US20070189894A1 - Methods and apparatus for turbine engine rotors - Google Patents

Methods and apparatus for turbine engine rotors Download PDF

Info

Publication number
US20070189894A1
US20070189894A1 US11/354,514 US35451406A US2007189894A1 US 20070189894 A1 US20070189894 A1 US 20070189894A1 US 35451406 A US35451406 A US 35451406A US 2007189894 A1 US2007189894 A1 US 2007189894A1
Authority
US
United States
Prior art keywords
rotor
welding
rotor section
joint
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/354,514
Other languages
English (en)
Inventor
Samuel Thamboo
Lyle Spiegel
Gary Yehle
Mark Burnett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US11/354,514 priority Critical patent/US20070189894A1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YEHLE, GARY E., SPIEGEL, LYLE B., THAMBOO, SAMUEL V., BURNETT, MARK E.
Priority to EP07101750A priority patent/EP1820597A3/en
Priority to CN2007100051554A priority patent/CN101021164B/zh
Priority to JP2007034517A priority patent/JP4933294B2/ja
Publication of US20070189894A1 publication Critical patent/US20070189894A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • B23K33/004Filling of continuous seams
    • B23K33/006Filling of continuous seams for cylindrical workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0006Electron-beam welding or cutting specially adapted for particular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/002Devices involving relative movement between electronbeam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0053Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0093Welding characterised by the properties of the materials to be welded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/026Shaft to shaft connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/233Electron beam welding

