US20080261920A1 - 2-Aminooxazolines as TAAR1 ligands - Google Patents

2-Aminooxazolines as TAAR1 ligands Download PDF

Info

Publication number
US20080261920A1
US20080261920A1 US12/011,384 US1138408A US2008261920A1 US 20080261920 A1 US20080261920 A1 US 20080261920A1 US 1138408 A US1138408 A US 1138408A US 2008261920 A1 US2008261920 A1 US 2008261920A1
Authority
US
United States
Prior art keywords
dihydro
oxazol
ylamine
phenyl
chloro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/011,384
Other languages
English (en)
Inventor
Guido Galley
Katrin Groebke Zbinden
Roger Norcross
Henri Stalder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoffmann La Roche Inc
Original Assignee
Hoffmann La Roche Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoffmann La Roche Inc filed Critical Hoffmann La Roche Inc
Assigned to F. HOFFMANN-LA ROCHE AG reassignment F. HOFFMANN-LA ROCHE AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GALLEY, GUIDO, GROEBKE ZBINDEN, KATRIN, NORCROSS, ROGER, STALDER,HENRI
Assigned to HOFFMAN-LA ROCHE, INC. reassignment HOFFMAN-LA ROCHE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: F. HOFFMAN-LA ROCHE AG
Publication of US20080261920A1 publication Critical patent/US20080261920A1/en
Priority to US12/639,076 priority Critical patent/US20100120864A1/en
Priority to US13/426,736 priority patent/US8604061B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/16Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D263/28Nitrogen atoms not forming part of a nitro radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/4211,3-Oxazoles, e.g. pemoline, trimethadione
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/422Oxazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/20Hypnotics; Sedatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring

Definitions

  • 2-Aminooxazolines are described in the literature as hypertensive agents with good affinity to the adrenergic receptor or as intermediates in processes for preparation of pharmaceutical active agents, for example in EP 0 167 459, U.S. Pat. No. 4,311,840, DE 2,253, 555, Tetrahedron (2001), 57(1), 195-200 or in Bioorganic and Medicinal Chemistry Letters (2004), 14(2), 313-316.
  • Some of the physiological effects i.e. cardiovascular effects, hypotension, induction of sedation
  • cardiovascular effects i.e. cardiovascular effects, hypotension, induction of sedation
  • WO02/076950, WO97/12874 or EP 0717 037 may be considered to be undesirable side effects in the case of medicaments aimed at treating diseases of the central nervous system as described above. Therefore it is desirable to obtain medicaments having selectivity for the TAAR1 receptor vs adrenergic receptors.
  • Objects of the present invention show selectivity for TAAR1 receptor over adrenergic receptors, in particular good selectivity vs the human and rat alpha1 and alpha2 adrenergic receptors.
  • biogenic amines The classical biogenic amines (serotonin, norepinephrine, epinephrine, dopamine, histamine) play important roles as neurotransmitters in the central and peripheral nervous system [1]. Their synthesis and storage, as well as their degradation and reuptake after release are tightly regulated. An imbalance in the levels of biogenic amines is known to be responsible for the altered brain function under many pathological conditions [2-5].
  • a second class of endogenous amine compounds, the so-called trace amines (TAs) significantly overlap with the classical biogenic amines regarding structure, metabolism and subcellular localization.
  • the TAs include p-tyramine, ⁇ -phenylethylamine, tryptamine and octopamine, and they are present in the mammalian nervous system at generally lower levels than classical biogenic amines [6].
  • TA-specific receptors had only been hypothesized based on anatomically discrete high-affinity TA binding sites in the CNS of humans and other mammals [10,11]. Accordingly, the pharmacological effects of TAs were believed to be mediated through the well known machinery of classical biogenic amines, by either triggering their release, inhibiting their reuptake or by “cross reacting” with their receptor systems [9,12,13]. This view changed significantly with the recent identification of several members of a novel family of GPCRs, the trace amine associated receptors (TAARs) [7,14]. There are 9 TAAR genes in human (including 3 pseudogenes) and 16 genes in mouse (including 1 pseudogene).
  • TAAR genes do not contain introns (with one exception, TAAR2 contains 1 intron) and are located next to each other on the same chromosomal segment.
  • TAAR1 is in the first subclass of four genes (TAAR1-4) highly conserved between human and rodents. TAs activate TAAR1 via G ⁇ s.
  • the invention includes all racemic mixtures, all their corresponding enantiomers and/or optical isomers. In addition, all tautomeric forms of compounds of formula I are also encompassed by the present invention.
  • the invention also provides pharmaceutical compositions containing one or more compound of the invention and a pharmaceutically acceptable carrier.
  • the invention further provides methods for the manufacture of the compounds and compositions of the invention.
  • Compounds of formula I have a good affinity to the trace amine associated receptors (TAARs), especially for TAAR1.
  • the invention provides a method for the treatment of diseases related to the biological function of trace amino associated receptors.
  • Such diseases include depression, anxiety disorders, bipolar disorder, attention deficit hyperactivity disorder (ADHD), stress-related disorders, psychotic disorders such as schizophrenia, neurological diseases such as Parkinson's disease, neurodegenerative disorders such as Alzheimer's disease, epilepsy, migraine, hypertension, substance abuse and metabolic disorders such as eating disorders, diabetes, diabetic complications, obesity, dyslipidemia, disorders of energy consumption and assimilation, disorders and malfunction of body temperature homeostasis, disorders of sleep and circadian rhythm, and cardiovascular disorders.
  • ADHD attention deficit hyperactivity disorder
  • psychotic disorders such as schizophrenia
  • neurological diseases such as Parkinson's disease
  • neurodegenerative disorders such as Alzheimer's disease, epilepsy, migraine, hypertension
  • substance abuse and metabolic disorders such as eating disorders, diabetes, diabetic complications, obesity, dyslipidemia, disorders of energy consumption and assimilation, disorders and malfunction of body temperature homeostasis, disorders of sleep and circadian rhythm, and cardiovascular disorders.
  • the preferred indications using the compounds of the present invention are depression, psychosis, Parkinson's disease, anxiety and attention deficit hyperactivity disorder (ADHD).
  • lower alkyl denotes a saturated straight- or branched-chain group containing from 1 to 7 carbon atoms, for example, methyl, ethyl, propyl, isopropyl, n-butyl, i-butyl, 2-butyl, t-butyl and the like.
  • Preferred alkyl groups are groups with 1-4 carbon atoms.
  • lower alkoxy denotes a group wherein the alkyl residue is as defined above and which is attached via an oxygen atom.
  • lower alkyl substituted by halogen denotes an alkyl group as defined above, wherein at least one hydrogen atom is replaced by halogen, for example CF 3 , CHF 2 , CH 2 F, CH 2 CF 3 , CH 2 CH 2 CF 3 , CH 2 CF 2 CF 3 and the like.
  • lower alkoxy substituted by halogen denotes an alkoxy group as defined above, wherein at least one hydrogen atom is replaced by halogen, for example OCF 3 , OCHF 2 , OCH 2 F, OCH 2 CF 3 , OCH 2 CH 2 CF 3 , OCH 2 CF 2 CF 3 and the like.
  • halogen denotes chlorine, iodine, fluorine and bromine.
  • cycloalkyl is an alkylene ring, containing from 3 to 6 carbon ring atoms.
  • “Pharmaceutically acceptable,” such as pharmaceutically acceptable carrier, excipient, etc., means pharmacologically acceptable and substantially non-toxic to the subject to which the particular compound is administered.
  • pharmaceutically acceptable acid addition salts embraces salts with inorganic and organic acids, such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, citric acid, formic acid, fumaric acid, maleic acid, acetic acid, succinic acid, tartaric acid, methane-sulfonic acid, p-toluenesulfonic acid and the like.
  • “Therapeutically effective amount” means an amount that is effective to prevent, alleviate or ameliorate symptoms of disease or prolong the survival of the subject being treated.
  • Preferred compounds of formula I are those, wherein X is a bond.
  • Preferred compounds of this group of formula I are those, wherein Y is phenyl, substituted by one or more halogen atoms:
  • R 1 is halogen, for n>1 the halogen atoms are the same or different;
  • R 2 is hydrogen, phenyl or lower alkyl; and n is 1, 2 or 3; or a pharmaceutically suitable acid addition salt, for example
  • R 1 is CH 3 , CF 3 , OCH 3 , OCF 3 or OCH 2 -phenyl; for n>1, each R 1 is the same or different; R 2 is hydrogen, phenyl or lower alkyl; and n is 1, 2 or 3; or a pharmaceutically suitable acid addition salt, for example the following compounds
  • R 2 is hydrogen, phenyl or lower alkyl; or a pharmaceutically suitable acid addition salt, for example the following compounds
  • Y is phenyl substituted by halogen and CF 3 , halogen and CH 3 , halogen and cycloalkyl or by halogen and OCH 3 ,
  • R 1 is halogen and CF 3 , or is halogen and CH 3 , or is halogen and cycloalkyl, or is halogen and OCH 3 ; and R 2 is hydrogen, phenyl or lower alkyl; or a pharmaceutically suitable acid addition salt, for example the following compounds
  • Preferred compounds of formula I are further those, wherein X is CHR.
  • Preferred compounds from this group are those, wherein Y is phenyl substituted by halogen, CF 3 , or CH 3 :
  • R 1 is halogen, CF 3 or CH 3 , wherein substituents for n>1 are the same or different;
  • R 2 is hydrogen, phenyl or lower alkyl;
  • R is hydrogen, lower alkyl or lower alkyl substituted by halogen; and
  • n is 1 or 2; or a pharmaceutically suitable acid addition salt, for example the following compounds
  • Preferred compounds of formula I are further those, wherein X is CHRCHR′.
  • Preferred compounds from this group are those, wherein Y is optionally substituted phenyl,
  • Preferred compounds of formula I are further those, wherein X is OCH 2 and Y is optionally substituted phenyl.
  • Preferred compounds of formula I are further those, wherein X is CH 2 OCHR.
  • Preferred compounds from this group are those, wherein Y is phenyl optionally substituted by halogen:
  • Preferred compounds of formula I are further those, wherein X is —(CH 2 ) 3 —
  • Preferred compounds from this group are those, wherein Y is phenyl, for example the following compounds
  • Preferred compounds of formula I are further those, wherein X is —SCH 2 —, —S(O) 2 CH 2 —, or —CH 2 SCH 2 —
  • Preferred compounds from this group are those, wherein Y is phenyl, for example the following compounds
  • Preferred compounds of formula I are further those, wherein X is —CH 2 N(R)CH 2 —, cycloalkyl-CH 2 — or SiRR′—CH 2 —;
  • Preferred compounds from this group are those, wherein Y is optionally substituted phenyl, for example the following compounds
  • Preferred compounds of formula I are further those, wherein X is described above and Y is naphthyl, pyridyl, cyclohexyl, 2,3-dihydrobenzo[1,4]dioxin or 1,2,3,4-tetrahydronaphthalen.
  • the compounds of formula I can be manufactured by the methods given below, by the methods given in the examples or by analogous methods.
  • Appropriate reaction conditions for the individual reaction steps are known to a person skilled in the art.
  • the reaction sequence is not limited to the one displayed in schemes 1 to 9, however, depending on the starting materials and their respective reactivity the sequence of reaction steps can be freely altered.
  • Starting materials are either commercially available or can be prepared by methods analogous to the methods given below, by methods described in references cited in the description or in the examples, or by methods known in the art.
  • Reduction of an ester group can be effected by treatment with LiAlH 4 , LiBH 4 , NaBH 4 or Red-Al in a suitable solvent such as 1,2-dimethoxyethane, THF, diethylether, toluene, MeOH or EtOH at ⁇ 78° C.->reflux for 1-24 hrs.
  • a suitable solvent such as 1,2-dimethoxyethane, THF, diethylether, toluene, MeOH or EtOH at ⁇ 78° C.->reflux for 1-24 hrs.
  • Preferred conditions for acids and esters are LiMH 4 in THF at r.t. overnight, or LiBH 4 /Me 3 SiCl in methanol at 0° C.->r.t. overnight.
  • Step B Cyclisation of the aminoalcohol to the corresponding 2-aminooxazoline can be accomplished by treatment with cyanogen bromide in THF as solvent and K 2 CO 3 as base at r.t. overnight, or by treatment with cyanogen bromide in methanol as solvent and sodium acetate as base at 0° C. to r.t. overnight.
  • Step A Wittig reaction between Garner's aldehyde IV and a benzyl-substituted phosphonic acid diethyl ester V can be accomplished by using a base such as NaH, KOtBu, NaOMe, NaOEt, n-BuLi, LIHMDS, NaHMDS, KHMDS, LDA in a solvent such as THF, dioxane, acetonitrile, 1,2-dimethoxyethan, DMF, benzene, toluene or mixtures thereof at temperatures from ⁇ 78° C.-80° C.
  • a base such as NaH, KOtBu, NaOMe, NaOEt, n-BuLi, LIHMDS, NaHMDS, KHMDS, LDA
  • a solvent such as THF, dioxane, acetonitrile, 1,2-dimethoxyethan, DMF, benzene, toluene or mixtures thereof at temperatures from ⁇ 78° C.-80
  • the base, the carbonyl compound and the base and the optional crown ether can be added to the reaction mixture at the same time without preformation of the ylide at temperatures from ⁇ 78° C.-80° C.
  • Preferred conditions are ylide formation at 0° C. using n-butyl lithium solution in hexane as base and 1,2-dimethoxyethane as solvent, reacting the phosphonic acid ester for 5 min at 0° C., and then condensation with the carbonyl component at reflux overnight.
  • Step B Reduction of the alkene can be effected by hydrogenation with hydrogen under normal or elevated pressure or by transfer hydrogenation using ammonium formate or cyclohexadiene as hydrogen source with a catalyst such as PtO 2 , Pd—C or Raney nickel in solvents such as MeOH, EtOH, H 2 O, dioxane, THF, HOAc, EtOAc CH 2 Cl 2 , CHCl 3 , DMF or mixtures thereof.
  • the reduction of the alkene can be effected by Mg in MeOH or by LiAlH 4 in THF or diethylether.
  • Preferred conditions are hydrogenation in the presence of Pd/C as catalyst with EtOH as solvent.
  • Step C Simultaneous cleavage of the amino alcohol protecting groups can be effected with a mineral acid such as HCl, H 2 SO 4 or H 3 PO 4 or an organic acid such as CF 3 COOH, CHCl 2 COOH, HOAc or p-toluonesulfonic acid in a solvent such as CH 2 Cl 2 , CHCl 3 , THF, MeOH, EtOH or H 2 O at 0 to 60° C.
  • a mineral acid such as HCl, H 2 SO 4 or H 3 PO 4
  • organic acid such as CF 3 COOH, CHCl 2 COOH, HOAc or p-toluonesulfonic acid
  • a solvent such as CH 2 Cl 2 , CHCl 3 , THF, MeOH, EtOH or H 2 O at 0 to 60° C.
  • Preferred conditions are 2N HCl in EtOH at reflux for 1-3 hrs or 4N HCl in dioxane at r.t. overnight.
  • Step D Cyclisation of the amino alcohol to the corresponding 2-aminooxazoline can be accomplished by treatment with cyanogen bromide in THF as solvent and K 2 CO 3 as base at r.t. overnight, or by treatment with cyanogen bromide in methanol as solvent and sodium acetate as base at 0° C. to r.t. overnight.
  • Step A The synthesis of the Julia reagent (benzothiazole-2-sulfonyl derivative) IX from ‘Garner's alcohol’ VIII was accomplished as described in literature (Dandanpani, S. et al., Journal of Organic Chemistry 2005, 70(23), 9447).
  • Step B Julia reaction between an Y-aldehyde or ketone and the benzothiazole sulfonyl compound can be accomplished by using a base such as LiHMDS, NaHMDS, KHMDS, LDA, KOtBu, DBU in a solvent such as THF, diethyl ether, 1,2-dimethoxyethane, dichloromethane, DMF or mixtures thereof at temperatures from ⁇ 100° C.—r.t. for 15 min-8 hrs for anion generation and then condensing the ylide with the carbonyl compound in the same solvent at temperatures between ⁇ 100° C. and r.t. for 1-24 hrs.
  • Preferred conditions are anion generation with LiHMDS at ⁇ 78° C. in THF and subsequent condensation with the carbonyl component under the same conditions.
  • Step C Simultaneous cleavage of the amino alcohol protecting groups can be effected with a mineral acid such as HCl, H 2 SO 4 or H 3 PO 4 or a organic acid such as CF 3 COOH, CHCl 2 COOH, HOAc or p-toluonesulfonic acid in a solvent such as CH 2 Cl 2 , CHCl 3 , THF, MeOH, EtOH or H 2 O at 0 to 60° C.
  • a mineral acid such as HCl, H 2 SO 4 or H 3 PO 4
  • organic acid such as CF 3 COOH, CHCl 2 COOH, HOAc or p-toluonesulfonic acid
  • a solvent such as CH 2 Cl 2 , CHCl 3 , THF, MeOH, EtOH or H 2 O at 0 to 60° C.
  • Preferred conditions are 2N HCl in EtOH at reflux for 1-3 hrs or 4N HCl in dioxane at r.t. overnight.
  • Step D Cyclisation of the amino alcohol to the corresponding 2-aminooxazoline can be accomplished by treatment with cyanogen bromide in THF as solvent and K 2 CO 3 as base at r.t. overnight, or by treatment with cyanogen bromide in methanol as solvent and sodium acetate as base at 0° C. to r.t. overnight.
  • Step A Mitsunobu reaction of ‘Garner's alcohol’ VIII with phenol derivatives X or thiophenol derivatives X can be accomplished by using a phosphine such as triphenylphosphine and an azodicarboxylate reagent such as diethylazodicarboxylate, diisopropylazodicarboxylate, or di-tert-butylazodicarboxylate in a solvent such as THF at temperatures from 50° C.-70° C. for 1-18 hrs.
  • Preferred conditions are triphenylphosphine and di-tert-butylazodicarboxylate in THF at 60° C. for 16 h.
  • Step B Simultaneous cleavage of the amino alcohol protecting groups can be effected with a mineral acid such as HCl, H 2 SO 4 or H 3 PO 4 or a organic acid such as CF 3 COOH, CHCl 2 COOH, HOAc or p-toluonesulfonic acid in a solvent such as CH 2 Cl 2 , CHCl 3 , THF, MeOH, EtOH or H 2 O at 0 to 60° C.
  • a mineral acid such as HCl, H 2 SO 4 or H 3 PO 4
  • organic acid such as CF 3 COOH, CHCl 2 COOH, HOAc or p-toluonesulfonic acid
  • a solvent such as CH 2 Cl 2 , CHCl 3 , THF, MeOH, EtOH or H 2 O at 0 to 60° C.
  • Preferred conditions are 2N HCl in EtOH at reflux for 1-3 hrs or 4N HCl in dioxane at r.t. overnight.
  • Step C Cyclisation of the amino alcohol to the corresponding 2-aminooxazoline can be accomplished by treatment with cyanogen bromide in THF as solvent and K 2 CO 3 as base at r.t. overnight, or by treatment with cyanogen bromide in methanol as solvent and sodium acetate as base at 0° C. to r.t. overnight.
  • Step A Conversion of Garner's aldehyde IV to the dibromo-alkene derivative XII can be accomplished by using a brominating agent such as carbon tetrabromide in the presence of a phosphine such as triphenylphosphine in a chlorinated solvent such as dichloromethane at temperatures between 0° C. and room temperature.
  • a brominating agent such as carbon tetrabromide
  • a phosphine such as triphenylphosphine
  • a chlorinated solvent such as dichloromethane
  • Step B Suzuki reaction of dibromo-alkene derivative XII with an arylboronic acid XIII can be accomplished using a palladium catalyst such as tris(dibenzylideneacetone)dipalladium (0) in the presence of a phosphine such as tris(2-furyl)phosphine and a base such as aqueous sodium carbonate in a solvent such as THF, dioxane, 1,2-dimethoxyethan, DMF, benzene, toluene or mixtures thereof at temperatures from 50° C.-100° C. for 1-18 hrs.
  • a palladium catalyst such as tris(dibenzylideneacetone)dipalladium (0)
  • a phosphine such as tris(2-furyl)phosphine
  • a base such as aqueous sodium carbonate
  • a solvent such as THF, dioxane, 1,2-dimethoxyethan, DMF, benzen
  • Negishi reaction of bromo-alkene derivative XIV with a dialkylzinc reagent XV can be accomplished using a palladium catalyst such as bis(tri-tert-butylphosphine)dipalladium (0) in a solvent such as THF, dioxane, 1,2-dimethoxyethan, DMF, benzene, toluene or mixtures thereof at temperatures from 20° C.-100° C. for 1-18 hrs. Preferred conditions are a THF-toluene mixture at room temperature.
  • a palladium catalyst such as bis(tri-tert-butylphosphine)dipalladium (0)
  • a solvent such as THF, dioxane, 1,2-dimethoxyethan, DMF, benzene, toluene or mixtures thereof at temperatures from 20° C.-100° C. for 1-18 hrs.
  • Preferred conditions are a THF-toluene mixture at room temperature.
  • Step D Reduction of the alkene can be effected by hydrogenation with hydrogen under normal or elevated pressure or by transfer hydrogenation using ammonium formate or cyclohexadiene as hydrogen source with a catalyst such as PtO 2 , Pd—C or Raney nickel in solvents such as MeOH, EtOH, H 2 O, dioxane, THF, HOAc, EtOAc CH 2 Cl 2 , CHCl 3 , DMF or mixtures thereof.
  • the reduction of the alkene can be effected by Mg in MeOH or by LiAlH 4 in THF or diethylether.
  • Preferred conditions for R 1 ⁇ chlorine are hydrogenation in the presence of Pd/C as catalyst with EtOH as solvent.
  • Step E Simultaneous cleavage of the amino alcohol protecting groups can be effected with a mineral acid such as HCl, H 2 SO 4 or H 3 PO 4 or an organic acid such as CF 3 COOH, CHCl 2 COOH, HOAc or p-toluonesulfonic acid in a solvent such as CH 2 Cl 2 , CHCl 3 , THF, MeOH, EtOH or H 2 O at 0 to 60° C.
  • a mineral acid such as HCl, H 2 SO 4 or H 3 PO 4
  • organic acid such as CF 3 COOH, CHCl 2 COOH, HOAc or p-toluonesulfonic acid
  • a solvent such as CH 2 Cl 2 , CHCl 3 , THF, MeOH, EtOH or H 2 O at 0 to 60° C.
  • Preferred conditions are 2N HCl in EtOH at reflux for 1-3 hrs or 4N HCl in dioxane at r.t. overnight.
  • Steps D and E can also be carried out in the opposite order, in which case the stereochemical preference of the hydrogenation step is typically reversed.
  • Step F Cyclisation of the amino alcohol to the corresponding 2-aminooxazoline can be accomplished by treatment with cyanogen bromide in THF as solvent and K 2 CO 3 as base at r.t. overnight, or by treatment with cyanogen bromide in methanol as solvent and sodium acetate as base at 0° C. to r.t. overnight.
  • Step A Coupling of 4-ethinyl-2,2-dimethyl-1,3-oxazolidine-3-carboxylate XVIII (Dickson, H. D. et al Tetrahedron Lett. 2004, 45 (29), 5597-5599; Pietruszka, J. et al Eur. J. Org. Chem. 2003, 3219-3229) with an aryl or hetaryl bromide or iodide XIX in the presence of a palladium and a copper(I) salt in a solvent such as dioxane, tetrahydrofurane, benzene, triethylamine or the like.
  • a solvent such as dioxane, tetrahydrofurane, benzene, triethylamine or the like.
  • Preferred conditions are the use of copper(I)-iodide and bis(triphenylphosphine)palladium(II) chloride with triethylamine as solvent at room temperature.
  • Step B Reduction of the alkyne XX can be effected by hydrogenation with hydrogen under normal or elevated pressure or by transfer hydrogenation using ammonium formate or cyclohexadiene as hydrogen source with a catalyst such as PtO 2 , Pd—C or Raney nickel in solvents such as MeOH, EtOH, H 2 O, dioxane, THF, HOAc, EtOAc CH 2 Cl 2 , CHCl 3 , DMF or mixtures thereof.
  • the reduction of the alkyne can be effected by Mg in MeOH or by LiAlH 4 in THF or diethylether.
  • Preferred conditions are transfer hydrogenation using ammonium formate in the presence of Pd/C as catalyst with MeOH as solvent.
  • Step C Simultaneous cleavage of the amino alcohol protecting groups can be effected with a mineral acid such as HCl, H 2 SO 4 or H 3 PO 4 or an organic acid such as CF 3 COOH, CHCl 2 COOH, HOAc or p-toluonesulfonic acid in a solvent such as CH 2 Cl 2 , CHCl 3 , THF, MeOH, EtOH or H 2 O at 0 to 60° C.
  • a mineral acid such as HCl, H 2 SO 4 or H 3 PO 4
  • organic acid such as CF 3 COOH, CHCl 2 COOH, HOAc or p-toluonesulfonic acid
  • a solvent such as CH 2 Cl 2 , CHCl 3 , THF, MeOH, EtOH or H 2 O at 0 to 60° C.
  • Preferred conditions are 2N HCl in EtOH at reflux for 1-3 hrs or 4N HCl in dioxane at r.t. overnight.
  • Step D Cyclisation of the amino alcohol to the corresponding 2-aminooxazoline can be accomplished by treatment with cyanogen bromide in THF as solvent and K 2 CO 3 as base at r.t. overnight, or by treatment with cyanogen bromide in methanol as solvent and sodium acetate as base at 0° C. to r.t. overnight.
  • Step A Deprotonation of bis-lactimether XXI (also called “Schöllkopf's chiral auxiliary”) with a suitable base such as n-butyl-lithium or tert-butyl-lithium in an appropriate organic solvent such as tetrahydrofuran at a low temperature followed by addition of the organic halide XXII and reaction for several hours leads to product XXIII (Vassiliou, S. et al Synlett 2003, 2398-2400; Schöllkopf, U. Topics Curr. Chem. 1983, 109, 65).
  • Preferred conditions are the use of tert-butyllithium and an organic iodide in tetrahydrofuran at ⁇ 78° C. and allowing the mixture to reach room temperature overnight.
  • Step B Cleavage of bis-lactim ether product XXIII under acidic conditions using a mineral acid such as HCl, H 2 SO 4 or H 3 PO 4 or an organic acid such as CF 3 COOH, CHCl 2 COOH, HOAc or p-toluonesulfonic acid in a solvent such as acetonitrile, CH 2 Cl 2 , CHCl 3 , THF, MeOH, EtOH or H 2 O at 0 to 60° C.
  • a mineral acid such as HCl, H 2 SO 4 or H 3 PO 4
  • organic acid such as CF 3 COOH, CHCl 2 COOH, HOAc or p-toluonesulfonic acid
  • a solvent such as acetonitrile, CH 2 Cl 2 , CHCl 3 , THF, MeOH, EtOH or H 2 O at 0 to 60° C.
  • Preferred conditions are a 10% trifluoroacetic acid in a mixture of water and acetonitrile (1:3) at 40° C. overnight.
  • Step C Reduction of the ester XXIV can be effected by treatment with LiAiH 4 , LiBH 4 , NaBH 4 or Red-Al in a suitable solvent such as 1,2-dimethoxyethane, THF, diethylether, toluene, MeOH or EtOH at ⁇ 78° C.->reflux for 1-24 hrs.
  • a suitable solvent such as 1,2-dimethoxyethane, THF, diethylether, toluene, MeOH or EtOH at ⁇ 78° C.->reflux for 1-24 hrs.
  • Preferred conditions for acids and esters are LiAiH 4 in THF at r.t. overnight.
  • Step D Cyclisation of the amino alcohol II-4 to the corresponding 2-aminooxazoline 1-4 can be accomplished by treatment with cyanogen bromide in THF as solvent and K 2 CO 3 as base at r.t. overnight, or by treatment with cyanogen bromide in methanol as solvent and sodium acetate as base at 0° C. to r.t. overnight.
  • Homochiral alcohols of formula XXVIII may be prepared by a variety of methods reported in the chemical literature, for instance starting from carboxylic acids of formula XXV and using the methodologies of Evans et al. (ref [1]) or Meyers et al. (ref [2]). According to these procedures, introduction of a chiral auxilliary, such as the Evans oxazolidinone auxiliary (ref [1]) or the Meyers pseudoephedrine-derived auxiliary (ref [2]) affords a homochiral acyl compound of formula XXVI. Enolisation of the acyl compound XX with a suitable base followed by treatment with an alkyl halide affords compounds of formula XXVII. Reductive removal of the chiral auxiliary then affords the homochiral alcohols of formula XXVIII.
  • a chiral auxilliary such as the Evans oxazolidinone auxiliary (ref [1]) or the Meyers
  • Step A: Homochiral alcohol XXVIII may be converted to the corresponding alkyl iodide XXIX using a reagent system comprising imidazole, triphenylphosphine and iodine in dichloromethane (Müller, P. & Boléa, C. Helv. Chim. Acta 2002, 85, 483-494) or sequential treatment with p-toluensulphonyl chloride/pyridine and sodium iodide in acetone (Taber, D. F. et al. J. Am. Chem. Soc. 1985, 107, 196-199).
  • Preferred conditions are the use of imidazole, triphenylphosphine and iodine in dichloromethane.
  • Step B Deprotonation of bis-lactimether XXI (also called “Schöllkopf's chiral auxiliary”) with a suitable base such as n-butyl-lithium or tert-butyl-lithium in an appropriate organic solvent such as tetrahydrofuran at a low temperature followed by addition of the homochiral alkyl iodide XXIX and reaction for several hours leads to product XXX (Vassiliou, S. et al Synlett 2003, 2398-2400; Schöllkopf, U. Topics Curr. Chem. 1983, 109, 65).
  • Preferred conditions are the use of n-butyllithium at ⁇ 78° C. and allowing the mixture to reach room temperature overnight.
  • Step C Cleavage of bis-lactim ether product XXX under acidic conditions using a mineral acid such as HCl, H 2 SO 4 or H 3 PO 4 or an organic acid such as CF 3 COOH, CHCl 2 COOH, HOAc or p-toluonesulfonic acid in a solvent such as acetonitrile, CH 2 Cl 2 , CHCl 3 , THF, MeOH, EtOH or H 2 O at 0 to 60° C.
  • Preferred conditions are a 10% trifluoroacetic acid in a mixture of water and acetonitrile (1:3) at room temperature overnight.
  • Step D Reduction of the ester XXXI can be effected by treatment with LiAlH 4 , LiBH 4 , NaBH 4 or Red-Al in a suitable solvent such as 1,2-dimethoxyethane, THF, diethylether, toluene, MeOH or EtOH at ⁇ 78° C.->reflux for 1-24 hrs.
  • a suitable solvent such as 1,2-dimethoxyethane, THF, diethylether, toluene, MeOH or EtOH at ⁇ 78° C.->reflux for 1-24 hrs.
  • Preferred conditions for acids and esters are LiAlH 4 in THF at r.t. overnight.
  • Step E Cyclisation of the amino alcohol II-5 to the corresponding 2-aminooxazoline I-5 can be accomplished by treatment with cyanogen bromide in THF as solvent and K 2 CO 3 as base at r.t. overnight, or by treatment with cyanogen bromide in methanol as solvent and sodium acetate as base at 0° C. to r.t. overnight.
  • a primary amine compound of formula XXXII-1 can be accomplished by a reducing agent such as NaBH 4 , LiBH 4 , NaBH(OAc) 3 or Na(CN)BH 3 in a solvent such as MeOH, EtOH, dichloromethane, 1,2-dichloroethane, THF, dioxane or mixtures thereof in the presence of an activating protic acid such as HCl or a carboxylic acid or an activating Lewis acid such as ZnCl 2 or Ti(OiPr) 4 at a temperature of ⁇ 10 to 60° C. for 1-40 h.
  • a reducing agent such as NaBH 4 , LiBH 4 , NaBH(OAc) 3 or Na(CN)BH 3
  • a solvent such as MeOH, EtOH, dichloromethane, 1,2-dichloroethane, THF, dioxane or mixtures thereof in the presence of an activating protic acid such as HCl or a carboxylic acid or an activating Lewis
  • Preferred conditions are heating of compound XXXII-1 and compound IV in MeOH at 60° C. overnight, followed by treatment with NaBH 4 in MeOH at room temperature.
  • Step B Alkylation of the compound of formula XXXIII-1 to compound of formula XXXIII-2 can by accomplished by treatment with a suitable aldehyde RCHO in the presence of a reducing agent such as NaBH 4 , LiBH 4 , NaBH(OAc) 3 or Na(CN)BH 3 in a solvent such as MeOH, EtOH, dichloromethane, 1,2-dichloroethane, THF, dioxane or mixtures thereof in the presence of an activating protic acid such as HCl or a carboxylic acid or an activating Lewis acid such as ZnCl 2 or Ti(OiPr) 4 at a temperature of ⁇ 10 to 60° C. for 1-40 h.
  • a suitable aldehyde RCHO in the presence of a reducing agent such as NaBH 4 , LiBH 4 , NaBH(OAc) 3 or Na(CN)BH 3 in a solvent such as MeOH, EtOH, dichloromethane, 1,2-dichloroethane
  • Step C Preparation of a compound of formula XXXIII-2 may alternatively be accomplished by reductive amination of a secondary amine compound of formula XXXIII-2 and Garner's aldehyde (from L- or D-serine; Garner, P.; Park, J. M. Org. Synth.
  • Preferred conditions are NaBH 3 CN and ZnCl 2 in MeOH at r.t.—40° C. overnight.
  • Step D Simultaneous cleavage of the amino alcohol protecting groups of the compound of formula XXXIII-2 can be effected with a mineral acid such as HCl, H 2 SO 4 or H 3 PO 4 or a organic acid such as CF 3 COOH, CHCl 2 COOH, HOAc or p-toluonesulfonic acid in a solvent such as CH 2 Cl 2 , CHCl 3 , THF, MeOH, EtOH or H 2 O at 0 to 60° C.
  • Preferred conditions are 2N HCl in EtOH at reflux for 1-3 hrs or 4N HCl in dioxane at r.t. overnight.
  • Step E Cyclisation of the amino alcohol II-6 to the corresponding 2-aminooxazoline I-6 can be accomplished by treatment with cyanogen bromide in THF as solvent and K 2 CO 3 as base at r.t. overnight, or by treatment with cyanogen bromide in methanol as solvent and sodium acetate as base at 0° C. to r.t. overnight.
  • Isolation and purification of the compounds and intermediates described herein can be effected, if desired, by any suitable separation or purification procedure such as, for example, filtration, extraction, crystallization, column chromatography, thin-layer chromatography, thick-layer chromatography, preparative low or high-pressure liquid chromatography or a combination of these procedures.
  • suitable separation and isolation procedures can be had by reference to the preparations and examples herein below. However, other equivalent separation or isolation procedures could, of course, also be used. Racemic mixtures of chiral compounds of formula I can be separated using chiral HPLC.
  • the compounds of formula I are basic and may be converted to a corresponding acid addition salt.
  • the conversion is accomplished by treatment with at least a stoichiometric amount of an appropriate acid, such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like.
  • an appropriate acid such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like
  • organic acids such as acetic acid, propionic acid, glycolic acid,
  • the free base is dissolved in an inert organic solvent such as diethyl ether, ethyl acetate, chloroform, ethanol or methanol and the like, and the acid added in a similar solvent.
  • an inert organic solvent such as diethyl ether, ethyl acetate, chloroform, ethanol or methanol and the like.
  • the temperature is maintained between 0° C. and 50° C.
  • the resulting salt precipitates spontaneously or may be brought out of solution with a less polar solvent.
  • the acid addition salts of the basic compounds of formula I may be converted to the corresponding free bases by treatment with at least a stoichiometric equivalent of a suitable base such as sodium or potassium hydroxide, potassium carbonate, sodium bicarbonate, ammonia, and the like.
  • a suitable base such as sodium or potassium hydroxide, potassium carbonate, sodium bicarbonate, ammonia, and the like.
  • the compounds of formula I and their pharmaceutically usable addition salts possess valuable pharmacological properties. Specifically, it has been found that the compounds of the present invention have a good affinity to the trace amine associated receptors (TAARs), especially TAAR1.
  • TAARs trace amine associated receptors
  • HEK293 cells (ATCC # CRL-1573) were cultured essentially as described Lindemann et al. (2005).
  • HEK293 cells were transfected with the pIRESneo2 expression plasmids containing the TAAR coding sequences (described above) with Lipofectamine 2000 (Invitrogen) according to the instructions of the manufacturer, and 24 hrs post transfection the culture medium was supplemented with 1 mg/ml G418 (Sigma, Buchs, Switzerland).
  • Cells at confluence were rinsed with ice-cold phosphate buffered saline without Ca 2+ and Mg 2+ containing 10 mM EDTA and pelleted by centrifugation at 1000 rpm for 5 min at 4° C. The pellet was then washed twice with ice-cold phosphate buffered saline and cell pellet was frozen immediately by immersion in liquid nitrogen and stored until use at ⁇ 80° C. Cell pellet was then suspended in 20 ml HEPES-NaOH (20 mM), pH 7.4 containing 10 mM EDTA, and homogenized with a Polytron (PT 3000, Kinematica) at 10,000 rpm for 10 s.
  • PT 3000, Kinematica Polytron
  • the homogenate was centrifuged at 48,000 ⁇ g for 30 min at 4° C. and the pellet resuspended in 20 ml HEPES-NaOH (20 mM), pH 7.4 containing 0.1 mM EDTA (buffer A), and homogenized with a Polytron at 10,000 rpm for 10 s. The homogenate was then centrifuged at 48,000 ⁇ g for 30 min at 4° C. and the pellet resuspended in 20 ml buffer A, and homogenized with a Polytron at 10,000 rpm for 10 s. Protein concentration was determined by the method of Pierce (Rockford, Ill.).
  • the homogenate was then centrifuged at 48,000 ⁇ g for 10 min at 4° C., resuspended in HEPES-NaOH (20 mM), pH 7.0 including MgCl 2 (10 mM) and CaCl 2 g protein per ml and (2 mM) (buffer B) at 200 homogenized with a Polytron at 10,000 rpm for 10 s.
  • Binding assay was performed at 4° C. in a final volume of 1 ml, and with an incubation time of 30 min.
  • the radioligand [ 3 H]-rac-2-(1,2,3,4-tetrahydro-1-naphthyl)-2-imidazoline was used at a concentration equal to the calculated K d value of 60 nM to give a bound at around 0.1% of the total added radioligand concentration, and a specific binding which represented approximately 70-80% of the total binding.
  • Non-specific binding was defined as the amount of [ 3 H]-rac-2-(1,2,3,4-tetrahydro-1-naphthyl)-2-imidazoline bound in the presence of the appropriate unlabelled ligand (10 ⁇ M).
  • Competing ligands were tested in a wide range of concentrations (10 ⁇ M-30 ⁇ M). The final dimethylsulphoxide concentration in the assay was 2%, and it did not affect radioligand binding. Each experiment was performed in duplicate. All incubations were terminated by rapid filtration through UniFilter-96 plates (Packard Instrument Company) and glass filter GF/C, pre-soaked for at least 2 h in polyethylenimine 0.3%, and using a Filtermate 96 Cell Harvester (Packard Instrument Company). The tubes and filters were then washed 3 times with 1 ml aliquots of cold buffer B. Filters were not dried and soaked in Ultima gold (45 ⁇ l/well, Packard Instrument Company) and bound radioactivity was counted by a TopCount Microplate Scintillation Counter (Packard Instrument Company).
  • the preferred compounds show a Ki value ( ⁇ M) in mouse or rat on TAAR1 in the range of ⁇ 0.01 ⁇ M.
  • Ki value ⁇ M
  • the values for representative compounds are shown in the table below.
  • the present invention also provides pharmaceutical compositions containing compounds of the invention, for example, compounds of formula I or pharmaceutically acceptable salts thereof and a pharmaceutically acceptable carrier.
  • Such pharmaceutical compositions can be in the form of tablets, coated tablets, dragées, hard and soft gelatin capsules, solutions, emulsions or suspensions.
  • the pharmaceutical compositions also can be in the form of suppositories or injectable solutions.
  • compositions of the invention in addition to one or more compounds of the invention, contain a pharmaceutically acceptable carrier.
  • suitable pharmaceutically acceptable carriers include pharmaceutically inert, inorganic or organic carriers. Lactose, corn starch or derivatives thereof, talc, stearic acids or its salts and the like can be used, for example, as such carriers for tablets, coated tablets, dragées and hard gelatine capsules.
  • Suitable carriers for soft gelatin capsules are, for example, vegetable oils, waxes, fats, semi-solid and liquid polyols and the like. Depending on the nature of the active substance no carriers are however usually required in the case of soft gelatin capsules.
  • Suitable carriers for the production of solutions and syrups are, for example, water, polyols, glycerol, vegetable oil and the like.
  • Suitable carriers for suppositories are, for example, natural or hardened oils, waxes, fats, semi-liquid or liquid polyols and the like.
  • compositions can, moreover, contain preservatives, solubilizers, stabilizers, wetting agents, emulsifiers, sweeteners, colorants, flavotants, salts for varying the osmotic pressure, buffers, masking agents or antioxidants. They can also contain still other therapeutically valuable substances.
  • the present invention also provides a method for the manufacture of pharmaceutical compositions. Such process comprises bringing one or more compounds of formula I and/or pharmaceutically acceptable acid addition salts thereof and, if desired, one or more other therapeutically valuable substances into a galenical administration form together with one or more therapeutically inert carriers.
  • the most preferred indications in accordance with the present invention are those, which include disorders of the central nervous system, for example the treatment or prevention of depression, psychosis, Parkinson's disease, anxiety and attention deficit hyperactivity disorder (ADHD).
  • the present invention provides methods of the treatment of depression, psychosis, Parkinson's disease, anxiety and attention deficit hyperactivity disorder (ADHD) which comprises administering a therapeutically effective amount of a compound of formula I or a pharmaceutically acceptable acid addition salt thereof.
  • the dosage at which compounds of the invention can be administered can vary within wide limits and will, of course, have to be adjusted to the individual requirements in each particular case.
  • the dosage for adults can vary from about 0.01 mg to about 1000 mg per day of a compound of general formula I or of the corresponding amount of a pharmaceutically acceptable salt thereof.
  • the daily dosage may be administered as single dose or in divided doses and, in addition, the upper limit can also be exceeded when this is found to be indicated.
  • Tablet Formulation mg/tablet Item Ingredients 5 mg 25 mg 100 mg 500 mg 1. Compound of formula I 5 25 100 500 2. Lactose Anhydrous DTG 125 105 30 150 3. Sta-Rx 1500 6 6 6 30 4. Microcrystalline Cellulose 30 30 30 150 5. Magnesium Stearate 1 1 1 1 Total 167 167 167 831
  • Capsule Formulation mg/capsule Item Ingredients 5 mg 25 mg 100 mg 500 mg 1. Compound of formula I 5 25 100 500 2. Hydrous Lactose 159 123 148 — 3. Corn Starch 2 35 40 70 4. Talc 10 15 10 25 5. Magnesium Stearate 1 2 2 5 Total 200 200 300 600
  • the reaction flask was removed from the tritiation apparatus and the residue was suspended in ethanol.
  • the specific activity was 17.5 Ci/mole according to mass spectrometry.
  • the enantiomeric purity was over 99% according to HPLC (column: Chiralpak AD 10 ⁇ m 4.6 ⁇ 250 mm; mobile phase: 10% ethanol in n-heptane; flow rate: 1 ml/min; UV: 220 nm).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Diabetes (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Psychiatry (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Cardiology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Anesthesiology (AREA)
  • Psychology (AREA)
  • Addiction (AREA)
  • Hospice & Palliative Care (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
US12/011,384 2007-02-02 2008-01-25 2-Aminooxazolines as TAAR1 ligands Abandoned US20080261920A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/639,076 US20100120864A1 (en) 2007-02-02 2009-12-16 2-aminooxazolines as taar1 ligands
US13/426,736 US8604061B2 (en) 2007-02-02 2012-03-22 2-aminooxazolines as TAAR1 ligands

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07101681.0 2007-02-02
EP07101681 2007-02-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/639,076 Continuation US20100120864A1 (en) 2007-02-02 2009-12-16 2-aminooxazolines as taar1 ligands

Publications (1)

Publication Number Publication Date
US20080261920A1 true US20080261920A1 (en) 2008-10-23

Family

ID=39259491

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/011,384 Abandoned US20080261920A1 (en) 2007-02-02 2008-01-25 2-Aminooxazolines as TAAR1 ligands
US12/639,076 Abandoned US20100120864A1 (en) 2007-02-02 2009-12-16 2-aminooxazolines as taar1 ligands
US13/426,736 Expired - Fee Related US8604061B2 (en) 2007-02-02 2012-03-22 2-aminooxazolines as TAAR1 ligands

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/639,076 Abandoned US20100120864A1 (en) 2007-02-02 2009-12-16 2-aminooxazolines as taar1 ligands
US13/426,736 Expired - Fee Related US8604061B2 (en) 2007-02-02 2012-03-22 2-aminooxazolines as TAAR1 ligands

Country Status (24)

Country Link
US (3) US20080261920A1 (ko)
EP (1) EP2114906B1 (ko)
JP (1) JP5248528B2 (ko)
KR (2) KR101275405B1 (ko)
CN (1) CN101600700B (ko)
AR (1) AR065128A1 (ko)
AU (1) AU2008209860A1 (ko)
BR (1) BRPI0806940A2 (ko)
CA (1) CA2675221C (ko)
CL (1) CL2008000255A1 (ko)
CO (1) CO6321133A2 (ko)
CR (1) CR10926A (ko)
EC (1) ECSP099551A (ko)
ES (1) ES2510546T3 (ko)
IL (1) IL199783A0 (ko)
MA (1) MA31165B1 (ko)
MX (1) MX2009008255A (ko)
NZ (1) NZ578260A (ko)
PE (1) PE20081755A1 (ko)
RU (1) RU2473545C2 (ko)
TW (1) TW200838507A (ko)
UA (1) UA98951C2 (ko)
WO (1) WO2008092785A1 (ko)
ZA (1) ZA200905102B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090209529A1 (en) * 2008-02-18 2009-08-20 Matteo Andreini 4,5-dihydro-oxazol-2-yl amine derivatives

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592348B2 (en) 2003-12-15 2009-09-22 Schering Corporation Heterocyclic aspartyl protease inhibitors
US7763609B2 (en) 2003-12-15 2010-07-27 Schering Corporation Heterocyclic aspartyl protease inhibitors
US7700603B2 (en) 2003-12-15 2010-04-20 Schering Corporation Heterocyclic aspartyl protease inhibitors
RU2460725C2 (ru) 2007-02-15 2012-09-10 Ф. Хоффманн-Ля Рош Аг Новые 2-аминооксазолины в качестве лигандов taar1
WO2010010014A1 (en) * 2008-07-24 2010-01-28 F. Hoffmann-La Roche Ag 4,5-dihydro-oxazol-2-yl derivatives
US8242153B2 (en) 2008-07-24 2012-08-14 Hoffmann-La Roche Inc. 4,5-dihydro-oxazol-2YL derivatives
PE20110805A1 (es) 2008-09-11 2011-11-09 Amgen Inc Compuestos con anillos espiro-triciclicos como moduladores de beta-secretasas y metodos de uso
US20100311798A1 (en) * 2009-06-05 2010-12-09 Decoret Guillaume 2-aminooxazolines as taar1 ligands
US8354441B2 (en) 2009-11-11 2013-01-15 Hoffmann-La Roche Inc. Oxazoline derivatives
US9452980B2 (en) 2009-12-22 2016-09-27 Hoffmann-La Roche Inc. Substituted benzamides
US8497264B2 (en) 2010-03-15 2013-07-30 Amgen Inc. Amino-oxazines and amino-dihydrothiazine compounds as beta-secretase modulators and methods of use
WO2011115938A1 (en) 2010-03-15 2011-09-22 Amgen Inc. Spiro-tetracyclic ring compounds as beta - secretase modulators
US9132136B2 (en) * 2010-08-02 2015-09-15 Hoffmann-La Roche Inc. Pharmaceutical combination
WO2012019056A1 (en) 2010-08-05 2012-02-09 Amgen Inc. Amino-iso-indole, amino-aza-iso-indole, amino-dihydroisoquinoline and amino-benzoxazine compounds as beta-secretase modulators and methods of use
US8673950B2 (en) * 2010-11-02 2014-03-18 Hoffmann-Laroche Inc. Dihydrooxazol-2-amine derivatives
WO2012071279A1 (en) 2010-11-23 2012-05-31 Amgen Inc. Spiro-amino-imidazolone and spiro-amino-dihydro-pyrimidinone compounds as beta-secretase modulators and methods of use
US9101769B2 (en) 2011-01-03 2015-08-11 The Regents Of The University Of California High density epidural stimulation for facilitation of locomotion, posture, voluntary movement, and recovery of autonomic, sexual, vasomotor, and cognitive function after neurological injury
WO2012109165A1 (en) 2011-02-07 2012-08-16 Amgen Inc. 5-amino-oxazepine and 5-amino-thiazepane compounds as beta-secretase antagonists and methods of use
EP2675810A1 (en) 2011-02-15 2013-12-25 Amgen Inc. Spiro-amino-imidazo-fused heterocyclic compounds as beta-secretase modulators and methods of use
EP2567959B1 (en) 2011-09-12 2014-04-16 Sanofi 6-(4-hydroxy-phenyl)-3-styryl-1h-pyrazolo[3,4-b]pyridine-4-carboxylic acid amide derivatives as kinase inhibitors
WO2013044092A1 (en) 2011-09-21 2013-03-28 Amgen Inc. Amino-oxazines and amino-dihydrothiazine compounds as beta-secretase modulators and methods of use
US9725469B2 (en) 2012-11-15 2017-08-08 Amgen, Inc. Amino-oxazine and amino-dihydrothiazine compounds as beta-secretase modulators and methods of use
US9115054B2 (en) 2013-02-21 2015-08-25 Bristol-Myers Squibb Company Tetrahydronaphthalenyl compounds useful as sipi agonists
EP2821072A1 (en) * 2013-07-01 2015-01-07 Ecole Polytechnique Fédérale de Lausanne (EPFL) Pharmacological stimulation to facilitate and restore standing and walking functions in spinal cord disorders
RU2731095C2 (ru) 2016-03-17 2020-08-28 Ф. Хоффманн-Ля Рош Аг Производное 5-этил-4-метил-пиразол-3-карбоксамида, обладающее активностью агониста taar
CN109071518A (zh) 2016-05-04 2018-12-21 普渡制药公司 噁唑啉假二聚体、药物组合物及其用途
WO2017210616A1 (en) * 2016-06-02 2017-12-07 Purdue Pharma L.P. Trace amine associated receptor 1 agonists and partial agonists for pain treatment
KR102233455B1 (ko) * 2017-06-21 2021-03-29 주식회사 대웅제약 4-메톡시피롤 유도체의 중간체 제조 방법
CN107602381B (zh) * 2017-09-11 2021-03-16 陕西莱特光电材料股份有限公司 一种萘甲酸酯类衍生物及其制备方法
DE18205821T1 (de) 2018-11-13 2020-12-24 Gtx Medical B.V. Steuerungssystem zur bewegungsrekonstruktion und/oder wiederherstellung für einen patienten
DE18205817T1 (de) 2018-11-13 2020-12-24 Gtx Medical B.V. Sensor in bekleidung von gliedmassen oder schuhwerk
EP3695878B1 (en) 2019-02-12 2023-04-19 ONWARD Medical N.V. A system for neuromodulation
WO2023235844A2 (en) * 2022-06-03 2023-12-07 Axsome Therapeutics Carbamoyl phenylalaninol compounds as taar1 agonists

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2161938A (en) * 1934-07-31 1939-06-13 Soc Of Chemical Ind Imidazolines
US2457047A (en) * 1946-02-13 1948-12-21 Monsanto Chemicals 2-(2'-thenyl)-4, 5-dihydroimidazoles and process for making the same
US2731471A (en) * 1956-01-17 Nxg hi
US2744909A (en) * 1955-06-27 1956-05-08 Bristol Lab Inc 2-(ortho-phenylbenzyl) imidazoline and acid addition salts
US2744910A (en) * 1955-06-27 1956-05-08 Bristol Lab Inc 2-(ortho-benzylbenzyl)-imidazoline and acid addition salts
US2778836A (en) * 1954-04-02 1957-01-22 Union Chimique Belge Sa Substituted 2-methyl-delta2 imidazolines
US2919274A (en) * 1957-09-17 1959-12-29 Sahyun Melville Amidines
US3161653A (en) * 1960-11-23 1964-12-15 Merck Ag E 2-[(2'-methyl-benzo-thienyl-3')-methyl]-delta2-imidazoline and its pharmaceutically aceptable acid addition salts
US3354175A (en) * 1962-04-12 1967-11-21 Merck Ag E 2-(2', 5'-dialkoxybenzyl)-2-imidazolines and related compounds
US3377247A (en) * 1967-04-28 1968-04-09 Dow Chemical Co Antidepressant method
US3577428A (en) * 1969-04-14 1971-05-04 Colgate Palmolive Co 2-amino-4-aryloxyalkyl-4-alkyl-2-oxazolines
US3586695A (en) * 1968-01-26 1971-06-22 Dow Chemical Co Substituted imidazolinyl indoles
US3622579A (en) * 1969-08-28 1971-11-23 Boehringer Sohn Ingelheim Derivatives of 2-anilino-1,3-diazacyclopentene-(2)
US3660423A (en) * 1970-02-13 1972-05-02 Dow Chemical Co 2-(substituted benzyl)methyl-2-imidazolines
US3758476A (en) * 1969-08-13 1973-09-11 Hoechst Ag 2-(thienyl-3'-amino)-1,3-diazacycloalkenes
US3818035A (en) * 1971-01-27 1974-06-18 Labaz 2{8 (2-ALKYLBENZO{8 b{9 {11 FURAN-3 yl)METHYL{9 -{66 {11 IMIDAZOLINE
US3818094A (en) * 1969-08-28 1974-06-18 Boehringer Sohn Ingelheim Hypotensive pharmaceutical compositions containing certain 2-anilino-1,3-diazacyclopentenes-(2)
US3992403A (en) * 1975-05-30 1976-11-16 Schering Corporation 2-Imidazolines and their use as hypoglycemic agents
US4125620A (en) * 1974-10-01 1978-11-14 Boehringer Ingelheim Gmbh 2-[(2',6'-Disubstituted-phenyl)-imino]-imidazolidines and salts thereof
US4146647A (en) * 1976-01-26 1979-03-27 Laboratoire L. Lafon Substituted phenyl-amidines
US4311840A (en) * 1980-11-13 1982-01-19 E. R. Squibb & Sons, Inc. 2,3,6,7-Tetrahydro-2-thioxo-4H-oxazolo[3,2-a]-1,3,5 triazin-4-ones
US4323570A (en) * 1978-11-15 1982-04-06 Beiersdorf Aktiengesellschaft Substituted aminopyrimidines
US4665095A (en) * 1985-12-11 1987-05-12 Abbott Laboratories Use of 2-[(3,5-dihalo-4-aminobenzyl)]imidazolines to stimulate alpha-1 adrenergic receptors and to treat nasal congestion
US5610174A (en) * 1995-06-02 1997-03-11 Synaptic Pharmaceutical Corporation Use of α1A -selective adrenoceptor agonists for the treatment of urinary incontinence
US5658938A (en) * 1994-12-14 1997-08-19 U C B S.A. Substituted 1H-imidazoles
US6268389B1 (en) * 1995-04-20 2001-07-31 Boehringer Ingelheim Kg Treatment of urinary incontinence by administration of α1L-adrenoceptor agonists
US20020019390A1 (en) * 1997-04-11 2002-02-14 Synaptic Pharmaceutical Corporation Imidazole and imidazoline derivatives and uses thereof
US20030181354A1 (en) * 2002-01-31 2003-09-25 Muhammad Abdulrazik Method for central nervous system targeting through the ocular route of drug delivery
US20030236274A1 (en) * 1998-04-23 2003-12-25 Akihiro Tasaka Naphthalene derivatives, their production and use

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE842065C (de) 1950-07-30 1952-06-23 Bayer Ag Verfahren zur Herstellung stickstoffhaltiger heterocyclischer Verbindungen
GB877306A (en) 1958-04-21 1961-09-13 Pfizer & Co C Halogenated derivatives of tetrahydro-1-naphthyl cyclic amidines
US3202660A (en) 1961-10-09 1965-08-24 Boehringer Sohn Ingelheim Process for the preparation of 3-arylamino-1, 3-diazacycloalkenes
FR1355049A (fr) 1962-04-12 1964-03-13 Merck Ag E Agent pour le traitement préalable de la peau en vue du rasage
ES323985A1 (es) 1966-02-26 1966-12-16 Blade Pique Juan Procedimiento para la obtenciën de derivados del imidazol
DE2253555A1 (de) 1972-11-02 1974-05-09 Hoechst Ag Oxazolo-pyrimidine und verfahren zu ihrer herstellung
DE2446758C3 (de) 1974-10-01 1979-01-04 C.H. Boehringer Sohn, 6507 Ingelheim 2-(2-Fluor-6-trifluormethylphenylimino)-imidazolidin, dessen Säureadditionssalze, Verfahren zur Herstellung dieser Verbindungen und deren Verwendung bei der Bekämpfung der Hypertonie
DE2849537C2 (de) 1978-11-15 1983-03-17 Beiersdorf Ag, 2000 Hamburg Substituierte 5-(2-Imidazolin-2-yl)-aminopyrimidine, Verfahren zu deren Herstellung und diese enthaltende Arzneimittel
SE431818C (sv) * 1979-03-16 1985-04-29 Turos Foodprocessing Ab Forfarande for framstellning av crumbprodukter genom blandning av floden av mjolkravara, proteiner och reducerande socker
AU518569B2 (en) 1979-08-07 1981-10-08 Farmos-Yhtyma Oy 4-benzyl- and 4-benzoyl imidazole derivatives
US4540705A (en) 1983-03-14 1985-09-10 Sterling Drug Inc. Antidepressant imidazolines and related compounds
EP0166937B1 (en) 1984-06-06 1991-08-28 Abbott Laboratories Adrenergic compounds
DK302185A (da) * 1984-07-05 1986-01-06 Rolland Sa A 2-amino-oxazoliner samt fremgangsmaade til deres fremstilling
GB2215206B (en) 1988-02-29 1991-07-03 Farmos Oy 4-substituted imidazole derivatives useful in perioperative care
FR2645860B1 (fr) * 1989-04-14 1991-07-26 Sarget Lab Nouvelles aryloxymethyl-5 amino-2 oxazolines, syntheses et applications therapeutiques
FI894911A0 (fi) 1989-10-17 1989-10-17 Farmos Oy En terapeutiskt vaerdefull foerening.
CA2211325C (en) 1993-10-13 2006-08-15 H. Joseph Horacek Extended release clonidine formulation
GB9520150D0 (en) 1995-10-03 1995-12-06 Orion Yhtymae Oy New imidazole derivatives
US5969137A (en) 1996-09-19 1999-10-19 Virginia Commonwealth University Benzylamidine derivatives with serotonin receptor binding activity
NO980546L (no) 1997-02-11 1998-08-12 Lilly Co Eli Farmas°ytiske midler
NZ504667A (en) 1997-12-04 2003-03-28 Allergan Sales Inc Substituted imidazole derivatives having agonist-like activity at alpha 2B or 2B/2C adrenergic receptors
US6841684B2 (en) 1997-12-04 2005-01-11 Allergan, Inc. Imidiazoles having reduced side effects
WO1999032112A1 (en) 1997-12-19 1999-07-01 Eli Lilly And Company Method for treating diabetes
ES2150378B1 (es) 1998-08-07 2001-07-01 Esteve Labor Dr Empleo de derivados de aril(o heteroaril)azolilcarbinoles en la elaboracion de un medicamento para el tratamiento de los trastornos mediados por un exceso de substancia p.
CA2246027A1 (en) 1998-08-27 2000-02-27 Virginia Commonwealth University Benzylamidine derivatives with serotonin receptor binding activity
DE19858593A1 (de) * 1998-12-18 2000-06-21 Merck Patent Gmbh Sulfonyloxazolamine als therapeutische Wirkstoffe
PE20010781A1 (es) 1999-10-22 2001-08-08 Takeda Chemical Industries Ltd Compuestos 1-(1h-imidazol-4-il)-1-(naftil-2-sustituido)etanol, su produccion y utilizacion
JP2001302643A (ja) 2000-04-21 2001-10-31 Suntory Ltd 環状アミジン化合物
WO2002022801A2 (en) 2000-09-12 2002-03-21 Oregon Health & Science University Mammalian receptor genes and uses
HUP0303156A3 (en) 2000-11-14 2004-03-29 Hoffmann La Roche Substituted 2-phenylaminoimidazoline derivatives as ip antagonists, process for their preparation and pharmaceutical compositions containing them
TW200930291A (en) 2002-04-29 2009-07-16 Bayer Cropscience Ag Pesticidal heterocycles
KR100492252B1 (ko) 2002-08-09 2005-05-30 한국화학연구원 이미다졸을 포함하는 이차아민으로 치환된 벤조피란유도체 및 그의 제조방법
CN101212898A (zh) 2005-05-03 2008-07-02 拜尔农作物科学股份公司 杀虫的取代的氨基烷基杂环及杂芳基衍生物
AR056043A1 (es) 2005-08-25 2007-09-12 Schering Corp Agonistas de receptores adrenergicos alfa2c funcionalmente selectivos
WO2007085556A2 (en) * 2006-01-27 2007-08-02 F. Hoffmann-La Roche Ag Use of 4-imidazole derivatives for cns disorders
BRPI0707315A2 (pt) 2006-01-27 2011-05-03 Hoffmann La Roche uso de 2-imidazol substituìdo de derivados de imidazolina

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2731471A (en) * 1956-01-17 Nxg hi
US2161938A (en) * 1934-07-31 1939-06-13 Soc Of Chemical Ind Imidazolines
US2457047A (en) * 1946-02-13 1948-12-21 Monsanto Chemicals 2-(2'-thenyl)-4, 5-dihydroimidazoles and process for making the same
US2778836A (en) * 1954-04-02 1957-01-22 Union Chimique Belge Sa Substituted 2-methyl-delta2 imidazolines
US2744909A (en) * 1955-06-27 1956-05-08 Bristol Lab Inc 2-(ortho-phenylbenzyl) imidazoline and acid addition salts
US2744910A (en) * 1955-06-27 1956-05-08 Bristol Lab Inc 2-(ortho-benzylbenzyl)-imidazoline and acid addition salts
US2919274A (en) * 1957-09-17 1959-12-29 Sahyun Melville Amidines
US3161653A (en) * 1960-11-23 1964-12-15 Merck Ag E 2-[(2'-methyl-benzo-thienyl-3')-methyl]-delta2-imidazoline and its pharmaceutically aceptable acid addition salts
US3354175A (en) * 1962-04-12 1967-11-21 Merck Ag E 2-(2', 5'-dialkoxybenzyl)-2-imidazolines and related compounds
US3377247A (en) * 1967-04-28 1968-04-09 Dow Chemical Co Antidepressant method
US3586695A (en) * 1968-01-26 1971-06-22 Dow Chemical Co Substituted imidazolinyl indoles
US3577428A (en) * 1969-04-14 1971-05-04 Colgate Palmolive Co 2-amino-4-aryloxyalkyl-4-alkyl-2-oxazolines
US3758476A (en) * 1969-08-13 1973-09-11 Hoechst Ag 2-(thienyl-3'-amino)-1,3-diazacycloalkenes
US3622579A (en) * 1969-08-28 1971-11-23 Boehringer Sohn Ingelheim Derivatives of 2-anilino-1,3-diazacyclopentene-(2)
US3818094A (en) * 1969-08-28 1974-06-18 Boehringer Sohn Ingelheim Hypotensive pharmaceutical compositions containing certain 2-anilino-1,3-diazacyclopentenes-(2)
US3660423A (en) * 1970-02-13 1972-05-02 Dow Chemical Co 2-(substituted benzyl)methyl-2-imidazolines
US3818035A (en) * 1971-01-27 1974-06-18 Labaz 2{8 (2-ALKYLBENZO{8 b{9 {11 FURAN-3 yl)METHYL{9 -{66 {11 IMIDAZOLINE
US4125620A (en) * 1974-10-01 1978-11-14 Boehringer Ingelheim Gmbh 2-[(2',6'-Disubstituted-phenyl)-imino]-imidazolidines and salts thereof
US3992403A (en) * 1975-05-30 1976-11-16 Schering Corporation 2-Imidazolines and their use as hypoglycemic agents
US4146647A (en) * 1976-01-26 1979-03-27 Laboratoire L. Lafon Substituted phenyl-amidines
US4323570A (en) * 1978-11-15 1982-04-06 Beiersdorf Aktiengesellschaft Substituted aminopyrimidines
US4311840A (en) * 1980-11-13 1982-01-19 E. R. Squibb & Sons, Inc. 2,3,6,7-Tetrahydro-2-thioxo-4H-oxazolo[3,2-a]-1,3,5 triazin-4-ones
US4665095A (en) * 1985-12-11 1987-05-12 Abbott Laboratories Use of 2-[(3,5-dihalo-4-aminobenzyl)]imidazolines to stimulate alpha-1 adrenergic receptors and to treat nasal congestion
US5658938A (en) * 1994-12-14 1997-08-19 U C B S.A. Substituted 1H-imidazoles
US6268389B1 (en) * 1995-04-20 2001-07-31 Boehringer Ingelheim Kg Treatment of urinary incontinence by administration of α1L-adrenoceptor agonists
US5610174A (en) * 1995-06-02 1997-03-11 Synaptic Pharmaceutical Corporation Use of α1A -selective adrenoceptor agonists for the treatment of urinary incontinence
US20020019390A1 (en) * 1997-04-11 2002-02-14 Synaptic Pharmaceutical Corporation Imidazole and imidazoline derivatives and uses thereof
US20030236274A1 (en) * 1998-04-23 2003-12-25 Akihiro Tasaka Naphthalene derivatives, their production and use
US20030181354A1 (en) * 2002-01-31 2003-09-25 Muhammad Abdulrazik Method for central nervous system targeting through the ocular route of drug delivery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090209529A1 (en) * 2008-02-18 2009-08-20 Matteo Andreini 4,5-dihydro-oxazol-2-yl amine derivatives
US7989449B2 (en) * 2008-02-18 2011-08-02 Hoffman-La Roche Inc. 4,5-dihydro-oxazol-2-yl amine derivatives

Also Published As

Publication number Publication date
MX2009008255A (es) 2009-08-12
EP2114906B1 (en) 2014-08-06
RU2473545C2 (ru) 2013-01-27
KR101174191B1 (ko) 2012-08-14
ECSP099551A (es) 2009-08-28
BRPI0806940A2 (pt) 2014-05-06
US20100120864A1 (en) 2010-05-13
WO2008092785A1 (en) 2008-08-07
IL199783A0 (en) 2010-04-15
EP2114906A1 (en) 2009-11-11
CA2675221A1 (en) 2008-08-07
ZA200905102B (en) 2010-05-26
TW200838507A (en) 2008-10-01
KR101275405B1 (ko) 2013-06-17
CL2008000255A1 (es) 2008-08-08
CN101600700A (zh) 2009-12-09
ES2510546T3 (es) 2014-10-21
CO6321133A2 (es) 2011-09-20
CA2675221C (en) 2016-02-23
AU2008209860A1 (en) 2008-08-07
PE20081755A1 (es) 2008-12-06
US8604061B2 (en) 2013-12-10
KR20120045066A (ko) 2012-05-08
MA31165B1 (fr) 2010-02-01
RU2009128619A (ru) 2011-03-10
UA98951C2 (ru) 2012-07-10
AR065128A1 (es) 2009-05-20
US20120196903A1 (en) 2012-08-02
CR10926A (es) 2009-08-12
NZ578260A (en) 2012-02-24
KR20090106655A (ko) 2009-10-09
JP2010517953A (ja) 2010-05-27
CN101600700B (zh) 2013-08-21
JP5248528B2 (ja) 2013-07-31

Similar Documents

Publication Publication Date Title
US8604061B2 (en) 2-aminooxazolines as TAAR1 ligands
US8158668B2 (en) Methods for treating CNS disorders with 4-imidazole derivatives
US7902238B2 (en) 2-aminooxazolines as TAAR1 ligands
US20120165294A1 (en) 4,5-dihydro-oxazol-2yl derivatives
WO2008071574A1 (en) Novel 2 -imidazoles as ligands for trace amine associated receptors (taar)
US8242153B2 (en) 4,5-dihydro-oxazol-2YL derivatives
NZ616150B2 (en) Heterocyclic amine derivatives
NZ616150A (en) Heterocyclic amine derivatives

Legal Events

Date Code Title Description
AS Assignment

Owner name: F. HOFFMANN-LA ROCHE AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GALLEY, GUIDO;GROEBKE ZBINDEN, KATRIN;NORCROSS, ROGER;AND OTHERS;REEL/FRAME:021229/0450

Effective date: 20080111

Owner name: HOFFMAN-LA ROCHE, INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:F. HOFFMAN-LA ROCHE AG;REEL/FRAME:021229/0509

Effective date: 20080114

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION