 films as gate dielectrics
US6821873B2 (en) Anneal sequence for high-κ film property optimization
US7727908B2 (en) Deposition of ZrA1ON films
US6982230B2 (en) Deposition of hafnium oxide and/or zirconium oxide and fabrication of passivated electronic structures
US7432548B2 (en) Silicon lanthanide oxynitride films
US7365027B2 (en) ALD of amorphous lanthanide doped TiOx films
US6909156B2 (en) Semiconductor device and manufacturing method therefor
US20080124907A1 (en) Hafnium lanthanide oxynitride films
US20040191997A1 (en) Method for manufacturing semiconductor device
US20080057690A1 (en) Tantalum silicon oxynitride high-k dielectrics and metal gates
US7544604B2 (en) Tantalum lanthanide oxynitride films
US6642131B2 (en) Method of forming a silicon-containing metal-oxide gate dielectric by depositing a high dielectric constant film on a silicon substrate and diffusing silicon from the substrate into the high dielectric constant film
US7195999B2 (en) Metal-substituted transistor gates
US20080057659A1 (en) Hafnium aluminium oxynitride high-K dielectric and metal gates
US7214994B2 (en) Self aligned metal gates on high-k dielectrics
US20030111678A1 (en) CVD deposition of M-SION gate dielectrics
US20040188762A1 (en) Semiconductor device and manufacturing method thereof
US20060141729A1 (en) System and method for suppressing oxide formation
US6911707B2 (en) Ultrathin high-K gate dielectric with favorable interface properties for improved semiconductor device performance
US20090057787A1 (en) Semiconductor device
JP2003158262A (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: RENESAS TECHNOLOGY CORP., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NABATAME, TOSHIHIDE;REEL/FRAME:020918/0533

Effective date: 20080423