Definitions

  • the present invention relates generally to turbine engines, and, more particularly to methods for welding turbine engine rotors.
  • At least some known turbine engine rotors include several rotor sections, wherein each rotor section may operate at a different temperature and/or at different operating conditions.
  • such rotors may include a high pressure rotor section, an intermediate pressure rotor section, and a low pressure rotor section.
  • the different rotor sections are subjected to different operating temperatures and pressures, for example, within a rotor, at least some known rotor sections are fabricated with different materials.
  • Known methods of coupling the different rotor sections include bolting and/or welding the sections together. Between the two coupling methods commonly employed, bolting the sections together is generally the least desirable because the flanges and bolts used generally result in the turbine rotor being longer than desired and increase the original weight of the rotor.
  • Known methods of welding rotor sections may subject the rotor to flaws if such welding processes require multiple passes, intermediate machining, and/or multiple heat treatments.
  • multiple welding passes may increase risks of defects in the finished weld.
  • each pass may increase the risk for slag entrapment, lack of fusion, or porosity, which may serve as an initiation point for serious cracking.
  • At least one welding method uses a welding electrode to build up a layer on either side of the joint to be welded.
  • this welding technique increases the width of the welding joint, which may increase the risk of slag entrapment and/or porosity.
  • An alternative welding technique uses layered transition pieces fabricated from different composite materials. However, generally, such transition pieces have lower material strengths than other sections of the rotor. As a result, the rotor must be handled with special care to avoid damaging or weakening the transition pieces. Furthermore, the ends of such a rotor must be heat treated, which may subject the composite transition materials to excessive temperatures.
  • a method for welding two sections of a rotor together, wherein each rotor section includes a welding surface includes positioning the welding surface of the first rotor section substantially flush against the welding surface of the second rotor section. The method also includes positioning the second section substantially flush against a flange circumscribing the first section such that a rabbeted joint is defined therebetween.
  • a rotor for a turbine engine in another aspect, includes a first rotor section including a welding surface and a flange.
  • the rotor also includes a second rotor section including a welding surface.
  • the first rotor welding surface is positioned substantially flush against the second rotor welding surface and the second rotor section is substantially flush against the flange such that a rabbeted joint is defined between the first rotor section and the second rotor section.
  • a system for welding two sections of a rotor Both sections of the rotor include a welding surface.
  • the first rotor section welding surface is positioned substantially flush against the second rotor section welding surface, and the second rotor section is substantially flush against a flange circumscribing the first rotor section such that a rabbeted joint is defined therebetween.
  • the system includes a casing coupled to the rotor such that a chamber, defined by the casing, substantially circumscribes the joint.
  • the chamber is vacuum pumped to create a vacuum therein or a partial vacuum.
  • the system also includes an electron beam generator to weld the joint within the chamber.
  • FIG. 1 is an exemplary view of a turbine rotor including at least two sections to be welded;
  • FIG. 2 is a view of an exemplary welding joint that may be used in coupling the sections of the rotor shown in FIG. 1 ;
  • FIG. 3 is a sectional view of an exemplary weld joint showing how the electron beam energy is profiled towards the end of the weld cycle
  • FIG. 4 is a view of a portion of the joint shown in FIG. 2 , and including a shim inserted between the sections of the joint welded together.
  • FIG. 1 is an exemplary view of a turbine rotor 100 including at least two rotor sections to be welded.
  • rotor 100 includes a first rotor section 102 and a second rotor section 104 to be coupled together at a weld joint 106 .
  • Joint 106 includes a radially outer portion 107 and a radially inner portion 108 that is radially inward from joint outer portion 107 .
  • a cavity 109 is defined within joint 106 between rotor sections 102 and 104 .
  • a casing 110 is coupled to rotor 100 such that casing 110 defines a chamber 111 circumscribing joint 106 and extending circumferentially about rotor 100 .
  • a reduced pressure electron beam generator 112 is then coupled to casing 110 , within chamber 111 , and is aligned such that it can direct an electron beam towards joint outer portion 107 to facilitate welding rotor sections 102 and 104 .
  • FIG. 2 is a view of an exemplary welding joint 106 that may be used in welding rotor sections 102 and 104 .
  • Joint 106 is formed with a first section surface 114 , and is aligned and pressed into contact substantially flush against a second section surface 116 .
  • a rabbet 118 extends outward along a first section inner surface 120 , and in the exemplary embodiment, is substantially perpendicular to first section surface 114 .
  • Rabbet 118 includes a radially upper surface 124 that is substantially parallel to first section inner surface 120 and is substantially perpendicular to first section surface 114 .
  • a second section inner surface 122 is substantially flush against rabbet upper surface 124 such that a rabbeted joint 125 is defined along joint inner portion 108 .
  • rotor sections 102 and 104 are positioned together to define joint 106 .
  • second section surface 116 is positioned substantially flush against first section surface 114
  • second section inner surface 122 is positioned substantially flush against rabbet upper surface 124 to define rabbeted joint 125 .
  • Rabbeted joint 125 facilitates coupling section 102 and section 104 .
  • the coupling of section 102 and section 104 also defines cavity 109 .
  • rotor 100 may include several joints 106 defined by multiple sections.
  • Casing 110 is coupled to rotor 100 such that casing 110 defines chamber 111 substantially circumscribing joint 106 .
  • the air is removed from the chamber 111 to create a vacuum surrounding joint 106 . Because chamber 111 circumscribes a limited section of rotor 100 , the need for large vacuum housings is eliminated.
  • Electron beam generator 112 is coupled to casing 110 , within chamber 111 , such that it can be moved circumferentially around rotor 100 . Electron beam generator 112 is aligned relative to joint 106 to enable an electron beam to be directed towards joint outer portion 107 with an intensity that enables it to penetrate to joint inner portion 108 .
  • Electron beam generator 112 is rotated around the circumference of rotor 100 while directing the electron beam at joint outer portion 107 .
  • the electron beam is kept stationary and the rotor is rotated to create a relative travel between the beam and the rotor circumference.
  • the electron beam heats first section surface 114 and second section surface 116 to produce welded metal.
  • Welded metal from surface 114 is fused with welded metal from surface 116 such that section 102 and section 104 are bonded into a unitary piece. Because electron beam generator 112 need only make one complete rotation around the circumference of joint 106 to bond surfaces 114 and 116 , welding defects are facilitated to be reduced in comparison to welding techniques that require multiple passes.
  • rabbeted joint 125 facilitates a tighter fit between sections 102 and 104 , the electron beam is able to produce a more structurally sound weld with only one pass of electron beam generator 112 . As a result, a structurally strong weld that is less susceptible to weld defects and distortion, is produced.
  • rabbet 118 prevents materials, including welded metal and/or slag, from falling into cavity 109 such that fusing between the welded metal of surface 114 and the welded metal of surface 116 is facilitated to be optimized.
  • the bond provided between section 102 and section 104 is structurally sound, and brittleness and cracking within the weld is facilitated to be reduced.
  • a more complete bond can be obtained between sections 102 and 104 , resulting in fewer defects.
  • electron beam generator 112 is operable through a range of powers indicative of the intensity of the electron beam. Because joint outer portion 107 has a greater circumference than joint inner portion 108 , the inner portion will be welded 360 degrees before the outer portion is completed as shown in FIG. 3 . The power of the electron beam must be reduced as electron beam generator 112 completes the welding of the inner portion. This is done to facilitate a gradual change in the weld penetration depth to the surface. This prevents weld defects like porosity or voids which would be seen if the full beam intensity were suddenly shutdown on completion of the outer portion of the weld.
  • a stress relieving heat treat process is applied locally to the area near the joint. This is needed because of two reasons. The first reason is that any weld process will leave some residual stresses at the joint. The second reason is that most materials will undergo metallurgical transformation in the heat affected zone of the weld which may change their mechanical properties. The selection of temperature for this heat treatment is based on the materials being welded. After the heat treat process the materials properties at the joint are mostly restored close to the original base material properties.
  • FIG. 4 is an enlarged view of a portion of joint 106 including a shim 130 inserted between welding sections 102 and 104 .
  • first section 102 and second section 104 are fabricated from different materials, which, because of their material properties, cannot be welded directly against each other without increasing the potential of brittleness or cracking developing in joint 106 .
  • Shim 130 is inserted between first section 102 and second section 104 to facilitate proper fusing of the two materials during welding. Specifically, when shim 130 is positioned between sections 102 and 104 , a shim first surface 132 is substantially flush against first section surface 114 , and an opposite shim second surface 134 is substantially flush against second section surface 116 .
  • Shim 130 when shim 130 is inserted between sections 102 and 104 , a shim inner surface 136 is substantially flush against rabbet upper surface 124 . Shim 130 has a width 138 that is sized to enable second section inner surface 122 to be positioned substantially flush against rabbet upper surface 124 .
  • the material used in fabricating shim 130 is selected based on the materials used in fabricating first section 102 and second section 104 . For example, if CrMoV steel were being welded to NiCrMoV steel, a shim fabricated of an intermediate composition of the two steel alloys could be used. Moreover, and for example, if steel materials are being coupled to nickel-based alloys, an alloy such as alloy 625 or alloy 617 could be used. In each embodiment, the shim material of the appropriate thickness is selected to facilitate preventing potentially harmful phases from forming in the weld, while maintaining the properties of the weld metal. In the exemplary embodiment, a similar process to the above-described welding process and heat treat process is utilized when shim 130 is inserted between section 102 and section 104 .
  • rotor sections 102 and 104 and shim 130 are positioned together to define joint 106 .
  • shim first surface 132 is positioned substantially flush against first section surface 114 and shim second surface 134 is positioned substantially flush against second section surface 116 .
  • shim inner surface 136 is positioned substantially flush against rabbet upper surface 124 .
  • Shim width 138 is sized such that second section inner surface 122 is positioned substantially flush against rabbet upper surface 124 .
  • the coupling of sections 102 and 104 with shim 130 also defines cavity 109 .
  • rotor 100 may include several joints 106 defined by multiple sections and multiple shims.
  • Casing 110 is coupled to rotor 100 such that chamber 111 substantially circumscribes joint 106 .
  • the air is removed from the chamber 111 to create a vacuum surrounding joint 106 . Because chamber 111 circumscribes a limited section of rotor 100 , the need for large vacuum housings is eliminated.
  • the welding process is performed with electron beam generator 112 coupled to casing 110 , within chamber 111 .
  • electron beam generator 112 During the rotation of electron beam generator 112 around rotor 100 , the electron beam heats surface 114 and surface 116 to produce welded metal. Furthermore, shim 130 is melted by the electron beam. Melted shim 130 fuses with the rotor metal on either side to bond section 102 and section 104 into a unitary piece. In the exemplary embodiment electron beam generator 112 completes one rotation around the circumference of joint 106 . Moreover, the intensity of electron beam generator 112 is reduced as the rotation nears completion.
  • a stress relieving heat treat process is applied locally to the area near the joint. This is needed relieve residual stresses at the joint and to restore the material properties of the metal.
  • the selection of temperature for this heat treatment is based on the materials being welded. After the heat treat process the material properties at the joint are mostly restored close to the original base material properties.
  • the above-described methods and systems facilitate a turbine rotor being efficiently welded with a weld joint that is subject to less brittleness and/or cracking within the joint.
  • the rabbeted joint facilitates coupling the rotor sections together, such that they can be welded using only a single pass of an electron beam generator.
  • two sections of the rotor are welded using a technique which facilitates reducing defects, such as slag entrapment or porosity, within the weld.
  • the methods and system described herein can be used to weld two rotor sections fabricated from different materials.
  • the shim described herein enables at least two rotor sections being properly bonded together despite each having different material properties.
  • the shim does not effect the need for only one pass of the electron beam generator.
  • rotor sections can be welded together with a structurally sound joint that is cost effective and reliable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
US11/354,514 2006-02-15 2006-02-15 Methods and apparatus for turbine engine rotors Abandoned US20070189894A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/354,514 US20070189894A1 (en) 2006-02-15 2006-02-15 Methods and apparatus for turbine engine rotors
EP07101750A EP1820597A3 (en) 2006-02-15 2007-02-05 Methods and apparatus for welding turbine engine rotors
CN2007100051554A CN101021164B (zh) 2006-02-15 2007-02-15 焊接涡轮发动机转子的方法和装置
JP2007034517A JP4933294B2 (ja) 2006-02-15 2007-02-15 タービンエンジンのロータ及びロータを溶接する装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/354,514 US20070189894A1 (en) 2006-02-15 2006-02-15 Methods and apparatus for turbine engine rotors

Publications (1)

Publication Number Publication Date
US20070189894A1 true US20070189894A1 (en) 2007-08-16

Family

ID=38016976

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/354,514 Abandoned US20070189894A1 (en) 2006-02-15 2006-02-15 Methods and apparatus for turbine engine rotors

Country Status (4)

Country Link
US (1) US20070189894A1 (ja)
EP (1) EP1820597A3 (ja)
JP (1) JP4933294B2 (ja)
CN (1) CN101021164B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110164982A1 (en) * 2010-01-06 2011-07-07 General Electric Company Apparatus and method for a low distortion weld for rotors
US20120183404A1 (en) * 2011-01-13 2012-07-19 Karl-Hermann Richter Method for integrally connecting blades and disks in order to form a blade-disk unit, as well as correspondingly produced blade-disk unit
EP2514550A1 (en) * 2011-04-19 2012-10-24 General Electric Company A welded component, a welded gas turbine component, and a process of welding a component
US20150125280A1 (en) * 2011-03-30 2015-05-07 Mitsubishi Heavy Industries, Ltd. Rotor of rotary machine and rotary machine
US20170298735A1 (en) * 2011-02-16 2017-10-19 Keystone Synergistic Enterprises, Inc. Aircraft engine rotor repaired with microstructural enhancement

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4951488B2 (ja) * 2007-12-17 2012-06-13 株式会社日立製作所 蒸気タービンロータ及びその製造方法
JP4719780B2 (ja) * 2008-09-09 2011-07-06 株式会社日立製作所 タービン用の溶接型ロータおよびその製造方法
JP5011341B2 (ja) * 2009-03-31 2012-08-29 株式会社東芝 タービンロータの製造方法
US8304093B2 (en) * 2010-03-09 2012-11-06 United Technologies Corporation Apparatus and method for preferential formation of weld joint
US8944761B2 (en) * 2011-01-21 2015-02-03 General Electric Company Welded rotor, a steam turbine having a welded rotor and a method for producing a welded rotor
JP5610445B2 (ja) * 2011-10-20 2014-10-22 三菱日立パワーシステムズ株式会社 タービン翼、それを用いたタービンロータ及び蒸気タービン
CN110005639A (zh) * 2019-05-16 2019-07-12 江苏博联硕焊接技术有限公司 一种复合型涡轮分子泵转子及其制备方法
CN110977131B (zh) * 2019-11-25 2021-10-29 中国航发沈阳黎明航空发动机有限责任公司 一种转子类零件的电子束焊接变形精密控制方法

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3230339A (en) * 1962-09-15 1966-01-18 United Aircraft Corp Method for welding workpieces by means of a beam of charge carriers
US3560700A (en) * 1967-07-18 1971-02-02 Kernforschung Gmbh Ges Fuer Electron beam welding of two dissimilar metals
US4060883A (en) * 1974-05-21 1977-12-06 Societe General De Constructions Electriques Et Macaniques Alsthom Compound turbine rotor and method for manufacturing elements constituting such a rotor
US4086690A (en) * 1975-06-19 1978-05-02 Bbc Brown, Boveri & Company Limited Method and apparatus for producing a rotor welded together from discs
US4393294A (en) * 1978-05-17 1983-07-12 Mitsubishi Jukogyo Kabushiki Kaisha Electron beam working apparatus for cylindrical members
US4628575A (en) * 1984-04-27 1986-12-16 General Electric Company Method and apparatus for welding turbine rotor shafts
US4633554A (en) * 1985-08-08 1987-01-06 Westinghouse Electric Corp. Method for repairing a steam turbine or generator rotor
US4892702A (en) * 1987-10-16 1990-01-09 Framatome Light-water nuclear reactor vessel and process for its manufacture
US4962586A (en) * 1989-11-29 1990-10-16 Westinghouse Electric Corp. Method of making a high temperature - low temperature rotor for turbines
US5172475A (en) * 1991-12-02 1992-12-22 Westinghouse Electric Corp. Method for repairing a rotor
US5414929A (en) * 1992-11-26 1995-05-16 Abb Patent Gmbh Method of producing a turbine rotor
US5491316A (en) * 1993-05-12 1996-02-13 Framatome Process and device for the electron beam welding of two parts of a component of large size and in particular of a steam generator of a pressurized water nuclear reactor
US5977509A (en) * 1998-08-06 1999-11-02 Schlumberger Technology Corporation Method for full penetration electron beam weld for downhold tools
US6131800A (en) * 1999-11-03 2000-10-17 Abb Alstom Power (Switzerland) Ltd Method for coating and welding stator vanes of a gas turbine
US6152697A (en) * 1998-06-09 2000-11-28 Mitsubishi Heavy Industries, Ltd. Steam turbine different material welded rotor
US6161751A (en) * 1999-02-18 2000-12-19 Precision Tube Technology, Inc. Method of joining metal strip ends together using a consumable insert
US6381842B2 (en) * 2000-02-18 2002-05-07 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Method of producing swash plate type compressor piston
US6489583B1 (en) * 2000-08-11 2002-12-03 General Electric Company Shimmed electron beam welding process
US6499946B1 (en) * 1999-10-21 2002-12-31 Kabushiki Kaisha Toshiba Steam turbine rotor and manufacturing method thereof
US6596411B2 (en) * 2001-12-06 2003-07-22 General Electric Company High energy beam welding of single-crystal superalloys and assemblies formed thereby
US6687994B2 (en) * 1998-12-10 2004-02-10 Alstom Technology Ltd. Method for the manufacture of a welded rotor of a fluid-flow machine
US6715993B2 (en) * 2002-07-25 2004-04-06 General Electric Company Methods and apparatus for manufacturing rotor shafts
US6749518B2 (en) * 2002-04-08 2004-06-15 General Electric Company Inertia welded shaft and method therefor
US20060231531A1 (en) * 2005-04-13 2006-10-19 General Electric Company Weld prep joint for electron beam or laser welding
US7331757B2 (en) * 2002-12-05 2008-02-19 Siemens Aktiengesellschaft Turbine shaft and production of a turbine shaft

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2239304A1 (de) * 1972-08-10 1974-02-21 Steigerwald Krauss Maffei Gmbh Verfahren zur herstellung einer verbindung zwischen werkstuecken aus manganhartstahl und werkstuecken aus umwandlungshaertbarem stahl durch energiestrahlschweissen, insbesondere elektronenstrahlschweissen
US4581816A (en) * 1984-04-27 1986-04-15 General Electric Company Method and apparatus for welding turbine rotor shafts

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3230339A (en) * 1962-09-15 1966-01-18 United Aircraft Corp Method for welding workpieces by means of a beam of charge carriers
US3560700A (en) * 1967-07-18 1971-02-02 Kernforschung Gmbh Ges Fuer Electron beam welding of two dissimilar metals
US4060883A (en) * 1974-05-21 1977-12-06 Societe General De Constructions Electriques Et Macaniques Alsthom Compound turbine rotor and method for manufacturing elements constituting such a rotor
US4086690A (en) * 1975-06-19 1978-05-02 Bbc Brown, Boveri & Company Limited Method and apparatus for producing a rotor welded together from discs
US4393294A (en) * 1978-05-17 1983-07-12 Mitsubishi Jukogyo Kabushiki Kaisha Electron beam working apparatus for cylindrical members
US4628575A (en) * 1984-04-27 1986-12-16 General Electric Company Method and apparatus for welding turbine rotor shafts
US4633554A (en) * 1985-08-08 1987-01-06 Westinghouse Electric Corp. Method for repairing a steam turbine or generator rotor
US4892702A (en) * 1987-10-16 1990-01-09 Framatome Light-water nuclear reactor vessel and process for its manufacture
US4962586A (en) * 1989-11-29 1990-10-16 Westinghouse Electric Corp. Method of making a high temperature - low temperature rotor for turbines
US5172475A (en) * 1991-12-02 1992-12-22 Westinghouse Electric Corp. Method for repairing a rotor
US5414929A (en) * 1992-11-26 1995-05-16 Abb Patent Gmbh Method of producing a turbine rotor
US5491316A (en) * 1993-05-12 1996-02-13 Framatome Process and device for the electron beam welding of two parts of a component of large size and in particular of a steam generator of a pressurized water nuclear reactor
US6152697A (en) * 1998-06-09 2000-11-28 Mitsubishi Heavy Industries, Ltd. Steam turbine different material welded rotor
US5977509A (en) * 1998-08-06 1999-11-02 Schlumberger Technology Corporation Method for full penetration electron beam weld for downhold tools
US6687994B2 (en) * 1998-12-10 2004-02-10 Alstom Technology Ltd. Method for the manufacture of a welded rotor of a fluid-flow machine
US6161751A (en) * 1999-02-18 2000-12-19 Precision Tube Technology, Inc. Method of joining metal strip ends together using a consumable insert
US6499946B1 (en) * 1999-10-21 2002-12-31 Kabushiki Kaisha Toshiba Steam turbine rotor and manufacturing method thereof
US6131800A (en) * 1999-11-03 2000-10-17 Abb Alstom Power (Switzerland) Ltd Method for coating and welding stator vanes of a gas turbine
US6381842B2 (en) * 2000-02-18 2002-05-07 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Method of producing swash plate type compressor piston
US6489583B1 (en) * 2000-08-11 2002-12-03 General Electric Company Shimmed electron beam welding process
US6596411B2 (en) * 2001-12-06 2003-07-22 General Electric Company High energy beam welding of single-crystal superalloys and assemblies formed thereby
US6749518B2 (en) * 2002-04-08 2004-06-15 General Electric Company Inertia welded shaft and method therefor
US6715993B2 (en) * 2002-07-25 2004-04-06 General Electric Company Methods and apparatus for manufacturing rotor shafts
US7331757B2 (en) * 2002-12-05 2008-02-19 Siemens Aktiengesellschaft Turbine shaft and production of a turbine shaft
US20060231531A1 (en) * 2005-04-13 2006-10-19 General Electric Company Weld prep joint for electron beam or laser welding

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110164982A1 (en) * 2010-01-06 2011-07-07 General Electric Company Apparatus and method for a low distortion weld for rotors
US20120183404A1 (en) * 2011-01-13 2012-07-19 Karl-Hermann Richter Method for integrally connecting blades and disks in order to form a blade-disk unit, as well as correspondingly produced blade-disk unit
US9284848B2 (en) * 2011-01-13 2016-03-15 Mtu Aero Engines Gmbh Method for integrally connecting blades and disks in order to form a blade-disk unit, as well as correspondingly produced blade-disk unit
US20170298735A1 (en) * 2011-02-16 2017-10-19 Keystone Synergistic Enterprises, Inc. Aircraft engine rotor repaired with microstructural enhancement
US10865644B2 (en) * 2011-02-16 2020-12-15 Keystone Synergistic Enterprises, Inc. Aircraft engine rotor repaired with microstructural enhancement
US20150125280A1 (en) * 2011-03-30 2015-05-07 Mitsubishi Heavy Industries, Ltd. Rotor of rotary machine and rotary machine
US9657574B2 (en) * 2011-03-30 2017-05-23 Mitsubishi Heavy Industries, Ltd. Rotor of rotary machine and rotary machine
EP2514550A1 (en) * 2011-04-19 2012-10-24 General Electric Company A welded component, a welded gas turbine component, and a process of welding a component
US9108266B2 (en) 2011-04-19 2015-08-18 General Electric Company Welded component, a welded gas turbine component, and a process of welding a component

Also Published As

Publication number Publication date
CN101021164A (zh) 2007-08-22
JP2007218260A (ja) 2007-08-30
JP4933294B2 (ja) 2012-05-16
EP1820597A3 (en) 2010-06-23
CN101021164B (zh) 2012-06-13
EP1820597A2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
US20070189894A1 (en) Methods and apparatus for turbine engine rotors
CA2694573C (en) Turbine rotor blade repair method
US6767649B2 (en) Rotor for a turbomachine, and process for producing a rotor of this type
US20180371594A1 (en) Solid-State Welding of Coarse Grain Powder Metallurgy Nickel-Based Superalloys
JP2010151127A (ja) ガスタービンエンジンの溶接ロータを製造する方法
JPH0653307B2 (ja) 円柱状部材の溶接修理方法
JP2009068380A (ja) タービンロータ及びロータの製造方法
US9085042B2 (en) Stud welding repair of superalloy components
EP3309264A1 (en) Hybrid component and method of making
US8677621B2 (en) Method for the repair of a compressor rotor designed in blisk technology
US20050172485A1 (en) Method of repair for cast article
WO2000032350A1 (en) Improved welding method for joining dissimilar steel workpieces
US20080000558A1 (en) Friction welding
US20110035924A1 (en) Developments in or relating to drum rotors
US9162317B2 (en) Method for the welding production of a large-dimensioned part from ductile iron by using laser-deposition-welded buffer materials and electric welding
CN110711938B (zh) 消音器和缸盖的激光焊接方法
JP2005344527A (ja) 蒸気タービンロータおよびその製造方法
US9931719B2 (en) Method for repairing a receiving hook for guide vanes
JPH03264705A (ja) ガスタービン動翼補修方法
US9333589B2 (en) Component and method for joining metal elements
JPS58387A (ja) 複合ロ−ルの製造方法
JP2004308552A (ja) タービンロータの補修方法およびタービンロータ
JPH06221103A (ja) 蒸気タービンノズルボックス
JP2008518784A (ja) 焼入れ可能な鋼のプラズマ・タップホール溶接
Kim et al. Welding technology development for the fabrication of ITER blanket shield block in Korea

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:THAMBOO, SAMUEL V.;SPIEGEL, LYLE B.;YEHLE, GARY E.;AND OTHERS;REEL/FRAME:017585/0695;SIGNING DATES FROM 20060119 TO 20060126

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION