US20060052867A1 - Replacement prosthetic heart valve, system and method of implant - Google Patents
Replacement prosthetic heart valve, system and method of implant Download PDFInfo
- Publication number
- US20060052867A1 US20060052867A1 US10/935,730 US93573004A US2006052867A1 US 20060052867 A1 US20060052867 A1 US 20060052867A1 US 93573004 A US93573004 A US 93573004A US 2006052867 A1 US2006052867 A1 US 2006052867A1
- Authority
- US
- United States
- Prior art keywords
- heart valve
- prosthetic heart
- support structure
- previously implanted
- coupling means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2412—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
- A61F2/2418—Scaffolds therefor, e.g. support stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2409—Support rings therefor, e.g. for connecting valves to tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0008—Fixation appliances for connecting prostheses to the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0008—Fixation appliances for connecting prostheses to the body
- A61F2220/0016—Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0004—Rounded shapes, e.g. with rounded corners
- A61F2230/0013—Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0073—Quadric-shaped
- A61F2230/0078—Quadric-shaped hyperboloidal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0073—Quadric-shaped
- A61F2230/008—Quadric-shaped paraboloidal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0039—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/006—Additional features; Implant or prostheses properties not otherwise provided for modular
- A61F2250/0063—Nested prosthetic parts
Definitions
- the present invention relates to prosthetic heart valves. More particularly, it relates to a device and method for functionally replacing a deficient, previously implanted prosthetic heart valve.
- Implantable heart valve prostheses have long been used to replace various diseased or damaged natural aortic valves, mitral valves, pulmonic valves, and tricuspid valves of the heart.
- the actual shape and configuration of any particular prosthetic heart valve is, of course, dependent upon the valve being replaced.
- the known heart valve prostheses are either bioprostheses or mechanical heart valve prostheses.
- bioprostheses or “tissue valves” are generally made of a suitable animal tissue or materials (e.g., harvested porcine valve leaflets, bovine or equine pericardial leaflets, synthetic material leaflets, etc.) that may be mounted onto a stationary metal or plastic frame, referred to as a “stent”. Regardless of whether a stent is provided, bioprosthetic/synthetic heart valves are generally tubular (i.e., when the leaflets are “open”, an internal passage is defined through which fluid (e.g., blood) can flow), and include a sewing or suture ring.
- fluid e.g., blood
- the sewing or suture ring provides a means for fixing the prosthetic heart valve to the patient's native heart valve orifice tissue (e.g., native annulus or valvular rim) associated with the native heart valve being repaired or replaced.
- native heart valve orifice tissue e.g., native annulus or valvular rim
- an exacting surgical implantation technique is traditionally employed whereby the heart is stopped (cardiopulmonary bypass) and opened followed by surgical removal of damaged or diseased natural valve structure.
- the prosthetic heart valve is properly oriented within the native valvular area, with the sewing ring being seated against or at the native annulus or valvular rim.
- Sutures are then used to affix the sewing ring to the natural tissue.
- a successfully implanted prosthetic heart valve will normally function without problem for many years. In certain instances, however, deficiencies may become evident shortly after implant or within a few years (especially in younger patients). Common functional deficiencies relate to calcification of the prosthetic heart valve leaflets, stenosis, and prosthetic heart valve insufficiency.
- the prosthetic heart valve does not function properly, or no longer functions properly, and conventionally is surgically removed and replaced. Removal of a previously implanted prosthetic heart valve entails the same surgical intervention described above, coupled with the need to implant a new prosthetic heart valve. As a point of reference, while well-accepted, the conventional surgical intervention described above is difficult to perform and can result in patient injury or more severe complications. In fact, due to physical weakness, implantation of a prosthetic heart valve via the conventional surgical technique may be considered either too high risk or contra-indicated for certain patients.
- a prosthetic heart valve capable of being delivered percutaneously via transcatheter implantation thus avoiding the complications associated with conventional surgical intervention.
- the valve prosthesis consists of a support structure with a tissue valve connected to it, whereby the support structure is delivered in a collapsed state through a blood vessel and secured to a desired valve location with the support structure in an expanded state.
- Prosthetic heart valves continue to be essential tools in the treatment of patient's suffering from cardiac deficiencies. Further, the investigation into percutaneously-delivered prosthetic heart valves appears promising. Unfortunately, the inability to rigidly affix a percutaneous prosthetic heart valve remains problematic. Therefore, a need exists for a prosthetic heart valve and related method of implant that is conducive to percutaneous delivery for replacing a deficient, previously implanted prosthetic heart valve.
- One aspect of the present invention relates to a method of functionally replacing a previously implanted prosthetic heart valve.
- the method includes positioning a replacement prosthetic heart valve within an internal region defined by the previously implanted prosthetic heart valve.
- the replacement prosthetic heart valve is then physically docked to the previously implanted prosthetic heart valve.
- the previously implanted prosthetic heart valve serves as a platform for securement of the replacement prosthetic heart valve to the patient's native tissue.
- the prosthetic heart valve includes a support structure, leaflets, and coupling means.
- the leaflets are mounted to the support structure.
- the coupling means is associated with the support structure and is adapted to physically dock the prosthetic heart valve to a previously implanted prosthetic heart valve.
- a prosthetic heart valve comprising a support structure, leaflets, and connection means.
- the leaflets are mounted to the support structure.
- the connection means is associated with the support structure and is adapted to effectuate physical docking of a replacement prosthetic heart valve to the prosthetic heart valve.
- the present invention relates to a prosthetic heart valve system comprising a first prosthetic heart valve and a replacement heart valve.
- the first prosthetic heart valve is configured for initial implantation to native heart tissue and includes a support structure, leaflets, and connection means.
- the leaflets are mounted to the support structure and the connection means is associated with the support structure.
- the replacement prosthetic heart valve includes a support structure, leaflets, and coupling means.
- the leaflets are mounted to the support structure and the coupling means is associated with the support structure.
- the connection means and the coupling means are configured such that the coupling means engages the connection means to physically dock the replacement prosthetic heart valve to the first prosthetic heart valve following implantation of the first prosthetic heart valve.
- FIG. 1A is a side, perspective view of a prosthetic heart valve in accordance with the present invention.
- FIG. 1B is a side view of the prosthetic heart valve of FIG. 1A , with portions removed to better illustrate interior leaflets;
- FIG. 1C is an end view of the prosthetic heart valve of FIG. 1A ;
- FIGS. 2A-2C illustrate percutaneous deployment of the prosthetic heart valve of FIG. 1A within a previously implanted prosthetic heart valve
- FIG. 3 is a side perspective view of an alternative embodiment prosthetic heart valve in accordance with the present invention physically docked or connected to a previously implanted prosthetic heart valve;
- FIG. 4A is a side view of an alternative embodiment prosthetic heart valve in accordance with the present invention.
- FIG. 4B is a side view of the prosthetic heart valve of FIG. 4A mounted to a previously implanted prosthetic heart valve;
- FIG. 5 is a side, cross-sectional view of an alternative embodiment prosthetic heart valve physically connected or docked to a previously implanted prosthetic heart valve;
- FIG. 6A is a side, perspective view of a prosthetic heart valve adapted to couple with a replacement prosthetic heart valve in accordance with the present invention
- FIG. 6B is a side view of a replacement prosthetic heart valve physically docked or connected to the prosthetic heart valve of FIG. 6A ;
- FIG. 7 is a side view of an alternative embodiment prosthetic heart valve
- FIG. 8 is a side view of an alternative embodiment pros ethic heart valve
- FIG. 9A is a side, perspective view of a prosthetic heart valve adapted to couple with a replacement prosthetic heart valve in accordance with the present invention.
- FIG. 9B is a side view of a replacement prosthetic heart valve physically docking or connecting to the prosthetic heart valve of FIG. 9A ;
- FIG. 10A is a side, perspective view of a prosthetic heart valve adapted to couple with a replacement prosthetic heart valve in accordance with the present invention.
- FIG. 10B is a side view of a replacement prosthetic heart valve physically docked or connected to the prosthetic heart valve of FIG. 10A .
- FIG. 1A One embodiment of a prosthetic heart valve 10 in accordance with the present invention is shown in FIG. 1A .
- the prosthetic heart valve 10 includes a support structure 12 , leaflets 14 , and coupling means 16 (referenced generally in FIG. 1A ). Details on the various components are described below.
- the support structure 12 is generally tubular, with the leaflets 14 being secured to an interior of the support structure 12 .
- the coupling means 16 extends radially outwardly relative to the leaflets 14 .
- the coupling means 16 is adapted to physically dock or connect the prosthetic heart valve 10 to a previously implanted prosthetic heart valve (not shown) to achieve a connective interface between the physical structures of the prosthetic heart valve 10 and the previously implanted prosthetic heart valve apart from and in addition to any interface that may be effectuated by radial press-fitting of the prosthetic heart valve 10 against the previously implanted prosthetic heart valve.
- the term “prosthetic heart valve” is in reference to a bioprosthetic heart valve or a heart valve configuration utilizing synthetic leaflets, and excludes mechanical heart valves characterized as having a mechanically coupled, metal occluding disk or leaflet structure.
- the support structure 12 is, in one embodiment, a wire stent capable of transitioning from a collapsed state to an expanded state (shown in FIG. 1A ).
- individual wires 20 comprising the support structure 12 are formed of a metal or other material that facilitates folding of the support structure 12 to a contracted state in which an internal diameter defined by the support structure 12 is greatly reduced from an internal diameter in the expanded state.
- the support structure 12 in the collapsed state, can be mounted over a delivery device, such as a balloon catheter, as described below.
- the wires 20 can be formed from a shape memory material such as a nickel titanium alloy (NiTi or Nitinol®). With this configuration, the support structure 12 is self-transitionable from the contracted state to the expanded state, such as by the application of heat, energy, etc.
- the prosthetic heart valve 10 is, following an implantation procedure, physically docked to a previously implanted prosthetic heart valve (not shown).
- a longitudinal length and diameter of the support structure 12 in the expanded state is related to the previously implanted prosthetic heart valve to which the prosthetic heart valve 10 is applied.
- the support structure 12 can assume a variety of different longitudinal lengths and/or diameters.
- the support structure 12 has a longitudinal length in the expanded state that is slightly greater than a length of the previously implanted prosthetic heart valve, and a free-standing outer diameter that is greater than an inner diameter of the previously implanted prosthetic heart valve.
- the support structure 12 upon transitioning toward the expanded state, presses against an inner diameter of the previously implanted prosthetic heart valve.
- the support structure 12 defines a right cylinder in the expanded state.
- portions of the support structure 12 can define an enlarged diameter as compared to other portions.
- the support structure 12 can be less uniform along a longitudinal length thereof, such as when functionally replacing a FreestyleTM bioprosthetic tissue valve available from Medtronic, Inc., or similar prosthetic heart valve whereby the support structure 12 wall can be cut away.
- the leaflets 14 are secured to an interior of the support structure 12 .
- FIG. 1B better illustrate this relationship, whereby portions of the wires 20 are removed from the drawing.
- the leaflets 14 can be formed from a variety of materials, such as autologous tissue, xenograph material, or synthetics as are known in the art.
- the leaflets 14 are provided as a homogenous, biological valve structure, such as a porcine, bovine, or equine valve.
- the leaflets 14 can be provided independent of one another (e.g., bovine or equine pericardial leaflets) and subsequently assembled to the support structure 12 .
- the prosthetic heart valve 10 of the present invention can incorporate more or fewer leaflets than three.
- the combination support structure 12 /leaflets 14 can assume a variety of other configurations varying from that shown and described, including any known prosthetic heart valve design.
- the support structure 12 /leaflets 14 is any known expandable prosthetic heart valve configuration, whether balloon expandable, self-expanding, or unfurling (as described, for example, in U.S. Pat. Nos. 3,671,979; 4,056,854; 4,994,077; 5,332,402; 5,370,685; 5,397,351; 5,554,185; 5,855,601; and 6,168,614; U.S. patent application Publication No.
- the support structure 12 can include other features, not specifically described or shown, apart from the coupling means 16 .
- the support structure 12 has a non-expandable design, but is sized and shaped to nest within a previously implanted heart valve (not shown) in a manner that presses features of the previously implanted heart valve (e.g., leaflets) outwardly relative to the native conduit.
- the coupling means 16 is connected to, or formed as part of, the support structure 12 and, in one embodiment, includes an inflow section 30 and an outflow section 32 .
- the inflow section 30 consists of a plurality of discrete anchors 34 formed as extensions of individual ones of the wires 20 otherwise comprising the support structure 12 .
- the anchors 34 can be separately formed and attached to the support structure 12 .
- the inflow anchors 34 are configured to engage a sewing ring (not shown) of a previously implanted prosthetic heart valve (not shown).
- each of the inflow anchors 34 can be configured to engage other structure(s) of the previously implanted prosthetic heart valve.
- each of the inflow anchors 34 has a hook-like shape and terminates in a barbed end 36 .
- the curvature associated with each of the inflow anchors 34 is such that the respective barbed ends 36 extend inwardly relative to an inflow end 38 of the support structure 12 .
- the outflow section 32 similarly includes, with the one embodiment of FIG. 1A , a plurality of outflow anchors 40 each in the form of a hook terminating in a barbed end 42 .
- each of the outflow anchors 40 are adapted to project around the stent structure (not shown) associated with a previously implanted prosthetic heart valve (not shown), with the respective barbed ends 42 engaging within material associated with that stent structure.
- the radius of curvature associated with the outflow anchors 40 is less than a radius of curvature associated with the inflow anchors 34 .
- the anchors 40 can be configured the physically dock with other structure(s) provided by the previously implanted heart valve.
- any number of the inflow anchors 34 and/or the outflow anchors 40 can be provided with the prosthetic heart valve 10 of the present invention, and preferably correlates with the previously implanted prosthetic heart valve.
- the anchors 34 , 40 can assume a variety of forms that are or are not identical, such as barbs, clips, staples, hooks, etc.
- the anchors 34 , 40 are illustrated as extending from opposing ends, respectively, of the support structure 12 , alternatively, the anchors 34 and/or 40 can be intermediately disposed along a longitudinal length of the support structure 12 .
- the prosthetic heart valve 10 is constructed by securing the leaflets 14 to an interior periphery of the support structure 12 .
- a wide variety of attachment techniques can be employed.
- the leaflets 14 can be sewn to the support structure 12 .
- other coupling techniques such as crimping, adhesive, etc., can be employed.
- the coupling means 16 are similarly secured to the support structure 12 extending radially outwardly relative to the leaflets 14 .
- FIG. 1C illustrates the outflow section 32 of the coupling means 16 .
- the coupling means 16 or portions thereof can be integrally or homogenously formed with the support structure 12 .
- the coupling means 16 can be separately formed and assembled to the support structure 12 .
- construction and/or attachment of the coupling means 16 is such that in the expanded state of the support structure 12 ( FIGS. 1A-1C ), the coupling means extends radially outwardly, whereas in the contracted state (not shown), the coupling means 16 is retracted.
- FIG. 2A illustrates, in simplified form, a native heart valve 50 of a patient to which a previously implanted prosthetic heart valve 52 has been secured.
- the native heart valve 50 can be any of the human heart valves (i.e., mitral valve, tricuspid valve, aortic valve, or pulmonary valve), it being understood that the type and orientation of the previously implanted prosthetic heart valve 52 will correspond with the particular form, shape, and function of the native heart valve 50 .
- the native heart valve 50 defines a valve annulus or valvular rim 54 from which a lumen 56 defined by the native heart valve 50 extends.
- the previously implanted prosthetic heart valve 52 is, in one embodiment, any known prosthetic heart valve or valved conduit, and thus can assume a variety of forms.
- the previously implanted prosthetic heart valve 52 includes a valve structure 60 connected to a sewing ring 62 .
- the valve structure 60 may or may not include an internal stent, but is generally tubular in form, defining an internal region 64 (referenced generally) extended from an inflow end 66 to an outflow end 68 .
- the previously implanted prosthetic heart valve 52 includes stent posts 69 (for example, a biological, aortic or mitral prosthetic heart valve including a stent with three commissure posts), it being understood that the prosthetic heart valve of the present invention can be employed to functionally replace stentless prosthetic heart valves as well.
- the internal region 62 is essentially encompassed by the valve structure 60 , it being understood that the valve structure 60 selectively allows for fluid flow into or out of the lumen 56 of the natural heart valve 50 ; thus, the internal region 64 is openable to the lumen 56 .
- leaflets associated with the previously implanted prosthetic heart valve 52 are not shown in FIG. 2A .
- the previously implanted prosthetic heart valve 52 has been implanted via accepted surgical techniques, whereby the sewing ring 62 is sewn or attached to the annulus 54 of the native heart valve 50 .
- the previously implanted prosthetic heart valve 52 is functionally deficient due to one or more of a variety of factors, such as stenosis, valve failure, inflammation, native valve insufficiency, etc. Regardless, rather than removing the previously implanted prosthetic heart valve 52 and implanting a second, similarly formed prosthetic heart valve via rigorous open heart surgical techniques, the method of the present invention leaves the previously implanted prosthetic heart valve 52 in place, and deploys the prosthetic heart valve 10 ( FIG. 1A ) onto the previously implanted prosthetic heart valve 52 .
- the prosthetic heart valve 10 is delivered to the native heart valve 52 percutaneously, as represented in simplified form in FIG. 2B .
- a transcatheter assembly 70 is provided, including a delivery catheter 72 , a balloon catheter 74 , and a guide wire 76 .
- the delivery catheter 72 is of a type known in the art, and defines a lumen 78 within which the balloon catheter 74 is received.
- the balloon catheter 74 defines a lumen (not shown) within which the guide wire 76 is slidably disposed.
- the balloon catheter 74 includes a balloon 80 that is fluidly connected to an inflation source (not shown).
- the transcatheter assembly 70 is appropriately sized for a desired percutaneous approach to the native heart valve 50 .
- the transcatheter assembly 70 can be sized for delivery to the native heart valve 50 via an opening at a carotid artery, a jugular vein, a sub-clavian vein, femoral artery or vein, etc. Essentially, any percutaneous intercostals penetration can be made to facilitate use of the transcatheter assembly 70 .
- the prosthetic heart valve 10 is mounted over the balloon 80 in a contracted state as shown in FIG. 2B .
- the support structure 12 is compressed onto itself and the balloon 80 , thus defining a decreased inner diameter (as compared to an inner diameter in the expanded state).
- the coupling means 16 including the inflow and outflow anchors 34 , 40 , are retracted in the contracted state (as compared to an extended orientation of the coupling means 16 in the expanded state of FIG. 1A ).
- the transcatheter assembly 70 is delivered through a percutaneous opening (not shown) in the patient via the delivery catheter 72 .
- the native heart valve 50 is located by extending the guide wire 76 from a distal end 82 of the delivery catheter 72 , with the balloon catheter 74 otherwise retracted within the delivery catheter 72 .
- the guide wire 76 passes through the internal region 64 defined by the previously implanted prosthetic heart valve 52 .
- the balloon catheter 74 is advanced distally from the delivery catheter 72 along the guide wire 76 , with the balloon 80 /prosthetic heart valve 10 positioned relative to the previously implanted heart valve 52 as shown in FIG. 2B . More particularly, the balloon 80 /prosthetic heart valve 10 is positioned within the internal region 64 of the previously implanted prosthetic heart valve 52 , with the inflow anchors 34 positioned adjacent the inflow end 66 /sewing ring 62 of the previously implanted prosthetic heart valve 52 , whereas the outflow anchors 40 are positioned adjacent the outflow end 68 of the previously implanted prosthetic heart valve 52 .
- the prosthetic heart valve 10 is delivered to the previously implanted prosthetic heart valve 52 via a minimally invasive surgical incision (non-percutaneously). In another alternative embodiment, the prosthetic heart valve 10 is delivered via open heart/chest surgery. Regardless, with the prosthetic heart valve 10 in the contracted state, the support structure 12 readily moves within the internal region 64 of the previously implanted prosthetic heart valve 52 , and the coupling means 16 , which is otherwise retracted, does not unintentionally contact or engage portions of the previously implanted prosthetic heart valve 52 .
- the prosthetic heart valve 10 includes a radiopaque material to facilitate visual confirmation of proper placement of the prosthetic heart valve 10 relative to the previously implanted prosthetic heart valve 52 . Alternatively, other known surgical visual aids can be incorporated into the prosthetic heart valve 10 .
- the balloon catheter 74 is operated to inflate the balloon 80 , thus transitioning the prosthetic heart valve 10 to the expanded state as shown in FIG. 2C .
- the transcatheter assembly 70 is removed from the view of FIG. 2C .
- the prosthetic heart valve 10 self-transitions to the expanded state of FIG. 2C (and thus can be percutaneously delivered by an appropriate catheter device other than a balloon catheter).
- the prosthetic heart valve 10 can be unfurled to the expanded state, again without the assistance of a balloon catheter.
- the support structure 12 expands within the internal region 64 of the previously implanted heart valve 52 , radially pressing against the valve structure 60 .
- the previously implanted prosthetic heart valve 52 includes leaflets (not shown)
- radial expansion of the support structure 12 presses against these leaflets, lodging them against the valve structure 60 .
- the coupling means 16 physically docks or connects the prosthetic heart valve 10 to the previously implanted prosthetic heart valve 52 .
- the inflow anchors 34 lodge within the sewing ring 62 of the previously implanted prosthetic heart valve 52 , such as via the barbed end 36 ( FIG. 1A ) associated with each of the inflow anchors 34 .
- the outflow anchors 40 wrap around the outflow end 68 of the previously implanted prosthetic heart valve 52 , with the corresponding barbed ends 42 lodging within an outer fabric therein.
- each of the outflow anchors 40 wraps about a corresponding stent post 69 of the previously implanted prosthetic heart valve 52 .
- the physical docking or connection between the coupling means 16 and the previously implanted heart valve 52 is apart from, or in addition to, any frictional, radial interface between the prosthetic heart valve 10 and the previously implanted heart valve 52 otherwise achieved by radial force or pressure exerted by the support structure 12 against the previously implanted heart valve 52 in the expanded state.
- the prosthetic heart valve 10 serves as a functional replacement for the previously implanted prosthetic heart valve 52 , utilizing the sewing ring 62 of the previously implanted prosthetic heart valve 52 as a platform for securement relative to the native heart valve 50 . That is to say the sewing ring 62 of the previously implanted heart valve 52 has previously been sutured to the annulus or valvular rim 56 of the native heart valve 50 ; by fastening the prosthetic heart valve 10 to the sewing ring 62 , no additional suturing is required. Following fastening of the prosthetic heart valve 10 to the previously implanted prosthetic heart valve 52 , the leaflets 14 (one of which is shown in FIG. 2C ) serve as replacement valve leaflets, facilitating normal functioning of the native heart valve 50 .
- Attachment of the prosthetic heart valve 10 to the previously implanted prosthetic heart valve 52 can be accomplished in a variety of fashions other than that described with respect to the one embodiment of prosthetic heart valve 10 described above.
- the coupling means 16 need not include inflow and outflow sections, but instead can be directly, physically docked to the previously implanted prosthetic heart valve 52 at only one end thereof.
- the coupling means 16 has been described as including hooks with barbed ends, other anchoring techniques can be employed whereby the anchors do not necessarily pierce through the previously implanted prosthetic heart valve 52 material. To this end, clip(s), staple(s), or other fastening devices can be employed.
- FIG. 3 an alternative embodiment prosthetic heart valve 80 internally positioned and physically docked or connected to a previously implanted prosthetic heart valve 52 is shown in FIG. 3 .
- the prosthetic heart valve 80 includes a support structure 82 , leaflets (not shown) and coupling means 84 (referenced generally).
- the support structure 82 and the leaflets can assume any of the forms previously described with respect to the prosthetic heart valve 10 . ( FIGS. 1A-1C ) previously described.
- the coupling means 84 includes an outflow anchor 86 , intermediate anchors 88 a , 88 b , and inflow anchors 90 .
- each of the anchors 86 - 90 can achieve physical docking or connection of the prosthetic heart valve 80 to the previously implanted heart valve 52 , such that one or more of the features 86 - 90 can be eliminated.
- the coupling means 84 can include components not specifically shown in FIG. 3 .
- the outflow anchor 86 is a clasp or hook formed as part of the support structure 82 at the outflow end thereof.
- the support structure 82 can be a wire-formed stent, with an individual wire being bent, or two wires combined, to form the outflow anchor 86 .
- the outflow anchor 86 is generally sized and shaped in accordance with an expected size and shape of a stent post 69 of the previously implanted prosthetic heart valve 52 for reasons described below. To this end, the outflow anchor 86 can be the result of normal manufacture techniques for forming a stent-type support structure.
- the prosthetic heart valve 80 is positioned, in a contracted state, within the previously implanted prosthetic heart valve 52 with the outflow anchor 86 located beyond the previously implanted prosthetic heart valve 52 , and in particular the stent posts 69 .
- the prosthetic heart valve 80 is then transitioned to an expanded state (shown in FIG. 3 ). Once expanded, the prosthetic heart valve 80 is retracted relative to the previously implanted prosthetic heart valve 52 such that the outflow anchor 86 slides over one of the stent posts 69 , thereby physically docking or connecting the prosthetic heart valve 80 to the previously implanted prosthetic heart valve 52 .
- the outflow anchor 86 is sized and shaped so as to readily clear a leading end of the stent post 69 , but will more firmly dock or connect to the stent post 69 at an intermediate section thereof that is otherwise wider and/or thicker than the leading end.
- the previously implanted prosthetic heart valve 52 includes an internal wire frame (not shown) traversing an outflow periphery thereof (e.g., Carpentier-Edwards Bioprostheses, available from Edwards Lifescience)
- an outflow periphery thereof e.g., Carpentier-Edwards Bioprostheses, available from Edwards Lifescience
- the prosthetic heart valve 80 is illustrated in FIG. 3 as including a single outflow anchor 86 , alternatively two or more of the outflow anchors 86 can be provided.
- the intermediate anchors 88 a , 88 b are, in one embodiment, hooks or barbs, and extended generally radially outwardly from the support structure 82 at a location(s) between the opposing ends thereof. To this end, the intermediate anchors 88 a , 88 b are located to physically dock or connect to portions of the previously implanted prosthetic heart valve 52 at points other than leading ends of the stent posts 69 .
- the intermediate anchor 88 a is configured and positioned to pierce into material of the previously implanted prosthetic heart valve 52 (such as between adjacent stent posts 69 and/or along a length of one of the stent posts 69 ) upon transitioning of the prosthetic heart valve 80 to the expanded state.
- the intermediate anchor 88 a pierces through an interior of the previously implanted prosthetic heart valve 52 .
- the intermediate anchor 88 b is configured and positioned to wrap about and contact an area of the previously implanted prosthetic heart valve 52 between adjacent ones of the stent posts 69 with the prosthetic heart valve 80 in the expanded state.
- the previously implanted prosthetic heart valve 52 includes an internal wire frame (not shown) traversing an outflow periphery thereof (e.g., Carpentier-Edwards Bioprostheses, available from Edwards Lifescience)
- an internal wire frame traversing an outflow periphery thereof (e.g., Carpentier-Edwards Bioprostheses, available from Edwards Lifescience)
- the intermediate anchor 88 a extends immediately below (relative to the orientation of FIG. 3 ), and thus braces against the internal wire frame.
- the intermediate anchor 88 b extends immediately above (relative to the orientation of FIG. 3 ), and thus braces against, the internal wire frame.
- more or less of the intermediate anchors 88 a , 88 b can be provided as compared to the one embodiment illustrated in FIG. 3 .
- the inflow anchors 90 are hooks or barbs extending from the support structure 82 , although a variety of other constructions are also acceptable. Regardless, the inflow anchors 90 are constructed to facilitate physical docking or connection to the sewing ring 62 of the previously implanted prosthetic heart valve 52 .
- the support structure of the prosthetic heart valve can, in and of itself, be adapted to facilitate physical docking or connection to the previously implanted prosthetic heart valve 52 .
- FIG. 4A an alternative embodiment prosthetic heart valve 100 in accordance with the present invention is shown in FIG. 4A .
- the prosthetic heart valve 100 is similar to the prosthetic heart valve 10 ( FIG. 1A ) previously described, and is adapted to functionally replace a previously implanted prosthetic heart valve (not shown).
- the prosthetic heart valve 100 includes a support structure 102 , leaflets (not shown), and coupling means 104 . With the one embodiment of FIG.
- the support structure 102 is a tubular, wire stent and defines, in the expanded state of FIG. 4A , opposing first and second end portions 106 , 108 and an intermediate portion 110 .
- the leaflets are similar to the leaflets 14 ( FIG. 1A ) previously described and are interiorly secured to the support structure 102 along the intermediate portion 110 .
- the first and second end portions 106 , 108 serve as the coupling means 104 .
- the support structure 102 is constructed such that in the expanded state of FIG. 4A , the first and second end portions 106 , 108 define an increased outer diameter as compared to the intermediate portion 110 .
- the first end portion 106 increases in diameter from the intermediate portion 110 to a first end 112 .
- the second end portion 108 increases in diameter from the intermediate portion 110 to a second end 114 .
- other shapes can be defined, and only one of the first or second end portions 106 , 108 need define the increased diameter in the expanded state.
- a maximum diameter defined by one or both of the first and second end portions 106 , 108 corresponds with a diameter of a previously implanted prosthetic heart valve (not shown in FIG.
- the support structure 102 need not assume the hourglass-like shape of FIG. 4A in a contracted state (not shown), but instead can be a substantially right cylinder amenable for delivery to a target site. Transition to the expanded state can be achieved in a variety of fashions, such as by an appropriately devised balloon catheter (e.g., a balloon catheter having three balloon sections inflatable to different outer diameters), or by employing a shape memory material for the support structure 102 .
- an appropriately devised balloon catheter e.g., a balloon catheter having three balloon sections inflatable to different outer diameters
- a shape memory material for the support structure 102 .
- the prosthetic heart valve 100 is delivered in the contracted state, according to the techniques previously described.
- the prosthetic heart valve 100 is positioned within the internal region 64 of the previously implanted prosthetic heart valve 52 (it being understood that in the view of FIG. 4B , the prosthetic heart valve 100 has been transitioned to the expanded state).
- the prosthetic heart valve 100 is transitioned to the expanded state, with the first and second end portions 106 , 108 assuming the increased outer diameter as compared to the intermediate section 110 .
- the support structure 102 presses against the previously implanted prosthetic heart valve 52 that is otherwise secured to the native heart valve 50 ( FIG. 2A ).
- the coupling means 104 i.e., the first and second end portions 106 , 108 ) nest about the previously implanted prosthetic heart valve 52 , thereby physically docking or connecting the prosthetic heart valve 100 to the previously implanted prosthetic heart valve 52 .
- the coupling means 104 associated with FIGS. 4A and 4B can be used alone or in conjunction with the coupling means 16 ( FIG. 1A ) previously described.
- the coupling means associated with the prosthetic heart valve of the present invention need not effectuate a rigid, locking engagement with the previously implanted prosthetic heart valve 52 .
- effectuating a rigid engagement may be difficult.
- the coupling means associated with the prosthetic heart valve of the present invention is capable of remaining physically docked or connected to the previously implanted prosthetic heart valve 52 under backpressure conditions of at least 200 mHg.
- FIG. 5 depicts the previously implanted prosthetic heart valve 52 in conjunction with an alternative embodiment prosthetic heart valve 10 ′ that is highly similar to the prosthetic heart valve 10 ( FIG. 1A ) previously described and further includes the gasket material 130 .
- the gasket material 130 is, in one embodiment, attached to an outer circumference of the support structure 12 at or adjacent an annulus portion 132 that is otherwise expected to be positioned adjacent the annulus or valvular rim 54 of the previously implanted prosthetic heart valve 52 .
- the gasket material 130 can encompass a more significant exterior length of the support structure 12 .
- the gasket material 130 can be made from fabric, felt, Teflon®, silicone, pericardium, or other polymeric or biological materials. As shown in FIG. 5 , the gasket material 130 serves as a filler to prevent holes from forming between the prosthetic heart valve 10 ′ and the previously implanted prosthetic heart valve 52 adjacent the annulus or valvular rim 54 , thus preventing leaching of blood back through this region.
- the present invention includes providing the previously implanted prosthetic heart valve with features that further facilitate the desired physical docking or connection.
- first implanted prosthetic heart valve a “first implanted prosthetic heart valve”
- functional replacement prosthetic heart valve e.g., the prosthetic heart valve 10 of FIG. 1A
- FIG. 6A illustrates one embodiment of a first implanted prosthetic heart valve 200 in accordance with the present invention.
- the first implanted prosthetic heart valve 200 can assume a variety of forms, but generally includes a support structure 202 , leaflets (not shown), and connection means 206 .
- the support structure 202 maintains the leaflets and facilitates attachment of the prosthetic valve 200 to a native heart valve (not shown).
- the connection means 206 is connected to, or formed by, the support structure 202 , and promotes physical docking or connection of a replacement prosthetic heart valve (not shown, but for example, the prosthetic heart valve 10 of FIG. 1A ) to the first prosthetic heart valve 200 .
- the support structure 202 defines a sewing ring 208 and includes a stent (hidden) forming stent posts 210 and encompassed by a covering 212 , such as with a Medtronic® Hancock II® or Musiac® stented tissue valve.
- a stent hidden
- a covering 212 such as with a Medtronic® Hancock II® or Musiac® stented tissue valve.
- a wide variety of other stented tissue valves such as those described in U.S. Pat. Nos. 4,680,031, 4,892,541, and 5,032,128, the teachings of which are incorporated herein by reference, can be employed as the support structure 202 .
- the support structure 202 can be stentless, such as, for example, with a Freestyle® stentless bioprosthesis, available from Medtronic, Inc.
- connection means 206 associated with the embodiment of FIG. 6A includes a wire ring 214 extending between the stent posts 210 (either adjacent the leading (or outflow) ends thereof as illustrated, or more closely positioned to the sewing ring 208 ).
- the wire ring 214 can be fastened to the support structure 202 in a variety of manners, including, for example, sewing the wire ring 214 to the fabric covering 212 .
- the wire ring 214 is illustrated as being a single, continuous structure, in an alternative embodiment, two or more individual wire segments are provided and secured to the support structure, with the segments combining to define a continuous or discontinuous ring-like structure 202 .
- the wire ring 214 is positioned so as to not interfere with functioning/movement of the leaflets adjacent an outflow (or inflow) end of the first prosthetic heart valve 200 .
- connection means 206 is adapted to promote physical docking or connecting of a replacement prosthetic heart valve 220 to the first prosthetic heart valve 200 .
- the replacement prosthetic heart valve 220 is akin to the prosthetic heart valve 10 ( FIG. 1A ) previously described, and includes a support structure 222 and a coupling means in the form of outflow anchors or hooks 224 .
- the first prosthetic heart valve 200 is initially implanted in a patient (not shown) and secured to native tissue (not shown), for example via the sewing ring 208 .
- the first prosthetic heart valve 200 can be functionally replaced by the replacement prosthetic heart valve 220 .
- the replacement prosthetic heart valve 220 can be delivered and positioned in a contracted state within the first prosthetic heart valve 220 pursuant to any of the techniques previously described.
- the replacement prosthetic heart valve 220 then transitions to the expanded state (shown in FIG. 6B ), thereby deploying the coupling means or outflow hooks 224 .
- the replacement prosthetic heart valve 220 is then maneuvered such that the hooks 224 engage the wire ring 214 , thereby physically docking or connecting the replacement prosthetic heart valve 220 to the first prosthetic heart valve 200 .
- the replacement prosthetic heart valve 220 can include differing coupling means, such as a detent, for capturing or physically connecting to the wire ring 214 .
- connection means 206 associated with the first prosthetic heart valve 200 can assume a number of other configurations.
- FIG. 7 illustrates an alternative embodiment first prosthetic heart valve 250 including a support structure 252 , leaflets (not shown), and connection means 254 (referenced generally).
- the support structure 252 and the leaflets can assume any of the forms previously described.
- the connection means 254 includes a plurality of rings 256 , respective ones of which extend from individual stent posts 258 .
- Each of the rings 256 preferably extends in a radially outward fashion relative to the corresponding stent post 258 , and is longitudinally open relative to a central axis defined by the support structure 252 .
- the first prosthetic heart valve 250 can be functionally replaced by a replacement prosthetic heart valve (not shown, but akin to the prosthetic heart valve 10 of FIG. 1A ) by physically docking or connecting the coupling means (e.g., hooks) of the replacement prosthetic heart valve within the rings 256 .
- a replacement prosthetic heart valve not shown, but akin to the prosthetic heart valve 10 of FIG. 1A
- the coupling means e.g., hooks
- first prosthetic heart valve 280 in accordance with the present invention is shown in FIG. 8 and includes a support structure 282 , leaflets (not shown) and connection means 284 (referenced generally).
- the support structure 282 and the leaflets can assume any of the forms previously described.
- the connection means 284 is attached to, or formed by, the support structure 282 and includes a plurality of protrusions 286 .
- the protrusions 286 are hooks, although other configurations, such as posts, barbs, eyelets, etc., are equally acceptable.
- the protrusions are positioned, in one embodiment, at an inflow side of the prosthetic heart valve 280 , and are adapted to facilitate physical docking or connection with a corresponding coupling means or feature (e.g., post, hook, eyelet, etc.) of a replacement prosthetic heart valve (not shown) following a procedure to functionally replace the first prosthetic heart valve 280 .
- a coupling means or feature e.g., post, hook, eyelet, etc.
- first prosthetic heart valve 300 in accordance with the present invention includes a support structure 302 , leaflets (not shown), and connection means 304 (referenced generally).
- the support structure 302 and the leaflets can assume any of the forms previously described.
- the connection means 304 is formed by the support structure 302 and, with the embodiment of FIG. 9A , includes a plurality of apertures 306 (shown generally in FIG. 9A ).
- the apertures 306 are sized to capture corresponding tabs 312 provided by the replacement prosthetic heat valve 310 , thus physically docking or connecting the replacement prosthetic heart valve 310 to the first prosthetic heart valve 300 .
- additional coupling means 314 e.g., barbed hooks
- first prosthetic heart valve 330 is shown in FIG. 10A and includes a support structure 332 , leaflets (not shown) and connection means 334 (referenced generally).
- the support structure 332 and the leaflets can assume any of the forms previously described, with the support structure 332 including stent posts 336 and a sewing ring 338 .
- the connection means 334 is connected to, or formed by, the support structure 332 and includes, with the one embodiment of FIG. 10A , a plurality of outflow ribs 340 and an inflow rib 342 .
- Respective ones of the outflow ribs 340 extend radially outwardly relative to respective ones of the stent posts 336 and are positioned along a length thereof, in one embodiment adjacent a leading end of the respective stent post 336 .
- the inflow rib 342 is contiguous with, and extends axially from, the sewing ring 338 .
- the connection means 334 is configured to facilitate physical docking or connection of a replacement prosthetic heart valve, such as the replacement valve 350 as shown in FIG. 10B .
- the replacement prosthetic heart valve 350 has coupling means 352 (referenced generally) including tabs 354 and protrusions 356 .
- the tabs 354 define capture slots 358 relative to a support structure 360 of the replacement prosthetic heart valve 350 .
- the outflow ribs 340 are lodged within the capture slots 358 (formed, for example, by corresponding recess and radial extension features), and the protrusions 356 engage the inflow rib 342 .
- the embodiments of FIGS. 6A-10B above are but a few examples of combination first prosthetic heart valve/replacement prosthetic heart valve configurations in accordance with the present invention.
- the first prosthetic heart valve includes a magnetic material (such as internal, magnetic ring) whereas the replacement prosthetic heart valve includes a magnetic material connected to or provided as part of its support structure.
- Virtually any magnetic material could be employed, such as ferrous or ferritic materials, rare earth magnetic materials such as Neodymium (Nd—Fe—B) and Samarium cobalt magnets (SmCo), etc.
- the replacement prosthetic heart valve is magnetically attracted to the magnetic material of the first prosthetic heart valve, thus facilitating physical docking or connection to the first prosthetic heart valve.
- the first prosthetic heart valve and the corresponding replacement valve are configured to provide complimentary features that promote physical docking or connection of the replacement prosthetic heart valve to the first prosthetic heart valve as part of a procedure to functionally replace the first prosthetic heart valve.
- the complimentary first prosthetic heart valve and replacement prosthetic heart valve can be packaged together and sold as a kit.
- the prosthetic heart valve and related method of implantation presents a marked improvement over previous designs.
- the prosthetic heart valve of the present invention is highly amenable to percutaneous delivery.
- the deficient prosthetic heart valve need not be physically removed from the patient.
- the prosthetic heart valve and related method of implantation of the present invention can be used at any point during the “useful life” of a conventional prosthetic heart valve.
- the methodology associated with the present invention can be repeated multiple times, such that several prosthetic heart valves of the present invention can be mounted on top of or within one another.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
A method of functionally replacing a previously implanted prosthetic heart valve. The method includes positioning a replacement prosthetic heart valve within an internal region defined by the previously implanted prosthetic heart valve. The replacement prosthetic heart valve is then physically docked to the previously implanted prosthetic heart valve. With this technique, the previously implanted prosthetic heart valve serves as a platform for securement of the replacement prosthetic heart valve to the patient's native tissue.
Description
- The present invention relates to prosthetic heart valves. More particularly, it relates to a device and method for functionally replacing a deficient, previously implanted prosthetic heart valve.
- Implantable heart valve prostheses have long been used to replace various diseased or damaged natural aortic valves, mitral valves, pulmonic valves, and tricuspid valves of the heart. The actual shape and configuration of any particular prosthetic heart valve is, of course, dependent upon the valve being replaced. Generally, the known heart valve prostheses are either bioprostheses or mechanical heart valve prostheses.
- The bioprostheses or “tissue valves” are generally made of a suitable animal tissue or materials (e.g., harvested porcine valve leaflets, bovine or equine pericardial leaflets, synthetic material leaflets, etc.) that may be mounted onto a stationary metal or plastic frame, referred to as a “stent”. Regardless of whether a stent is provided, bioprosthetic/synthetic heart valves are generally tubular (i.e., when the leaflets are “open”, an internal passage is defined through which fluid (e.g., blood) can flow), and include a sewing or suture ring.
- The sewing or suture ring provides a means for fixing the prosthetic heart valve to the patient's native heart valve orifice tissue (e.g., native annulus or valvular rim) associated with the native heart valve being repaired or replaced. In particular, an exacting surgical implantation technique is traditionally employed whereby the heart is stopped (cardiopulmonary bypass) and opened followed by surgical removal of damaged or diseased natural valve structure. Subsequently, the prosthetic heart valve is properly oriented within the native valvular area, with the sewing ring being seated against or at the native annulus or valvular rim. Sutures are then used to affix the sewing ring to the natural tissue.
- A successfully implanted prosthetic heart valve will normally function without problem for many years. In certain instances, however, deficiencies may become evident shortly after implant or within a few years (especially in younger patients). Common functional deficiencies relate to calcification of the prosthetic heart valve leaflets, stenosis, and prosthetic heart valve insufficiency.
- Under these and other circumstances, the prosthetic heart valve does not function properly, or no longer functions properly, and conventionally is surgically removed and replaced. Removal of a previously implanted prosthetic heart valve entails the same surgical intervention described above, coupled with the need to implant a new prosthetic heart valve. As a point of reference, while well-accepted, the conventional surgical intervention described above is difficult to perform and can result in patient injury or more severe complications. In fact, due to physical weakness, implantation of a prosthetic heart valve via the conventional surgical technique may be considered either too high risk or contra-indicated for certain patients. Further, removal of a previously implanted prosthetic heart valve requires cutting of the sutures that otherwise secure the prosthesis to the native annulus/valvular rim, and re-stitching of a new sewing ring. These activities can further compromise the integrity of the valvular rim and lead to recovery complications, morbidity and mortality.
- Though unrelated to the specifically addressing prosthetic heart valve replacement concerns, efforts have been made to devise a prosthetic heart valve capable of being delivered percutaneously via transcatheter implantation thus avoiding the complications associated with conventional surgical intervention. For example, Andersen et al., U.S. Pat. No. 6,168,614, the teachings of which are incorporated herein by reference, describes a heart valve prosthesis for implantation in the body by use of a catheter. The valve prosthesis consists of a support structure with a tissue valve connected to it, whereby the support structure is delivered in a collapsed state through a blood vessel and secured to a desired valve location with the support structure in an expanded state. Other percutaneously-delivered prosthetic heart valves have been suggested having a generally similar configuration, such as by Bonhoeffer, P. et al., “Transcatheter Implantation of a Bovine Valve in Pulmonary Position.” Circulation, 2002; 102:813-816 and Cribier, A. et al. “Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis.” Circulation, 2002; 106:3006-3008, the teachings of which are incorporated herein by reference. These techniques appear to rely upon a frictional engagement between the expanded support structure and the native tissue to maintain a position of the delivered prosthesis. That is to say, with the transcatheter technique, conventional sewing of the prosthetic heart valve to the patient's native tissue cannot be performed. Similarly, Bonhoeffer, P. et al., “Percutaneous Insertion of the Pulmonary Valve.” J Am Coll Cardiol, 2002; 39:1664-1669, the teachings of which are incorporated herein by reference, describe percutaneous delivery of a biological valve, sutured to an expandable stent, within a previously implanted valved or non-valved conduit, or a previously implanted valve. Again, it appears that radial expansion of the secondary valve stent is the sole means for placing and maintaining the replacement valve.
- Prosthetic heart valves continue to be essential tools in the treatment of patient's suffering from cardiac deficiencies. Further, the investigation into percutaneously-delivered prosthetic heart valves appears promising. Unfortunately, the inability to rigidly affix a percutaneous prosthetic heart valve remains problematic. Therefore, a need exists for a prosthetic heart valve and related method of implant that is conducive to percutaneous delivery for replacing a deficient, previously implanted prosthetic heart valve.
- One aspect of the present invention relates to a method of functionally replacing a previously implanted prosthetic heart valve. The method includes positioning a replacement prosthetic heart valve within an internal region defined by the previously implanted prosthetic heart valve. The replacement prosthetic heart valve is then physically docked to the previously implanted prosthetic heart valve. With this technique, the previously implanted prosthetic heart valve serves as a platform for securement of the replacement prosthetic heart valve to the patient's native tissue.
- Another aspect of the present invention relates to a prosthetic heart valve for functionally replacing a previously implanted prosthetic heart valve. The prosthetic heart valve includes a support structure, leaflets, and coupling means. The leaflets are mounted to the support structure. The coupling means is associated with the support structure and is adapted to physically dock the prosthetic heart valve to a previously implanted prosthetic heart valve.
- Another aspect of the present invention relates to a prosthetic heart valve comprising a support structure, leaflets, and connection means. The leaflets are mounted to the support structure. The connection means is associated with the support structure and is adapted to effectuate physical docking of a replacement prosthetic heart valve to the prosthetic heart valve.
- Another aspect of the present invention relates to a prosthetic heart valve system comprising a first prosthetic heart valve and a replacement heart valve. The first prosthetic heart valve is configured for initial implantation to native heart tissue and includes a support structure, leaflets, and connection means. The leaflets are mounted to the support structure and the connection means is associated with the support structure. The replacement prosthetic heart valve includes a support structure, leaflets, and coupling means. The leaflets are mounted to the support structure and the coupling means is associated with the support structure. With this in mind, the connection means and the coupling means are configured such that the coupling means engages the connection means to physically dock the replacement prosthetic heart valve to the first prosthetic heart valve following implantation of the first prosthetic heart valve.
-
FIG. 1A is a side, perspective view of a prosthetic heart valve in accordance with the present invention; -
FIG. 1B is a side view of the prosthetic heart valve ofFIG. 1A , with portions removed to better illustrate interior leaflets; -
FIG. 1C is an end view of the prosthetic heart valve ofFIG. 1A ; -
FIGS. 2A-2C illustrate percutaneous deployment of the prosthetic heart valve ofFIG. 1A within a previously implanted prosthetic heart valve; -
FIG. 3 is a side perspective view of an alternative embodiment prosthetic heart valve in accordance with the present invention physically docked or connected to a previously implanted prosthetic heart valve; -
FIG. 4A is a side view of an alternative embodiment prosthetic heart valve in accordance with the present invention; -
FIG. 4B is a side view of the prosthetic heart valve ofFIG. 4A mounted to a previously implanted prosthetic heart valve; -
FIG. 5 is a side, cross-sectional view of an alternative embodiment prosthetic heart valve physically connected or docked to a previously implanted prosthetic heart valve; -
FIG. 6A is a side, perspective view of a prosthetic heart valve adapted to couple with a replacement prosthetic heart valve in accordance with the present invention; -
FIG. 6B is a side view of a replacement prosthetic heart valve physically docked or connected to the prosthetic heart valve ofFIG. 6A ; -
FIG. 7 is a side view of an alternative embodiment prosthetic heart valve; -
FIG. 8 is a side view of an alternative embodiment pros ethic heart valve; -
FIG. 9A is a side, perspective view of a prosthetic heart valve adapted to couple with a replacement prosthetic heart valve in accordance with the present invention; -
FIG. 9B is a side view of a replacement prosthetic heart valve physically docking or connecting to the prosthetic heart valve ofFIG. 9A ; -
FIG. 10A is a side, perspective view of a prosthetic heart valve adapted to couple with a replacement prosthetic heart valve in accordance with the present invention; and -
FIG. 10B is a side view of a replacement prosthetic heart valve physically docked or connected to the prosthetic heart valve ofFIG. 10A . - One embodiment of a
prosthetic heart valve 10 in accordance with the present invention is shown inFIG. 1A . Theprosthetic heart valve 10 includes asupport structure 12,leaflets 14, and coupling means 16 (referenced generally inFIG. 1A ). Details on the various components are described below. In general terms, however, thesupport structure 12 is generally tubular, with theleaflets 14 being secured to an interior of thesupport structure 12. The coupling means 16 extends radially outwardly relative to theleaflets 14. As described below, the coupling means 16 is adapted to physically dock or connect theprosthetic heart valve 10 to a previously implanted prosthetic heart valve (not shown) to achieve a connective interface between the physical structures of theprosthetic heart valve 10 and the previously implanted prosthetic heart valve apart from and in addition to any interface that may be effectuated by radial press-fitting of theprosthetic heart valve 10 against the previously implanted prosthetic heart valve. As used throughout this specification, the term “prosthetic heart valve” is in reference to a bioprosthetic heart valve or a heart valve configuration utilizing synthetic leaflets, and excludes mechanical heart valves characterized as having a mechanically coupled, metal occluding disk or leaflet structure. - The
support structure 12 is, in one embodiment, a wire stent capable of transitioning from a collapsed state to an expanded state (shown inFIG. 1A ). In one embodiment,individual wires 20 comprising thesupport structure 12 are formed of a metal or other material that facilitates folding of thesupport structure 12 to a contracted state in which an internal diameter defined by thesupport structure 12 is greatly reduced from an internal diameter in the expanded state. Thus, for example, in the collapsed state, thesupport structure 12 can be mounted over a delivery device, such as a balloon catheter, as described below. Alternatively, thewires 20 can be formed from a shape memory material such as a nickel titanium alloy (NiTi or Nitinol®). With this configuration, thesupport structure 12 is self-transitionable from the contracted state to the expanded state, such as by the application of heat, energy, etc. - As described in greater detail below, the
prosthetic heart valve 10 is, following an implantation procedure, physically docked to a previously implanted prosthetic heart valve (not shown). With this in mind, a longitudinal length and diameter of thesupport structure 12 in the expanded state is related to the previously implanted prosthetic heart valve to which theprosthetic heart valve 10 is applied. Thus, thesupport structure 12 can assume a variety of different longitudinal lengths and/or diameters. In one embodiment, for example, thesupport structure 12 has a longitudinal length in the expanded state that is slightly greater than a length of the previously implanted prosthetic heart valve, and a free-standing outer diameter that is greater than an inner diameter of the previously implanted prosthetic heart valve. With this one embodiment, upon transitioning toward the expanded state, thesupport structure 12 presses against an inner diameter of the previously implanted prosthetic heart valve. With the one embodiment ofFIG. 1A , thesupport structure 12 defines a right cylinder in the expanded state. However, as described in greater detail below, other shapes are equally acceptable. For example, portions of thesupport structure 12 can define an enlarged diameter as compared to other portions. Further, depending upon the previously implanted heart valve being functionally replaced, thesupport structure 12 can be less uniform along a longitudinal length thereof, such as when functionally replacing a Freestyle™ bioprosthetic tissue valve available from Medtronic, Inc., or similar prosthetic heart valve whereby thesupport structure 12 wall can be cut away. - The
leaflets 14 are secured to an interior of thesupport structure 12.FIG. 1B better illustrate this relationship, whereby portions of thewires 20 are removed from the drawing. Theleaflets 14 can be formed from a variety of materials, such as autologous tissue, xenograph material, or synthetics as are known in the art. With the embodiment ofFIGS. 1A and 1B , theleaflets 14 are provided as a homogenous, biological valve structure, such as a porcine, bovine, or equine valve. Alternatively, theleaflets 14 can be provided independent of one another (e.g., bovine or equine pericardial leaflets) and subsequently assembled to thesupport structure 12. Further, while three of theleaflets 14 are illustrated inFIGS. 1A and 1B , theprosthetic heart valve 10 of the present invention can incorporate more or fewer leaflets than three. - In more general terms, the
combination support structure 12/leaflets 14 can assume a variety of other configurations varying from that shown and described, including any known prosthetic heart valve design. In one embodiment, thesupport structure 12/leaflets 14 is any known expandable prosthetic heart valve configuration, whether balloon expandable, self-expanding, or unfurling (as described, for example, in U.S. Pat. Nos. 3,671,979; 4,056,854; 4,994,077; 5,332,402; 5,370,685; 5,397,351; 5,554,185; 5,855,601; and 6,168,614; U.S. patent application Publication No. 2004/0034411; Bonhoeffer P., et al., “Percutaneous Insertion of the Pulmonary Valve”, Pediatric Cardiology, 2002; 39:1664-1669; Anderson H R, et al., “Transluminal Implantation of Artificial Heart Valves”, EUR Heart J., 1992; 13:704-708; Anderson, J. R., et al., “Transluminal Catheter Implantation of New Expandable Artificial Cardiac Valve”, EUR Heart J., 1990, 11: (Suppl) 224a; Hilbert S. L., “Evaluation of Explanted Polyurethane Trileaflet Cardiac Valve Prosthesis”, J Thorac Cardiovascular Surgery, 1989; 94:419-29; Block P C, “Clinical and Hemodyamic Follow-Up After Percutaneous Aortic Valvuloplasty in the Elderly”, The American Journal of Cardiology, Vol. 62, Oct. 1, 1998; Boudjemline, Y., “Steps Toward Percutaneous Aortic Valve Replacement”, Circulation, 2002; 105:775-558; Bonhoeffer, P., “Transcatheter Implantation of a Bovine Valve in Pulmonary Position, a Lamb Study”, Circulation, 2000:102:813-816; Boudjemline, Y., “Percutaneous Implantation of a Valve in the Descending Aorta In Lambs”, EUR Heart J, 2002; 23:1045-1049; Kulkinski, D., “Future Horizons in Surgical Aortic Valve Replacement: Lessons Learned During the Early Stages of Developing a Transluminal Implantation Technique”, ASAIO J, 2004; 50:364-68; the teachings of all of which are incorporated herein by reference. Thus, thesupport structure 12 can include other features, not specifically described or shown, apart from the coupling means 16. In an alternative embodiment, thesupport structure 12 has a non-expandable design, but is sized and shaped to nest within a previously implanted heart valve (not shown) in a manner that presses features of the previously implanted heart valve (e.g., leaflets) outwardly relative to the native conduit. - Regardless of the exact configuration of the
support structure 12 andleaflets 14, the coupling means 16 is connected to, or formed as part of, thesupport structure 12 and, in one embodiment, includes aninflow section 30 and anoutflow section 32. With the one embodiment ofFIG. 1A , theinflow section 30 consists of a plurality ofdiscrete anchors 34 formed as extensions of individual ones of thewires 20 otherwise comprising thesupport structure 12. Alternatively, theanchors 34 can be separately formed and attached to thesupport structure 12. As described in greater detail below, the inflow anchors 34 are configured to engage a sewing ring (not shown) of a previously implanted prosthetic heart valve (not shown). Alternatively, the inflow anchors 34 can be configured to engage other structure(s) of the previously implanted prosthetic heart valve. With this in mind, in one embodiment each of the inflow anchors 34 has a hook-like shape and terminates in abarbed end 36. The curvature associated with each of the inflow anchors 34 is such that the respective barbed ends 36 extend inwardly relative to aninflow end 38 of thesupport structure 12. - The
outflow section 32 similarly includes, with the one embodiment ofFIG. 1A , a plurality of outflow anchors 40 each in the form of a hook terminating in abarbed end 42. As described in greater detail below, each of the outflow anchors 40 are adapted to project around the stent structure (not shown) associated with a previously implanted prosthetic heart valve (not shown), with the respective barbed ends 42 engaging within material associated with that stent structure. Thus, with the one embodiment ofFIG. 1A , the radius of curvature associated with the outflow anchors 40 is less than a radius of curvature associated with the inflow anchors 34. Alternatively, theanchors 40 can be configured the physically dock with other structure(s) provided by the previously implanted heart valve. - Any number of the inflow anchors 34 and/or the outflow anchors 40 can be provided with the
prosthetic heart valve 10 of the present invention, and preferably correlates with the previously implanted prosthetic heart valve. Further, theanchors anchors support structure 12, alternatively, theanchors 34 and/or 40 can be intermediately disposed along a longitudinal length of thesupport structure 12. - With additional reference to
FIG. 1C , theprosthetic heart valve 10 is constructed by securing theleaflets 14 to an interior periphery of thesupport structure 12. To this end, a wide variety of attachment techniques can be employed. For example, theleaflets 14 can be sewn to thesupport structure 12. Alternatively, other coupling techniques, such as crimping, adhesive, etc., can be employed. The coupling means 16 are similarly secured to thesupport structure 12 extending radially outwardly relative to theleaflets 14. As a point of reference,FIG. 1C illustrates theoutflow section 32 of the coupling means 16. Regardless, the coupling means 16 or portions thereof, can be integrally or homogenously formed with thesupport structure 12. Alternatively, the coupling means 16, or portions thereof, can be separately formed and assembled to thesupport structure 12. In one embodiment, construction and/or attachment of the coupling means 16 is such that in the expanded state of the support structure 12 (FIGS. 1A-1C ), the coupling means extends radially outwardly, whereas in the contracted state (not shown), the coupling means 16 is retracted. - The
prosthetic heart valve 10 of the present invention is uniquely adapted to facilitate an implantation technique whereby theprosthetic heart valve 10 is mounted to a previously implanted prosthetic heart valve. By way of reference,FIG. 2A illustrates, in simplified form, anative heart valve 50 of a patient to which a previously implantedprosthetic heart valve 52 has been secured. Thenative heart valve 50 can be any of the human heart valves (i.e., mitral valve, tricuspid valve, aortic valve, or pulmonary valve), it being understood that the type and orientation of the previously implantedprosthetic heart valve 52 will correspond with the particular form, shape, and function of thenative heart valve 50. Regardless, thenative heart valve 50 defines a valve annulus orvalvular rim 54 from which alumen 56 defined by thenative heart valve 50 extends. - The previously implanted
prosthetic heart valve 52 is, in one embodiment, any known prosthetic heart valve or valved conduit, and thus can assume a variety of forms. In most general terms, the previously implantedprosthetic heart valve 52 includes avalve structure 60 connected to asewing ring 62. Thevalve structure 60 may or may not include an internal stent, but is generally tubular in form, defining an internal region 64 (referenced generally) extended from aninflow end 66 to anoutflow end 68. With the exemplary embodiment ofFIG. 2A , the previously implantedprosthetic heart valve 52 includes stent posts 69 (for example, a biological, aortic or mitral prosthetic heart valve including a stent with three commissure posts), it being understood that the prosthetic heart valve of the present invention can be employed to functionally replace stentless prosthetic heart valves as well. Relative to the view ofFIG. 2A , theinternal region 62 is essentially encompassed by thevalve structure 60, it being understood that thevalve structure 60 selectively allows for fluid flow into or out of thelumen 56 of thenatural heart valve 50; thus, theinternal region 64 is openable to thelumen 56. For ease of illustration, leaflets associated with the previously implantedprosthetic heart valve 52 are not shown inFIG. 2A . Regardless, the previously implantedprosthetic heart valve 52 has been implanted via accepted surgical techniques, whereby thesewing ring 62 is sewn or attached to theannulus 54 of thenative heart valve 50. - At some time following implant, it may be discovered that the previously implanted
prosthetic heart valve 52 is functionally deficient due to one or more of a variety of factors, such as stenosis, valve failure, inflammation, native valve insufficiency, etc. Regardless, rather than removing the previously implantedprosthetic heart valve 52 and implanting a second, similarly formed prosthetic heart valve via rigorous open heart surgical techniques, the method of the present invention leaves the previously implantedprosthetic heart valve 52 in place, and deploys the prosthetic heart valve 10 (FIG. 1A ) onto the previously implantedprosthetic heart valve 52. - In one embodiment, the
prosthetic heart valve 10 is delivered to thenative heart valve 52 percutaneously, as represented in simplified form inFIG. 2B . In general terms, atranscatheter assembly 70 is provided, including adelivery catheter 72, aballoon catheter 74, and aguide wire 76. Thedelivery catheter 72 is of a type known in the art, and defines alumen 78 within which theballoon catheter 74 is received. Theballoon catheter 74, in turn, defines a lumen (not shown) within which theguide wire 76 is slidably disposed. Further, theballoon catheter 74 includes aballoon 80 that is fluidly connected to an inflation source (not shown). Thetranscatheter assembly 70 is appropriately sized for a desired percutaneous approach to thenative heart valve 50. For example, thetranscatheter assembly 70 can be sized for delivery to thenative heart valve 50 via an opening at a carotid artery, a jugular vein, a sub-clavian vein, femoral artery or vein, etc. Essentially, any percutaneous intercostals penetration can be made to facilitate use of thetranscatheter assembly 70. - With the above in mind, prior to delivery, the
prosthetic heart valve 10 is mounted over theballoon 80 in a contracted state as shown inFIG. 2B . As compared to the expanded state ofFIG. 1A , thesupport structure 12 is compressed onto itself and theballoon 80, thus defining a decreased inner diameter (as compared to an inner diameter in the expanded state). Further, the coupling means 16, including the inflow and outflow anchors 34, 40, are retracted in the contracted state (as compared to an extended orientation of the coupling means 16 in the expanded state ofFIG. 1A ). - With the
prosthetic heart valve 10 mounted to theballoon 80, thetranscatheter assembly 70 is delivered through a percutaneous opening (not shown) in the patient via thedelivery catheter 72. Thenative heart valve 50 is located by extending theguide wire 76 from adistal end 82 of thedelivery catheter 72, with theballoon catheter 74 otherwise retracted within thedelivery catheter 72. In this regard, theguide wire 76 passes through theinternal region 64 defined by the previously implantedprosthetic heart valve 52. - Once the
native heart valve 50 has been located, theballoon catheter 74 is advanced distally from thedelivery catheter 72 along theguide wire 76, with theballoon 80/prosthetic heart valve 10 positioned relative to the previously implantedheart valve 52 as shown inFIG. 2B . More particularly, theballoon 80/prosthetic heart valve 10 is positioned within theinternal region 64 of the previously implantedprosthetic heart valve 52, with the inflow anchors 34 positioned adjacent theinflow end 66/sewing ring 62 of the previously implantedprosthetic heart valve 52, whereas the outflow anchors 40 are positioned adjacent theoutflow end 68 of the previously implantedprosthetic heart valve 52. In an alternative embodiment, theprosthetic heart valve 10 is delivered to the previously implantedprosthetic heart valve 52 via a minimally invasive surgical incision (non-percutaneously). In another alternative embodiment, theprosthetic heart valve 10 is delivered via open heart/chest surgery. Regardless, with theprosthetic heart valve 10 in the contracted state, thesupport structure 12 readily moves within theinternal region 64 of the previously implantedprosthetic heart valve 52, and the coupling means 16, which is otherwise retracted, does not unintentionally contact or engage portions of the previously implantedprosthetic heart valve 52. In one embodiment, theprosthetic heart valve 10 includes a radiopaque material to facilitate visual confirmation of proper placement of theprosthetic heart valve 10 relative to the previously implantedprosthetic heart valve 52. Alternatively, other known surgical visual aids can be incorporated into theprosthetic heart valve 10. - Once the
prosthetic heart valve 10 is properly positioned, theballoon catheter 74 is operated to inflate theballoon 80, thus transitioning theprosthetic heart valve 10 to the expanded state as shown inFIG. 2C . As a point of reference, thetranscatheter assembly 70 is removed from the view ofFIG. 2C . Alternatively, where thesupport structure 12 is formed of a shape memory material, theprosthetic heart valve 10 self-transitions to the expanded state ofFIG. 2C (and thus can be percutaneously delivered by an appropriate catheter device other than a balloon catheter). Similarly, with an alternative configuration, theprosthetic heart valve 10 can be unfurled to the expanded state, again without the assistance of a balloon catheter. Regardless, thesupport structure 12 expands within theinternal region 64 of the previously implantedheart valve 52, radially pressing against thevalve structure 60. To this end, where the previously implantedprosthetic heart valve 52 includes leaflets (not shown), radial expansion of thesupport structure 12 presses against these leaflets, lodging them against thevalve structure 60. - With the
prosthetic heart valve 10 in the expanded state, the coupling means 16 physically docks or connects theprosthetic heart valve 10 to the previously implantedprosthetic heart valve 52. For example, as shown inFIG. 2C , the inflow anchors 34 lodge within thesewing ring 62 of the previously implantedprosthetic heart valve 52, such as via the barbed end 36 (FIG. 1A ) associated with each of the inflow anchors 34. The outflow anchors 40 wrap around theoutflow end 68 of the previously implantedprosthetic heart valve 52, with the corresponding barbed ends 42 lodging within an outer fabric therein. For example, each of the outflow anchors 40 wraps about a corresponding stent post 69 of the previously implantedprosthetic heart valve 52. Notably, the physical docking or connection between the coupling means 16 and the previously implantedheart valve 52 is apart from, or in addition to, any frictional, radial interface between theprosthetic heart valve 10 and the previously implantedheart valve 52 otherwise achieved by radial force or pressure exerted by thesupport structure 12 against the previously implantedheart valve 52 in the expanded state. - With the above-described technique, the
prosthetic heart valve 10 serves as a functional replacement for the previously implantedprosthetic heart valve 52, utilizing thesewing ring 62 of the previously implantedprosthetic heart valve 52 as a platform for securement relative to thenative heart valve 50. That is to say thesewing ring 62 of the previously implantedheart valve 52 has previously been sutured to the annulus orvalvular rim 56 of thenative heart valve 50; by fastening theprosthetic heart valve 10 to thesewing ring 62, no additional suturing is required. Following fastening of theprosthetic heart valve 10 to the previously implantedprosthetic heart valve 52, the leaflets 14 (one of which is shown inFIG. 2C ) serve as replacement valve leaflets, facilitating normal functioning of thenative heart valve 50. - Attachment of the
prosthetic heart valve 10 to the previously implantedprosthetic heart valve 52 can be accomplished in a variety of fashions other than that described with respect to the one embodiment ofprosthetic heart valve 10 described above. For example, the coupling means 16 need not include inflow and outflow sections, but instead can be directly, physically docked to the previously implantedprosthetic heart valve 52 at only one end thereof. Further, while the coupling means 16 has been described as including hooks with barbed ends, other anchoring techniques can be employed whereby the anchors do not necessarily pierce through the previously implantedprosthetic heart valve 52 material. To this end, clip(s), staple(s), or other fastening devices can be employed. - For example, an alternative embodiment
prosthetic heart valve 80 internally positioned and physically docked or connected to a previously implantedprosthetic heart valve 52 is shown inFIG. 3 . Theprosthetic heart valve 80 includes asupport structure 82, leaflets (not shown) and coupling means 84 (referenced generally). In general terms, thesupport structure 82 and the leaflets can assume any of the forms previously described with respect to theprosthetic heart valve 10. (FIGS. 1A-1C ) previously described. With the embodiment ofFIG. 3 , the coupling means 84 includes anoutflow anchor 86,intermediate anchors prosthetic heart valve 80 to the previously implantedheart valve 52, such that one or more of the features 86-90 can be eliminated. Alternatively, or in addition, the coupling means 84 can include components not specifically shown inFIG. 3 . - In one embodiment, the
outflow anchor 86 is a clasp or hook formed as part of thesupport structure 82 at the outflow end thereof. For example, thesupport structure 82 can be a wire-formed stent, with an individual wire being bent, or two wires combined, to form theoutflow anchor 86. Theoutflow anchor 86 is generally sized and shaped in accordance with an expected size and shape of astent post 69 of the previously implantedprosthetic heart valve 52 for reasons described below. To this end, theoutflow anchor 86 can be the result of normal manufacture techniques for forming a stent-type support structure. During implantation, theprosthetic heart valve 80 is positioned, in a contracted state, within the previously implantedprosthetic heart valve 52 with theoutflow anchor 86 located beyond the previously implantedprosthetic heart valve 52, and in particular the stent posts 69. Theprosthetic heart valve 80 is then transitioned to an expanded state (shown inFIG. 3 ). Once expanded, theprosthetic heart valve 80 is retracted relative to the previously implantedprosthetic heart valve 52 such that theoutflow anchor 86 slides over one of the stent posts 69, thereby physically docking or connecting theprosthetic heart valve 80 to the previously implantedprosthetic heart valve 52. In one embodiment, theoutflow anchor 86 is sized and shaped so as to readily clear a leading end of thestent post 69, but will more firmly dock or connect to thestent post 69 at an intermediate section thereof that is otherwise wider and/or thicker than the leading end. Where the previously implantedprosthetic heart valve 52 includes an internal wire frame (not shown) traversing an outflow periphery thereof (e.g., Carpentier-Edwards Bioprostheses, available from Edwards Lifescience), a more rigid physical docking or connection can be achieved. While theprosthetic hart valve 80 is illustrated inFIG. 3 as including asingle outflow anchor 86, alternatively two or more of the outflow anchors 86 can be provided. - The intermediate anchors 88 a, 88 b are, in one embodiment, hooks or barbs, and extended generally radially outwardly from the
support structure 82 at a location(s) between the opposing ends thereof. To this end, theintermediate anchors prosthetic heart valve 52 at points other than leading ends of the stent posts 69. For example, theintermediate anchor 88 a is configured and positioned to pierce into material of the previously implanted prosthetic heart valve 52 (such as between adjacent stent posts 69 and/or along a length of one of the stent posts 69) upon transitioning of theprosthetic heart valve 80 to the expanded state. In one embodiment, theintermediate anchor 88 a pierces through an interior of the previously implantedprosthetic heart valve 52. Theintermediate anchor 88 b, on the other hand, is configured and positioned to wrap about and contact an area of the previously implantedprosthetic heart valve 52 between adjacent ones of the stent posts 69 with theprosthetic heart valve 80 in the expanded state. - Where the previously implanted
prosthetic heart valve 52 includes an internal wire frame (not shown) traversing an outflow periphery thereof (e.g., Carpentier-Edwards Bioprostheses, available from Edwards Lifescience), a more rigid physical docking or connection can be achieved. For example, theintermediate anchor 88 a extends immediately below (relative to the orientation ofFIG. 3 ), and thus braces against the internal wire frame. Additionally, theintermediate anchor 88 b extends immediately above (relative to the orientation ofFIG. 3 ), and thus braces against, the internal wire frame. In alternative embodiments, more or less of theintermediate anchors FIG. 3 . - In one embodiment, the inflow anchors 90 are hooks or barbs extending from the
support structure 82, although a variety of other constructions are also acceptable. Regardless, the inflow anchors 90 are constructed to facilitate physical docking or connection to thesewing ring 62 of the previously implantedprosthetic heart valve 52. - In addition or as an alternative to the coupling means described above, the support structure of the prosthetic heart valve can, in and of itself, be adapted to facilitate physical docking or connection to the previously implanted
prosthetic heart valve 52. For example, an alternative embodimentprosthetic heart valve 100 in accordance with the present invention is shown inFIG. 4A . Theprosthetic heart valve 100 is similar to the prosthetic heart valve 10 (FIG. 1A ) previously described, and is adapted to functionally replace a previously implanted prosthetic heart valve (not shown). With this in mind, theprosthetic heart valve 100 includes asupport structure 102, leaflets (not shown), and coupling means 104. With the one embodiment ofFIG. 4A , thesupport structure 102 is a tubular, wire stent and defines, in the expanded state ofFIG. 4A , opposing first andsecond end portions intermediate portion 110. The leaflets are similar to the leaflets 14 (FIG. 1A ) previously described and are interiorly secured to thesupport structure 102 along theintermediate portion 110. As made clear below, the first andsecond end portions - In particular, the
support structure 102 is constructed such that in the expanded state ofFIG. 4A , the first andsecond end portions intermediate portion 110. For example, thefirst end portion 106 increases in diameter from theintermediate portion 110 to afirst end 112. Similarly, thesecond end portion 108 increases in diameter from theintermediate portion 110 to asecond end 114. Alternatively, other shapes can be defined, and only one of the first orsecond end portions second end portions FIG. 4A ), with the maximum diameter being greater than a diameter of the previously implanted prosthetic heart valve. Thesupport structure 102 need not assume the hourglass-like shape ofFIG. 4A in a contracted state (not shown), but instead can be a substantially right cylinder amenable for delivery to a target site. Transition to the expanded state can be achieved in a variety of fashions, such as by an appropriately devised balloon catheter (e.g., a balloon catheter having three balloon sections inflatable to different outer diameters), or by employing a shape memory material for thesupport structure 102. - Regardless of exact construction, the
prosthetic heart valve 100 is delivered in the contracted state, according to the techniques previously described. In particular, and with reference toFIG. 4B , theprosthetic heart valve 100 is positioned within theinternal region 64 of the previously implanted prosthetic heart valve 52 (it being understood that in the view ofFIG. 4B , theprosthetic heart valve 100 has been transitioned to the expanded state). Once properly positioned, theprosthetic heart valve 100 is transitioned to the expanded state, with the first andsecond end portions intermediate section 110. Once again, thesupport structure 102 presses against the previously implantedprosthetic heart valve 52 that is otherwise secured to the native heart valve 50 (FIG. 2A ). Once in the expanded state, the coupling means 104 (i.e., the first andsecond end portions 106, 108) nest about the previously implantedprosthetic heart valve 52, thereby physically docking or connecting theprosthetic heart valve 100 to the previously implantedprosthetic heart valve 52. Notably, the coupling means 104 associated withFIGS. 4A and 4B can be used alone or in conjunction with the coupling means 16 (FIG. 1A ) previously described. - Regardless of exact form, the coupling means associated with the prosthetic heart valve of the present invention need not effectuate a rigid, locking engagement with the previously implanted
prosthetic heart valve 52. In fact, depending upon the exact form of the previously implanted prosthetic heart valve, effectuating a rigid engagement may be difficult. In more general terms, however, the coupling means associated with the prosthetic heart valve of the present invention is capable of remaining physically docked or connected to the previously implantedprosthetic heart valve 52 under backpressure conditions of at least 200 mHg. - To ensure a sealing relationship between the
prosthetic heart valve prosthetic heart valve 52, in an alternative embodiment, a gasket material can be provided as shown, for example, at 130 inFIG. 5 . As a point of reference,FIG. 5 depicts the previously implantedprosthetic heart valve 52 in conjunction with an alternative embodimentprosthetic heart valve 10′ that is highly similar to the prosthetic heart valve 10 (FIG. 1A ) previously described and further includes thegasket material 130. Thegasket material 130 is, in one embodiment, attached to an outer circumference of thesupport structure 12 at or adjacent anannulus portion 132 that is otherwise expected to be positioned adjacent the annulus orvalvular rim 54 of the previously implantedprosthetic heart valve 52. Alternatively, thegasket material 130 can encompass a more significant exterior length of thesupport structure 12. Regardless, thegasket material 130 can be made from fabric, felt, Teflon®, silicone, pericardium, or other polymeric or biological materials. As shown inFIG. 5 , thegasket material 130 serves as a filler to prevent holes from forming between theprosthetic heart valve 10′ and the previously implantedprosthetic heart valve 52 adjacent the annulus orvalvular rim 54, thus preventing leaching of blood back through this region. - In addition to, in one embodiment, providing the prosthetic heart valve 10 (
FIG. 1A ) with coupling means adapted to achieve physical docking or connection with a previously implanted prosthetic heart valve, in other embodiments, the present invention includes providing the previously implanted prosthetic heart valve with features that further facilitate the desired physical docking or connection. In this context, it is possible to reference the initial, first implanted prosthetic heart valve as a “first implanted prosthetic heart valve” and the subsequently implanted, functional replacement prosthetic heart valve (e.g., theprosthetic heart valve 10 ofFIG. 1A ) as a “replacement prosthetic heart valve”. With these definitions in mind,FIG. 6A illustrates one embodiment of a first implantedprosthetic heart valve 200 in accordance with the present invention. The first implantedprosthetic heart valve 200 can assume a variety of forms, but generally includes asupport structure 202, leaflets (not shown), and connection means 206. Thesupport structure 202 maintains the leaflets and facilitates attachment of theprosthetic valve 200 to a native heart valve (not shown). The connection means 206 is connected to, or formed by, thesupport structure 202, and promotes physical docking or connection of a replacement prosthetic heart valve (not shown, but for example, theprosthetic heart valve 10 ofFIG. 1A ) to the firstprosthetic heart valve 200. - In the one embodiment of
FIG. 6A , thesupport structure 202 defines asewing ring 208 and includes a stent (hidden) formingstent posts 210 and encompassed by a covering 212, such as with a Medtronic® Hancock II® or Musiac® stented tissue valve. A wide variety of other stented tissue valves, such as those described in U.S. Pat. Nos. 4,680,031, 4,892,541, and 5,032,128, the teachings of which are incorporated herein by reference, can be employed as thesupport structure 202. Alternatively, thesupport structure 202 can be stentless, such as, for example, with a Freestyle® stentless bioprosthesis, available from Medtronic, Inc. Other acceptable stentless configurations are described in U.S. Pat. Nos. 5,156,621; 5,197,979; 5,336,258; 5,509,930; 6,001,126; 6,254,436; 6,342,070; 6,364,905; and 6,558,417, the teachings of all of which are incorporated herein by reference, to name but a few. Regardless, the leaflets (not shown) are attached to the support structure 202 (e.g., by sewing, crimping, adhesive, etc.), and can assume a variety of forms (autologous tissue, xenograph tissue, or synthetic material). - With the general construction of the
support structure 202/leaflets in mind, the connection means 206 associated with the embodiment ofFIG. 6A includes awire ring 214 extending between the stent posts 210 (either adjacent the leading (or outflow) ends thereof as illustrated, or more closely positioned to the sewing ring 208). Thewire ring 214 can be fastened to thesupport structure 202 in a variety of manners, including, for example, sewing thewire ring 214 to the fabric covering 212. While thewire ring 214 is illustrated as being a single, continuous structure, in an alternative embodiment, two or more individual wire segments are provided and secured to the support structure, with the segments combining to define a continuous or discontinuous ring-like structure 202. Regardless, thewire ring 214 is positioned so as to not interfere with functioning/movement of the leaflets adjacent an outflow (or inflow) end of the firstprosthetic heart valve 200. - With further reference to
FIG. 6B , the connection means 206, and in particular thewire ring 214, is adapted to promote physical docking or connecting of a replacementprosthetic heart valve 220 to the firstprosthetic heart valve 200. By way of reference, the replacementprosthetic heart valve 220 is akin to the prosthetic heart valve 10 (FIG. 1A ) previously described, and includes asupport structure 222 and a coupling means in the form of outflow anchors or hooks 224. With this in mind, the firstprosthetic heart valve 200 is initially implanted in a patient (not shown) and secured to native tissue (not shown), for example via thesewing ring 208. When desired, the firstprosthetic heart valve 200 can be functionally replaced by the replacementprosthetic heart valve 220. More particular, the replacementprosthetic heart valve 220 can be delivered and positioned in a contracted state within the firstprosthetic heart valve 220 pursuant to any of the techniques previously described. The replacementprosthetic heart valve 220 then transitions to the expanded state (shown inFIG. 6B ), thereby deploying the coupling means or outflow hooks 224. The replacementprosthetic heart valve 220 is then maneuvered such that thehooks 224 engage thewire ring 214, thereby physically docking or connecting the replacementprosthetic heart valve 220 to the firstprosthetic heart valve 200. Alternatively, the replacementprosthetic heart valve 220 can include differing coupling means, such as a detent, for capturing or physically connecting to thewire ring 214. - The connection means 206 associated with the first
prosthetic heart valve 200 can assume a number of other configurations. For example,FIG. 7 illustrates an alternative embodiment firstprosthetic heart valve 250 including asupport structure 252, leaflets (not shown), and connection means 254 (referenced generally). Thesupport structure 252 and the leaflets can assume any of the forms previously described. The connection means 254 includes a plurality ofrings 256, respective ones of which extend from individual stent posts 258. Each of therings 256 preferably extends in a radially outward fashion relative to thecorresponding stent post 258, and is longitudinally open relative to a central axis defined by thesupport structure 252. Following initial implant, the firstprosthetic heart valve 250 can be functionally replaced by a replacement prosthetic heart valve (not shown, but akin to theprosthetic heart valve 10 ofFIG. 1A ) by physically docking or connecting the coupling means (e.g., hooks) of the replacement prosthetic heart valve within therings 256. - Yet another alternative embodiment first
prosthetic heart valve 280 in accordance with the present invention is shown inFIG. 8 and includes asupport structure 282, leaflets (not shown) and connection means 284 (referenced generally). Thesupport structure 282 and the leaflets can assume any of the forms previously described. The connection means 284 is attached to, or formed by, thesupport structure 282 and includes a plurality ofprotrusions 286. With the one embodiment ofFIG. 8 , theprotrusions 286 are hooks, although other configurations, such as posts, barbs, eyelets, etc., are equally acceptable. Regardless, the protrusions are positioned, in one embodiment, at an inflow side of theprosthetic heart valve 280, and are adapted to facilitate physical docking or connection with a corresponding coupling means or feature (e.g., post, hook, eyelet, etc.) of a replacement prosthetic heart valve (not shown) following a procedure to functionally replace the firstprosthetic heart valve 280. - Yet another alternative embodiment first
prosthetic heart valve 300 in accordance with the present invention is shown inFIG. 9A and includes asupport structure 302, leaflets (not shown), and connection means 304 (referenced generally). Thesupport structure 302 and the leaflets can assume any of the forms previously described. The connection means 304 is formed by thesupport structure 302 and, with the embodiment ofFIG. 9A , includes a plurality of apertures 306 (shown generally inFIG. 9A ). During a procedure to functionally replace the firstprosthetic heart valve 300 with a replacement prosthetic heart valve 310 and as shown inFIG. 9B , theapertures 306 are sized to capturecorresponding tabs 312 provided by the replacement prosthetic heat valve 310, thus physically docking or connecting the replacement prosthetic heart valve 310 to the firstprosthetic heart valve 300. Further, with the one embodiment ofFIG. 9B , additional coupling means 314 (e.g., barbed hooks) are provided with the replacement prosthetic heart valve 310 and also physically dock or connect to the firstprosthetic heart valve 300. - Yet another alternative embodiment first
prosthetic heart valve 330 is shown inFIG. 10A and includes asupport structure 332, leaflets (not shown) and connection means 334 (referenced generally). Thesupport structure 332 and the leaflets can assume any of the forms previously described, with thesupport structure 332 includingstent posts 336 and asewing ring 338. The connection means 334 is connected to, or formed by, thesupport structure 332 and includes, with the one embodiment ofFIG. 10A , a plurality ofoutflow ribs 340 and aninflow rib 342. Respective ones of theoutflow ribs 340 extend radially outwardly relative to respective ones of the stent posts 336 and are positioned along a length thereof, in one embodiment adjacent a leading end of therespective stent post 336. Theinflow rib 342 is contiguous with, and extends axially from, thesewing ring 338. The connection means 334 is configured to facilitate physical docking or connection of a replacement prosthetic heart valve, such as thereplacement valve 350 as shown inFIG. 10B . In one embodiment, the replacementprosthetic heart valve 350 has coupling means 352 (referenced generally) includingtabs 354 andprotrusions 356. Thetabs 354 definecapture slots 358 relative to asupport structure 360 of the replacementprosthetic heart valve 350. Following a functional replacement procedure, theoutflow ribs 340 are lodged within the capture slots 358 (formed, for example, by corresponding recess and radial extension features), and theprotrusions 356 engage theinflow rib 342. - The embodiments of
FIGS. 6A-10B above are but a few examples of combination first prosthetic heart valve/replacement prosthetic heart valve configurations in accordance with the present invention. In other alternative embodiments, the first prosthetic heart valve includes a magnetic material (such as internal, magnetic ring) whereas the replacement prosthetic heart valve includes a magnetic material connected to or provided as part of its support structure. Virtually any magnetic material could be employed, such as ferrous or ferritic materials, rare earth magnetic materials such as Neodymium (Nd—Fe—B) and Samarium cobalt magnets (SmCo), etc. During use, the replacement prosthetic heart valve is magnetically attracted to the magnetic material of the first prosthetic heart valve, thus facilitating physical docking or connection to the first prosthetic heart valve. In more general terms, the first prosthetic heart valve and the corresponding replacement valve are configured to provide complimentary features that promote physical docking or connection of the replacement prosthetic heart valve to the first prosthetic heart valve as part of a procedure to functionally replace the first prosthetic heart valve. To this end, the complimentary first prosthetic heart valve and replacement prosthetic heart valve can be packaged together and sold as a kit. - The prosthetic heart valve and related method of implantation presents a marked improvement over previous designs. In particular, by utilizing a previously implanted prosthetic heart valve as a platform to facilitate mounting relative to a native heart valve, the prosthetic heart valve of the present invention is highly amenable to percutaneous delivery. Further, by functionally replacing a previously implanted prosthetic heart valve, the deficient prosthetic heart valve need not be physically removed from the patient. Thus, the prosthetic heart valve and related method of implantation of the present invention can be used at any point during the “useful life” of a conventional prosthetic heart valve. Further, the methodology associated with the present invention can be repeated multiple times, such that several prosthetic heart valves of the present invention can be mounted on top of or within one another.
- Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes can be made in form and detail without departing from the spirit and scope of the present invention.
Claims (40)
1. A method of functionally replacing a previously implanted prosthetic heart valve, the method comprising:
positioning a replacement prosthetic heart valve within an internal region defined by the previously implanted prosthetic heart valve; and
physically docking the replacement prosthetic heart valve to the previously implanted prosthetic heart valve.
2. The method of claim 1 , wherein following fastening, the replacement prosthetic heart valve is anchored relative to native bodily tissue via the previously implanted prosthetic heart valve.
3. The method of claim 1 , wherein physically docking the replacement prosthetic heart valve to the previously implanted prosthetic heart valve is characterized by a physical connection apart from an interface provided by a radial pressure of the replacement prosthetic heart valve along an axial length of the previously implanted prosthetic heart valve.
4. The method of claim 1 , wherein the replacement prosthetic heart valve includes valve leaflets, and further wherein following fastening, the valve leaflets of the replacement prosthetic heart valve function as natural valve leaflet replacements.
5. The method of claim 4 , wherein the previously implanted prosthetic heart valve includes valve leaflets, the method further comprising:
preventing movement of the valve leaflets of the previously implanted prosthetic heart valve.
6. The method of claim 1 , wherein the replacement prosthetic heart valve includes a support structure transitionable from a collapsed state to an expanded state, and further wherein the step of positioning the replacement prosthetic heart valve with the previously implanted prosthetic heart valve includes deploying the support structure in the collapsed state.
7. The method of claim 6 , further comprising:
transitioning the support structure to the expanded state following the step of positioning the replacement prosthetic heart valve within the previously implanted prosthetic heart valve.
8. The method of claim 1 , wherein the replacement prosthetic heart valve includes coupling means, and further wherein physically docking the replacement prosthetic heart valve includes:
securing the coupling means to the previously implanted prosthetic heart valve.
9. The method of claim 8 , wherein the coupling means includes an anchor, and further wherein securing the coupling means includes:
attaching the anchor to an inflow side of the previously implanted prosthetic heart valve.
10. The method of claim 9 , wherein attaching the anchor includes piercing a surface of the previously implanted prosthetic heart valve.
11. The method of claim 8 , wherein the coupling means includes an anchor, and further wherein securing the coupling means includes:
attaching the anchor to an outflow side of the previously implanted prosthetic heart valve.
12. The method of claim 11 , wherein the coupling means includes a second anchor, and further wherein securing the coupling means includes:
attaching the second anchor to the inflow side of the previously implanted prosthetic heart valve.
13. The method of claim 8 , wherein the coupling means includes a component selected from the group consisting of a barb, clip, staple, eyelet, tab, and hook.
14. The method of claim 8 , wherein the replacement prosthetic heart valve includes a support structure transitionable from a contracted state to an expanded state, an end portion of the support structure defining an increased diameter as compared to an intermediate portion in the expanded state, and further wherein the coupling means includes the enlarged diameter end portion and further wherein securing the coupling means includes:
transitioning the support structure to the expanded state; and
lodging the enlarged end portion against the previously implanted prosthetic heart valve.
15. The method of claim 14 , wherein the coupling means includes opposing end portions of the support structure having enlarged diameters in the expanded state, and further wherein securing the coupling means further includes:
capturing the previously implanted heart valve between the opposing end portions.
16. The method of claim 1 , further comprising:
deploying a gasket material between the previously implanted prosthetic heart valve and the replacement prosthetic heart valve prior to the step of physically docking the replacement prosthetic heart valve.
17. The method of claim 1 , further comprising:
deploying a second replacement prosthetic heart valve within an internal region defined by the replacement prosthetic heart valve; and
physically docking the second replacement prosthetic heart valve to the previously implanted prosthetic heart valve.
18. The method of claim 1 , wherein the previously implanted prosthetic heart valve includes connection means and the replacement prosthetic heart valve includes coupling means, and further wherein physically docking the replacement prosthetic heart valve to the previously implanted prosthetic heart valve includes securing the coupling means to the connection means.
19. A prosthetic heart valve for functionally replacing a previously implanted prosthetic heart valve, the prosthetic heart valve comprising:
a support structure;
leaflets mounted to the support structure;
coupling means associated with the support structure and adapted to physically dock the prosthetic heart valve to a previously implanted heart valve.
20. The prosthetic heart valve of claim 19 , wherein the support structure is a stent.
21. The prosthetic heart valve of claim 20 , wherein the stent is transitionable from a collapsed state to an expanded state having an enlarged diameter as compared to the collapsed state.
22. The prosthetic heart valve of claim 21 , wherein the coupling means is defined, at least in part, by the stent in the expanded state in which at least one end portion of the stent defines an enlarged diameter as compared to a diameter of an intermediate portion of the stent.
23. The prosthetic heart valve of claim 19 , wherein the coupling means is attached to the stent.
24. The prosthetic heart valve of claim 23 , wherein the coupling means includes an anchor component consisting of a barb, clip, staple, post, eyelet, and hook.
25. The prosthetic heart valve of claim 19 , wherein the coupling means is adapted to retract radially in the collapsed state and extend radially in the expanded state.
26. The prosthetic heart valve of claim 19 , wherein the leaflets are formed from a material selected from the group consisting of autologous tissue, xenograph material, and synthetic.
27. The prosthetic heart valve of claim 19 , wherein the coupling means extends radially outwardly relative to the leaflets.
28. The prosthetic heart valve of claim 19 , further comprising:
a gasket material mounted to an exterior of the support structure.
29. A prosthetic heart valve comprising:
a support structure;
leaflets mounted to the support structure; and
connection means associated with the support structure and adapted to effectuate physical docking of a replacement heart valve to the prosthetic heart valve.
30. The prosthetic heart valve of claim 29 , wherein the connection means includes a component selected from the group consisting of a rib, hook, barb, eyelet, ring, clip and staple.
31. The prosthetic heart valve of claim 29 , wherein the support structure includes a covering material to which the leaflets are attached, and further wherein the connection means extends from the covering material.
32. The prosthetic heart valve of claim 29 , wherein the support structure defines a sewing ring, and further wherein at least a portion of the connection means extends from the sewing ring.
33. The prosthetic heart valve of claim 29 , wherein the support structure defines stent posts, and further wherein at least a portion of the connection means extends from the stent posts.
34. The prosthetic heart valve of claim 33 , wherein the connection means includes a plurality of protrusions, respective ones of which extend from respective ones of the stent posts.
35. A prosthetic heart valve system comprising:
a first prosthetic heart valve for initial implantation to native heart tissue and including:
a support structure,
leaflets mounted to the support structure,
connection means associated with the support structure; and
a replacement prosthetic heart valve for functionally replacing the first prosthetic heart valve following implant of the first prosthetic heart valve, the replacement prosthetic heart valve including:
a support structure,
leaflets mounted to the support structure,
coupling means associated with the support structure;
wherein the connection means and the coupling means are configured such that the coupling means engages the connection means to physically dock the replacement prosthetic heart valve to the first prosthetic heart valve.
36. The system of claim 35 , wherein the connection means and the coupling means include complimentary components.
37. The system of claim 35 , wherein the connection means includes a ring and the coupling means includes a protrusion adapted to engage the ring.
38. The system of claim 35 , wherein the connection means includes a component extending from an inflow side of the first prosthetic heart valve and the coupling means includes a component extending from an inflow side of the replacement prosthetic heart valve.
39. The system of claim 35 , wherein the connection means includes a component extending form an outflow side of the first prosthetic heart valve and the coupling means includes a component extending from an outflow side of the replacement prosthetic heart valve.
40. The system of claim 35 , wherein the connection means and coupling means are adapted to provide a longitudinal interface therebetween relative to a length of the first and replacement prosthetic heart valves.
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/935,730 US20060052867A1 (en) | 2004-09-07 | 2004-09-07 | Replacement prosthetic heart valve, system and method of implant |
EP05801202.2A EP1804726B1 (en) | 2004-09-07 | 2005-09-01 | Replacement prosthetic heart valve and system |
EP12155264.0A EP2455042B1 (en) | 2004-09-07 | 2005-09-01 | Replacement prosthetic heart valve system |
EP18203132.8A EP3466373B1 (en) | 2004-09-07 | 2005-09-01 | Replacement prosthetic heart valve system |
PCT/US2005/031500 WO2006029062A1 (en) | 2004-09-07 | 2005-09-01 | Replacement prosthetic heart valve, system and method of implant |
ES18203132T ES2933685T3 (en) | 2004-09-07 | 2005-09-01 | Prosthetic Heart Valve Replacement System |
ES12155264T ES2708934T3 (en) | 2004-09-07 | 2005-09-01 | Prosthetic cardiac replacement system |
US12/048,725 US8591570B2 (en) | 2004-09-07 | 2008-03-14 | Prosthetic heart valve for replacing previously implanted heart valve |
US12/048,768 US20080161911A1 (en) | 2004-09-07 | 2008-03-14 | Replacement prosthetic heart valve, system and method of implant |
US14/060,884 US9480556B2 (en) | 2004-09-07 | 2013-10-23 | Replacement prosthetic heart valve, system and method of implant |
US15/284,872 US11253355B2 (en) | 2004-09-07 | 2016-10-04 | Replacement prosthetic heart valve, system and method of implant |
US17/036,305 US20210007845A1 (en) | 2004-09-07 | 2020-09-29 | Replacement prosthetic heart valve, system and method of implant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/935,730 US20060052867A1 (en) | 2004-09-07 | 2004-09-07 | Replacement prosthetic heart valve, system and method of implant |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/048,725 Division US8591570B2 (en) | 2004-09-07 | 2008-03-14 | Prosthetic heart valve for replacing previously implanted heart valve |
US12/048,768 Division US20080161911A1 (en) | 2004-09-07 | 2008-03-14 | Replacement prosthetic heart valve, system and method of implant |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060052867A1 true US20060052867A1 (en) | 2006-03-09 |
Family
ID=35530857
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/935,730 Abandoned US20060052867A1 (en) | 2004-09-07 | 2004-09-07 | Replacement prosthetic heart valve, system and method of implant |
US12/048,768 Abandoned US20080161911A1 (en) | 2004-09-07 | 2008-03-14 | Replacement prosthetic heart valve, system and method of implant |
US12/048,725 Active 2026-03-07 US8591570B2 (en) | 2004-09-07 | 2008-03-14 | Prosthetic heart valve for replacing previously implanted heart valve |
US14/060,884 Active 2025-03-10 US9480556B2 (en) | 2004-09-07 | 2013-10-23 | Replacement prosthetic heart valve, system and method of implant |
US15/284,872 Active 2025-11-08 US11253355B2 (en) | 2004-09-07 | 2016-10-04 | Replacement prosthetic heart valve, system and method of implant |
US17/036,305 Abandoned US20210007845A1 (en) | 2004-09-07 | 2020-09-29 | Replacement prosthetic heart valve, system and method of implant |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/048,768 Abandoned US20080161911A1 (en) | 2004-09-07 | 2008-03-14 | Replacement prosthetic heart valve, system and method of implant |
US12/048,725 Active 2026-03-07 US8591570B2 (en) | 2004-09-07 | 2008-03-14 | Prosthetic heart valve for replacing previously implanted heart valve |
US14/060,884 Active 2025-03-10 US9480556B2 (en) | 2004-09-07 | 2013-10-23 | Replacement prosthetic heart valve, system and method of implant |
US15/284,872 Active 2025-11-08 US11253355B2 (en) | 2004-09-07 | 2016-10-04 | Replacement prosthetic heart valve, system and method of implant |
US17/036,305 Abandoned US20210007845A1 (en) | 2004-09-07 | 2020-09-29 | Replacement prosthetic heart valve, system and method of implant |
Country Status (4)
Country | Link |
---|---|
US (6) | US20060052867A1 (en) |
EP (3) | EP1804726B1 (en) |
ES (2) | ES2708934T3 (en) |
WO (1) | WO2006029062A1 (en) |
Cited By (285)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040138741A1 (en) * | 2000-07-27 | 2004-07-15 | Robert Stobie | Heart valve holders and handling clips therefor |
US20050203617A1 (en) * | 2004-02-27 | 2005-09-15 | Cardiacmd, Inc. | Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same |
US20050203618A1 (en) * | 2003-12-10 | 2005-09-15 | Adam Sharkawy | Prosthetic cardiac valves and systems and methods for implanting thereof |
US20050228494A1 (en) * | 2004-03-29 | 2005-10-13 | Salvador Marquez | Controlled separation heart valve frame |
US20050234546A1 (en) * | 2004-02-05 | 2005-10-20 | Alan Nugent | Transcatheter delivery of a replacement heart valve |
US20060206202A1 (en) * | 2004-11-19 | 2006-09-14 | Philippe Bonhoeffer | Apparatus for treatment of cardiac valves and method of its manufacture |
US20060253189A1 (en) * | 2002-04-03 | 2006-11-09 | Boston Scientific Corporation | Artificial valve |
US20060287719A1 (en) * | 2005-05-24 | 2006-12-21 | Rowe Stanton J | Rapid deployment prosthetic heart valve |
US20070073387A1 (en) * | 2004-02-27 | 2007-03-29 | Forster David C | Prosthetic Heart Valves, Support Structures And Systems And Methods For Implanting The Same |
US20070203561A1 (en) * | 2006-02-27 | 2007-08-30 | Cardiacmd, Inc. A California Corporation | Methods and devices for delivery of prosthetic heart valves and other prosthetics |
US20070203575A1 (en) * | 2006-02-27 | 2007-08-30 | Cardiacmd, Inc., A California Corporation | Methods and devices for delivery of prosthetic heart valves and other prosthetics |
US20070239269A1 (en) * | 2006-04-07 | 2007-10-11 | Medtronic Vascular, Inc. | Stented Valve Having Dull Struts |
US20070239265A1 (en) * | 2006-04-06 | 2007-10-11 | Medtronic Vascular, Inc. | Catheter Delivered Valve Having a Barrier to Provide an Enhanced Seal |
US20070239266A1 (en) * | 2006-04-06 | 2007-10-11 | Medtronic Vascular, Inc. | Reinforced Surgical Conduit for Implantation of a Stented Valve Therein |
US20070244545A1 (en) * | 2006-04-14 | 2007-10-18 | Medtronic Vascular, Inc. | Prosthetic Conduit With Radiopaque Symmetry Indicators |
US20070244546A1 (en) * | 2006-04-18 | 2007-10-18 | Medtronic Vascular, Inc. | Stent Foundation for Placement of a Stented Valve |
US20070244544A1 (en) * | 2006-04-14 | 2007-10-18 | Medtronic Vascular, Inc. | Seal for Enhanced Stented Valve Fixation |
US20070254273A1 (en) * | 2006-05-01 | 2007-11-01 | Hugues Lafrance | Simulated heart valve root for training and testing |
US20080065206A1 (en) * | 2000-09-07 | 2008-03-13 | Liddicoat John R | Fixation band for affixing a prosthetic heart valve to tissue |
US20080071366A1 (en) * | 2006-09-19 | 2008-03-20 | Yosi Tuval | Axial-force fixation member for valve |
US20080126131A1 (en) * | 2006-07-17 | 2008-05-29 | Walgreen Co. | Predictive Modeling And Risk Stratification Of A Medication Therapy Regimen |
US20080161910A1 (en) * | 2004-09-07 | 2008-07-03 | Revuelta Jose M | Replacement prosthetic heart valve, system and method of implant |
WO2008100600A1 (en) * | 2007-02-16 | 2008-08-21 | Medtronic, Inc. | Replacement prosthetic heart valves and methods of implantation |
US20080208327A1 (en) * | 2007-02-27 | 2008-08-28 | Rowe Stanton J | Method and apparatus for replacing a prosthetic valve |
US20090030503A1 (en) * | 2007-07-23 | 2009-01-29 | Ho Paul C | Method and apparatus for percutaneous aortic valve replacement |
US20090030510A1 (en) * | 2007-07-23 | 2009-01-29 | Ho Paul C | Methods and apparatus for percutaneous aortic valve replacement |
US20090099554A1 (en) * | 2006-06-20 | 2009-04-16 | Forster David C | Elongate Flexible Torque Instruments And Methods Of Use |
EP2059191A2 (en) * | 2006-06-21 | 2009-05-20 | AorTx, Inc. | Prosthetic valve implantation systems |
US20090132035A1 (en) * | 2004-02-27 | 2009-05-21 | Roth Alex T | Prosthetic Heart Valves, Support Structures and Systems and Methods for Implanting the Same |
US20090138079A1 (en) * | 2007-10-10 | 2009-05-28 | Vector Technologies Ltd. | Prosthetic heart valve for transfemoral delivery |
US20090192591A1 (en) * | 2008-01-24 | 2009-07-30 | Medtronic, Inc. | Markers for Prosthetic Heart Valves |
US20090210052A1 (en) * | 2006-06-20 | 2009-08-20 | Forster David C | Prosthetic heart valves, support structures and systems and methods for implanting same |
US7578843B2 (en) | 2002-07-16 | 2009-08-25 | Medtronic, Inc. | Heart valve prosthesis |
WO2009108615A1 (en) * | 2008-02-25 | 2009-09-03 | Medtronic Vascular Inc. | Infundibular reducer devices |
US20090222082A1 (en) * | 2006-05-05 | 2009-09-03 | Children's Medical Center Corporation | Transcatheter Heart Valve Prostheses |
US20090240264A1 (en) * | 2008-03-18 | 2009-09-24 | Yosi Tuval | Medical suturing device and method for use thereof |
US20090281609A1 (en) * | 2008-02-29 | 2009-11-12 | Edwards Lifesciences | Two-step heart valve implantation |
US20090287299A1 (en) * | 2008-01-24 | 2009-11-19 | Charles Tabor | Stents for prosthetic heart valves |
US7670368B2 (en) | 2005-02-07 | 2010-03-02 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US20100063363A1 (en) * | 2005-02-10 | 2010-03-11 | Hamman Baron L | System, device, and method for providing access in a cardiovascular environment |
US7682390B2 (en) | 2001-07-31 | 2010-03-23 | Medtronic, Inc. | Assembly for setting a valve prosthesis in a corporeal duct |
US20100076548A1 (en) * | 2008-09-19 | 2010-03-25 | Edwards Lifesciences Corporation | Prosthetic Heart Valve Configured to Receive a Percutaneous Prosthetic Heart Valve Implantation |
WO2010045238A2 (en) | 2008-10-13 | 2010-04-22 | Medtronic Ventor Technologies Ltd. | Prosthetic valve having tapered tip when compressed for delivery |
US7722666B2 (en) | 2005-04-15 | 2010-05-25 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US7758606B2 (en) | 2000-06-30 | 2010-07-20 | Medtronic, Inc. | Intravascular filter with debris entrapment mechanism |
US7776053B2 (en) | 2000-10-26 | 2010-08-17 | Boston Scientific Scimed, Inc. | Implantable valve system |
US7780722B2 (en) | 2005-02-07 | 2010-08-24 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US7780726B2 (en) | 2001-07-04 | 2010-08-24 | Medtronic, Inc. | Assembly for placing a prosthetic valve in a duct in the body |
US7780627B2 (en) | 2002-12-30 | 2010-08-24 | Boston Scientific Scimed, Inc. | Valve treatment catheter and methods |
US7799038B2 (en) | 2006-01-20 | 2010-09-21 | Boston Scientific Scimed, Inc. | Translumenal apparatus, system, and method |
US20100249908A1 (en) * | 2009-03-31 | 2010-09-30 | Edwards Lifesciences Corporation | Prosthetic heart valve system with positioning markers |
US20100256752A1 (en) * | 2006-09-06 | 2010-10-07 | Forster David C | Prosthetic heart valves, support structures and systems and methods for implanting the same, |
US7854761B2 (en) | 2003-12-19 | 2010-12-21 | Boston Scientific Scimed, Inc. | Methods for venous valve replacement with a catheter |
US7854755B2 (en) | 2005-02-01 | 2010-12-21 | Boston Scientific Scimed, Inc. | Vascular catheter, system, and method |
US7867274B2 (en) | 2005-02-23 | 2011-01-11 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US7892281B2 (en) | 1999-11-17 | 2011-02-22 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
US7892276B2 (en) | 2007-12-21 | 2011-02-22 | Boston Scientific Scimed, Inc. | Valve with delayed leaflet deployment |
US20110054598A1 (en) * | 2005-07-13 | 2011-03-03 | Edwards Lifesciences Corporation | Contoured Sewing Ring for a Prosthetic Mitral Heart Valve |
US7914569B2 (en) | 2005-05-13 | 2011-03-29 | Medtronics Corevalve Llc | Heart valve prosthesis and methods of manufacture and use |
US20110098602A1 (en) * | 2009-10-27 | 2011-04-28 | Edwards Lifesciences Corporation | Apparatus and Method for Measuring Body Orifice |
US20110098805A1 (en) * | 2009-08-27 | 2011-04-28 | Joshua Dwork | Transcatheter valve delivery systems and methods |
US20110098804A1 (en) * | 2009-09-21 | 2011-04-28 | Hubert Yeung | Stented transcatheter prosthetic heart valve delivery system and method |
US7951197B2 (en) | 2005-04-08 | 2011-05-31 | Medtronic, Inc. | Two-piece prosthetic valves with snap-in connection and methods for use |
US7951189B2 (en) | 2005-09-21 | 2011-05-31 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
WO2011068262A1 (en) * | 2009-12-03 | 2011-06-09 | 주식회사 엠아이텍 | Stent for bile duct |
US7959674B2 (en) | 2002-07-16 | 2011-06-14 | Medtronic, Inc. | Suture locking assembly and method of use |
US7967853B2 (en) | 2007-02-05 | 2011-06-28 | Boston Scientific Scimed, Inc. | Percutaneous valve, system and method |
US7967857B2 (en) | 2006-01-27 | 2011-06-28 | Medtronic, Inc. | Gasket with spring collar for prosthetic heart valves and methods for making and using them |
US7972377B2 (en) | 2001-12-27 | 2011-07-05 | Medtronic, Inc. | Bioprosthetic heart valve |
US7981153B2 (en) | 2002-12-20 | 2011-07-19 | Medtronic, Inc. | Biologically implantable prosthesis methods of using |
US8002824B2 (en) | 2004-09-02 | 2011-08-23 | Boston Scientific Scimed, Inc. | Cardiac valve, system, and method |
WO2011106137A1 (en) | 2010-02-24 | 2011-09-01 | Medtronic Inc. | Mitral prosthesis |
US8012198B2 (en) | 2005-06-10 | 2011-09-06 | Boston Scientific Scimed, Inc. | Venous valve, system, and method |
US8016877B2 (en) | 1999-11-17 | 2011-09-13 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
WO2011112706A2 (en) | 2010-03-11 | 2011-09-15 | Medtronic Inc. | Sinus-engaging fixation member |
US8021421B2 (en) | 2003-08-22 | 2011-09-20 | Medtronic, Inc. | Prosthesis heart valve fixturing device |
US8070801B2 (en) | 2001-06-29 | 2011-12-06 | Medtronic, Inc. | Method and apparatus for resecting and replacing an aortic valve |
US8075615B2 (en) | 2006-03-28 | 2011-12-13 | Medtronic, Inc. | Prosthetic cardiac valve formed from pericardium material and methods of making same |
US8128681B2 (en) | 2003-12-19 | 2012-03-06 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US8133270B2 (en) | 2007-01-08 | 2012-03-13 | California Institute Of Technology | In-situ formation of a valve |
US8157853B2 (en) | 2008-01-24 | 2012-04-17 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US8211169B2 (en) | 2005-05-27 | 2012-07-03 | Medtronic, Inc. | Gasket with collar for prosthetic heart valves and methods for using them |
US8308798B2 (en) | 2008-12-19 | 2012-11-13 | Edwards Lifesciences Corporation | Quick-connect prosthetic heart valve and methods |
US8313525B2 (en) | 2008-03-18 | 2012-11-20 | Medtronic Ventor Technologies, Ltd. | Valve suturing and implantation procedures |
US8312825B2 (en) | 2008-04-23 | 2012-11-20 | Medtronic, Inc. | Methods and apparatuses for assembly of a pericardial prosthetic heart valve |
US8348998B2 (en) | 2009-06-26 | 2013-01-08 | Edwards Lifesciences Corporation | Unitary quick connect prosthetic heart valve and deployment system and methods |
DE102011108143A1 (en) * | 2011-07-21 | 2013-01-24 | Maximilian Kütting | Modular system for producing catheter-based heart valve prostheses and prosthesis for other human flap positions, has sail sheet carrying base element and anchoring elements, which is connected to base element |
US20130041405A1 (en) * | 2006-02-21 | 2013-02-14 | Kardium Inc. | Method and device for closing holes in tissue |
US8430927B2 (en) | 2008-04-08 | 2013-04-30 | Medtronic, Inc. | Multiple orifice implantable heart valve and methods of implantation |
US20130109960A1 (en) * | 2011-11-01 | 2013-05-02 | Vascular Solutions, Inc. | Aortic valve positioning systems, devices, and methods |
US20130138207A1 (en) * | 2009-04-15 | 2013-05-30 | Cardiaq Valve Technologies, Inc. | Vascular implant and delivery system |
US8506620B2 (en) | 2005-09-26 | 2013-08-13 | Medtronic, Inc. | Prosthetic cardiac and venous valves |
US8512397B2 (en) | 2009-04-27 | 2013-08-20 | Sorin Group Italia S.R.L. | Prosthetic vascular conduit |
US8512400B2 (en) | 2010-04-09 | 2013-08-20 | Medtronic, Inc. | Transcatheter heart valve delivery system with reduced area moment of inertia |
US8512401B2 (en) | 2010-04-12 | 2013-08-20 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery system with funnel recapturing feature and method |
US8535373B2 (en) | 2004-03-03 | 2013-09-17 | Sorin Group Italia S.R.L. | Minimally-invasive cardiac-valve prosthesis |
US8540768B2 (en) | 2005-02-10 | 2013-09-24 | Sorin Group Italia S.R.L. | Cardiac valve prosthesis |
US20130261741A1 (en) * | 2010-07-21 | 2013-10-03 | Kevin D. Accola | Prosthetic Heart Valves and Devices, Systems and Methods for Prosthetic Heart Valves |
US8568474B2 (en) | 2010-04-26 | 2013-10-29 | Medtronic, Inc. | Transcatheter prosthetic heart valve post-dilatation remodeling devices and methods |
US8579966B2 (en) | 1999-11-17 | 2013-11-12 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
US8603161B2 (en) | 2003-10-08 | 2013-12-10 | Medtronic, Inc. | Attachment device and methods of using the same |
US8613765B2 (en) | 2008-02-28 | 2013-12-24 | Medtronic, Inc. | Prosthetic heart valve systems |
US8623075B2 (en) | 2010-04-21 | 2014-01-07 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery system and method with controlled expansion of prosthetic heart valve |
US8623077B2 (en) | 2001-06-29 | 2014-01-07 | Medtronic, Inc. | Apparatus for replacing a cardiac valve |
US8628566B2 (en) | 2008-01-24 | 2014-01-14 | Medtronic, Inc. | Stents for prosthetic heart valves |
US8641757B2 (en) | 2010-09-10 | 2014-02-04 | Edwards Lifesciences Corporation | Systems for rapidly deploying surgical heart valves |
US8652204B2 (en) | 2010-04-01 | 2014-02-18 | Medtronic, Inc. | Transcatheter valve with torsion spring fixation and related systems and methods |
US8652203B2 (en) | 2010-09-23 | 2014-02-18 | Cardiaq Valve Technologies, Inc. | Replacement heart valves, delivery devices and methods |
US8685084B2 (en) | 2011-12-29 | 2014-04-01 | Sorin Group Italia S.R.L. | Prosthetic vascular conduit and assembly method |
US8696743B2 (en) | 2008-04-23 | 2014-04-15 | Medtronic, Inc. | Tissue attachment devices and methods for prosthetic heart valves |
US8721714B2 (en) | 2008-09-17 | 2014-05-13 | Medtronic Corevalve Llc | Delivery system for deployment of medical devices |
US8740976B2 (en) | 2010-04-21 | 2014-06-03 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery system with flush report |
US8747459B2 (en) | 2006-12-06 | 2014-06-10 | Medtronic Corevalve Llc | System and method for transapical delivery of an annulus anchored self-expanding valve |
US8747458B2 (en) | 2007-08-20 | 2014-06-10 | Medtronic Ventor Technologies Ltd. | Stent loading tool and method for use thereof |
US8771302B2 (en) | 2001-06-29 | 2014-07-08 | Medtronic, Inc. | Method and apparatus for resecting and replacing an aortic valve |
US8784478B2 (en) | 2006-10-16 | 2014-07-22 | Medtronic Corevalve, Inc. | Transapical delivery system with ventruculo-arterial overlfow bypass |
US8808369B2 (en) | 2009-10-05 | 2014-08-19 | Mayo Foundation For Medical Education And Research | Minimally invasive aortic valve replacement |
US8821569B2 (en) | 2006-04-29 | 2014-09-02 | Medtronic, Inc. | Multiple component prosthetic heart valve assemblies and methods for delivering them |
US8828079B2 (en) | 2007-07-26 | 2014-09-09 | Boston Scientific Scimed, Inc. | Circulatory valve, system and method |
US8834563B2 (en) | 2008-12-23 | 2014-09-16 | Sorin Group Italia S.R.L. | Expandable prosthetic valve having anchoring appendages |
US20140276616A1 (en) * | 2013-03-15 | 2014-09-18 | Syntheon Cardiology, Llc | Catheter-based devices and methods for identifying specific anatomical landmarks of the human aortic valve |
US8840661B2 (en) | 2008-05-16 | 2014-09-23 | Sorin Group Italia S.R.L. | Atraumatic prosthetic heart valve prosthesis |
US8845720B2 (en) | 2010-09-27 | 2014-09-30 | Edwards Lifesciences Corporation | Prosthetic heart valve frame with flexible commissures |
US8852271B2 (en) | 2010-04-27 | 2014-10-07 | Medtronic Vascular, Inc. | Transcatheter prosthetic heart valve delivery device with biased release features |
US8876892B2 (en) | 2010-04-21 | 2014-11-04 | Medtronic, Inc. | Prosthetic heart valve delivery system with spacing |
US8876893B2 (en) | 2010-04-27 | 2014-11-04 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery device with passive trigger release |
US8894702B2 (en) | 2008-09-29 | 2014-11-25 | Cardiaq Valve Technologies, Inc. | Replacement heart valve and method |
US8911455B2 (en) | 2008-10-01 | 2014-12-16 | Cardiaq Valve Technologies, Inc. | Delivery system for vascular implant |
US8926692B2 (en) | 2010-04-09 | 2015-01-06 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery device with partial deployment and release features and methods |
US8951280B2 (en) | 2000-11-09 | 2015-02-10 | Medtronic, Inc. | Cardiac valve procedure methods and devices |
US8986361B2 (en) | 2008-10-17 | 2015-03-24 | Medtronic Corevalve, Inc. | Delivery system for deployment of medical devices |
US8986374B2 (en) | 2010-05-10 | 2015-03-24 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US8998981B2 (en) | 2008-09-15 | 2015-04-07 | Medtronic, Inc. | Prosthetic heart valve having identifiers for aiding in radiographic positioning |
US8998980B2 (en) | 2010-04-09 | 2015-04-07 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery system with recapturing feature and method |
US20150141897A1 (en) * | 2010-12-07 | 2015-05-21 | Zoll Lifebridge Gmbh | Cardiopulmonary apparatus and methods for preserving life |
US9078747B2 (en) | 2011-12-21 | 2015-07-14 | Edwards Lifesciences Corporation | Anchoring device for replacing or repairing a heart valve |
US9125741B2 (en) | 2010-09-10 | 2015-09-08 | Edwards Lifesciences Corporation | Systems and methods for ensuring safe and rapid deployment of prosthetic heart valves |
US9149358B2 (en) | 2008-01-24 | 2015-10-06 | Medtronic, Inc. | Delivery systems for prosthetic heart valves |
US9155617B2 (en) | 2004-01-23 | 2015-10-13 | Edwards Lifesciences Corporation | Prosthetic mitral valve |
US9161836B2 (en) | 2011-02-14 | 2015-10-20 | Sorin Group Italia S.R.L. | Sutureless anchoring device for cardiac valve prostheses |
US9192468B2 (en) | 2006-06-28 | 2015-11-24 | Kardium Inc. | Method for anchoring a mitral valve |
US9204964B2 (en) | 2009-10-01 | 2015-12-08 | Kardium Inc. | Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve |
US9226826B2 (en) | 2010-02-24 | 2016-01-05 | Medtronic, Inc. | Transcatheter valve structure and methods for valve delivery |
US9237886B2 (en) | 2007-04-20 | 2016-01-19 | Medtronic, Inc. | Implant for treatment of a heart valve, in particular a mitral valve, material including such an implant, and material for insertion thereof |
US9248017B2 (en) | 2010-05-21 | 2016-02-02 | Sorin Group Italia S.R.L. | Support device for valve prostheses and corresponding kit |
US9289289B2 (en) | 2011-02-14 | 2016-03-22 | Sorin Group Italia S.R.L. | Sutureless anchoring device for cardiac valve prostheses |
US9308086B2 (en) | 2010-09-21 | 2016-04-12 | Hocor Cardiovascular Technologies Llc | Method and system for balloon counterpulsation during aortic valve replacement |
US9314334B2 (en) | 2008-11-25 | 2016-04-19 | Edwards Lifesciences Corporation | Conformal expansion of prosthetic devices to anatomical shapes |
USD755384S1 (en) | 2014-03-05 | 2016-05-03 | Edwards Lifesciences Cardiaq Llc | Stent |
US9333077B2 (en) | 2013-03-12 | 2016-05-10 | Medtronic Vascular Galway Limited | Devices and methods for preparing a transcatheter heart valve system |
US9364322B2 (en) | 2012-12-31 | 2016-06-14 | Edwards Lifesciences Corporation | Post-implant expandable surgical heart valve configurations |
US9370418B2 (en) | 2010-09-10 | 2016-06-21 | Edwards Lifesciences Corporation | Rapidly deployable surgical heart valves |
US9393115B2 (en) | 2008-01-24 | 2016-07-19 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US20160206426A1 (en) * | 2013-08-30 | 2016-07-21 | Cedars-Sinai Medical Center | Devices and methods for transcatheter retrieval of mechanical heart valve leaflets |
US9433514B2 (en) | 2005-11-10 | 2016-09-06 | Edwards Lifesciences Cardiaq Llc | Method of securing a prosthesis |
US9439762B2 (en) | 2000-06-01 | 2016-09-13 | Edwards Lifesciences Corporation | Methods of implant of a heart valve with a convertible sewing ring |
US9468527B2 (en) | 2013-06-12 | 2016-10-18 | Edwards Lifesciences Corporation | Cardiac implant with integrated suture fasteners |
US9480560B2 (en) | 2009-09-29 | 2016-11-01 | Edwards Lifesciences Cardiaq Llc | Method of securing an intralumenal frame assembly |
US9504566B2 (en) | 2014-06-20 | 2016-11-29 | Edwards Lifesciences Corporation | Surgical heart valves identifiable post-implant |
US9532868B2 (en) | 2007-09-28 | 2017-01-03 | St. Jude Medical, Inc. | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US9539088B2 (en) | 2001-09-07 | 2017-01-10 | Medtronic, Inc. | Fixation band for affixing a prosthetic heart valve to tissue |
US9549816B2 (en) | 2014-04-03 | 2017-01-24 | Edwards Lifesciences Corporation | Method for manufacturing high durability heart valve |
US9554901B2 (en) | 2010-05-12 | 2017-01-31 | Edwards Lifesciences Corporation | Low gradient prosthetic heart valve |
US9554897B2 (en) | 2011-04-28 | 2017-01-31 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
US9561102B2 (en) | 2010-06-02 | 2017-02-07 | Medtronic, Inc. | Transcatheter delivery system and method with controlled expansion and contraction of prosthetic heart valve |
US9572665B2 (en) | 2013-04-04 | 2017-02-21 | Neovasc Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
US9579194B2 (en) | 2003-10-06 | 2017-02-28 | Medtronic ATS Medical, Inc. | Anchoring structure with concave landing zone |
US9585752B2 (en) | 2014-04-30 | 2017-03-07 | Edwards Lifesciences Corporation | Holder and deployment system for surgical heart valves |
WO2017041029A1 (en) * | 2015-09-02 | 2017-03-09 | Edwards Lifesciences Corporation | Spacer for securing a transcatheter valve to bioprosthetic cardiac structure |
US9622859B2 (en) | 2005-02-01 | 2017-04-18 | Boston Scientific Scimed, Inc. | Filter system and method |
US9629718B2 (en) | 2013-05-03 | 2017-04-25 | Medtronic, Inc. | Valve delivery tool |
US20170121638A1 (en) * | 2015-10-29 | 2017-05-04 | The Procter & Gamble Company | Liquid detergent composition |
US9668859B2 (en) | 2011-08-05 | 2017-06-06 | California Institute Of Technology | Percutaneous heart valve delivery systems |
US9681951B2 (en) | 2013-03-14 | 2017-06-20 | Edwards Lifesciences Cardiaq Llc | Prosthesis with outer skirt and anchors |
US9713529B2 (en) | 2011-04-28 | 2017-07-25 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US9717591B2 (en) | 2009-12-04 | 2017-08-01 | Edwards Lifesciences Corporation | Prosthetic valve for replacing mitral valve |
US9724083B2 (en) | 2013-07-26 | 2017-08-08 | Edwards Lifesciences Cardiaq Llc | Systems and methods for sealing openings in an anatomical wall |
US9730791B2 (en) | 2013-03-14 | 2017-08-15 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
US9744037B2 (en) | 2013-03-15 | 2017-08-29 | California Institute Of Technology | Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves |
US9744038B2 (en) | 2008-05-13 | 2017-08-29 | Kardium Inc. | Medical device for constricting tissue or a bodily orifice, for example a mitral valve |
US9770329B2 (en) | 2010-05-05 | 2017-09-26 | Neovasc Tiara Inc. | Transcatheter mitral valve prosthesis |
US9775704B2 (en) | 2004-04-23 | 2017-10-03 | Medtronic3F Therapeutics, Inc. | Implantable valve prosthesis |
US9848981B2 (en) | 2007-10-12 | 2017-12-26 | Mayo Foundation For Medical Education And Research | Expandable valve prosthesis with sealing mechanism |
US9919137B2 (en) | 2013-08-28 | 2018-03-20 | Edwards Lifesciences Corporation | Integrated balloon catheter inflation system |
US9918833B2 (en) | 2010-09-01 | 2018-03-20 | Medtronic Vascular Galway | Prosthetic valve support structure |
USD815744S1 (en) | 2016-04-28 | 2018-04-17 | Edwards Lifesciences Cardiaq Llc | Valve frame for a delivery system |
US10004599B2 (en) | 2014-02-21 | 2018-06-26 | Edwards Lifesciences Cardiaq Llc | Prosthesis, delivery device and methods of use |
US10010414B2 (en) | 2014-06-06 | 2018-07-03 | Edwards Lifesciences Corporation | Prosthetic valve for replacing a mitral valve |
US10016275B2 (en) | 2012-05-30 | 2018-07-10 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
US20180193143A1 (en) * | 2009-03-30 | 2018-07-12 | Suzhou Jiecheng Medical Technology Co., Ltd. | Devices and methods for delivery of valve prostheses |
WO2018145249A1 (en) * | 2017-02-07 | 2018-08-16 | 上海甲悦医疗器械有限公司 | Device for treating regurgitation of tricuspid valve and implantation method therefor |
US10058318B2 (en) | 2011-03-25 | 2018-08-28 | Kardium Inc. | Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve |
US10058425B2 (en) | 2013-03-15 | 2018-08-28 | Edwards Lifesciences Corporation | Methods of assembling a valved aortic conduit |
US10080653B2 (en) | 2015-09-10 | 2018-09-25 | Edwards Lifesciences Corporation | Limited expansion heart valve |
US10092400B2 (en) | 2015-06-23 | 2018-10-09 | Edwards Lifesciences Cardiaq Llc | Systems and methods for anchoring and sealing a prosthetic heart valve |
US20180289472A1 (en) * | 2015-05-18 | 2018-10-11 | Mayo Foundation For Medical Education And Research | Percutaneously-deployable prosthetic tricuspid valve |
US10117744B2 (en) | 2015-08-26 | 2018-11-06 | Edwards Lifesciences Cardiaq Llc | Replacement heart valves and methods of delivery |
US10179044B2 (en) | 2014-05-19 | 2019-01-15 | Edwards Lifesciences Cardiaq Llc | Replacement mitral valve |
US20190015093A1 (en) * | 2010-07-21 | 2019-01-17 | Mitraltech Ltd. | Valve prosthesis configured for deployment in annular spacer |
US10213298B2 (en) | 2004-03-11 | 2019-02-26 | Percutaneous Cardiovascular Solutions Pty Ltd | Percutaneous heart valve prosthesis |
US10226335B2 (en) | 2015-06-22 | 2019-03-12 | Edwards Lifesciences Cardiaq Llc | Actively controllable heart valve implant and method of controlling same |
USD846122S1 (en) | 2016-12-16 | 2019-04-16 | Edwards Lifesciences Corporation | Heart valve sizer |
US20190110894A1 (en) * | 2015-06-12 | 2019-04-18 | St. Jude Medical, Cardiology Division, Inc. | Heart Valve Repair and Replacement |
US10314702B2 (en) * | 2005-11-16 | 2019-06-11 | Edwards Lifesciences Corporation | Transapical method of supplanting an implanted prosthetic heart valve |
US10350065B2 (en) | 2006-07-28 | 2019-07-16 | Edwards Lifesciences Cardiaq Llc | Percutaneous valve prosthesis and system and method for implanting the same |
US10350066B2 (en) | 2015-08-28 | 2019-07-16 | Edwards Lifesciences Cardiaq Llc | Steerable delivery system for replacement mitral valve and methods of use |
US10350062B2 (en) | 2016-07-21 | 2019-07-16 | Edwards Lifesciences Corporation | Replacement heart valve prosthesis |
US10376363B2 (en) | 2015-04-30 | 2019-08-13 | Edwards Lifesciences Cardiaq Llc | Replacement mitral valve, delivery system for replacement mitral valve and methods of use |
EP3050541B1 (en) | 2008-05-01 | 2019-08-14 | Edwards Lifesciences Corporation | Prosthetic mitral valve assembly |
US20190307560A1 (en) * | 2005-12-22 | 2019-10-10 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
US10441416B2 (en) | 2015-04-21 | 2019-10-15 | Edwards Lifesciences Corporation | Percutaneous mitral valve replacement device |
US10441415B2 (en) | 2013-09-20 | 2019-10-15 | Edwards Lifesciences Corporation | Heart valves with increased effective orifice area |
US10456245B2 (en) | 2016-05-16 | 2019-10-29 | Edwards Lifesciences Corporation | System and method for applying material to a stent |
US10456246B2 (en) | 2015-07-02 | 2019-10-29 | Edwards Lifesciences Corporation | Integrated hybrid heart valves |
US10463485B2 (en) | 2017-04-06 | 2019-11-05 | Edwards Lifesciences Corporation | Prosthetic valve holders with automatic deploying mechanisms |
USD867594S1 (en) | 2015-06-19 | 2019-11-19 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US10485660B2 (en) | 2010-06-21 | 2019-11-26 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve |
US10485976B2 (en) | 1998-04-30 | 2019-11-26 | Medtronic, Inc. | Intracardiovascular access (ICVA™) system |
US10507105B2 (en) | 2015-02-05 | 2019-12-17 | Cardiovalve Ltd. | Prosthetic valve with tissue anchors free from lateral interconnections |
US10543085B2 (en) | 2012-12-31 | 2020-01-28 | Edwards Lifesciences Corporation | One-piece heart valve stents adapted for post-implant expansion |
US10543080B2 (en) | 2011-05-20 | 2020-01-28 | Edwards Lifesciences Corporation | Methods of making encapsulated heart valves |
US10575951B2 (en) | 2015-08-26 | 2020-03-03 | Edwards Lifesciences Cardiaq Llc | Delivery device and methods of use for transapical delivery of replacement mitral valve |
US10575948B2 (en) | 2017-08-03 | 2020-03-03 | Cardiovalve Ltd. | Prosthetic heart valve |
US10583002B2 (en) | 2013-03-11 | 2020-03-10 | Neovasc Tiara Inc. | Prosthetic valve with anti-pivoting mechanism |
US10583000B2 (en) | 2013-03-14 | 2020-03-10 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
US10588742B2 (en) * | 2013-08-14 | 2020-03-17 | Mitral Valve Technologies Sarl | Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device |
US10610359B2 (en) | 2009-12-08 | 2020-04-07 | Cardiovalve Ltd. | Folding ring prosthetic heart valve |
US10631982B2 (en) | 2013-01-24 | 2020-04-28 | Cardiovale Ltd. | Prosthetic valve and upstream support therefor |
US10639143B2 (en) | 2016-08-26 | 2020-05-05 | Edwards Lifesciences Corporation | Multi-portion replacement heart valve prosthesis |
US10646340B2 (en) | 2016-08-19 | 2020-05-12 | Edwards Lifesciences Corporation | Steerable delivery system for replacement mitral valve |
US10667904B2 (en) | 2016-03-08 | 2020-06-02 | Edwards Lifesciences Corporation | Valve implant with integrated sensor and transmitter |
US10695170B2 (en) | 2015-07-02 | 2020-06-30 | Edwards Lifesciences Corporation | Hybrid heart valves adapted for post-implant expansion |
US10702385B2 (en) | 2011-08-05 | 2020-07-07 | Cardiovalve Ltd. | Implant for heart valve |
US10722316B2 (en) | 2013-11-06 | 2020-07-28 | Edwards Lifesciences Corporation | Bioprosthetic heart valves having adaptive seals to minimize paravalvular leakage |
US10758348B2 (en) | 2016-11-02 | 2020-09-01 | Edwards Lifesciences Corporation | Supra and sub-annular mitral valve delivery system |
US10758344B2 (en) | 2015-02-05 | 2020-09-01 | Cardiovalve Ltd. | Prosthetic valve with angularly offset frames |
US10779946B2 (en) | 2018-09-17 | 2020-09-22 | Cardiovalve Ltd. | Leaflet-testing apparatus |
US10799353B2 (en) | 2017-04-28 | 2020-10-13 | Edwards Lifesciences Corporation | Prosthetic heart valve with collapsible holder |
US10799345B2 (en) | 2017-09-19 | 2020-10-13 | Cardiovalve Ltd. | Prosthetic valve with protective fabric covering around tissue anchor bases |
US10813757B2 (en) | 2017-07-06 | 2020-10-27 | Edwards Lifesciences Corporation | Steerable rail delivery system |
US10856970B2 (en) | 2007-10-10 | 2020-12-08 | Medtronic Ventor Technologies Ltd. | Prosthetic heart valve for transfemoral delivery |
US10856975B2 (en) | 2016-08-10 | 2020-12-08 | Cardiovalve Ltd. | Prosthetic valve with concentric frames |
US10888421B2 (en) | 2017-09-19 | 2021-01-12 | Cardiovalve Ltd. | Prosthetic heart valve with pouch |
US10898320B2 (en) | 2014-02-21 | 2021-01-26 | Mitral Valve Technologies Sarl | Devices, systems and methods for delivering a prosthetic mitral valve and anchoring device |
USD908874S1 (en) | 2018-07-11 | 2021-01-26 | Edwards Lifesciences Corporation | Collapsible heart valve sizer |
US10952850B2 (en) | 2016-08-01 | 2021-03-23 | Cardiovalve Ltd. | Minimally-invasive delivery systems |
US10993805B2 (en) | 2008-02-26 | 2021-05-04 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US11007058B2 (en) | 2013-03-15 | 2021-05-18 | Edwards Lifesciences Corporation | Valved aortic conduits |
US20210161657A1 (en) * | 2009-04-29 | 2021-06-03 | The Cleveland Clinic Foundation | Apparatus and method for replacing a diseased cardiac valve |
US11033392B2 (en) | 2006-08-02 | 2021-06-15 | Kardium Inc. | System for improving diastolic dysfunction |
US11051934B2 (en) | 2018-02-28 | 2021-07-06 | Edwards Lifesciences Corporation | Prosthetic mitral valve with improved anchors and seal |
US11058536B2 (en) * | 2004-10-02 | 2021-07-13 | Edwards Lifesciences Cardiaq Llc | Method for replacement of heart valve |
US11065138B2 (en) | 2016-05-13 | 2021-07-20 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system |
US11065122B2 (en) | 2017-10-19 | 2021-07-20 | Cardiovalve Ltd. | Techniques for use with prosthetic valve leaflets |
US11109964B2 (en) | 2010-03-10 | 2021-09-07 | Cardiovalve Ltd. | Axially-shortening prosthetic valve |
US11135057B2 (en) | 2017-06-21 | 2021-10-05 | Edwards Lifesciences Corporation | Dual-wireform limited expansion heart valves |
US11185405B2 (en) | 2013-08-30 | 2021-11-30 | Jenavalve Technology, Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
US11197754B2 (en) | 2017-01-27 | 2021-12-14 | Jenavalve Technology, Inc. | Heart valve mimicry |
US20220015901A1 (en) * | 2015-11-23 | 2022-01-20 | T-Heart SAS | Assembly for replacing the tricuspid atrioventricular valve |
US11229515B2 (en) | 2013-08-14 | 2022-01-25 | Mitral Valve Technologies Sarl | Replacement heart valve systems and methods |
US11246704B2 (en) | 2017-08-03 | 2022-02-15 | Cardiovalve Ltd. | Prosthetic heart valve |
USD944398S1 (en) | 2018-06-13 | 2022-02-22 | Edwards Lifesciences Corporation | Expanded heart valve stent |
US11291547B2 (en) | 2011-08-05 | 2022-04-05 | Cardiovalve Ltd. | Leaflet clip with collars |
US11298117B2 (en) | 2016-02-16 | 2022-04-12 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
US11304802B2 (en) | 2006-09-19 | 2022-04-19 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
US11337800B2 (en) | 2015-05-01 | 2022-05-24 | Jenavalve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
US11337805B2 (en) | 2018-01-23 | 2022-05-24 | Edwards Lifesciences Corporation | Prosthetic valve holders, systems, and methods |
US11344410B2 (en) | 2011-08-05 | 2022-05-31 | Cardiovalve Ltd. | Implant for heart valve |
US11357624B2 (en) | 2007-04-13 | 2022-06-14 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
US11382746B2 (en) | 2017-12-13 | 2022-07-12 | Cardiovalve Ltd. | Prosthetic valve and delivery tool therefor |
US11464632B2 (en) | 2014-05-07 | 2022-10-11 | Baylor College Of Medicine | Transcatheter and serially-expandable artificial heart valve |
US11504231B2 (en) | 2018-05-23 | 2022-11-22 | Corcym S.R.L. | Cardiac valve prosthesis |
US11517431B2 (en) | 2005-01-20 | 2022-12-06 | Jenavalve Technology, Inc. | Catheter system for implantation of prosthetic heart valves |
US11554012B2 (en) | 2019-12-16 | 2023-01-17 | Edwards Lifesciences Corporation | Valve holder assembly with suture looping protection |
US11564794B2 (en) | 2008-02-26 | 2023-01-31 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US11589981B2 (en) | 2010-05-25 | 2023-02-28 | Jenavalve Technology, Inc. | Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent |
US11633277B2 (en) | 2018-01-10 | 2023-04-25 | Cardiovalve Ltd. | Temperature-control during crimping of an implant |
US11653910B2 (en) | 2010-07-21 | 2023-05-23 | Cardiovalve Ltd. | Helical anchor implantation |
US11684474B2 (en) | 2018-01-25 | 2023-06-27 | Edwards Lifesciences Corporation | Delivery system for aided replacement valve recapture and repositioning post-deployment |
US11701225B2 (en) | 2014-07-30 | 2023-07-18 | Cardiovalve Ltd. | Delivery of a prosthetic valve |
US11701224B1 (en) * | 2022-06-28 | 2023-07-18 | Seven Summits Medical, Inc. | Prosthetic heart valve for multiple positions and applications |
US11793633B2 (en) | 2017-08-03 | 2023-10-24 | Cardiovalve Ltd. | Prosthetic heart valve |
US12029646B2 (en) | 2017-08-03 | 2024-07-09 | Cardiovalve Ltd. | Prosthetic heart valve |
US12115069B2 (en) | 2012-02-29 | 2024-10-15 | Valcare Medical, Inc. | Percutaneous annuloplasty system with anterior-posterior adjustment |
US12121461B2 (en) | 2016-03-17 | 2024-10-22 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath |
Families Citing this family (130)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0850607A1 (en) | 1996-12-31 | 1998-07-01 | Cordis Corporation | Valve prosthesis for implantation in body channels |
US8241274B2 (en) | 2000-01-19 | 2012-08-14 | Medtronic, Inc. | Method for guiding a medical device |
US6454799B1 (en) | 2000-04-06 | 2002-09-24 | Edwards Lifesciences Corporation | Minimally-invasive heart valves and methods of use |
US7556646B2 (en) | 2001-09-13 | 2009-07-07 | Edwards Lifesciences Corporation | Methods and apparatuses for deploying minimally-invasive heart valves |
US6733525B2 (en) | 2001-03-23 | 2004-05-11 | Edwards Lifesciences Corporation | Rolled minimally-invasive heart valves and methods of use |
US6893460B2 (en) | 2001-10-11 | 2005-05-17 | Percutaneous Valve Technologies Inc. | Implantable prosthetic valve |
US7959666B2 (en) | 2003-12-23 | 2011-06-14 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
US20050137687A1 (en) | 2003-12-23 | 2005-06-23 | Sadra Medical | Heart valve anchor and method |
FR2874812B1 (en) * | 2004-09-07 | 2007-06-15 | Perouse Soc Par Actions Simpli | INTERCHANGEABLE PROTHETIC VALVE |
US7780723B2 (en) | 2005-06-13 | 2010-08-24 | Edwards Lifesciences Corporation | Heart valve delivery system |
EP1968491B1 (en) * | 2005-12-22 | 2010-07-07 | Symetis SA | Stent-valves for valve replacement and associated methods and systems for surgery |
US8236045B2 (en) | 2006-12-22 | 2012-08-07 | Edwards Lifesciences Corporation | Implantable prosthetic valve assembly and method of making the same |
DE102007043830A1 (en) | 2007-09-13 | 2009-04-02 | Lozonschi, Lucian, Madison | Heart valve stent |
WO2009045331A1 (en) | 2007-09-28 | 2009-04-09 | St. Jude Medical, Inc. | Two-stage collapsible/expandable prosthetic heart valves and anchoring systems |
CN101959478B (en) | 2008-02-29 | 2013-12-18 | 爱德华兹生命科学公司 | Expandable member for deploying prosthetic device |
US8323335B2 (en) | 2008-06-20 | 2012-12-04 | Edwards Lifesciences Corporation | Retaining mechanisms for prosthetic valves and methods for using |
US8652202B2 (en) | 2008-08-22 | 2014-02-18 | Edwards Lifesciences Corporation | Prosthetic heart valve and delivery apparatus |
US8287591B2 (en) * | 2008-09-19 | 2012-10-16 | Edwards Lifesciences Corporation | Transformable annuloplasty ring configured to receive a percutaneous prosthetic heart valve implantation |
US8591573B2 (en) * | 2008-12-08 | 2013-11-26 | Hector Daniel Barone | Prosthetic valve for intraluminal implantation |
WO2011002996A2 (en) * | 2009-07-02 | 2011-01-06 | The Cleveland Clinic Foundation | Apparatus and method for replacing a diseased cardiac valve |
EP3649985B8 (en) | 2009-12-08 | 2021-04-21 | Avalon Medical Ltd. | Device and system for transcatheter mitral valve replacement |
US9072603B2 (en) * | 2010-02-24 | 2015-07-07 | Medtronic Ventor Technologies, Ltd. | Mitral prosthesis and methods for implantation |
US8795354B2 (en) * | 2010-03-05 | 2014-08-05 | Edwards Lifesciences Corporation | Low-profile heart valve and delivery system |
WO2011139594A2 (en) | 2010-04-27 | 2011-11-10 | Medtronic, Inc. | Artificial bursa for intra-articular drug delivery |
US9132009B2 (en) | 2010-07-21 | 2015-09-15 | Mitraltech Ltd. | Guide wires with commissural anchors to advance a prosthetic valve |
US9155619B2 (en) | 2011-02-25 | 2015-10-13 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
EP2688516B1 (en) | 2011-03-21 | 2022-08-17 | Cephea Valve Technologies, Inc. | Disk-based valve apparatus |
US9289282B2 (en) | 2011-05-31 | 2016-03-22 | Edwards Lifesciences Corporation | System and method for treating valve insufficiency or vessel dilatation |
US8795357B2 (en) | 2011-07-15 | 2014-08-05 | Edwards Lifesciences Corporation | Perivalvular sealing for transcatheter heart valve |
US9119716B2 (en) | 2011-07-27 | 2015-09-01 | Edwards Lifesciences Corporation | Delivery systems for prosthetic heart valve |
US20140324164A1 (en) | 2011-08-05 | 2014-10-30 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
EP2741711B1 (en) | 2011-08-11 | 2018-05-30 | Tendyne Holdings, Inc. | Improvements for prosthetic valves and related inventions |
EP4049626A1 (en) | 2011-12-09 | 2022-08-31 | Edwards Lifesciences Corporation | Prosthetic heart valve having improved commissure supports |
US9827092B2 (en) | 2011-12-16 | 2017-11-28 | Tendyne Holdings, Inc. | Tethers for prosthetic mitral valve |
US9427315B2 (en) | 2012-04-19 | 2016-08-30 | Caisson Interventional, LLC | Valve replacement systems and methods |
US9011515B2 (en) | 2012-04-19 | 2015-04-21 | Caisson Interventional, LLC | Heart valve assembly systems and methods |
US9883941B2 (en) | 2012-06-19 | 2018-02-06 | Boston Scientific Scimed, Inc. | Replacement heart valve |
WO2014022124A1 (en) | 2012-07-28 | 2014-02-06 | Tendyne Holdings, Inc. | Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly |
US9675454B2 (en) | 2012-07-30 | 2017-06-13 | Tendyne Holdings, Inc. | Delivery systems and methods for transcatheter prosthetic valves |
US20140067048A1 (en) | 2012-09-06 | 2014-03-06 | Edwards Lifesciences Corporation | Heart Valve Sealing Devices |
US9439763B2 (en) | 2013-02-04 | 2016-09-13 | Edwards Lifesciences Corporation | Prosthetic valve for replacing mitral valve |
US9168129B2 (en) | 2013-02-12 | 2015-10-27 | Edwards Lifesciences Corporation | Artificial heart valve with scalloped frame design |
US10463489B2 (en) | 2013-04-02 | 2019-11-05 | Tendyne Holdings, Inc. | Prosthetic heart valve and systems and methods for delivering the same |
US9486306B2 (en) | 2013-04-02 | 2016-11-08 | Tendyne Holdings, Inc. | Inflatable annular sealing device for prosthetic mitral valve |
US11224510B2 (en) | 2013-04-02 | 2022-01-18 | Tendyne Holdings, Inc. | Prosthetic heart valve and systems and methods for delivering the same |
US10478293B2 (en) | 2013-04-04 | 2019-11-19 | Tendyne Holdings, Inc. | Retrieval and repositioning system for prosthetic heart valve |
CA3219973A1 (en) | 2013-05-20 | 2014-11-27 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
US9610159B2 (en) | 2013-05-30 | 2017-04-04 | Tendyne Holdings, Inc. | Structural members for prosthetic mitral valves |
EP3013281B1 (en) | 2013-06-25 | 2018-08-15 | Tendyne Holdings, Inc. | Thrombus management and structural compliance features for prosthetic heart valves |
US8870948B1 (en) | 2013-07-17 | 2014-10-28 | Cephea Valve Technologies, Inc. | System and method for cardiac valve repair and replacement |
EP3027144B1 (en) | 2013-08-01 | 2017-11-08 | Tendyne Holdings, Inc. | Epicardial anchor devices |
WO2015058039A1 (en) | 2013-10-17 | 2015-04-23 | Robert Vidlund | Apparatus and methods for alignment and deployment of intracardiac devices |
US9421094B2 (en) | 2013-10-23 | 2016-08-23 | Caisson Interventional, LLC | Methods and systems for heart valve therapy |
JP6554094B2 (en) | 2013-10-28 | 2019-07-31 | テンダイン ホールディングス,インコーポレイテッド | Prosthetic heart valve and system and method for delivering an artificial heart valve |
US9526611B2 (en) | 2013-10-29 | 2016-12-27 | Tendyne Holdings, Inc. | Apparatus and methods for delivery of transcatheter prosthetic valves |
US9622863B2 (en) | 2013-11-22 | 2017-04-18 | Edwards Lifesciences Corporation | Aortic insufficiency repair device and method |
WO2015120122A2 (en) | 2014-02-05 | 2015-08-13 | Robert Vidlund | Apparatus and methods for transfemoral delivery of prosthetic mitral valve |
US9986993B2 (en) | 2014-02-11 | 2018-06-05 | Tendyne Holdings, Inc. | Adjustable tether and epicardial pad system for prosthetic heart valve |
US9949825B2 (en) * | 2014-02-18 | 2018-04-24 | St. Jude Medical, Cardiology Division, Inc. | Bowed runners and corresponding valve assemblies for paravalvular leak protection |
CN110338911B (en) | 2014-03-10 | 2022-12-23 | 坦迪尼控股股份有限公司 | Apparatus and method for positioning and monitoring tether load of prosthetic mitral valve |
BR102014006114B1 (en) * | 2014-03-14 | 2022-05-10 | Antônio Francisco Neves Filho | Mechanical or biological heart valve stent for minimally invasive valve replacement procedure and stent delivery device |
US10195025B2 (en) | 2014-05-12 | 2019-02-05 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US9974647B2 (en) | 2014-06-12 | 2018-05-22 | Caisson Interventional, LLC | Two stage anchor and mitral valve assembly |
WO2016007652A1 (en) | 2014-07-08 | 2016-01-14 | Avinger, Inc. | High speed chronic total occlusion crossing devices |
US10195026B2 (en) | 2014-07-22 | 2019-02-05 | Edwards Lifesciences Corporation | Mitral valve anchoring |
US10058424B2 (en) | 2014-08-21 | 2018-08-28 | Edwards Lifesciences Corporation | Dual-flange prosthetic valve frame |
US9750607B2 (en) | 2014-10-23 | 2017-09-05 | Caisson Interventional, LLC | Systems and methods for heart valve therapy |
US9750605B2 (en) | 2014-10-23 | 2017-09-05 | Caisson Interventional, LLC | Systems and methods for heart valve therapy |
WO2016093877A1 (en) | 2014-12-09 | 2016-06-16 | Cephea Valve Technologies, Inc. | Replacement cardiac valves and methods of use and manufacture |
EP3242630A2 (en) | 2015-01-07 | 2017-11-15 | Tendyne Holdings, Inc. | Prosthetic mitral valves and apparatus and methods for delivery of same |
EP3884906A1 (en) | 2015-02-05 | 2021-09-29 | Tendyne Holdings, Inc. | Expandable epicardial pads and devices and methods for delivery of same |
EP3283010B1 (en) | 2015-04-16 | 2020-06-17 | Tendyne Holdings, Inc. | Apparatus for delivery and repositioning of transcatheter prosthetic valves |
US10064718B2 (en) | 2015-04-16 | 2018-09-04 | Edwards Lifesciences Corporation | Low-profile prosthetic heart valve for replacing a mitral valve |
US10010417B2 (en) | 2015-04-16 | 2018-07-03 | Edwards Lifesciences Corporation | Low-profile prosthetic heart valve for replacing a mitral valve |
EP3294221B1 (en) | 2015-05-14 | 2024-03-06 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
EP3294220B1 (en) | 2015-05-14 | 2023-12-06 | Cephea Valve Technologies, Inc. | Cardiac valve delivery devices and systems |
US10327894B2 (en) | 2015-09-18 | 2019-06-25 | Tendyne Holdings, Inc. | Methods for delivery of prosthetic mitral valves |
US10376364B2 (en) | 2015-11-10 | 2019-08-13 | Edwards Lifesciences Corporation | Implant delivery capsule |
AU2016362474B2 (en) | 2015-12-03 | 2021-04-22 | Tendyne Holdings, Inc. | Frame features for prosthetic mitral valves |
CN108601645B (en) | 2015-12-15 | 2021-02-26 | 内奥瓦斯克迪亚拉公司 | Transseptal delivery system |
EP3397206B1 (en) | 2015-12-28 | 2022-06-08 | Tendyne Holdings, Inc. | Atrial pocket closures for prosthetic heart valves |
EP3397208B1 (en) | 2015-12-30 | 2020-12-02 | Caisson Interventional, LLC | Systems for heart valve therapy |
EP4183372A1 (en) | 2016-01-29 | 2023-05-24 | Neovasc Tiara Inc. | Prosthetic valve for avoiding obstruction of outflow |
US10470877B2 (en) | 2016-05-03 | 2019-11-12 | Tendyne Holdings, Inc. | Apparatus and methods for anterior valve leaflet management |
EP3468480B1 (en) | 2016-06-13 | 2023-01-11 | Tendyne Holdings, Inc. | Sequential delivery of two-part prosthetic mitral valve |
EP3471665B1 (en) | 2016-06-17 | 2023-10-11 | Cephea Valve Technologies, Inc. | Cardiac valve delivery devices |
EP3478224B1 (en) | 2016-06-30 | 2022-11-02 | Tendyne Holdings, Inc. | Prosthetic heart valves and apparatus for delivery of same |
US11065116B2 (en) | 2016-07-12 | 2021-07-20 | Tendyne Holdings, Inc. | Apparatus and methods for trans-septal retrieval of prosthetic heart valves |
USD800908S1 (en) | 2016-08-10 | 2017-10-24 | Mitraltech Ltd. | Prosthetic valve element |
US10653510B2 (en) | 2016-11-09 | 2020-05-19 | Boston Scientific Scimed, Inc. | Stent including displacement capabilities |
FR3058631B1 (en) * | 2016-11-14 | 2019-01-25 | Laboratoires Invalv | IMPLANT FOR TREATING A BIOLOGICAL VALVE |
EP3541462A4 (en) | 2016-11-21 | 2020-06-17 | Neovasc Tiara Inc. | Methods and systems for rapid retraction of a transcatheter heart valve delivery system |
CA3051272C (en) | 2017-01-23 | 2023-08-22 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
EP4209196A1 (en) | 2017-01-23 | 2023-07-12 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
US10702378B2 (en) | 2017-04-18 | 2020-07-07 | Twelve, Inc. | Prosthetic heart valve device and associated systems and methods |
US10959846B2 (en) | 2017-05-10 | 2021-03-30 | Edwards Lifesciences Corporation | Mitral valve spacer device |
US10786352B2 (en) | 2017-07-06 | 2020-09-29 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
EP3651695B1 (en) | 2017-07-13 | 2023-04-19 | Tendyne Holdings, Inc. | Prosthetic heart valves and apparatus for delivery of same |
US10537426B2 (en) | 2017-08-03 | 2020-01-21 | Cardiovalve Ltd. | Prosthetic heart valve |
US10856984B2 (en) | 2017-08-25 | 2020-12-08 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
CN111031967B (en) | 2017-08-28 | 2022-08-09 | 坦迪尼控股股份有限公司 | Prosthetic heart valve with tether connection features |
WO2019195860A2 (en) | 2018-04-04 | 2019-10-10 | Vdyne, Llc | Devices and methods for anchoring transcatheter heart valve |
US10595994B1 (en) | 2018-09-20 | 2020-03-24 | Vdyne, Llc | Side-delivered transcatheter heart valve replacement |
US11278437B2 (en) | 2018-12-08 | 2022-03-22 | Vdyne, Inc. | Compression capable annular frames for side delivery of transcatheter heart valve replacement |
US11344413B2 (en) | 2018-09-20 | 2022-05-31 | Vdyne, Inc. | Transcatheter deliverable prosthetic heart valves and methods of delivery |
US10321995B1 (en) | 2018-09-20 | 2019-06-18 | Vdyne, Llc | Orthogonally delivered transcatheter heart valve replacement |
US11071627B2 (en) | 2018-10-18 | 2021-07-27 | Vdyne, Inc. | Orthogonally delivered transcatheter heart valve frame for valve in valve prosthesis |
US11109969B2 (en) | 2018-10-22 | 2021-09-07 | Vdyne, Inc. | Guidewire delivery of transcatheter heart valve |
AU2019374743B2 (en) | 2018-11-08 | 2022-03-03 | Neovasc Tiara Inc. | Ventricular deployment of a transcatheter mitral valve prosthesis |
US11253359B2 (en) | 2018-12-20 | 2022-02-22 | Vdyne, Inc. | Proximal tab for side-delivered transcatheter heart valves and methods of delivery |
US11185409B2 (en) | 2019-01-26 | 2021-11-30 | Vdyne, Inc. | Collapsible inner flow control component for side-delivered transcatheter heart valve prosthesis |
US11273032B2 (en) | 2019-01-26 | 2022-03-15 | Vdyne, Inc. | Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis |
EP3934583B1 (en) | 2019-03-05 | 2023-12-13 | Vdyne, Inc. | Tricuspid regurgitation control devices for orthogonal transcatheter heart valve prosthesis |
CA3132873A1 (en) | 2019-03-08 | 2020-09-17 | Neovasc Tiara Inc. | Retrievable prosthesis delivery system |
US11173027B2 (en) | 2019-03-14 | 2021-11-16 | Vdyne, Inc. | Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same |
US11076956B2 (en) | 2019-03-14 | 2021-08-03 | Vdyne, Inc. | Proximal, distal, and anterior anchoring tabs for side-delivered transcatheter mitral valve prosthesis |
CN113811265A (en) | 2019-04-01 | 2021-12-17 | 内奥瓦斯克迪亚拉公司 | Prosthetic valve deployable in a controlled manner |
AU2020271896B2 (en) | 2019-04-10 | 2022-10-13 | Neovasc Tiara Inc. | Prosthetic valve with natural blood flow |
EP3965701A4 (en) | 2019-05-04 | 2023-02-15 | Vdyne, Inc. | Cinch device and method for deployment of a side-delivered prosthetic heart valve in a native annulus |
WO2020236931A1 (en) | 2019-05-20 | 2020-11-26 | Neovasc Tiara Inc. | Introducer with hemostasis mechanism |
WO2020257643A1 (en) | 2019-06-20 | 2020-12-24 | Neovasc Tiara Inc. | Low profile prosthetic mitral valve |
AU2020334080A1 (en) | 2019-08-20 | 2022-03-24 | Vdyne, Inc. | Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves |
CA3152632A1 (en) | 2019-08-26 | 2021-03-04 | Vdyne, Inc. | Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same |
EP3831343B1 (en) | 2019-12-05 | 2024-01-31 | Tendyne Holdings, Inc. | Braided anchor for mitral valve |
US11648114B2 (en) | 2019-12-20 | 2023-05-16 | Tendyne Holdings, Inc. | Distally loaded sheath and loading funnel |
US11234813B2 (en) | 2020-01-17 | 2022-02-01 | Vdyne, Inc. | Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery |
EP4096576A1 (en) | 2020-01-30 | 2022-12-07 | Boston Scientific Scimed Inc. | Radial adjusting self-expanding stent with anti-migration features |
US11951002B2 (en) | 2020-03-30 | 2024-04-09 | Tendyne Holdings, Inc. | Apparatus and methods for valve and tether fixation |
EP4199860A1 (en) | 2020-08-19 | 2023-06-28 | Tendyne Holdings, Inc. | Fully-transseptal apical pad with pulley for tensioning |
DE102022133681A1 (en) | 2022-12-16 | 2024-06-27 | Rheinisch-Westfälische Technische Hochschule Aachen, Körperschaft des öffentlichen Rechts | Minimally invasive implantable valve prosthesis and valve stent for connecting artificial valve leaflets |
Citations (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US334629A (en) * | 1886-01-19 | Elevated filter bed | ||
US3642004A (en) * | 1970-01-05 | 1972-02-15 | Life Support Equipment Corp | Urethral valve |
US3714671A (en) * | 1970-11-30 | 1973-02-06 | Cutter Lab | Tissue-type heart valve with a graft support ring or stent |
US3795246A (en) * | 1973-01-26 | 1974-03-05 | Bard Inc C R | Venocclusion device |
US3868956A (en) * | 1972-06-05 | 1975-03-04 | Ralph J Alfidi | Vessel implantable appliance and method of implanting it |
US4425908A (en) * | 1981-10-22 | 1984-01-17 | Beth Israel Hospital | Blood clot filter |
US4501030A (en) * | 1981-08-17 | 1985-02-26 | American Hospital Supply Corporation | Method of leaflet attachment for prosthetic heart valves |
US4574803A (en) * | 1979-01-19 | 1986-03-11 | Karl Storz | Tissue cutter |
US4647283A (en) * | 1982-03-23 | 1987-03-03 | American Hospital Supply Corporation | Implantable biological tissue and process for preparation thereof |
US4733665A (en) * | 1985-11-07 | 1988-03-29 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4796629A (en) * | 1987-06-03 | 1989-01-10 | Joseph Grayzel | Stiffened dilation balloon catheter device |
US4797901A (en) * | 1985-08-22 | 1989-01-10 | Siemens Aktiengesellschaft | Circuit arrangement for testing a passive bus network with the carrier sense multiple access with collisions detection method |
US4909252A (en) * | 1988-05-26 | 1990-03-20 | The Regents Of The Univ. Of California | Perfusion balloon catheter |
US4986830A (en) * | 1989-09-22 | 1991-01-22 | Schneider (U.S.A.) Inc. | Valvuloplasty catheter with balloon which remains stable during inflation |
US4994077A (en) * | 1989-04-21 | 1991-02-19 | Dobben Richard L | Artificial heart valve for implantation in a blood vessel |
US5002559A (en) * | 1989-11-30 | 1991-03-26 | Numed | PTCA catheter |
US5089015A (en) * | 1989-11-28 | 1992-02-18 | Promedica International | Method for implanting unstented xenografts and allografts |
US5197979A (en) * | 1990-09-07 | 1993-03-30 | Baxter International Inc. | Stentless heart valve and holder |
US5285635A (en) * | 1992-03-30 | 1994-02-15 | General Electric Company | Double annular combustor |
US5295958A (en) * | 1991-04-04 | 1994-03-22 | Shturman Cardiology Systems, Inc. | Method and apparatus for in vivo heart valve decalcification |
US5389106A (en) * | 1993-10-29 | 1995-02-14 | Numed, Inc. | Impermeable expandable intravascular stent |
US5397351A (en) * | 1991-05-13 | 1995-03-14 | Pavcnik; Dusan | Prosthetic valve for percutaneous insertion |
US5480424A (en) * | 1993-11-01 | 1996-01-02 | Cox; James L. | Heart valve replacement using flexible tubes |
US5489294A (en) * | 1994-02-01 | 1996-02-06 | Medtronic, Inc. | Steroid eluting stitch-in chronic cardiac lead |
US5496346A (en) * | 1987-01-06 | 1996-03-05 | Advanced Cardiovascular Systems, Inc. | Reinforced balloon dilatation catheter with slitted exchange sleeve and method |
US5500014A (en) * | 1989-05-31 | 1996-03-19 | Baxter International Inc. | Biological valvular prothesis |
US5591195A (en) * | 1995-10-30 | 1997-01-07 | Taheri; Syde | Apparatus and method for engrafting a blood vessel |
US5609626A (en) * | 1989-05-31 | 1997-03-11 | Baxter International Inc. | Stent devices and support/restrictor assemblies for use in conjunction with prosthetic vascular grafts |
US5713953A (en) * | 1991-05-24 | 1998-02-03 | Sorin Biomedica Cardio S.P.A. | Cardiac valve prosthesis particularly for replacement of the aortic valve |
US5855597A (en) * | 1997-05-07 | 1999-01-05 | Iowa-India Investments Co. Limited | Stent valve and stent graft for percutaneous surgery |
US5855601A (en) * | 1996-06-21 | 1999-01-05 | The Trustees Of Columbia University In The City Of New York | Artificial heart valve and method and device for implanting the same |
US5861028A (en) * | 1996-09-09 | 1999-01-19 | Shelhigh Inc | Natural tissue heart valve and stent prosthesis and method for making the same |
US5860996A (en) * | 1994-05-26 | 1999-01-19 | United States Surgical Corporation | Optical trocar |
US5868448A (en) * | 1996-02-28 | 1999-02-09 | Suzuki Motor Corporation | Glove box structure |
US5868783A (en) * | 1997-04-16 | 1999-02-09 | Numed, Inc. | Intravascular stent with limited axial shrinkage |
US5888201A (en) * | 1996-02-08 | 1999-03-30 | Schneider (Usa) Inc | Titanium alloy self-expanding stent |
US6022370A (en) * | 1996-10-01 | 2000-02-08 | Numed, Inc. | Expandable stent |
US6029671A (en) * | 1991-07-16 | 2000-02-29 | Heartport, Inc. | System and methods for performing endovascular procedures |
US6168614B1 (en) * | 1990-05-18 | 2001-01-02 | Heartport, Inc. | Valve prosthesis for implantation in the body |
US6171335B1 (en) * | 1997-01-24 | 2001-01-09 | Aortech Europe Limited | Heart valve prosthesis |
US6192944B1 (en) * | 1998-08-14 | 2001-02-27 | Prodesco, Inc. | Method of forming a textile member with undulating wire |
US6342070B1 (en) * | 1997-12-24 | 2002-01-29 | Edwards Lifesciences Corp. | Stentless bioprosthetic heart valve with patent coronary protuberances and method of surgical use thereof |
US20020029014A1 (en) * | 1997-09-18 | 2002-03-07 | Iowa-India Investments Company, Limited | Delivery mechanism for balloons, drugs, stents and other physical/mechanical agents and method of use |
US20020032481A1 (en) * | 2000-09-12 | 2002-03-14 | Shlomo Gabbay | Heart valve prosthesis and sutureless implantation of a heart valve prosthesis |
US20020032480A1 (en) * | 1999-05-12 | 2002-03-14 | Paul Spence | Heart valve and apparatus for replacement thereof |
US20030014104A1 (en) * | 1996-12-31 | 2003-01-16 | Alain Cribier | Value prosthesis for implantation in body channels |
US6509930B1 (en) * | 1999-08-06 | 2003-01-21 | Hitachi, Ltd. | Circuit for scan conversion of picture signal using motion compensation |
US20030023303A1 (en) * | 1999-11-19 | 2003-01-30 | Palmaz Julio C. | Valvular prostheses having metal or pseudometallic construction and methods of manufacture |
US20030028247A1 (en) * | 2001-01-29 | 2003-02-06 | Cali Douglas S. | Method of cutting material for use in implantable medical device |
US20030036791A1 (en) * | 2001-08-03 | 2003-02-20 | Bonhoeffer Philipp | Implant implantation unit and procedure for implanting the unit |
US20030040771A1 (en) * | 1999-02-01 | 2003-02-27 | Hideki Hyodoh | Methods for creating woven devices |
US20030050694A1 (en) * | 2001-09-13 | 2003-03-13 | Jibin Yang | Methods and apparatuses for deploying minimally-invasive heart valves |
US20030055495A1 (en) * | 2001-03-23 | 2003-03-20 | Pease Matthew L. | Rolled minimally-invasive heart valves and methods of manufacture |
US6676698B2 (en) * | 2000-06-26 | 2004-01-13 | Rex Medicol, L.P. | Vascular device with valve for approximating vessel wall |
US6692513B2 (en) * | 2000-06-30 | 2004-02-17 | Viacor, Inc. | Intravascular filter with debris entrapment mechanism |
US20040034411A1 (en) * | 2002-08-16 | 2004-02-19 | Quijano Rodolfo C. | Percutaneously delivered heart valve and delivery means thereof |
US6695878B2 (en) * | 2000-06-26 | 2004-02-24 | Rex Medical, L.P. | Vascular device for valve leaflet apposition |
US20040039436A1 (en) * | 2001-10-11 | 2004-02-26 | Benjamin Spenser | Implantable prosthetic valve |
US20040049262A1 (en) * | 2000-01-31 | 2004-03-11 | Obermiller Joseph F. | Stent valves and uses of same |
US20040049266A1 (en) * | 2002-09-11 | 2004-03-11 | Anduiza James Peter | Percutaneously deliverable heart valve |
US20040049224A1 (en) * | 2000-11-07 | 2004-03-11 | Buehlmann Eric L. | Target tissue localization assembly and method |
US20050010285A1 (en) * | 1999-01-27 | 2005-01-13 | Lambrecht Gregory H. | Cardiac valve procedure methods and devices |
US20050010287A1 (en) * | 2000-09-20 | 2005-01-13 | Ample Medical, Inc. | Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet |
US20050015112A1 (en) * | 2000-01-27 | 2005-01-20 | Cohn William E. | Cardiac valve procedure methods and devices |
US6846325B2 (en) * | 2000-09-07 | 2005-01-25 | Viacor, Inc. | Fixation band for affixing a prosthetic heart valve to tissue |
US20050033398A1 (en) * | 2001-07-31 | 2005-02-10 | Jacques Seguin | Assembly for setting a valve prosthesis in a corporeal duct |
US20050043790A1 (en) * | 2001-07-04 | 2005-02-24 | Jacques Seguin | Kit enabling a prosthetic valve to be placed in a body enabling a prosthetic valve to be put into place in a duct in the body |
US20050049696A1 (en) * | 1999-02-06 | 2005-03-03 | Thorsten Siess | Device for intravascular cardiac valve surgery |
US20050049692A1 (en) * | 2003-09-02 | 2005-03-03 | Numamoto Michael J. | Medical device for reduction of pressure effects of cardiac tricuspid valve regurgitation |
US6866650B2 (en) * | 1991-07-16 | 2005-03-15 | Heartport, Inc. | System for cardiac procedures |
US20050060030A1 (en) * | 2000-01-31 | 2005-03-17 | Lashinski Randall T. | Remotely activated mitral annuloplasty system and methods |
US20050060029A1 (en) * | 2003-07-29 | 2005-03-17 | Trong-Phi Le | Implantable device as organ valve replacement |
US6872223B2 (en) * | 1993-09-30 | 2005-03-29 | Boston Scientific Corporation | Controlled deployment of a medical device |
US20060004439A1 (en) * | 2004-06-30 | 2006-01-05 | Benjamin Spenser | Device and method for assisting in the implantation of a prosthetic valve |
US20060009841A1 (en) * | 2003-05-05 | 2006-01-12 | Rex Medical | Percutaneous aortic valve |
US6986742B2 (en) * | 2001-08-21 | 2006-01-17 | Boston Scientific Scimed, Inc. | Pressure transducer protection valve |
US6989028B2 (en) * | 2000-01-31 | 2006-01-24 | Edwards Lifesciences Ag | Medical system and method for remodeling an extravascular tissue structure |
US6989027B2 (en) * | 2003-04-30 | 2006-01-24 | Medtronic Vascular Inc. | Percutaneously delivered temporary valve assembly |
US6991649B2 (en) * | 2003-08-29 | 2006-01-31 | Hans-Hinrich Sievers | Artificial heart valve |
US7011681B2 (en) * | 1997-12-29 | 2006-03-14 | The Cleveland Clinic Foundation | Bioprosthetic cardiovascular valve system |
US20060058775A1 (en) * | 1991-07-16 | 2006-03-16 | Stevens John H | System and methods for performing endovascular procedures |
US20070005129A1 (en) * | 2000-02-28 | 2007-01-04 | Christoph Damm | Anchoring system for implantable heart valve prostheses |
US20070005131A1 (en) * | 2005-06-13 | 2007-01-04 | Taylor David M | Heart valve delivery system |
US7160319B2 (en) * | 1999-11-16 | 2007-01-09 | Scimed Life Systems, Inc. | Multi-section filamentary endoluminal stent |
US20070010878A1 (en) * | 2003-11-12 | 2007-01-11 | Medtronic Vascular, Inc. | Coronary sinus approach for repair of mitral valve regurgitation |
US20070016286A1 (en) * | 2003-07-21 | 2007-01-18 | Herrmann Howard C | Percutaneous heart valve |
US20070027518A1 (en) * | 2003-04-01 | 2007-02-01 | Case Brian C | Percutaneously deployed vascular valves |
US7175656B2 (en) * | 2003-04-18 | 2007-02-13 | Alexander Khairkhahan | Percutaneous transcatheter heart valve replacement |
US20070043432A1 (en) * | 2004-02-11 | 2007-02-22 | Eric Perouse | Tubular prosthesis |
US20070043435A1 (en) * | 1999-11-17 | 2007-02-22 | Jacques Seguin | Non-cylindrical prosthetic valve system for transluminal delivery |
US20070051377A1 (en) * | 2003-11-12 | 2007-03-08 | Medtronic Vascular, Inc. | Cardiac valve annulus reduction system |
US7316706B2 (en) * | 2003-06-20 | 2008-01-08 | Medtronic Vascular, Inc. | Tensioning device, system, and method for treating mitral valve regurgitation |
US20080015671A1 (en) * | 2004-11-19 | 2008-01-17 | Philipp Bonhoeffer | Method And Apparatus For Treatment Of Cardiac Valves |
US20080021552A1 (en) * | 2001-10-09 | 2008-01-24 | Shlomo Gabbay | Apparatus To Facilitate Implantation |
US7329278B2 (en) * | 1999-11-17 | 2008-02-12 | Corevalve, Inc. | Prosthetic valve for transluminal delivery |
US7335218B2 (en) * | 2002-08-28 | 2008-02-26 | Heart Leaflet Technologies, Inc. | Delivery device for leaflet valve |
Family Cites Families (325)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US456854A (en) | 1891-07-28 | William j | ||
DE1057460B (en) | 1956-09-28 | 1959-05-14 | Auergesellschaft Ag | Device for closing and quickly opening a gas-tight container for respiratory protection and / or rescue equipment |
DE1088529B (en) | 1958-03-15 | 1960-09-08 | Knorr Bremse Gmbh | Acceleration device for compressed air brakes, especially for rail vehicles |
DE1271508B (en) | 1962-12-21 | 1968-06-27 | Hurth Masch Zahnrad Carl | Shaving wheel suitable for machining a specific gear |
US3334629A (en) | 1964-11-09 | 1967-08-08 | Bertram D Cohn | Occlusive device for inferior vena cava |
GB1127325A (en) | 1965-08-23 | 1968-09-18 | Henry Berry | Improved instrument for inserting artificial heart valves |
US3587115A (en) | 1966-05-04 | 1971-06-28 | Donald P Shiley | Prosthetic sutureless heart valves and implant tools therefor |
US3540431A (en) | 1968-04-04 | 1970-11-17 | Kazi Mobin Uddin | Collapsible filter for fluid flowing in closed passageway |
US3671979A (en) | 1969-09-23 | 1972-06-27 | Univ Utah | Catheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve |
US3628535A (en) | 1969-11-12 | 1971-12-21 | Nibot Corp | Surgical instrument for implanting a prosthetic heart valve or the like |
US3657744A (en) | 1970-05-08 | 1972-04-25 | Univ Minnesota | Method for fixing prosthetic implants in a living body |
US3755823A (en) | 1971-04-23 | 1973-09-04 | Hancock Laboratories Inc | Flexible stent for heart valve |
US3839741A (en) | 1972-11-17 | 1974-10-08 | J Haller | Heart valve and retaining means therefor |
US3874388A (en) | 1973-02-12 | 1975-04-01 | Ochsner Med Found Alton | Shunt defect closure system |
US4291420A (en) | 1973-11-09 | 1981-09-29 | Medac Gesellschaft Fur Klinische Spezialpraparate Mbh | Artificial heart valve |
US4035849A (en) | 1975-11-17 | 1977-07-19 | William W. Angell | Heart valve stent and process for preparing a stented heart valve prosthesis |
CA1069652A (en) | 1976-01-09 | 1980-01-15 | Alain F. Carpentier | Supported bioprosthetic heart valve with compliant orifice ring |
US4056854A (en) | 1976-09-28 | 1977-11-08 | The United States Of America As Represented By The Department Of Health, Education And Welfare | Aortic heart valve catheter |
US4233690A (en) | 1978-05-19 | 1980-11-18 | Carbomedics, Inc. | Prosthetic device couplings |
US4222126A (en) | 1978-12-14 | 1980-09-16 | The United States Of America As Represented By The Secretary Of The Department Of Health, Education & Welfare | Unitized three leaflet heart valve |
GB2056023B (en) | 1979-08-06 | 1983-08-10 | Ross D N Bodnar E | Stent for a cardiac valve |
US4339831A (en) | 1981-03-27 | 1982-07-20 | Medtronic, Inc. | Dynamic annulus heart valve and reconstruction ring |
US4470157A (en) | 1981-04-27 | 1984-09-11 | Love Jack W | Tricuspid prosthetic tissue heart valve |
US4345340A (en) | 1981-05-07 | 1982-08-24 | Vascor, Inc. | Stent for mitral/tricuspid heart valve |
SE445884B (en) | 1982-04-30 | 1986-07-28 | Medinvent Sa | DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION |
US4892541A (en) | 1982-11-29 | 1990-01-09 | Tascon Medical Technology Corporation | Heart valve prosthesis |
US4680031A (en) | 1982-11-29 | 1987-07-14 | Tascon Medical Technology Corporation | Heart valve prosthesis |
US4610688A (en) | 1983-04-04 | 1986-09-09 | Pfizer Hospital Products Group, Inc. | Triaxially-braided fabric prosthesis |
US4834755A (en) | 1983-04-04 | 1989-05-30 | Pfizer Hospital Products Group, Inc. | Triaxially-braided fabric prosthesis |
US4612011A (en) | 1983-07-22 | 1986-09-16 | Hans Kautzky | Central occluder semi-biological heart valve |
US4665906A (en) | 1983-10-14 | 1987-05-19 | Raychem Corporation | Medical devices incorporating sim alloy elements |
US4681908A (en) | 1983-11-09 | 1987-07-21 | Dow Corning Corporation | Hard organopolysiloxane release coating |
US4787899A (en) | 1983-12-09 | 1988-11-29 | Lazarus Harrison M | Intraluminal graft device, system and method |
US4627436A (en) | 1984-03-01 | 1986-12-09 | Innoventions Biomedical Inc. | Angioplasty catheter and method for use thereof |
US4592340A (en) | 1984-05-02 | 1986-06-03 | Boyles Paul W | Artificial catheter means |
US4883458A (en) | 1987-02-24 | 1989-11-28 | Surgical Systems & Instruments, Inc. | Atherectomy system and method of using the same |
US4979939A (en) | 1984-05-14 | 1990-12-25 | Surgical Systems & Instruments, Inc. | Atherectomy system with a guide wire |
US5007896A (en) * | 1988-12-19 | 1991-04-16 | Surgical Systems & Instruments, Inc. | Rotary-catheter for atherectomy |
DE3426300A1 (en) | 1984-07-17 | 1986-01-30 | Doguhan Dr.med. 6000 Frankfurt Baykut | TWO-WAY VALVE AND ITS USE AS A HEART VALVE PROSTHESIS |
US4580568A (en) | 1984-10-01 | 1986-04-08 | Cook, Incorporated | Percutaneous endovascular stent and method for insertion thereof |
US5232445A (en) | 1984-11-23 | 1993-08-03 | Tassilo Bonzel | Dilatation catheter |
SU1271508A1 (en) | 1984-11-29 | 1986-11-23 | Горьковский государственный медицинский институт им.С.М.Кирова | Artificial heart valve |
US4662885A (en) | 1985-09-03 | 1987-05-05 | Becton, Dickinson And Company | Percutaneously deliverable intravascular filter prosthesis |
DE3640745A1 (en) * | 1985-11-30 | 1987-06-04 | Ernst Peter Prof Dr M Strecker | Catheter for producing or extending connections to or between body cavities |
US4710192A (en) | 1985-12-30 | 1987-12-01 | Liotta Domingo S | Diaphragm and method for occlusion of the descending thoracic aorta |
US4878906A (en) | 1986-03-25 | 1989-11-07 | Servetus Partnership | Endoprosthesis for repairing a damaged vessel |
US5061273A (en) | 1989-06-01 | 1991-10-29 | Yock Paul G | Angioplasty apparatus facilitating rapid exchanges |
US4777951A (en) | 1986-09-19 | 1988-10-18 | Mansfield Scientific, Inc. | Procedure and catheter instrument for treating patients for aortic stenosis |
US4878495A (en) | 1987-05-15 | 1989-11-07 | Joseph Grayzel | Valvuloplasty device with satellite expansion means |
US4872874A (en) | 1987-05-29 | 1989-10-10 | Taheri Syde A | Method and apparatus for transarterial aortic graft insertion and implantation |
US4819751A (en) | 1987-10-16 | 1989-04-11 | Baxter Travenol Laboratories, Inc. | Valvuloplasty catheter and method |
US5156621A (en) | 1988-03-22 | 1992-10-20 | Navia Jose A | Stentless bioprosthetic cardiac valve |
US5032128A (en) | 1988-07-07 | 1991-07-16 | Medtronic, Inc. | Heart valve prosthesis |
US4917102A (en) | 1988-09-14 | 1990-04-17 | Advanced Cardiovascular Systems, Inc. | Guidewire assembly with steerable adjustable tip |
US4856516A (en) | 1989-01-09 | 1989-08-15 | Cordis Corporation | Endovascular stent apparatus and method |
US4966604A (en) | 1989-01-23 | 1990-10-30 | Interventional Technologies Inc. | Expandable atherectomy cutter with flexibly bowed blades |
US5047041A (en) | 1989-08-22 | 1991-09-10 | Samuels Peter B | Surgical apparatus for the excision of vein valves in situ |
US5059177A (en) | 1990-04-19 | 1991-10-22 | Cordis Corporation | Triple lumen balloon catheter |
US5411552A (en) | 1990-05-18 | 1995-05-02 | Andersen; Henning R. | Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis |
US5085635A (en) * | 1990-05-18 | 1992-02-04 | Cragg Andrew H | Valved-tip angiographic catheter |
US5161547A (en) | 1990-11-28 | 1992-11-10 | Numed, Inc. | Method of forming an intravascular radially expandable stent |
US5217483A (en) | 1990-11-28 | 1993-06-08 | Numed, Inc. | Intravascular radially expandable stent |
US6165292A (en) * | 1990-12-18 | 2000-12-26 | Advanced Cardiovascular Systems, Inc. | Superelastic guiding member |
US5152771A (en) | 1990-12-31 | 1992-10-06 | The Board Of Supervisors Of Louisiana State University | Valve cutter for arterial by-pass surgery |
US5272909A (en) | 1991-04-25 | 1993-12-28 | Baxter International Inc. | Method and device for testing venous valves |
US5167628A (en) | 1991-05-02 | 1992-12-01 | Boyles Paul W | Aortic balloon catheter assembly for indirect infusion of the coronary arteries |
US5350398A (en) | 1991-05-13 | 1994-09-27 | Dusan Pavcnik | Self-expanding filter for percutaneous insertion |
US5558644A (en) | 1991-07-16 | 1996-09-24 | Heartport, Inc. | Retrograde delivery catheter and method for inducing cardioplegic arrest |
US5766151A (en) | 1991-07-16 | 1998-06-16 | Heartport, Inc. | Endovascular system for arresting the heart |
US5584803A (en) | 1991-07-16 | 1996-12-17 | Heartport, Inc. | System for cardiac procedures |
US5370685A (en) | 1991-07-16 | 1994-12-06 | Stanford Surgical Technologies, Inc. | Endovascular aortic valve replacement |
US5795325A (en) | 1991-07-16 | 1998-08-18 | Heartport, Inc. | Methods and apparatus for anchoring an occluding member |
US5507767A (en) | 1992-01-15 | 1996-04-16 | Cook Incorporated | Spiral stent |
US5163953A (en) | 1992-02-10 | 1992-11-17 | Vince Dennis J | Toroidal artificial heart valve stent |
AU678350B2 (en) | 1992-05-08 | 1997-05-29 | Schneider (Usa) Inc. | Esophageal stent and delivery tool |
US5332402A (en) | 1992-05-12 | 1994-07-26 | Teitelbaum George P | Percutaneously-inserted cardiac valve |
JPH08500757A (en) * | 1992-12-30 | 1996-01-30 | シュナイダー・(ユーエスエイ)・インコーポレーテッド | Device for deploying a stent implantable in the body |
US5431676A (en) | 1993-03-05 | 1995-07-11 | Innerdyne Medical, Inc. | Trocar system having expandable port |
US5415633A (en) * | 1993-07-28 | 1995-05-16 | Active Control Experts, Inc. | Remotely steered catheterization device |
KR970004845Y1 (en) | 1993-09-27 | 1997-05-21 | 주식회사 수호메디테크 | Stent for expanding a lumen |
US5713950A (en) | 1993-11-01 | 1998-02-03 | Cox; James L. | Method of replacing heart valves using flexible tubes |
US5509930A (en) | 1993-12-17 | 1996-04-23 | Autogenics | Stentless heart valve |
US5609627A (en) | 1994-02-09 | 1997-03-11 | Boston Scientific Technology, Inc. | Method for delivering a bifurcated endoluminal prosthesis |
US5549663A (en) | 1994-03-09 | 1996-08-27 | Cordis Corporation | Endoprosthesis having graft member and exposed welded end junctions, method and procedure |
US5695607A (en) | 1994-04-01 | 1997-12-09 | James River Corporation Of Virginia | Soft-single ply tissue having very low sidedness |
EP0705081B1 (en) | 1994-04-22 | 2001-10-17 | Medtronic, Inc. | Stented bioprosthetic heart valve |
US5765418A (en) | 1994-05-16 | 1998-06-16 | Medtronic, Inc. | Method for making an implantable medical device from a refractory metal |
JP3970341B2 (en) | 1994-06-20 | 2007-09-05 | テルモ株式会社 | Vascular catheter |
US5554185A (en) | 1994-07-18 | 1996-09-10 | Block; Peter C. | Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same |
US5674277A (en) | 1994-12-23 | 1997-10-07 | Willy Rusch Ag | Stent for placement in a body tube |
US5575818A (en) | 1995-02-14 | 1996-11-19 | Corvita Corporation | Endovascular stent with locking ring |
WO1996030072A1 (en) | 1995-03-30 | 1996-10-03 | Heartport, Inc. | System and methods for performing endovascular procedures |
US5849005A (en) | 1995-06-07 | 1998-12-15 | Heartport, Inc. | Method and apparatus for minimizing the risk of air embolism when performing a procedure in a patient's thoracic cavity |
US5667523A (en) | 1995-04-28 | 1997-09-16 | Impra, Inc. | Dual supported intraluminal graft |
US5824064A (en) | 1995-05-05 | 1998-10-20 | Taheri; Syde A. | Technique for aortic valve replacement with simultaneous aortic arch graft insertion and apparatus therefor |
US5580922A (en) | 1995-06-06 | 1996-12-03 | Weyerhaeuser Company | Cellulose products treated with isocyanate compositions |
EP0830113A1 (en) * | 1995-06-07 | 1998-03-25 | St.Jude Medical, Inc | Direct suture orifice for mechanical heart valve |
AU6280396A (en) | 1995-06-20 | 1997-01-22 | Efstathios A. Agathos | Human valve replacement with marine mammal valve |
DE19532846A1 (en) | 1995-09-06 | 1997-03-13 | Georg Dr Berg | Valve for use in heart |
DE19546692C2 (en) | 1995-12-14 | 2002-11-07 | Hans-Reiner Figulla | Self-expanding heart valve prosthesis for implantation in the human body via a catheter system |
WO1997027959A1 (en) | 1996-01-30 | 1997-08-07 | Medtronic, Inc. | Articles for and methods of making stents |
US20020068949A1 (en) | 1996-02-23 | 2002-06-06 | Williamson Warren P. | Extremely long wire fasteners for use in minimally invasive surgery and means and method for handling those fasteners |
US5695498A (en) | 1996-02-28 | 1997-12-09 | Numed, Inc. | Stent implantation system |
US5891191A (en) | 1996-04-30 | 1999-04-06 | Schneider (Usa) Inc | Cobalt-chromium-molybdenum alloy stent and stent-graft |
FR2748198B1 (en) * | 1996-05-02 | 1998-08-21 | Braun Celsa Sa | PROSTHESIS IN PARTICULAR FOR THE TREATMENT OF ANNEVRISMS OVERFLOWING ON ILIAC VESSELS |
WO1997042879A1 (en) | 1996-05-14 | 1997-11-20 | Embol-X, Inc. | Aortic occluder with associated filter and methods of use during cardiac surgery |
DE69719237T2 (en) | 1996-05-23 | 2003-11-27 | Samsung Electronics Co., Ltd. | Flexible, self-expandable stent and method for its manufacture |
US6702851B1 (en) | 1996-09-06 | 2004-03-09 | Joseph A. Chinn | Prosthetic heart valve with surface modification |
US6764509B2 (en) | 1996-09-06 | 2004-07-20 | Carbomedics Inc. | Prosthetic heart valve with surface modification |
US5968068A (en) | 1996-09-12 | 1999-10-19 | Baxter International Inc. | Endovascular delivery system |
US5749890A (en) * | 1996-12-03 | 1998-05-12 | Shaknovich; Alexander | Method and system for stent placement in ostial lesions |
NL1004827C2 (en) | 1996-12-18 | 1998-06-19 | Surgical Innovations Vof | Device for regulating blood circulation. |
US6241757B1 (en) | 1997-02-04 | 2001-06-05 | Solco Surgical Instrument Co., Ltd. | Stent for expanding body's lumen |
CA2281519A1 (en) | 1997-02-19 | 1998-08-27 | Condado Medical Devices Corporation | Multi-purpose catheters, catheter systems, and radiation treatment |
US5830229A (en) | 1997-03-07 | 1998-11-03 | Micro Therapeutics Inc. | Hoop stent |
US5817126A (en) | 1997-03-17 | 1998-10-06 | Surface Genesis, Inc. | Compound stent |
US5824053A (en) | 1997-03-18 | 1998-10-20 | Endotex Interventional Systems, Inc. | Helical mesh endoprosthesis and methods of use |
JP4083241B2 (en) | 1997-04-23 | 2008-04-30 | アーテミス・メディカル・インコーポレイテッド | Bifurcated stent and distal protection system |
US5957949A (en) | 1997-05-01 | 1999-09-28 | World Medical Manufacturing Corp. | Percutaneous placement valve stent |
US6245102B1 (en) | 1997-05-07 | 2001-06-12 | Iowa-India Investments Company Ltd. | Stent, stent graft and stent valve |
US6162245A (en) | 1997-05-07 | 2000-12-19 | Iowa-India Investments Company Limited | Stent valve and stent graft |
US5911734A (en) | 1997-05-08 | 1999-06-15 | Embol-X, Inc. | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
US6258120B1 (en) | 1997-12-23 | 2001-07-10 | Embol-X, Inc. | Implantable cerebral protection device and methods of use |
US5984957A (en) | 1997-08-12 | 1999-11-16 | Schneider (Usa) Inc | Radially expanded prostheses with axial diameter control |
AU9478498A (en) | 1997-09-11 | 1999-03-29 | Genzyme Corporation | Articulating endoscopic implant rotator surgical apparatus and method for using same |
US5954766A (en) | 1997-09-16 | 1999-09-21 | Zadno-Azizi; Gholam-Reza | Body fluid flow control device |
US6361545B1 (en) | 1997-09-26 | 2002-03-26 | Cardeon Corporation | Perfusion filter catheter |
US5925063A (en) | 1997-09-26 | 1999-07-20 | Khosravi; Farhad | Coiled sheet valve, filter or occlusive device and methods of use |
JP3827841B2 (en) | 1997-12-10 | 2006-09-27 | 株式会社小糸製作所 | Electrical connector |
CA2315211A1 (en) | 1997-12-29 | 1999-07-08 | The Cleveland Clinic Foundation | System for minimally invasive insertion of a bioprosthetic heart valve |
US5944738A (en) | 1998-02-06 | 1999-08-31 | Aga Medical Corporation | Percutaneous catheter directed constricting occlusion device |
JP2003522550A (en) | 1998-02-10 | 2003-07-29 | アーテミス・メディカル・インコーポレイテッド | Occlusion, fixation, tensioning, and diverting devices and methods of use |
WO1999039648A1 (en) | 1998-02-10 | 1999-08-12 | Dubrul William R | Entrapping apparatus and method for use |
US6059809A (en) * | 1998-02-16 | 2000-05-09 | Medicorp, S.A. | Protective angioplasty device |
US6280467B1 (en) | 1998-02-26 | 2001-08-28 | World Medical Manufacturing Corporation | Delivery system for deployment and endovascular assembly of a multi-stage stented graft |
EP0943300A1 (en) * | 1998-03-17 | 1999-09-22 | Medicorp S.A. | Reversible action endoprosthesis delivery device. |
US6074418A (en) | 1998-04-20 | 2000-06-13 | St. Jude Medical, Inc. | Driver tool for heart valve prosthesis fasteners |
US6627873B2 (en) | 1998-04-23 | 2003-09-30 | Baker Hughes Incorporated | Down hole gas analyzer method and apparatus |
US6218662B1 (en) * | 1998-04-23 | 2001-04-17 | Western Atlas International, Inc. | Downhole carbon dioxide gas analyzer |
US6450989B2 (en) | 1998-04-27 | 2002-09-17 | Artemis Medical, Inc. | Dilating and support apparatus with disease inhibitors and methods for use |
US6890330B2 (en) | 2000-10-27 | 2005-05-10 | Viacor, Inc. | Intracardiovascular access (ICVATM) system |
US7452371B2 (en) | 1999-06-02 | 2008-11-18 | Cook Incorporated | Implantable vascular device |
AU754156B2 (en) | 1998-06-02 | 2002-11-07 | Cook Incorporated | Multiple-sided intraluminal medical device |
US6630001B2 (en) | 1998-06-24 | 2003-10-07 | International Heart Institute Of Montana Foundation | Compliant dehyrated tissue for implantation and process of making the same |
US6254636B1 (en) | 1998-06-26 | 2001-07-03 | St. Jude Medical, Inc. | Single suture biological tissue aortic stentless valve |
US6179860B1 (en) | 1998-08-19 | 2001-01-30 | Artemis Medical, Inc. | Target tissue localization device and method |
US6475239B1 (en) | 1998-10-13 | 2002-11-05 | Sulzer Carbomedics Inc. | Method for making polymer heart valves with leaflets having uncut free edges |
US6051014A (en) | 1998-10-13 | 2000-04-18 | Embol-X, Inc. | Percutaneous filtration catheter for valve repair surgery and methods of use |
US6146366A (en) | 1998-11-03 | 2000-11-14 | Ras Holding Corp | Device for the treatment of macular degeneration and other eye disorders |
DE19857887B4 (en) | 1998-12-15 | 2005-05-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Anchoring support for a heart valve prosthesis |
FR2788217A1 (en) | 1999-01-12 | 2000-07-13 | Brice Letac | PROSTHETIC VALVE IMPLANTABLE BY CATHETERISM, OR SURGICAL |
US6364905B1 (en) | 1999-01-27 | 2002-04-02 | Sulzer Carbomedics Inc. | Tri-composite, full root, stentless valve |
WO2000044309A2 (en) | 1999-02-01 | 2000-08-03 | Board Of Regents, The University Of Texas System | Woven bifurcated and trifurcated stents and methods for making the same |
US6425916B1 (en) | 1999-02-10 | 2002-07-30 | Michi E. Garrison | Methods and devices for implanting cardiac valves |
WO2000047136A1 (en) | 1999-02-12 | 2000-08-17 | Johns Hopkins University | Venous valve implant bioprosthesis and endovascular treatment for venous insufficiency |
US6110201A (en) | 1999-02-18 | 2000-08-29 | Venpro | Bifurcated biological pulmonary valved conduit |
DE19907646A1 (en) | 1999-02-23 | 2000-08-24 | Georg Berg | Valve for blood vessels uses flap holders and counterpart holders on stent to latch together in place and all channeled for guide wire. |
IL128938A0 (en) | 1999-03-11 | 2000-02-17 | Mind Guard Ltd | Implantable stroke treating device |
US6673089B1 (en) | 1999-03-11 | 2004-01-06 | Mindguard Ltd. | Implantable stroke treating device |
US7147663B1 (en) | 1999-04-23 | 2006-12-12 | St. Jude Medical Atg, Inc. | Artificial heart valve attachment apparatus and methods |
US6790229B1 (en) | 1999-05-25 | 2004-09-14 | Eric Berreklouw | Fixing device, in particular for fixing to vascular wall tissue |
EP1057460A1 (en) | 1999-06-01 | 2000-12-06 | Numed, Inc. | Replacement valve assembly and method of implanting same |
EP1057459A1 (en) | 1999-06-01 | 2000-12-06 | Numed, Inc. | Radially expandable stent |
AU6000200A (en) | 1999-07-16 | 2001-02-05 | Biocompatibles Limited | Braided stent |
US6371970B1 (en) | 1999-07-30 | 2002-04-16 | Incept Llc | Vascular filter having articulation region and methods of use in the ascending aorta |
US6299637B1 (en) | 1999-08-20 | 2001-10-09 | Samuel M. Shaolian | Transluminally implantable venous valve |
IT1307268B1 (en) | 1999-09-30 | 2001-10-30 | Sorin Biomedica Cardio Spa | DEVICE FOR HEART VALVE REPAIR OR REPLACEMENT. |
US6371983B1 (en) | 1999-10-04 | 2002-04-16 | Ernest Lane | Bioprosthetic heart valve |
FR2799364B1 (en) | 1999-10-12 | 2001-11-23 | Jacques Seguin | MINIMALLY INVASIVE CANCELING DEVICE |
US6352708B1 (en) | 1999-10-14 | 2002-03-05 | The International Heart Institute Of Montana Foundation | Solution and method for treating autologous tissue for implant operation |
US6440164B1 (en) | 1999-10-21 | 2002-08-27 | Scimed Life Systems, Inc. | Implantable prosthetic valve |
US8579966B2 (en) | 1999-11-17 | 2013-11-12 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
FR2800984B1 (en) | 1999-11-17 | 2001-12-14 | Jacques Seguin | DEVICE FOR REPLACING A HEART VALVE PERCUTANEOUSLY |
US6379383B1 (en) | 1999-11-19 | 2002-04-30 | Advanced Bio Prosthetic Surfaces, Ltd. | Endoluminal device exhibiting improved endothelialization and method of manufacture thereof |
US6458153B1 (en) * | 1999-12-31 | 2002-10-01 | Abps Venture One, Ltd. | Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof |
US7300457B2 (en) | 1999-11-19 | 2007-11-27 | Advanced Bio Prosthetic Surfaces, Ltd. | Self-supporting metallic implantable grafts, compliant implantable medical devices and methods of making same |
US6936066B2 (en) | 1999-11-19 | 2005-08-30 | Advanced Bio Prosthetic Surfaces, Ltd. | Complaint implantable medical devices and methods of making same |
US6849085B2 (en) | 1999-11-19 | 2005-02-01 | Advanced Bio Prosthetic Surfaces, Ltd. | Self-supporting laminated films, structural materials and medical devices manufactured therefrom and method of making same |
BR0107897A (en) | 2000-01-27 | 2002-11-05 | 3F Therapeutics Inc | Prosthetic heart valve without stent, semi-lunar heart valve without stent, process for producing a prosthetic tubular heart valve without stent, process for making a prosthetic heart valve, and, process for producing a prosthetic valve |
US6622604B1 (en) | 2000-01-31 | 2003-09-23 | Scimed Life Systems, Inc. | Process for manufacturing a braided bifurcated stent |
US6398807B1 (en) | 2000-01-31 | 2002-06-04 | Scimed Life Systems, Inc. | Braided branching stent, method for treating a lumen therewith, and process for manufacture therefor |
US7296577B2 (en) | 2000-01-31 | 2007-11-20 | Edwards Lifescience Ag | Transluminal mitral annuloplasty with active anchoring |
US6652571B1 (en) | 2000-01-31 | 2003-11-25 | Scimed Life Systems, Inc. | Braided, branched, implantable device and processes for manufacture thereof |
US6797002B2 (en) | 2000-02-02 | 2004-09-28 | Paul A. Spence | Heart valve repair apparatus and methods |
US6821297B2 (en) | 2000-02-02 | 2004-11-23 | Robert V. Snyders | Artificial heart valve, implantation instrument and method therefor |
DE10010074B4 (en) * | 2000-02-28 | 2005-04-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Device for fastening and anchoring heart valve prostheses |
US6468303B1 (en) | 2000-03-27 | 2002-10-22 | Aga Medical Corporation | Retrievable self expanding shunt |
US6454799B1 (en) | 2000-04-06 | 2002-09-24 | Edwards Lifesciences Corporation | Minimally-invasive heart valves and methods of use |
US7686842B2 (en) | 2000-05-04 | 2010-03-30 | Oregon Health Sciences University | Endovascular stent graft |
SE522805C2 (en) | 2000-06-22 | 2004-03-09 | Jan Otto Solem | Stent Application System |
US6527800B1 (en) | 2000-06-26 | 2003-03-04 | Rex Medical, L.P. | Vascular device and method for valve leaflet apposition |
EP1401358B1 (en) | 2000-06-30 | 2016-08-17 | Medtronic, Inc. | Apparatus for performing a procedure on a cardiac valve |
US6419696B1 (en) | 2000-07-06 | 2002-07-16 | Paul A. Spence | Annuloplasty devices and related heart valve repair methods |
JP4660026B2 (en) * | 2000-09-08 | 2011-03-30 | パナソニック株式会社 | Display panel drive device |
US20060142848A1 (en) | 2000-09-12 | 2006-06-29 | Shlomo Gabbay | Extra-anatomic aortic valve placement |
US6461382B1 (en) | 2000-09-22 | 2002-10-08 | Edwards Lifesciences Corporation | Flexible heart valve having moveable commissures |
DE10049812B4 (en) | 2000-10-09 | 2004-06-03 | Universitätsklinikum Freiburg | Device for filtering out macroscopic particles from the bloodstream during local removal of an aortic valve on the human or animal heart |
DE10049813C1 (en) | 2000-10-09 | 2002-04-18 | Universitaetsklinikum Freiburg | Instrument for the local removal of built-up matter at an aortic valve, in a human or animal heart, is a hollow catheter with a cutting unit at the far end within a closure cap for minimum invasion |
DE10049815B4 (en) | 2000-10-09 | 2005-10-13 | Universitätsklinikum Freiburg | Device for local ablation of an aortic valve on the human or animal heart |
DE10049814B4 (en) | 2000-10-09 | 2006-10-19 | Universitätsklinikum Freiburg | Device for supporting surgical procedures within a vessel, in particular for minimally invasive explantation and implantation of heart valves |
US6482228B1 (en) | 2000-11-14 | 2002-11-19 | Troy R. Norred | Percutaneous aortic valve replacement |
CA2436803C (en) | 2000-11-21 | 2009-09-15 | Rex Medical, L.P. | Percutaneous aortic valve |
US6494909B2 (en) | 2000-12-01 | 2002-12-17 | Prodesco, Inc. | Endovascular valve |
US20020072789A1 (en) | 2000-12-12 | 2002-06-13 | Hackett Steven S. | Soc lubricant filler port |
AU2002236640A1 (en) | 2000-12-15 | 2002-06-24 | Viacor, Inc. | Apparatus and method for replacing aortic valve |
US20040093075A1 (en) * | 2000-12-15 | 2004-05-13 | Titus Kuehne | Stent with valve and method of use thereof |
US6562058B2 (en) | 2001-03-02 | 2003-05-13 | Jacques Seguin | Intravascular filter system |
US6503272B2 (en) | 2001-03-21 | 2003-01-07 | Cordis Corporation | Stent-based venous valves |
US6733525B2 (en) | 2001-03-23 | 2004-05-11 | Edwards Lifesciences Corporation | Rolled minimally-invasive heart valves and methods of use |
DE10121210B4 (en) | 2001-04-30 | 2005-11-17 | Universitätsklinikum Freiburg | Anchoring element for the intraluminal anchoring of a heart valve replacement and method for its production |
US6682558B2 (en) | 2001-05-10 | 2004-01-27 | 3F Therapeutics, Inc. | Delivery system for a stentless valve bioprosthesis |
US6663663B2 (en) | 2001-05-14 | 2003-12-16 | M.I. Tech Co., Ltd. | Stent |
US20030069635A1 (en) | 2001-05-29 | 2003-04-10 | Cartledge Richard G. | Prosthetic heart valve |
KR100393548B1 (en) | 2001-06-05 | 2003-08-02 | 주식회사 엠아이텍 | Stent |
US7544206B2 (en) | 2001-06-29 | 2009-06-09 | Medtronic, Inc. | Method and apparatus for resecting and replacing an aortic valve |
US7097659B2 (en) | 2001-09-07 | 2006-08-29 | Medtronic, Inc. | Fixation band for affixing a prosthetic heart valve to tissue |
US20030065386A1 (en) * | 2001-09-28 | 2003-04-03 | Weadock Kevin Shaun | Radially expandable endoprosthesis device with two-stage deployment |
US7172572B2 (en) | 2001-10-04 | 2007-02-06 | Boston Scientific Scimed, Inc. | Manifold system for a medical device |
US6976974B2 (en) | 2002-10-23 | 2005-12-20 | Scimed Life Systems, Inc. | Rotary manifold syringe |
GB0125925D0 (en) * | 2001-10-29 | 2001-12-19 | Univ Glasgow | Mitral valve prosthesis |
US6978176B2 (en) * | 2001-12-08 | 2005-12-20 | Lattouf Omar M | Treatment for patient with congestive heart failure |
US7189258B2 (en) | 2002-01-02 | 2007-03-13 | Medtronic, Inc. | Heart valve system |
US20030130729A1 (en) | 2002-01-04 | 2003-07-10 | David Paniagua | Percutaneously implantable replacement heart valve device and method of making same |
US8308797B2 (en) | 2002-01-04 | 2012-11-13 | Colibri Heart Valve, LLC | Percutaneously implantable replacement heart valve device and method of making same |
US6730377B2 (en) | 2002-01-23 | 2004-05-04 | Scimed Life Systems, Inc. | Balloons made from liquid crystal polymer blends |
US6689144B2 (en) | 2002-02-08 | 2004-02-10 | Scimed Life Systems, Inc. | Rapid exchange catheter and methods for delivery of vaso-occlusive devices |
US6752828B2 (en) | 2002-04-03 | 2004-06-22 | Scimed Life Systems, Inc. | Artificial valve |
AU2003228528A1 (en) * | 2002-04-16 | 2003-11-03 | Viacor, Inc. | Method and apparatus for resecting and replacing an aortic valve |
US7125418B2 (en) | 2002-04-16 | 2006-10-24 | The International Heart Institute Of Montana Foundation | Sigmoid valve and method for its percutaneous implantation |
US8721713B2 (en) | 2002-04-23 | 2014-05-13 | Medtronic, Inc. | System for implanting a replacement valve |
US20030199971A1 (en) | 2002-04-23 | 2003-10-23 | Numed, Inc. | Biological replacement valve assembly |
US6830575B2 (en) | 2002-05-08 | 2004-12-14 | Scimed Life Systems, Inc. | Method and device for providing full protection to a stent |
US7141064B2 (en) | 2002-05-08 | 2006-11-28 | Edwards Lifesciences Corporation | Compressed tissue for heart valve leaflets |
US20040117004A1 (en) | 2002-05-16 | 2004-06-17 | Osborne Thomas A. | Stent and method of forming a stent with integral barbs |
EP1870018A3 (en) * | 2002-05-30 | 2008-08-06 | The Board of Trustees of The Leland Stanford Junior University | Apparatus and methods for coronary sinus access |
US8287555B2 (en) * | 2003-02-06 | 2012-10-16 | Guided Delivery Systems, Inc. | Devices and methods for heart valve repair |
DE20321838U1 (en) | 2002-08-13 | 2011-02-10 | JenaValve Technology Inc., Wilmington | Device for anchoring and aligning heart valve prostheses |
US7105013B2 (en) * | 2002-09-30 | 2006-09-12 | Advanced Cardiovascular Systems, Inc. | Protective sleeve assembly for a balloon catheter |
WO2004037128A1 (en) | 2002-10-24 | 2004-05-06 | Boston Scientific Limited | Venous valve apparatus and method |
WO2004041126A1 (en) | 2002-11-08 | 2004-05-21 | Jacques Seguin | Endoprosthesis for vascular bifurcation |
WO2004043273A2 (en) | 2002-11-13 | 2004-05-27 | Rosengart Todd K | Apparatus and method for cutting a heart valve |
US7141061B2 (en) | 2002-11-14 | 2006-11-28 | Synecor, Llc | Photocurable endoprosthesis system |
FR2847155B1 (en) | 2002-11-20 | 2005-08-05 | Younes Boudjemline | METHOD FOR MANUFACTURING A MEDICAL IMPLANT WITH ADJUSTED STRUCTURE AND IMPLANT OBTAINED THEREBY |
AU2003283792A1 (en) | 2002-11-29 | 2004-06-23 | Mindguard Ltd. | Braided intraluminal device for stroke prevention |
US8551162B2 (en) | 2002-12-20 | 2013-10-08 | Medtronic, Inc. | Biologically implantable prosthesis |
US6830585B1 (en) | 2003-01-14 | 2004-12-14 | 3F Therapeutics, Inc. | Percutaneously deliverable heart valve and methods of implantation |
US7399315B2 (en) | 2003-03-18 | 2008-07-15 | Edwards Lifescience Corporation | Minimally-invasive heart valve with cusp positioners |
US20060271081A1 (en) | 2003-03-30 | 2006-11-30 | Fidel Realyvasquez | Apparatus and methods for valve repair |
US20050107871A1 (en) | 2003-03-30 | 2005-05-19 | Fidel Realyvasquez | Apparatus and methods for valve repair |
US20040210240A1 (en) | 2003-04-21 | 2004-10-21 | Sean Saint | Method and repair device for treating mitral valve insufficiency |
US7591832B2 (en) | 2003-04-24 | 2009-09-22 | Medtronic, Inc. | Expandable guide sheath and apparatus with distal protection and methods for use |
US20040267357A1 (en) | 2003-04-30 | 2004-12-30 | Allen Jeffrey W. | Cardiac valve modification method and device |
ATE481057T1 (en) | 2003-05-28 | 2010-10-15 | Cook Inc | VALVE PROSTHESIS WITH VESSEL FIXING DEVICE |
AU2003237985A1 (en) | 2003-06-09 | 2005-01-28 | 3F Therapeutics, Inc. | Atrioventricular heart valve and minimally invasive delivery systems thereof |
WO2004112652A2 (en) * | 2003-06-20 | 2004-12-29 | Medtronic Vascular, Inc. | Device, system, and method for contracting tissue in a mammalian body |
US20040260394A1 (en) | 2003-06-20 | 2004-12-23 | Medtronic Vascular, Inc. | Cardiac valve annulus compressor system |
EP1648346A4 (en) | 2003-06-20 | 2006-10-18 | Medtronic Vascular Inc | Valve annulus reduction system |
WO2004112651A2 (en) | 2003-06-20 | 2004-12-29 | Medtronic Vascular, Inc. | Chordae tendinae girdle |
KR20060112705A (en) | 2003-07-08 | 2006-11-01 | 벤터 테크놀로지 리미티드 | Implantable prosthetic devices particularly for transarterial delivery in the treatment of aortic stenosis, and methods of implanting such devices |
US7201772B2 (en) * | 2003-07-08 | 2007-04-10 | Ventor Technologies, Ltd. | Fluid flow prosthetic device |
WO2005011535A2 (en) * | 2003-07-31 | 2005-02-10 | Cook Incorporated | Prosthetic valve for implantation in a body vessel |
US7153324B2 (en) | 2003-07-31 | 2006-12-26 | Cook Incorporated | Prosthetic valve devices and methods of making such devices |
WO2005023358A1 (en) | 2003-09-03 | 2005-03-17 | Acumen Medical, Inc. | Expandable sheath for delivering instruments and agents into a body lumen |
US8535344B2 (en) | 2003-09-12 | 2013-09-17 | Rubicon Medical, Inc. | Methods, systems, and devices for providing embolic protection and removing embolic material |
WO2005032421A2 (en) | 2003-09-15 | 2005-04-14 | Medtronic Vascular, Inc. | Apparatus and method for elongation of a papillary muscle |
EG24012A (en) | 2003-09-24 | 2008-03-23 | Wael Mohamed Nabil Lotfy | Valved balloon stent |
US7604650B2 (en) | 2003-10-06 | 2009-10-20 | 3F Therapeutics, Inc. | Method and assembly for distal embolic protection |
US10219899B2 (en) | 2004-04-23 | 2019-03-05 | Medtronic 3F Therapeutics, Inc. | Cardiac valve replacement systems |
US20060259137A1 (en) | 2003-10-06 | 2006-11-16 | Jason Artof | Minimally invasive valve replacement system |
US20050075728A1 (en) * | 2003-10-06 | 2005-04-07 | Nguyen Tuoc Tan | Minimally invasive valve replacement system |
ATE464864T1 (en) | 2003-10-15 | 2010-05-15 | Cook Inc | HOLDING DEVICE FOR A PROSTHESIS STORAGE SYSTEM |
US7419498B2 (en) | 2003-10-21 | 2008-09-02 | Nmt Medical, Inc. | Quick release knot attachment system |
US7070616B2 (en) | 2003-10-31 | 2006-07-04 | Cordis Corporation | Implantable valvular prosthesis |
US7347869B2 (en) | 2003-10-31 | 2008-03-25 | Cordis Corporation | Implantable valvular prosthesis |
WO2005046530A1 (en) | 2003-11-12 | 2005-05-26 | Medtronic Vascular, Inc. | Coronary sinus approach for repair of mitral valve reguritation |
WO2005048883A1 (en) | 2003-11-13 | 2005-06-02 | Fidel Realyvasquez | Methods and apparatus for valve repair |
US7186265B2 (en) | 2003-12-10 | 2007-03-06 | Medtronic, Inc. | Prosthetic cardiac valves and systems and methods for implanting thereof |
US7261732B2 (en) * | 2003-12-22 | 2007-08-28 | Henri Justino | Stent mounted valve |
US9526609B2 (en) | 2003-12-23 | 2016-12-27 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US20050137686A1 (en) | 2003-12-23 | 2005-06-23 | Sadra Medical, A Delaware Corporation | Externally expandable heart valve anchor and method |
US8182528B2 (en) | 2003-12-23 | 2012-05-22 | Sadra Medical, Inc. | Locking heart valve anchor |
US7959666B2 (en) | 2003-12-23 | 2011-06-14 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
WO2005069850A2 (en) | 2004-01-15 | 2005-08-04 | Macoviak John A | Trestle heart valve replacement |
US7597711B2 (en) * | 2004-01-26 | 2009-10-06 | Arbor Surgical Technologies, Inc. | Heart valve assembly with slidable coupling connections |
US7470285B2 (en) | 2004-02-05 | 2008-12-30 | Children's Medical Center Corp. | Transcatheter delivery of a replacement heart valve |
WO2005086888A2 (en) | 2004-03-09 | 2005-09-22 | Fidel Realyvasquez | Off pump aortic valve replacement for valve prosthesis |
EP1734898A1 (en) | 2004-03-15 | 2006-12-27 | Medtronic Vascular, Inc. | Radially crush-resistant stent |
US7131936B2 (en) | 2004-03-17 | 2006-11-07 | Schlosser Frank J | Apparatus for training a body part of a person and method for using same |
CA2561188A1 (en) | 2004-03-31 | 2005-10-20 | Med Institute, Inc. | Endoluminal graft with a prosthetic valve |
US20060052867A1 (en) * | 2004-09-07 | 2006-03-09 | Medtronic, Inc | Replacement prosthetic heart valve, system and method of implant |
FR2874812B1 (en) * | 2004-09-07 | 2007-06-15 | Perouse Soc Par Actions Simpli | INTERCHANGEABLE PROTHETIC VALVE |
US6951571B1 (en) | 2004-09-30 | 2005-10-04 | Rohit Srivastava | Valve implanting device |
US20060089711A1 (en) * | 2004-10-27 | 2006-04-27 | Medtronic Vascular, Inc. | Multifilament anchor for reducing a compass of a lumen or structure in mammalian body |
US8562672B2 (en) | 2004-11-19 | 2013-10-22 | Medtronic, Inc. | Apparatus for treatment of cardiac valves and method of its manufacture |
US7955385B2 (en) | 2005-02-28 | 2011-06-07 | Medtronic Vascular, Inc. | Device, system, and method for aiding valve annuloplasty |
US20070027533A1 (en) * | 2005-07-28 | 2007-02-01 | Medtronic Vascular, Inc. | Cardiac valve annulus restraining device |
US7682304B2 (en) * | 2005-09-21 | 2010-03-23 | Medtronic, Inc. | Composite heart valve apparatus manufactured using techniques involving laser machining of tissue |
WO2007038540A1 (en) * | 2005-09-26 | 2007-04-05 | Medtronic, Inc. | Prosthetic cardiac and venous valves |
US7482899B2 (en) * | 2005-10-02 | 2009-01-27 | Jun Shen | Electromechanical latching relay and method of operating same |
US8167932B2 (en) * | 2005-10-18 | 2012-05-01 | Edwards Lifesciences Corporation | Heart valve delivery system with valve catheter |
US20070100439A1 (en) | 2005-10-31 | 2007-05-03 | Medtronic Vascular, Inc. | Chordae tendinae restraining ring |
US9078781B2 (en) | 2006-01-11 | 2015-07-14 | Medtronic, Inc. | Sterile cover for compressible stents used in percutaneous device delivery systems |
US20070203391A1 (en) | 2006-02-24 | 2007-08-30 | Medtronic Vascular, Inc. | System for Treating Mitral Valve Regurgitation |
US20070225681A1 (en) | 2006-03-21 | 2007-09-27 | Medtronic Vascular | Catheter Having a Selectively Formable Distal Section |
US20070238979A1 (en) | 2006-03-23 | 2007-10-11 | Medtronic Vascular, Inc. | Reference Devices for Placement in Heart Structures for Visualization During Heart Valve Procedures |
EP2004095B1 (en) | 2006-03-28 | 2019-06-12 | Medtronic, Inc. | Prosthetic cardiac valve formed from pericardium material and methods of making same |
JP2009532127A (en) | 2006-03-31 | 2009-09-10 | メドトロニック ヴァスキュラー インコーポレイテッド | Nested catheter with electromagnetic coil for imaging and navigation during cardiac procedures |
US20070233238A1 (en) | 2006-03-31 | 2007-10-04 | Medtronic Vascular, Inc. | Devices for Imaging and Navigation During Minimally Invasive Non-Bypass Cardiac Procedures |
US7625403B2 (en) | 2006-04-04 | 2009-12-01 | Medtronic Vascular, Inc. | Valved conduit designed for subsequent catheter delivered valve therapy |
US7740655B2 (en) | 2006-04-06 | 2010-06-22 | Medtronic Vascular, Inc. | Reinforced surgical conduit for implantation of a stented valve therein |
US7591848B2 (en) | 2006-04-06 | 2009-09-22 | Medtronic Vascular, Inc. | Riveted stent valve for percutaneous use |
US7524331B2 (en) | 2006-04-06 | 2009-04-28 | Medtronic Vascular, Inc. | Catheter delivered valve having a barrier to provide an enhanced seal |
US20070239269A1 (en) | 2006-04-07 | 2007-10-11 | Medtronic Vascular, Inc. | Stented Valve Having Dull Struts |
US7699892B2 (en) | 2006-04-12 | 2010-04-20 | Medtronic Vascular, Inc. | Minimally invasive procedure for implanting an annuloplasty device |
DK2010102T3 (en) | 2006-04-12 | 2019-09-16 | Medtronic Vascular Inc | ANNULOPLASTIAN DEVICE WITH A SPIRAL ANCHOR |
US20070244555A1 (en) | 2006-04-12 | 2007-10-18 | Medtronic Vascular, Inc. | Annuloplasty Device Having a Helical Anchor and Methods for its Use |
US20070244544A1 (en) | 2006-04-14 | 2007-10-18 | Medtronic Vascular, Inc. | Seal for Enhanced Stented Valve Fixation |
US20070244545A1 (en) | 2006-04-14 | 2007-10-18 | Medtronic Vascular, Inc. | Prosthetic Conduit With Radiopaque Symmetry Indicators |
US20070244546A1 (en) | 2006-04-18 | 2007-10-18 | Medtronic Vascular, Inc. | Stent Foundation for Placement of a Stented Valve |
US20070288000A1 (en) | 2006-04-19 | 2007-12-13 | Medtronic Vascular, Inc. | Method for Aiding Valve Annuloplasty |
US7442207B2 (en) | 2006-04-21 | 2008-10-28 | Medtronic Vascular, Inc. | Device, system, and method for treating cardiac valve regurgitation |
EP2023859B1 (en) | 2006-04-28 | 2012-12-26 | Medtronic, Inc. | Apparatus for cardiac valve replacement |
WO2008091515A2 (en) | 2007-01-19 | 2008-07-31 | Medtronic, Inc. | Stented heart valve devices and methods for atrioventricular valve replacement |
CA2677633C (en) | 2007-02-15 | 2015-09-08 | Medtronic, Inc. | Multi-layered stents and methods of implanting |
WO2008103283A2 (en) | 2007-02-16 | 2008-08-28 | Medtronic, Inc. | Delivery systems and methods of implantation for replacement prosthetic heart valves |
-
2004
- 2004-09-07 US US10/935,730 patent/US20060052867A1/en not_active Abandoned
-
2005
- 2005-09-01 EP EP05801202.2A patent/EP1804726B1/en active Active
- 2005-09-01 ES ES12155264T patent/ES2708934T3/en active Active
- 2005-09-01 WO PCT/US2005/031500 patent/WO2006029062A1/en active Application Filing
- 2005-09-01 EP EP12155264.0A patent/EP2455042B1/en not_active Not-in-force
- 2005-09-01 ES ES18203132T patent/ES2933685T3/en active Active
- 2005-09-01 EP EP18203132.8A patent/EP3466373B1/en active Active
-
2008
- 2008-03-14 US US12/048,768 patent/US20080161911A1/en not_active Abandoned
- 2008-03-14 US US12/048,725 patent/US8591570B2/en active Active
-
2013
- 2013-10-23 US US14/060,884 patent/US9480556B2/en active Active
-
2016
- 2016-10-04 US US15/284,872 patent/US11253355B2/en active Active
-
2020
- 2020-09-29 US US17/036,305 patent/US20210007845A1/en not_active Abandoned
Patent Citations (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US334629A (en) * | 1886-01-19 | Elevated filter bed | ||
US3642004A (en) * | 1970-01-05 | 1972-02-15 | Life Support Equipment Corp | Urethral valve |
US3714671A (en) * | 1970-11-30 | 1973-02-06 | Cutter Lab | Tissue-type heart valve with a graft support ring or stent |
US3868956A (en) * | 1972-06-05 | 1975-03-04 | Ralph J Alfidi | Vessel implantable appliance and method of implanting it |
US3795246A (en) * | 1973-01-26 | 1974-03-05 | Bard Inc C R | Venocclusion device |
US4574803A (en) * | 1979-01-19 | 1986-03-11 | Karl Storz | Tissue cutter |
US4501030A (en) * | 1981-08-17 | 1985-02-26 | American Hospital Supply Corporation | Method of leaflet attachment for prosthetic heart valves |
US4425908A (en) * | 1981-10-22 | 1984-01-17 | Beth Israel Hospital | Blood clot filter |
US4647283A (en) * | 1982-03-23 | 1987-03-03 | American Hospital Supply Corporation | Implantable biological tissue and process for preparation thereof |
US4648881A (en) * | 1982-03-23 | 1987-03-10 | American Hospital Supply Corporation | Implantable biological tissue and process for preparation thereof |
US4797901A (en) * | 1985-08-22 | 1989-01-10 | Siemens Aktiengesellschaft | Circuit arrangement for testing a passive bus network with the carrier sense multiple access with collisions detection method |
US4733665B1 (en) * | 1985-11-07 | 1994-01-11 | Expandable Grafts Partnership | Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft |
US4733665C2 (en) * | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4733665A (en) * | 1985-11-07 | 1988-03-29 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US5496346A (en) * | 1987-01-06 | 1996-03-05 | Advanced Cardiovascular Systems, Inc. | Reinforced balloon dilatation catheter with slitted exchange sleeve and method |
US4796629A (en) * | 1987-06-03 | 1989-01-10 | Joseph Grayzel | Stiffened dilation balloon catheter device |
US4909252A (en) * | 1988-05-26 | 1990-03-20 | The Regents Of The Univ. Of California | Perfusion balloon catheter |
US4994077A (en) * | 1989-04-21 | 1991-02-19 | Dobben Richard L | Artificial heart valve for implantation in a blood vessel |
US5609626A (en) * | 1989-05-31 | 1997-03-11 | Baxter International Inc. | Stent devices and support/restrictor assemblies for use in conjunction with prosthetic vascular grafts |
US5500014A (en) * | 1989-05-31 | 1996-03-19 | Baxter International Inc. | Biological valvular prothesis |
US4986830A (en) * | 1989-09-22 | 1991-01-22 | Schneider (U.S.A.) Inc. | Valvuloplasty catheter with balloon which remains stable during inflation |
US5089015A (en) * | 1989-11-28 | 1992-02-18 | Promedica International | Method for implanting unstented xenografts and allografts |
US5002559A (en) * | 1989-11-30 | 1991-03-26 | Numed | PTCA catheter |
US6168614B1 (en) * | 1990-05-18 | 2001-01-02 | Heartport, Inc. | Valve prosthesis for implantation in the body |
US5197979A (en) * | 1990-09-07 | 1993-03-30 | Baxter International Inc. | Stentless heart valve and holder |
US5295958A (en) * | 1991-04-04 | 1994-03-22 | Shturman Cardiology Systems, Inc. | Method and apparatus for in vivo heart valve decalcification |
US5397351A (en) * | 1991-05-13 | 1995-03-14 | Pavcnik; Dusan | Prosthetic valve for percutaneous insertion |
US5713953A (en) * | 1991-05-24 | 1998-02-03 | Sorin Biomedica Cardio S.P.A. | Cardiac valve prosthesis particularly for replacement of the aortic valve |
US6866650B2 (en) * | 1991-07-16 | 2005-03-15 | Heartport, Inc. | System for cardiac procedures |
US20060058775A1 (en) * | 1991-07-16 | 2006-03-16 | Stevens John H | System and methods for performing endovascular procedures |
US6029671A (en) * | 1991-07-16 | 2000-02-29 | Heartport, Inc. | System and methods for performing endovascular procedures |
US5285635A (en) * | 1992-03-30 | 1994-02-15 | General Electric Company | Double annular combustor |
US6872223B2 (en) * | 1993-09-30 | 2005-03-29 | Boston Scientific Corporation | Controlled deployment of a medical device |
US5389106A (en) * | 1993-10-29 | 1995-02-14 | Numed, Inc. | Impermeable expandable intravascular stent |
US5480424A (en) * | 1993-11-01 | 1996-01-02 | Cox; James L. | Heart valve replacement using flexible tubes |
US5489294A (en) * | 1994-02-01 | 1996-02-06 | Medtronic, Inc. | Steroid eluting stitch-in chronic cardiac lead |
US5860996A (en) * | 1994-05-26 | 1999-01-19 | United States Surgical Corporation | Optical trocar |
US5591195A (en) * | 1995-10-30 | 1997-01-07 | Taheri; Syde | Apparatus and method for engrafting a blood vessel |
US5888201A (en) * | 1996-02-08 | 1999-03-30 | Schneider (Usa) Inc | Titanium alloy self-expanding stent |
US5868448A (en) * | 1996-02-28 | 1999-02-09 | Suzuki Motor Corporation | Glove box structure |
US5855601A (en) * | 1996-06-21 | 1999-01-05 | The Trustees Of Columbia University In The City Of New York | Artificial heart valve and method and device for implanting the same |
US5861028A (en) * | 1996-09-09 | 1999-01-19 | Shelhigh Inc | Natural tissue heart valve and stent prosthesis and method for making the same |
US6022370A (en) * | 1996-10-01 | 2000-02-08 | Numed, Inc. | Expandable stent |
US20030014104A1 (en) * | 1996-12-31 | 2003-01-16 | Alain Cribier | Value prosthesis for implantation in body channels |
US6171335B1 (en) * | 1997-01-24 | 2001-01-09 | Aortech Europe Limited | Heart valve prosthesis |
US5868783A (en) * | 1997-04-16 | 1999-02-09 | Numed, Inc. | Intravascular stent with limited axial shrinkage |
US5855597A (en) * | 1997-05-07 | 1999-01-05 | Iowa-India Investments Co. Limited | Stent valve and stent graft for percutaneous surgery |
US20020029014A1 (en) * | 1997-09-18 | 2002-03-07 | Iowa-India Investments Company, Limited | Delivery mechanism for balloons, drugs, stents and other physical/mechanical agents and method of use |
US6342070B1 (en) * | 1997-12-24 | 2002-01-29 | Edwards Lifesciences Corp. | Stentless bioprosthetic heart valve with patent coronary protuberances and method of surgical use thereof |
US7011681B2 (en) * | 1997-12-29 | 2006-03-14 | The Cleveland Clinic Foundation | Bioprosthetic cardiovascular valve system |
US6192944B1 (en) * | 1998-08-14 | 2001-02-27 | Prodesco, Inc. | Method of forming a textile member with undulating wire |
US20050010285A1 (en) * | 1999-01-27 | 2005-01-13 | Lambrecht Gregory H. | Cardiac valve procedure methods and devices |
US20030040771A1 (en) * | 1999-02-01 | 2003-02-27 | Hideki Hyodoh | Methods for creating woven devices |
US20030040772A1 (en) * | 1999-02-01 | 2003-02-27 | Hideki Hyodoh | Delivery devices |
US20050049696A1 (en) * | 1999-02-06 | 2005-03-03 | Thorsten Siess | Device for intravascular cardiac valve surgery |
US20020032480A1 (en) * | 1999-05-12 | 2002-03-14 | Paul Spence | Heart valve and apparatus for replacement thereof |
US6509930B1 (en) * | 1999-08-06 | 2003-01-21 | Hitachi, Ltd. | Circuit for scan conversion of picture signal using motion compensation |
US7160319B2 (en) * | 1999-11-16 | 2007-01-09 | Scimed Life Systems, Inc. | Multi-section filamentary endoluminal stent |
US20070043435A1 (en) * | 1999-11-17 | 2007-02-22 | Jacques Seguin | Non-cylindrical prosthetic valve system for transluminal delivery |
US7329278B2 (en) * | 1999-11-17 | 2008-02-12 | Corevalve, Inc. | Prosthetic valve for transluminal delivery |
US20030023303A1 (en) * | 1999-11-19 | 2003-01-30 | Palmaz Julio C. | Valvular prostheses having metal or pseudometallic construction and methods of manufacture |
US20050015112A1 (en) * | 2000-01-27 | 2005-01-20 | Cohn William E. | Cardiac valve procedure methods and devices |
US6989028B2 (en) * | 2000-01-31 | 2006-01-24 | Edwards Lifesciences Ag | Medical system and method for remodeling an extravascular tissue structure |
US20040049262A1 (en) * | 2000-01-31 | 2004-03-11 | Obermiller Joseph F. | Stent valves and uses of same |
US20050060030A1 (en) * | 2000-01-31 | 2005-03-17 | Lashinski Randall T. | Remotely activated mitral annuloplasty system and methods |
US20070005129A1 (en) * | 2000-02-28 | 2007-01-04 | Christoph Damm | Anchoring system for implantable heart valve prostheses |
US6676698B2 (en) * | 2000-06-26 | 2004-01-13 | Rex Medicol, L.P. | Vascular device with valve for approximating vessel wall |
US6695878B2 (en) * | 2000-06-26 | 2004-02-24 | Rex Medical, L.P. | Vascular device for valve leaflet apposition |
US6692513B2 (en) * | 2000-06-30 | 2004-02-17 | Viacor, Inc. | Intravascular filter with debris entrapment mechanism |
US6846325B2 (en) * | 2000-09-07 | 2005-01-25 | Viacor, Inc. | Fixation band for affixing a prosthetic heart valve to tissue |
US20020032481A1 (en) * | 2000-09-12 | 2002-03-14 | Shlomo Gabbay | Heart valve prosthesis and sutureless implantation of a heart valve prosthesis |
US20050010287A1 (en) * | 2000-09-20 | 2005-01-13 | Ample Medical, Inc. | Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet |
US20040049224A1 (en) * | 2000-11-07 | 2004-03-11 | Buehlmann Eric L. | Target tissue localization assembly and method |
US20030028247A1 (en) * | 2001-01-29 | 2003-02-06 | Cali Douglas S. | Method of cutting material for use in implantable medical device |
US20030055495A1 (en) * | 2001-03-23 | 2003-03-20 | Pease Matthew L. | Rolled minimally-invasive heart valves and methods of manufacture |
US20050043790A1 (en) * | 2001-07-04 | 2005-02-24 | Jacques Seguin | Kit enabling a prosthetic valve to be placed in a body enabling a prosthetic valve to be put into place in a duct in the body |
US20050033398A1 (en) * | 2001-07-31 | 2005-02-10 | Jacques Seguin | Assembly for setting a valve prosthesis in a corporeal duct |
US20030036791A1 (en) * | 2001-08-03 | 2003-02-20 | Bonhoeffer Philipp | Implant implantation unit and procedure for implanting the unit |
US6986742B2 (en) * | 2001-08-21 | 2006-01-17 | Boston Scientific Scimed, Inc. | Pressure transducer protection valve |
US20030050694A1 (en) * | 2001-09-13 | 2003-03-13 | Jibin Yang | Methods and apparatuses for deploying minimally-invasive heart valves |
US20080021552A1 (en) * | 2001-10-09 | 2008-01-24 | Shlomo Gabbay | Apparatus To Facilitate Implantation |
US20040039436A1 (en) * | 2001-10-11 | 2004-02-26 | Benjamin Spenser | Implantable prosthetic valve |
US20040034411A1 (en) * | 2002-08-16 | 2004-02-19 | Quijano Rodolfo C. | Percutaneously delivered heart valve and delivery means thereof |
US7335218B2 (en) * | 2002-08-28 | 2008-02-26 | Heart Leaflet Technologies, Inc. | Delivery device for leaflet valve |
US20040049266A1 (en) * | 2002-09-11 | 2004-03-11 | Anduiza James Peter | Percutaneously deliverable heart valve |
US20070027518A1 (en) * | 2003-04-01 | 2007-02-01 | Case Brian C | Percutaneously deployed vascular valves |
US7175656B2 (en) * | 2003-04-18 | 2007-02-13 | Alexander Khairkhahan | Percutaneous transcatheter heart valve replacement |
US6989027B2 (en) * | 2003-04-30 | 2006-01-24 | Medtronic Vascular Inc. | Percutaneously delivered temporary valve assembly |
US20060009841A1 (en) * | 2003-05-05 | 2006-01-12 | Rex Medical | Percutaneous aortic valve |
US7316706B2 (en) * | 2003-06-20 | 2008-01-08 | Medtronic Vascular, Inc. | Tensioning device, system, and method for treating mitral valve regurgitation |
US20070016286A1 (en) * | 2003-07-21 | 2007-01-18 | Herrmann Howard C | Percutaneous heart valve |
US20050060029A1 (en) * | 2003-07-29 | 2005-03-17 | Trong-Phi Le | Implantable device as organ valve replacement |
US6991649B2 (en) * | 2003-08-29 | 2006-01-31 | Hans-Hinrich Sievers | Artificial heart valve |
US20050049692A1 (en) * | 2003-09-02 | 2005-03-03 | Numamoto Michael J. | Medical device for reduction of pressure effects of cardiac tricuspid valve regurgitation |
US20070010878A1 (en) * | 2003-11-12 | 2007-01-11 | Medtronic Vascular, Inc. | Coronary sinus approach for repair of mitral valve regurgitation |
US20070051377A1 (en) * | 2003-11-12 | 2007-03-08 | Medtronic Vascular, Inc. | Cardiac valve annulus reduction system |
US20070043432A1 (en) * | 2004-02-11 | 2007-02-22 | Eric Perouse | Tubular prosthesis |
US20060004439A1 (en) * | 2004-06-30 | 2006-01-05 | Benjamin Spenser | Device and method for assisting in the implantation of a prosthetic valve |
US20080015671A1 (en) * | 2004-11-19 | 2008-01-17 | Philipp Bonhoeffer | Method And Apparatus For Treatment Of Cardiac Valves |
US20070005131A1 (en) * | 2005-06-13 | 2007-01-04 | Taylor David M | Heart valve delivery system |
Cited By (774)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10485976B2 (en) | 1998-04-30 | 2019-11-26 | Medtronic, Inc. | Intracardiovascular access (ICVA™) system |
US8603159B2 (en) | 1999-11-17 | 2013-12-10 | Medtronic Corevalve, Llc | Prosthetic valve for transluminal delivery |
US9060856B2 (en) | 1999-11-17 | 2015-06-23 | Medtronic Corevalve Llc | Transcatheter heart valves |
US8721708B2 (en) | 1999-11-17 | 2014-05-13 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
US9066799B2 (en) | 1999-11-17 | 2015-06-30 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
US8579966B2 (en) | 1999-11-17 | 2013-11-12 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
US10219901B2 (en) | 1999-11-17 | 2019-03-05 | Medtronic CV Luxembourg S.a.r.l. | Prosthetic valve for transluminal delivery |
US9962258B2 (en) | 1999-11-17 | 2018-05-08 | Medtronic CV Luxembourg S.a.r.l. | Transcatheter heart valves |
US8876896B2 (en) | 1999-11-17 | 2014-11-04 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
US8986329B2 (en) | 1999-11-17 | 2015-03-24 | Medtronic Corevalve Llc | Methods for transluminal delivery of prosthetic valves |
US7892281B2 (en) | 1999-11-17 | 2011-02-22 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
US8016877B2 (en) | 1999-11-17 | 2011-09-13 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
US8998979B2 (en) | 1999-11-17 | 2015-04-07 | Medtronic Corevalve Llc | Transcatheter heart valves |
US8801779B2 (en) | 1999-11-17 | 2014-08-12 | Medtronic Corevalve, Llc | Prosthetic valve for transluminal delivery |
US10238486B2 (en) | 2000-06-01 | 2019-03-26 | Edwards Lifesciences Corporation | Heart valve with integrated stent and sewing ring |
US9439762B2 (en) | 2000-06-01 | 2016-09-13 | Edwards Lifesciences Corporation | Methods of implant of a heart valve with a convertible sewing ring |
US8777980B2 (en) | 2000-06-30 | 2014-07-15 | Medtronic, Inc. | Intravascular filter with debris entrapment mechanism |
US8092487B2 (en) | 2000-06-30 | 2012-01-10 | Medtronic, Inc. | Intravascular filter with debris entrapment mechanism |
US7758606B2 (en) | 2000-06-30 | 2010-07-20 | Medtronic, Inc. | Intravascular filter with debris entrapment mechanism |
US20040138741A1 (en) * | 2000-07-27 | 2004-07-15 | Robert Stobie | Heart valve holders and handling clips therefor |
US7819915B2 (en) | 2000-07-27 | 2010-10-26 | Edwards Lifesciences Corporation | Heart valve holders and handling clips therefor |
US8105377B2 (en) | 2000-09-07 | 2012-01-31 | Medtronic, Inc. | Fixation band for affixing a prosthetic heart valve to tissue |
US20080065206A1 (en) * | 2000-09-07 | 2008-03-13 | Liddicoat John R | Fixation band for affixing a prosthetic heart valve to tissue |
US7771469B2 (en) | 2000-09-07 | 2010-08-10 | Medtronic, Inc. | Method for implantation of fixation band and prosthetic heart valve to tissue |
US7776053B2 (en) | 2000-10-26 | 2010-08-17 | Boston Scientific Scimed, Inc. | Implantable valve system |
US8951280B2 (en) | 2000-11-09 | 2015-02-10 | Medtronic, Inc. | Cardiac valve procedure methods and devices |
US8623077B2 (en) | 2001-06-29 | 2014-01-07 | Medtronic, Inc. | Apparatus for replacing a cardiac valve |
US8771302B2 (en) | 2001-06-29 | 2014-07-08 | Medtronic, Inc. | Method and apparatus for resecting and replacing an aortic valve |
US8956402B2 (en) | 2001-06-29 | 2015-02-17 | Medtronic, Inc. | Apparatus for replacing a cardiac valve |
US8070801B2 (en) | 2001-06-29 | 2011-12-06 | Medtronic, Inc. | Method and apparatus for resecting and replacing an aortic valve |
US8002826B2 (en) | 2001-07-04 | 2011-08-23 | Medtronic Corevalve Llc | Assembly for placing a prosthetic valve in a duct in the body |
US7780726B2 (en) | 2001-07-04 | 2010-08-24 | Medtronic, Inc. | Assembly for placing a prosthetic valve in a duct in the body |
US8628570B2 (en) | 2001-07-04 | 2014-01-14 | Medtronic Corevalve Llc | Assembly for placing a prosthetic valve in a duct in the body |
US9149357B2 (en) | 2001-07-04 | 2015-10-06 | Medtronic CV Luxembourg S.a.r.l. | Heart valve assemblies |
US7682390B2 (en) | 2001-07-31 | 2010-03-23 | Medtronic, Inc. | Assembly for setting a valve prosthesis in a corporeal duct |
US9539088B2 (en) | 2001-09-07 | 2017-01-10 | Medtronic, Inc. | Fixation band for affixing a prosthetic heart valve to tissue |
US10342657B2 (en) | 2001-09-07 | 2019-07-09 | Medtronic, Inc. | Fixation band for affixing a prosthetic heart valve to tissue |
US7972377B2 (en) | 2001-12-27 | 2011-07-05 | Medtronic, Inc. | Bioprosthetic heart valve |
US20060253189A1 (en) * | 2002-04-03 | 2006-11-09 | Boston Scientific Corporation | Artificial valve |
US7682385B2 (en) | 2002-04-03 | 2010-03-23 | Boston Scientific Corporation | Artificial valve |
US8349003B2 (en) | 2002-07-16 | 2013-01-08 | Medtronic, Inc. | Suture locking assembly and method of use |
US7578843B2 (en) | 2002-07-16 | 2009-08-25 | Medtronic, Inc. | Heart valve prosthesis |
US7959674B2 (en) | 2002-07-16 | 2011-06-14 | Medtronic, Inc. | Suture locking assembly and method of use |
US8460373B2 (en) | 2002-12-20 | 2013-06-11 | Medtronic, Inc. | Method for implanting a heart valve within an annulus of a patient |
US8025695B2 (en) | 2002-12-20 | 2011-09-27 | Medtronic, Inc. | Biologically implantable heart valve system |
US9333078B2 (en) | 2002-12-20 | 2016-05-10 | Medtronic, Inc. | Heart valve assemblies |
US8551162B2 (en) | 2002-12-20 | 2013-10-08 | Medtronic, Inc. | Biologically implantable prosthesis |
US7981153B2 (en) | 2002-12-20 | 2011-07-19 | Medtronic, Inc. | Biologically implantable prosthesis methods of using |
US8623080B2 (en) | 2002-12-20 | 2014-01-07 | Medtronic, Inc. | Biologically implantable prosthesis and methods of using the same |
US10595991B2 (en) | 2002-12-20 | 2020-03-24 | Medtronic, Inc. | Heart valve assemblies |
US7780627B2 (en) | 2002-12-30 | 2010-08-24 | Boston Scientific Scimed, Inc. | Valve treatment catheter and methods |
US8021421B2 (en) | 2003-08-22 | 2011-09-20 | Medtronic, Inc. | Prosthesis heart valve fixturing device |
US8747463B2 (en) | 2003-08-22 | 2014-06-10 | Medtronic, Inc. | Methods of using a prosthesis fixturing device |
US9579194B2 (en) | 2003-10-06 | 2017-02-28 | Medtronic ATS Medical, Inc. | Anchoring structure with concave landing zone |
US8603161B2 (en) | 2003-10-08 | 2013-12-10 | Medtronic, Inc. | Attachment device and methods of using the same |
US20050203618A1 (en) * | 2003-12-10 | 2005-09-15 | Adam Sharkawy | Prosthetic cardiac valves and systems and methods for implanting thereof |
US20070162113A1 (en) * | 2003-12-10 | 2007-07-12 | Adam Sharkawy | Prosthetic cardiac valves and systems and methods for implanting thereof |
US9301843B2 (en) | 2003-12-19 | 2016-04-05 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US8128681B2 (en) | 2003-12-19 | 2012-03-06 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US8721717B2 (en) | 2003-12-19 | 2014-05-13 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US10869764B2 (en) | 2003-12-19 | 2020-12-22 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US7854761B2 (en) | 2003-12-19 | 2010-12-21 | Boston Scientific Scimed, Inc. | Methods for venous valve replacement with a catheter |
US9155617B2 (en) | 2004-01-23 | 2015-10-13 | Edwards Lifesciences Corporation | Prosthetic mitral valve |
US9730794B2 (en) | 2004-01-23 | 2017-08-15 | Edwards Lifesciences Corporation | Prosthetic mitral valve |
US10085836B2 (en) | 2004-01-23 | 2018-10-02 | Edwards Lifesciences Corporation | Prosthetic mitral valve |
US10342661B2 (en) | 2004-01-23 | 2019-07-09 | Edwards Lifesciences Corporation | Prosthetic mitral valve |
US20090082858A1 (en) * | 2004-02-05 | 2009-03-26 | Children's Medical Center Corporation | Transcatheter Delivery of a Replacement Heart Valve |
US20050234546A1 (en) * | 2004-02-05 | 2005-10-20 | Alan Nugent | Transcatheter delivery of a replacement heart valve |
US8092524B2 (en) | 2004-02-05 | 2012-01-10 | Children's Medical Center Corporation | Transcatheter delivery of a replacement heart valve |
US7470285B2 (en) | 2004-02-05 | 2008-12-30 | Children's Medical Center Corp. | Transcatheter delivery of a replacement heart valve |
US20090132035A1 (en) * | 2004-02-27 | 2009-05-21 | Roth Alex T | Prosthetic Heart Valves, Support Structures and Systems and Methods for Implanting the Same |
US8728156B2 (en) | 2004-02-27 | 2014-05-20 | Cardiac MD, Inc. | Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same |
US20070073387A1 (en) * | 2004-02-27 | 2007-03-29 | Forster David C | Prosthetic Heart Valves, Support Structures And Systems And Methods For Implanting The Same |
US7785341B2 (en) | 2004-02-27 | 2010-08-31 | Aortx, Inc. | Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same |
US20100256724A1 (en) * | 2004-02-27 | 2010-10-07 | Forster David C | Prosthetic Heart Valves, Scaffolding Structures, and Systems and Methods for Implantation of Same |
US20050203615A1 (en) * | 2004-02-27 | 2005-09-15 | Cardiacmd, Inc. | Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same |
US20100305691A1 (en) * | 2004-02-27 | 2010-12-02 | Forster David C | Prosthetic Heart Valves, Scaffolding Structures, and Systems and Methods for Implantation of Same |
US8128692B2 (en) | 2004-02-27 | 2012-03-06 | Aortx, Inc. | Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same |
US20110082540A1 (en) * | 2004-02-27 | 2011-04-07 | Forster David C | Prosthetic Heart Valves, Scaffolding Structures, and Systems and Methods for Implantation of Same |
US9168134B2 (en) | 2004-02-27 | 2015-10-27 | Cardiacmd, Inc. | Method for delivering a prosthetic heart valve with an expansion member |
US8430925B2 (en) | 2004-02-27 | 2013-04-30 | Cardiacmd, Inc. | Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same |
US20050203614A1 (en) * | 2004-02-27 | 2005-09-15 | Cardiacmd, Inc. | Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same |
US8608770B2 (en) | 2004-02-27 | 2013-12-17 | Cardiacmd, Inc. | Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same |
US20050203617A1 (en) * | 2004-02-27 | 2005-09-15 | Cardiacmd, Inc. | Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same |
US9867695B2 (en) | 2004-03-03 | 2018-01-16 | Sorin Group Italia S.R.L. | Minimally-invasive cardiac-valve prosthesis |
US8535373B2 (en) | 2004-03-03 | 2013-09-17 | Sorin Group Italia S.R.L. | Minimally-invasive cardiac-valve prosthesis |
US10213298B2 (en) | 2004-03-11 | 2019-02-26 | Percutaneous Cardiovascular Solutions Pty Ltd | Percutaneous heart valve prosthesis |
US11744705B2 (en) | 2004-03-11 | 2023-09-05 | Percutaneous Cardiovascular Solutions Pty Ltd | Method of implanting a heart valve prosthesis |
US11213390B2 (en) | 2004-03-11 | 2022-01-04 | Percutaneous Cardiovascular Solutions Pty Ltd | Method of implanting a heart valve prosthesis |
US11622856B2 (en) | 2004-03-11 | 2023-04-11 | Percutaneous Cardiovascular Solutions Pty Ltd | Percutaneous heart valve prosthesis |
US11974918B2 (en) | 2004-03-11 | 2024-05-07 | Percutaneous Cardiovascular Solutions Pty Ltd | Percutaneous heart valve prosthesis |
US10993806B2 (en) | 2004-03-11 | 2021-05-04 | Percutaneous Cardiovascular Solutions Pty Ltd | Percutaneous heart valve prosthesis |
US20050228494A1 (en) * | 2004-03-29 | 2005-10-13 | Salvador Marquez | Controlled separation heart valve frame |
US9775704B2 (en) | 2004-04-23 | 2017-10-03 | Medtronic3F Therapeutics, Inc. | Implantable valve prosthesis |
US8932349B2 (en) | 2004-09-02 | 2015-01-13 | Boston Scientific Scimed, Inc. | Cardiac valve, system, and method |
US8002824B2 (en) | 2004-09-02 | 2011-08-23 | Boston Scientific Scimed, Inc. | Cardiac valve, system, and method |
US9918834B2 (en) | 2004-09-02 | 2018-03-20 | Boston Scientific Scimed, Inc. | Cardiac valve, system and method |
US20080161910A1 (en) * | 2004-09-07 | 2008-07-03 | Revuelta Jose M | Replacement prosthetic heart valve, system and method of implant |
US11253355B2 (en) | 2004-09-07 | 2022-02-22 | Medtronic, Inc. | Replacement prosthetic heart valve, system and method of implant |
US8591570B2 (en) | 2004-09-07 | 2013-11-26 | Medtronic, Inc. | Prosthetic heart valve for replacing previously implanted heart valve |
US9480556B2 (en) | 2004-09-07 | 2016-11-01 | Medtronic, Inc. | Replacement prosthetic heart valve, system and method of implant |
US11304803B2 (en) * | 2004-10-02 | 2022-04-19 | Edwards Lifesciences Cardiaq Llc | Method for replacement of heart valve |
US11058536B2 (en) * | 2004-10-02 | 2021-07-13 | Edwards Lifesciences Cardiaq Llc | Method for replacement of heart valve |
US9498329B2 (en) | 2004-11-19 | 2016-11-22 | Medtronic, Inc. | Apparatus for treatment of cardiac valves and method of its manufacture |
US8562672B2 (en) | 2004-11-19 | 2013-10-22 | Medtronic, Inc. | Apparatus for treatment of cardiac valves and method of its manufacture |
US20060206202A1 (en) * | 2004-11-19 | 2006-09-14 | Philippe Bonhoeffer | Apparatus for treatment of cardiac valves and method of its manufacture |
US20170027692A1 (en) * | 2004-11-19 | 2017-02-02 | Medtronic, Inc. | Apparatus for treatment of cardiac valves and method of its manufacture |
US11517431B2 (en) | 2005-01-20 | 2022-12-06 | Jenavalve Technology, Inc. | Catheter system for implantation of prosthetic heart valves |
US9622859B2 (en) | 2005-02-01 | 2017-04-18 | Boston Scientific Scimed, Inc. | Filter system and method |
US7854755B2 (en) | 2005-02-01 | 2010-12-21 | Boston Scientific Scimed, Inc. | Vascular catheter, system, and method |
US7670368B2 (en) | 2005-02-07 | 2010-03-02 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US7780722B2 (en) | 2005-02-07 | 2010-08-24 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US8539662B2 (en) | 2005-02-10 | 2013-09-24 | Sorin Group Italia S.R.L. | Cardiac-valve prosthesis |
US8540768B2 (en) | 2005-02-10 | 2013-09-24 | Sorin Group Italia S.R.L. | Cardiac valve prosthesis |
US9486313B2 (en) | 2005-02-10 | 2016-11-08 | Sorin Group Italia S.R.L. | Cardiac valve prosthesis |
US8574257B2 (en) | 2005-02-10 | 2013-11-05 | Edwards Lifesciences Corporation | System, device, and method for providing access in a cardiovascular environment |
US20100063363A1 (en) * | 2005-02-10 | 2010-03-11 | Hamman Baron L | System, device, and method for providing access in a cardiovascular environment |
US9895223B2 (en) | 2005-02-10 | 2018-02-20 | Sorin Group Italia S.R.L. | Cardiac valve prosthesis |
US8920492B2 (en) | 2005-02-10 | 2014-12-30 | Sorin Group Italia S.R.L. | Cardiac valve prosthesis |
US9808341B2 (en) | 2005-02-23 | 2017-11-07 | Boston Scientific Scimed Inc. | Valve apparatus, system and method |
US9370419B2 (en) | 2005-02-23 | 2016-06-21 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US7867274B2 (en) | 2005-02-23 | 2011-01-11 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US8500802B2 (en) | 2005-04-08 | 2013-08-06 | Medtronic, Inc. | Two-piece prosthetic valves with snap-in connection and methods for use |
US20110190877A1 (en) * | 2005-04-08 | 2011-08-04 | Medtronic, Inc. | Two-Piece Prosthetic Valves with Snap-In Connection and Methods for Use |
US7951197B2 (en) | 2005-04-08 | 2011-05-31 | Medtronic, Inc. | Two-piece prosthetic valves with snap-in connection and methods for use |
US7722666B2 (en) | 2005-04-15 | 2010-05-25 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US9861473B2 (en) | 2005-04-15 | 2018-01-09 | Boston Scientific Scimed Inc. | Valve apparatus, system and method |
US8512399B2 (en) | 2005-04-15 | 2013-08-20 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
USD812226S1 (en) | 2005-05-13 | 2018-03-06 | Medtronic Corevalve Llc | Heart valve prosthesis |
US9060857B2 (en) | 2005-05-13 | 2015-06-23 | Medtronic Corevalve Llc | Heart valve prosthesis and methods of manufacture and use |
USD732666S1 (en) | 2005-05-13 | 2015-06-23 | Medtronic Corevalve, Inc. | Heart valve prosthesis |
US7914569B2 (en) | 2005-05-13 | 2011-03-29 | Medtronics Corevalve Llc | Heart valve prosthesis and methods of manufacture and use |
US11284997B2 (en) | 2005-05-13 | 2022-03-29 | Medtronic CV Luxembourg S.a.r.l | Heart valve prosthesis and methods of manufacture and use |
US10478291B2 (en) | 2005-05-13 | 2019-11-19 | Medtronic CV Luxembourg S.a.r.l | Heart valve prosthesis and methods of manufacture and use |
US9504564B2 (en) | 2005-05-13 | 2016-11-29 | Medtronic Corevalve Llc | Heart valve prosthesis and methods of manufacture and use |
US8226710B2 (en) | 2005-05-13 | 2012-07-24 | Medtronic Corevalve, Inc. | Heart valve prosthesis and methods of manufacture and use |
US12076238B2 (en) | 2005-05-13 | 2024-09-03 | Medtronic CV Luxembourg S.a.r.l. | Heart valve prosthesis and methods of manufacture and use |
US10130468B2 (en) | 2005-05-24 | 2018-11-20 | Edwards Lifesciences Corporation | Replacement prosthetic heart valves |
US11284998B2 (en) * | 2005-05-24 | 2022-03-29 | Edwards Lifesciences Corporation | Surgical methods of replacing prosthetic heart valves |
US20060287719A1 (en) * | 2005-05-24 | 2006-12-21 | Rowe Stanton J | Rapid deployment prosthetic heart valve |
US9554903B2 (en) | 2005-05-24 | 2017-01-31 | Edwards Lifesciences Corporation | Rapid deployment prosthetic heart valve |
US20060287717A1 (en) * | 2005-05-24 | 2006-12-21 | Rowe Stanton J | Methods for rapid deployment of prosthetic heart valves |
US8911493B2 (en) | 2005-05-24 | 2014-12-16 | Edwards Lifesciences Corporation | Rapid deployment prosthetic heart valves |
US8500798B2 (en) | 2005-05-24 | 2013-08-06 | Edwards Lifesciences Corporation | Rapid deployment prosthetic heart valve |
US10456251B2 (en) | 2005-05-24 | 2019-10-29 | Edwards Lifesciences Corporation | Surgical methods of replacing prosthetic heart valves |
US7708775B2 (en) | 2005-05-24 | 2010-05-04 | Edwards Lifesciences Corporation | Methods for rapid deployment of prosthetic heart valves |
US8211169B2 (en) | 2005-05-27 | 2012-07-03 | Medtronic, Inc. | Gasket with collar for prosthetic heart valves and methods for using them |
US11337812B2 (en) | 2005-06-10 | 2022-05-24 | Boston Scientific Scimed, Inc. | Venous valve, system and method |
US8012198B2 (en) | 2005-06-10 | 2011-09-06 | Boston Scientific Scimed, Inc. | Venous valve, system, and method |
US9028542B2 (en) | 2005-06-10 | 2015-05-12 | Boston Scientific Scimed, Inc. | Venous valve, system, and method |
US8506625B2 (en) | 2005-07-13 | 2013-08-13 | Edwards Lifesciences Corporation | Contoured sewing ring for a prosthetic mitral heart valve |
US20110054598A1 (en) * | 2005-07-13 | 2011-03-03 | Edwards Lifesciences Corporation | Contoured Sewing Ring for a Prosthetic Mitral Heart Valve |
US10548734B2 (en) | 2005-09-21 | 2020-02-04 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
US8460365B2 (en) | 2005-09-21 | 2013-06-11 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
US9474609B2 (en) | 2005-09-21 | 2016-10-25 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
US8672997B2 (en) | 2005-09-21 | 2014-03-18 | Boston Scientific Scimed, Inc. | Valve with sinus |
US7951189B2 (en) | 2005-09-21 | 2011-05-31 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
US8506620B2 (en) | 2005-09-26 | 2013-08-13 | Medtronic, Inc. | Prosthetic cardiac and venous valves |
US20180263795A1 (en) * | 2005-11-10 | 2018-09-20 | Edwards Lifesciences Cardiaq Llc | Percutaneous heart valve |
US9486336B2 (en) * | 2005-11-10 | 2016-11-08 | Edwards Lifesciences Cardiaq Llc | Prosthesis having a plurality of distal and proximal prongs |
US10456277B2 (en) * | 2005-11-10 | 2019-10-29 | Edwards Lifesciences Cardiaq Llc | Percutaneous heart valve |
US9433514B2 (en) | 2005-11-10 | 2016-09-06 | Edwards Lifesciences Cardiaq Llc | Method of securing a prosthesis |
US9974669B2 (en) | 2005-11-10 | 2018-05-22 | Edwards Lifesciences Cardiaq Llc | Percutaneous heart valve |
US10314702B2 (en) * | 2005-11-16 | 2019-06-11 | Edwards Lifesciences Corporation | Transapical method of supplanting an implanted prosthetic heart valve |
US20190307560A1 (en) * | 2005-12-22 | 2019-10-10 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
US7799038B2 (en) | 2006-01-20 | 2010-09-21 | Boston Scientific Scimed, Inc. | Translumenal apparatus, system, and method |
US7967857B2 (en) | 2006-01-27 | 2011-06-28 | Medtronic, Inc. | Gasket with spring collar for prosthetic heart valves and methods for making and using them |
US20130041405A1 (en) * | 2006-02-21 | 2013-02-14 | Kardium Inc. | Method and device for closing holes in tissue |
US9572557B2 (en) * | 2006-02-21 | 2017-02-21 | Kardium Inc. | Method and device for closing holes in tissue |
US20070203561A1 (en) * | 2006-02-27 | 2007-08-30 | Cardiacmd, Inc. A California Corporation | Methods and devices for delivery of prosthetic heart valves and other prosthetics |
US8147541B2 (en) | 2006-02-27 | 2012-04-03 | Aortx, Inc. | Methods and devices for delivery of prosthetic heart valves and other prosthetics |
US20070203575A1 (en) * | 2006-02-27 | 2007-08-30 | Cardiacmd, Inc., A California Corporation | Methods and devices for delivery of prosthetic heart valves and other prosthetics |
US20100179634A1 (en) * | 2006-02-27 | 2010-07-15 | Forster David C | Methods and Devices for Delivery of Prosthetic Heart Valves and Other Prosthetics |
US8403981B2 (en) | 2006-02-27 | 2013-03-26 | CardiacMC, Inc. | Methods and devices for delivery of prosthetic heart valves and other prosthetics |
US10058421B2 (en) | 2006-03-28 | 2018-08-28 | Medtronic, Inc. | Prosthetic cardiac valve formed from pericardium material and methods of making same |
US9331328B2 (en) | 2006-03-28 | 2016-05-03 | Medtronic, Inc. | Prosthetic cardiac valve from pericardium material and methods of making same |
US8075615B2 (en) | 2006-03-28 | 2011-12-13 | Medtronic, Inc. | Prosthetic cardiac valve formed from pericardium material and methods of making same |
US7740655B2 (en) | 2006-04-06 | 2010-06-22 | Medtronic Vascular, Inc. | Reinforced surgical conduit for implantation of a stented valve therein |
US20070239265A1 (en) * | 2006-04-06 | 2007-10-11 | Medtronic Vascular, Inc. | Catheter Delivered Valve Having a Barrier to Provide an Enhanced Seal |
US20070239266A1 (en) * | 2006-04-06 | 2007-10-11 | Medtronic Vascular, Inc. | Reinforced Surgical Conduit for Implantation of a Stented Valve Therein |
US20070239269A1 (en) * | 2006-04-07 | 2007-10-11 | Medtronic Vascular, Inc. | Stented Valve Having Dull Struts |
US20070244544A1 (en) * | 2006-04-14 | 2007-10-18 | Medtronic Vascular, Inc. | Seal for Enhanced Stented Valve Fixation |
US20070244545A1 (en) * | 2006-04-14 | 2007-10-18 | Medtronic Vascular, Inc. | Prosthetic Conduit With Radiopaque Symmetry Indicators |
US20070244546A1 (en) * | 2006-04-18 | 2007-10-18 | Medtronic Vascular, Inc. | Stent Foundation for Placement of a Stented Valve |
US8821569B2 (en) | 2006-04-29 | 2014-09-02 | Medtronic, Inc. | Multiple component prosthetic heart valve assemblies and methods for delivering them |
US20070254273A1 (en) * | 2006-05-01 | 2007-11-01 | Hugues Lafrance | Simulated heart valve root for training and testing |
US8021161B2 (en) | 2006-05-01 | 2011-09-20 | Edwards Lifesciences Corporation | Simulated heart valve root for training and testing |
US20090222082A1 (en) * | 2006-05-05 | 2009-09-03 | Children's Medical Center Corporation | Transcatheter Heart Valve Prostheses |
US8070800B2 (en) | 2006-05-05 | 2011-12-06 | Children's Medical Center Corporation | Transcatheter heart valve prostheses |
US20090210052A1 (en) * | 2006-06-20 | 2009-08-20 | Forster David C | Prosthetic heart valves, support structures and systems and methods for implanting same |
US20090099554A1 (en) * | 2006-06-20 | 2009-04-16 | Forster David C | Elongate Flexible Torque Instruments And Methods Of Use |
US8500799B2 (en) | 2006-06-20 | 2013-08-06 | Cardiacmd, Inc. | Prosthetic heart valves, support structures and systems and methods for implanting same |
US8376865B2 (en) | 2006-06-20 | 2013-02-19 | Cardiacmd, Inc. | Torque shaft and torque shaft drive |
EP2059191A4 (en) * | 2006-06-21 | 2010-03-31 | Aortx Inc | Prosthetic valve implantation systems |
EP2059191A2 (en) * | 2006-06-21 | 2009-05-20 | AorTx, Inc. | Prosthetic valve implantation systems |
US8142492B2 (en) | 2006-06-21 | 2012-03-27 | Aortx, Inc. | Prosthetic valve implantation systems |
US20090228098A1 (en) * | 2006-06-21 | 2009-09-10 | Forster David C | Prosthetic valve implantation systems |
US9192468B2 (en) | 2006-06-28 | 2015-11-24 | Kardium Inc. | Method for anchoring a mitral valve |
US20080126131A1 (en) * | 2006-07-17 | 2008-05-29 | Walgreen Co. | Predictive Modeling And Risk Stratification Of A Medication Therapy Regimen |
US10350065B2 (en) | 2006-07-28 | 2019-07-16 | Edwards Lifesciences Cardiaq Llc | Percutaneous valve prosthesis and system and method for implanting the same |
US11141265B2 (en) | 2006-07-28 | 2021-10-12 | Edwards Lifesciences Cardiaq Llc | Percutaneous valve prosthesis and system and method for implanting the same |
US11033392B2 (en) | 2006-08-02 | 2021-06-15 | Kardium Inc. | System for improving diastolic dysfunction |
US20100256752A1 (en) * | 2006-09-06 | 2010-10-07 | Forster David C | Prosthetic heart valves, support structures and systems and methods for implanting the same, |
US8747460B2 (en) | 2006-09-19 | 2014-06-10 | Medtronic Ventor Technologies Ltd. | Methods for implanting a valve prothesis |
US9827097B2 (en) | 2006-09-19 | 2017-11-28 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
US8348995B2 (en) | 2006-09-19 | 2013-01-08 | Medtronic Ventor Technologies, Ltd. | Axial-force fixation member for valve |
US20080071366A1 (en) * | 2006-09-19 | 2008-03-20 | Yosi Tuval | Axial-force fixation member for valve |
US8052750B2 (en) | 2006-09-19 | 2011-11-08 | Medtronic Ventor Technologies Ltd | Valve prosthesis fixation techniques using sandwiching |
US8771346B2 (en) | 2006-09-19 | 2014-07-08 | Medtronic Ventor Technologies Ltd. | Valve prosthetic fixation techniques using sandwiching |
US8771345B2 (en) | 2006-09-19 | 2014-07-08 | Medtronic Ventor Technologies Ltd. | Valve prosthesis fixation techniques using sandwiching |
WO2008035337A2 (en) | 2006-09-19 | 2008-03-27 | Ventor Technologies, Ltd. | Fixation member for valve |
US11304802B2 (en) | 2006-09-19 | 2022-04-19 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
US11304800B2 (en) | 2006-09-19 | 2022-04-19 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
US12076237B2 (en) | 2006-09-19 | 2024-09-03 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
US9642704B2 (en) | 2006-09-19 | 2017-05-09 | Medtronic Ventor Technologies Ltd. | Catheter for implanting a valve prosthesis |
US11304801B2 (en) | 2006-09-19 | 2022-04-19 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
US10543077B2 (en) | 2006-09-19 | 2020-01-28 | Medtronic, Inc. | Sinus-engaging valve fixation member |
US9387071B2 (en) | 2006-09-19 | 2016-07-12 | Medtronic, Inc. | Sinus-engaging valve fixation member |
US9138312B2 (en) | 2006-09-19 | 2015-09-22 | Medtronic Ventor Technologies Ltd. | Valve prostheses |
US10004601B2 (en) | 2006-09-19 | 2018-06-26 | Medtronic Ventor Technologies Ltd. | Valve prosthesis fixation techniques using sandwiching |
US8834564B2 (en) | 2006-09-19 | 2014-09-16 | Medtronic, Inc. | Sinus-engaging valve fixation member |
US8348996B2 (en) | 2006-09-19 | 2013-01-08 | Medtronic Ventor Technologies Ltd. | Valve prosthesis implantation techniques |
US8414643B2 (en) | 2006-09-19 | 2013-04-09 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
US9301834B2 (en) | 2006-09-19 | 2016-04-05 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
US9913714B2 (en) | 2006-09-19 | 2018-03-13 | Medtronic, Inc. | Sinus-engaging valve fixation member |
US8876894B2 (en) | 2006-09-19 | 2014-11-04 | Medtronic Ventor Technologies Ltd. | Leaflet-sensitive valve fixation member |
US8876895B2 (en) | 2006-09-19 | 2014-11-04 | Medtronic Ventor Technologies Ltd. | Valve fixation member having engagement arms |
US8784478B2 (en) | 2006-10-16 | 2014-07-22 | Medtronic Corevalve, Inc. | Transapical delivery system with ventruculo-arterial overlfow bypass |
US8747459B2 (en) | 2006-12-06 | 2014-06-10 | Medtronic Corevalve Llc | System and method for transapical delivery of an annulus anchored self-expanding valve |
US9295550B2 (en) | 2006-12-06 | 2016-03-29 | Medtronic CV Luxembourg S.a.r.l. | Methods for delivering a self-expanding valve |
US8133270B2 (en) | 2007-01-08 | 2012-03-13 | California Institute Of Technology | In-situ formation of a valve |
US8348999B2 (en) | 2007-01-08 | 2013-01-08 | California Institute Of Technology | In-situ formation of a valve |
US10226344B2 (en) | 2007-02-05 | 2019-03-12 | Boston Scientific Scimed, Inc. | Percutaneous valve, system and method |
US11504239B2 (en) | 2007-02-05 | 2022-11-22 | Boston Scientific Scimed, Inc. | Percutaneous valve, system and method |
US7967853B2 (en) | 2007-02-05 | 2011-06-28 | Boston Scientific Scimed, Inc. | Percutaneous valve, system and method |
US9421083B2 (en) | 2007-02-05 | 2016-08-23 | Boston Scientific Scimed Inc. | Percutaneous valve, system and method |
US8470023B2 (en) | 2007-02-05 | 2013-06-25 | Boston Scientific Scimed, Inc. | Percutaneous valve, system, and method |
US20080228263A1 (en) * | 2007-02-16 | 2008-09-18 | Ryan Timothy R | Delivery systems and methods of implantation for replacement prosthetic heart valves |
US20080215144A1 (en) * | 2007-02-16 | 2008-09-04 | Ryan Timothy R | Replacement prosthetic heart valves and methods of implantation |
WO2008100600A1 (en) * | 2007-02-16 | 2008-08-21 | Medtronic, Inc. | Replacement prosthetic heart valves and methods of implantation |
US7871436B2 (en) | 2007-02-16 | 2011-01-18 | Medtronic, Inc. | Replacement prosthetic heart valves and methods of implantation |
US20080228254A1 (en) * | 2007-02-16 | 2008-09-18 | Ryan Timothy R | Delivery systems and methods of implantation for replacement prosthetic heart valves |
US8246677B2 (en) | 2007-02-16 | 2012-08-21 | Medtronic, Inc. | Delivery systems and methods of implantation for replacement prosthetic heart valves |
US20170035564A1 (en) * | 2007-02-16 | 2017-02-09 | Medtronic, Inc. | Replacement prosthetic heart valves and methods of implantation |
WO2008103295A2 (en) * | 2007-02-16 | 2008-08-28 | Medtronic, Inc. | Replacement prosthetic heart valves and methods of implantation |
US9060859B2 (en) | 2007-02-16 | 2015-06-23 | Medtronic, Inc. | Delivery systems and methods of implantation for replacement prosthetic heart valves |
WO2008103295A3 (en) * | 2007-02-16 | 2008-10-30 | Medtronic Inc | Replacement prosthetic heart valves and methods of implantation |
US9504568B2 (en) * | 2007-02-16 | 2016-11-29 | Medtronic, Inc. | Replacement prosthetic heart valves and methods of implantation |
US8623074B2 (en) | 2007-02-16 | 2014-01-07 | Medtronic, Inc. | Delivery systems and methods of implantation for replacement prosthetic heart valves |
US20080208327A1 (en) * | 2007-02-27 | 2008-08-28 | Rowe Stanton J | Method and apparatus for replacing a prosthetic valve |
US11357624B2 (en) | 2007-04-13 | 2022-06-14 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
US9585754B2 (en) | 2007-04-20 | 2017-03-07 | Medtronic, Inc. | Implant for treatment of a heart valve, in particular a mitral valve, material including such an implant, and material for insertion thereof |
US9237886B2 (en) | 2007-04-20 | 2016-01-19 | Medtronic, Inc. | Implant for treatment of a heart valve, in particular a mitral valve, material including such an implant, and material for insertion thereof |
US10080654B2 (en) | 2007-07-23 | 2018-09-25 | Hocor Cardiovascular Technologies, Llc | Methods and apparatus for percutaneous aortic valve replacement |
US20090030503A1 (en) * | 2007-07-23 | 2009-01-29 | Ho Paul C | Method and apparatus for percutaneous aortic valve replacement |
US9700410B2 (en) | 2007-07-23 | 2017-07-11 | Hocor Cardiovascular Technologies Llc | Method and apparatus for percutaneous aortic valve replacement |
US11253356B2 (en) | 2007-07-23 | 2022-02-22 | Hocor Cardiovascular Technologies, Llc | Methods and apparatus for percutaneous aortic valve replacement |
US8663318B2 (en) | 2007-07-23 | 2014-03-04 | Hocor Cardiovascular Technologies Llc | Method and apparatus for percutaneous aortic valve replacement |
US8663319B2 (en) | 2007-07-23 | 2014-03-04 | Hocor Cardiovascular Technologies Llc | Methods and apparatus for percutaneous aortic valve replacement |
US20090030510A1 (en) * | 2007-07-23 | 2009-01-29 | Ho Paul C | Methods and apparatus for percutaneous aortic valve replacement |
US9480564B2 (en) | 2007-07-23 | 2016-11-01 | Hocor Cardiovascular Technologies, Llc | Methods and apparatus for percutaneous aortic valve replacement |
US8828079B2 (en) | 2007-07-26 | 2014-09-09 | Boston Scientific Scimed, Inc. | Circulatory valve, system and method |
US10188516B2 (en) | 2007-08-20 | 2019-01-29 | Medtronic Ventor Technologies Ltd. | Stent loading tool and method for use thereof |
US9393112B2 (en) | 2007-08-20 | 2016-07-19 | Medtronic Ventor Technologies Ltd. | Stent loading tool and method for use thereof |
US8747458B2 (en) | 2007-08-20 | 2014-06-10 | Medtronic Ventor Technologies Ltd. | Stent loading tool and method for use thereof |
US10426604B2 (en) | 2007-09-28 | 2019-10-01 | St. Jude Medical, Llc | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US11660187B2 (en) | 2007-09-28 | 2023-05-30 | St. Jude Medical, Llc | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US9532868B2 (en) | 2007-09-28 | 2017-01-03 | St. Jude Medical, Inc. | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US9820851B2 (en) | 2007-09-28 | 2017-11-21 | St. Jude Medical, Llc | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US11534294B2 (en) | 2007-09-28 | 2022-12-27 | St. Jude Medical, Llc | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US11382740B2 (en) | 2007-09-28 | 2022-07-12 | St. Jude Medical, Llc | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US10856970B2 (en) | 2007-10-10 | 2020-12-08 | Medtronic Ventor Technologies Ltd. | Prosthetic heart valve for transfemoral delivery |
US20090138079A1 (en) * | 2007-10-10 | 2009-05-28 | Vector Technologies Ltd. | Prosthetic heart valve for transfemoral delivery |
US10966823B2 (en) | 2007-10-12 | 2021-04-06 | Sorin Group Italia S.R.L. | Expandable valve prosthesis with sealing mechanism |
US9848981B2 (en) | 2007-10-12 | 2017-12-26 | Mayo Foundation For Medical Education And Research | Expandable valve prosthesis with sealing mechanism |
US8137394B2 (en) | 2007-12-21 | 2012-03-20 | Boston Scientific Scimed, Inc. | Valve with delayed leaflet deployment |
US7892276B2 (en) | 2007-12-21 | 2011-02-22 | Boston Scientific Scimed, Inc. | Valve with delayed leaflet deployment |
US8414641B2 (en) | 2007-12-21 | 2013-04-09 | Boston Scientific Scimed, Inc. | Valve with delayed leaflet deployment |
US11607311B2 (en) | 2008-01-24 | 2023-03-21 | Medtronic, Inc. | Stents for prosthetic heart valves |
US9333100B2 (en) | 2008-01-24 | 2016-05-10 | Medtronic, Inc. | Stents for prosthetic heart valves |
US10016274B2 (en) | 2008-01-24 | 2018-07-10 | Medtronic, Inc. | Stent for prosthetic heart valves |
US11951007B2 (en) | 2008-01-24 | 2024-04-09 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US9925079B2 (en) | 2008-01-24 | 2018-03-27 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US20090192591A1 (en) * | 2008-01-24 | 2009-07-30 | Medtronic, Inc. | Markers for Prosthetic Heart Valves |
US11083573B2 (en) | 2008-01-24 | 2021-08-10 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US11259919B2 (en) | 2008-01-24 | 2022-03-01 | Medtronic, Inc. | Stents for prosthetic heart valves |
US20090287299A1 (en) * | 2008-01-24 | 2009-11-19 | Charles Tabor | Stents for prosthetic heart valves |
EP2254512B1 (en) * | 2008-01-24 | 2016-01-06 | Medtronic, Inc. | Markers for prosthetic heart valves |
US8157852B2 (en) | 2008-01-24 | 2012-04-17 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US8685077B2 (en) | 2008-01-24 | 2014-04-01 | Medtronics, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US8673000B2 (en) | 2008-01-24 | 2014-03-18 | Medtronic, Inc. | Stents for prosthetic heart valves |
US8157853B2 (en) | 2008-01-24 | 2012-04-17 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US10639182B2 (en) | 2008-01-24 | 2020-05-05 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US9149358B2 (en) | 2008-01-24 | 2015-10-06 | Medtronic, Inc. | Delivery systems for prosthetic heart valves |
US9339382B2 (en) | 2008-01-24 | 2016-05-17 | Medtronic, Inc. | Stents for prosthetic heart valves |
US10646335B2 (en) | 2008-01-24 | 2020-05-12 | Medtronic, Inc. | Stents for prosthetic heart valves |
US7972378B2 (en) | 2008-01-24 | 2011-07-05 | Medtronic, Inc. | Stents for prosthetic heart valves |
US8628566B2 (en) | 2008-01-24 | 2014-01-14 | Medtronic, Inc. | Stents for prosthetic heart valves |
US10758343B2 (en) | 2008-01-24 | 2020-09-01 | Medtronic, Inc. | Stent for prosthetic heart valves |
US10820993B2 (en) | 2008-01-24 | 2020-11-03 | Medtronic, Inc. | Stents for prosthetic heart valves |
US9393115B2 (en) | 2008-01-24 | 2016-07-19 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US11284999B2 (en) | 2008-01-24 | 2022-03-29 | Medtronic, Inc. | Stents for prosthetic heart valves |
US9089422B2 (en) * | 2008-01-24 | 2015-07-28 | Medtronic, Inc. | Markers for prosthetic heart valves |
US11786367B2 (en) | 2008-01-24 | 2023-10-17 | Medtronic, Inc. | Stents for prosthetic heart valves |
AU2009219415B2 (en) * | 2008-02-25 | 2013-01-17 | Medtronic Vascular Inc. | Infundibular reducer devices |
EP2257242B2 (en) † | 2008-02-25 | 2019-09-04 | Medtronic Vascular Inc. | Infundibular reducer devices |
US20100049306A1 (en) * | 2008-02-25 | 2010-02-25 | Medtronic Vascular, Inc. | Infundibular Reducer Devices |
WO2009108615A1 (en) * | 2008-02-25 | 2009-09-03 | Medtronic Vascular Inc. | Infundibular reducer devices |
US8801776B2 (en) | 2008-02-25 | 2014-08-12 | Medtronic Vascular, Inc. | Infundibular reducer devices |
US10993805B2 (en) | 2008-02-26 | 2021-05-04 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US11564794B2 (en) | 2008-02-26 | 2023-01-31 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US11154398B2 (en) | 2008-02-26 | 2021-10-26 | JenaValve Technology. Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US8613765B2 (en) | 2008-02-28 | 2013-12-24 | Medtronic, Inc. | Prosthetic heart valve systems |
US8961593B2 (en) | 2008-02-28 | 2015-02-24 | Medtronic, Inc. | Prosthetic heart valve systems |
US20090281609A1 (en) * | 2008-02-29 | 2009-11-12 | Edwards Lifesciences | Two-step heart valve implantation |
US9241792B2 (en) * | 2008-02-29 | 2016-01-26 | Edwards Lifesciences Corporation | Two-step heart valve implantation |
US11602430B2 (en) | 2008-03-18 | 2023-03-14 | Medtronic Ventor Technologies Ltd. | Valve suturing and implantation procedures |
US20090240264A1 (en) * | 2008-03-18 | 2009-09-24 | Yosi Tuval | Medical suturing device and method for use thereof |
US11278408B2 (en) | 2008-03-18 | 2022-03-22 | Medtronic Venter Technologies, Ltd. | Valve suturing and implantation procedures |
US8696689B2 (en) | 2008-03-18 | 2014-04-15 | Medtronic Ventor Technologies Ltd. | Medical suturing device and method for use thereof |
EP4018970A1 (en) | 2008-03-18 | 2022-06-29 | Ventor Technologies, LTD. | Prosthetic valve |
US8313525B2 (en) | 2008-03-18 | 2012-11-20 | Medtronic Ventor Technologies, Ltd. | Valve suturing and implantation procedures |
US10245142B2 (en) | 2008-04-08 | 2019-04-02 | Medtronic, Inc. | Multiple orifice implantable heart valve and methods of implantation |
US8430927B2 (en) | 2008-04-08 | 2013-04-30 | Medtronic, Inc. | Multiple orifice implantable heart valve and methods of implantation |
US8511244B2 (en) | 2008-04-23 | 2013-08-20 | Medtronic, Inc. | Methods and apparatuses for assembly of a pericardial prosthetic heart valve |
US8312825B2 (en) | 2008-04-23 | 2012-11-20 | Medtronic, Inc. | Methods and apparatuses for assembly of a pericardial prosthetic heart valve |
US8696743B2 (en) | 2008-04-23 | 2014-04-15 | Medtronic, Inc. | Tissue attachment devices and methods for prosthetic heart valves |
EP4104801A1 (en) * | 2008-05-01 | 2022-12-21 | Edwards Lifesciences Corporation | Device and method for replacing mitral valve |
US12115065B2 (en) | 2008-05-01 | 2024-10-15 | Edwards Lifesciences Corporation | Prosthetic heart valve assembly |
EP3050541B1 (en) | 2008-05-01 | 2019-08-14 | Edwards Lifesciences Corporation | Prosthetic mitral valve assembly |
EP3549555B1 (en) | 2008-05-01 | 2021-06-16 | Edwards Lifesciences Corporation | Prosthetic mitral valve assembly |
US9744038B2 (en) | 2008-05-13 | 2017-08-29 | Kardium Inc. | Medical device for constricting tissue or a bodily orifice, for example a mitral valve |
US8840661B2 (en) | 2008-05-16 | 2014-09-23 | Sorin Group Italia S.R.L. | Atraumatic prosthetic heart valve prosthesis |
EP2306934A1 (en) * | 2008-07-25 | 2011-04-13 | Hocor Cardiovascular Technologies, Llc | Methods and apparatus for percutaneous aortic valve replacement |
EP2306934A4 (en) * | 2008-07-25 | 2013-12-04 | Hocor Cardiovascular Technologies Llc | Methods and apparatus for percutaneous aortic valve replacement |
US10806570B2 (en) | 2008-09-15 | 2020-10-20 | Medtronic, Inc. | Prosthetic heart valve having identifiers for aiding in radiographic positioning |
US9943407B2 (en) | 2008-09-15 | 2018-04-17 | Medtronic, Inc. | Prosthetic heart valve having identifiers for aiding in radiographic positioning |
US8998981B2 (en) | 2008-09-15 | 2015-04-07 | Medtronic, Inc. | Prosthetic heart valve having identifiers for aiding in radiographic positioning |
EP4018967A1 (en) | 2008-09-15 | 2022-06-29 | Medtronic Ventor Technologies Ltd | Prosthetic heart valve having identifiers for aiding in radiographic positioning |
US11026786B2 (en) | 2008-09-15 | 2021-06-08 | Medtronic, Inc. | Prosthetic heart valve having identifiers for aiding in radiographic positioning |
US8721714B2 (en) | 2008-09-17 | 2014-05-13 | Medtronic Corevalve Llc | Delivery system for deployment of medical devices |
US10321997B2 (en) | 2008-09-17 | 2019-06-18 | Medtronic CV Luxembourg S.a.r.l. | Delivery system for deployment of medical devices |
US11166815B2 (en) | 2008-09-17 | 2021-11-09 | Medtronic CV Luxembourg S.a.r.l | Delivery system for deployment of medical devices |
US9314335B2 (en) | 2008-09-19 | 2016-04-19 | Edwards Lifesciences Corporation | Prosthetic heart valve configured to receive a percutaneous prosthetic heart valve implantation |
US20100076548A1 (en) * | 2008-09-19 | 2010-03-25 | Edwards Lifesciences Corporation | Prosthetic Heart Valve Configured to Receive a Percutaneous Prosthetic Heart Valve Implantation |
US11103348B2 (en) | 2008-09-19 | 2021-08-31 | Edwards Lifesciences Corporation | Method for converting an annuloplasty ring in vivo |
US10052200B2 (en) | 2008-09-19 | 2018-08-21 | Edwards Lifesciences Corporation | Surgical heart valves adapted for post implant expansion |
US11039922B2 (en) | 2008-09-19 | 2021-06-22 | Edwards Lifesciences Corporation | Prosthetic heart valve for transcatheter heart valve implantation |
US9636219B2 (en) | 2008-09-19 | 2017-05-02 | Edwards Lifesciences Corporation | Cardiac implant configured to receive a percutaneous prosthetic heart valve implantation |
US10231836B2 (en) | 2008-09-19 | 2019-03-19 | Edwards Lifesciences Corporation | Surgical heart valve for transcatheter heart valve implantation |
US10478301B2 (en) | 2008-09-19 | 2019-11-19 | Edwards Lifesciences Corporation | Convertible annuloplasty ring configured to receive an expandable prosthetic heart valve |
US9456896B2 (en) | 2008-09-29 | 2016-10-04 | Edwards Lifesciences Cardiaq Llc | Body cavity prosthesis |
US10646334B2 (en) | 2008-09-29 | 2020-05-12 | Edwards Lifesciences Cardiaq Llc | Heart valve |
US11589983B2 (en) | 2008-09-29 | 2023-02-28 | Edwards Lifesciences Cardiaq Llc | Heart valve |
US9339377B2 (en) | 2008-09-29 | 2016-05-17 | Edwards Lifesciences Cardiaq Llc | Body cavity prosthesis |
US10149756B2 (en) | 2008-09-29 | 2018-12-11 | Edwards Lifesciences Cardiaq Llc | Heart valve |
US11819404B2 (en) | 2008-09-29 | 2023-11-21 | Edwards Lifesciences Cardiaq Llc | Heart valve |
US8894702B2 (en) | 2008-09-29 | 2014-11-25 | Cardiaq Valve Technologies, Inc. | Replacement heart valve and method |
US9597183B2 (en) | 2008-10-01 | 2017-03-21 | Edwards Lifesciences Cardiaq Llc | Delivery system for vascular implant |
US8911455B2 (en) | 2008-10-01 | 2014-12-16 | Cardiaq Valve Technologies, Inc. | Delivery system for vascular implant |
US8137398B2 (en) | 2008-10-13 | 2012-03-20 | Medtronic Ventor Technologies Ltd | Prosthetic valve having tapered tip when compressed for delivery |
WO2010045238A2 (en) | 2008-10-13 | 2010-04-22 | Medtronic Ventor Technologies Ltd. | Prosthetic valve having tapered tip when compressed for delivery |
US8986361B2 (en) | 2008-10-17 | 2015-03-24 | Medtronic Corevalve, Inc. | Delivery system for deployment of medical devices |
US10667906B2 (en) | 2008-11-25 | 2020-06-02 | Edwards Lifesciences Corporation | Methods of conformal expansion of prosthetic heart valves |
US9314334B2 (en) | 2008-11-25 | 2016-04-19 | Edwards Lifesciences Corporation | Conformal expansion of prosthetic devices to anatomical shapes |
US8308798B2 (en) | 2008-12-19 | 2012-11-13 | Edwards Lifesciences Corporation | Quick-connect prosthetic heart valve and methods |
US9561100B2 (en) | 2008-12-19 | 2017-02-07 | Edwards Lifesciences Corporation | Systems for quickly delivering a prosthetic heart valve |
US12011350B2 (en) | 2008-12-19 | 2024-06-18 | Edwards Lifesciences Corporation | Rapid implant prosthetic heart valve system |
US10182909B2 (en) | 2008-12-19 | 2019-01-22 | Edwards Lifesciences Corporation | Methods for quickly implanting a prosthetic heart valve |
US10799346B2 (en) | 2008-12-19 | 2020-10-13 | Edwards Lifesciences Corporation | Methods for quickly implanting a prosthetic heart valve |
US9005278B2 (en) | 2008-12-19 | 2015-04-14 | Edwards Lifesciences Corporation | Quick-connect prosthetic heart valve |
US11504232B2 (en) | 2008-12-19 | 2022-11-22 | Edwards Lifesciences Corporation | Rapid implant prosthetic heart valve system |
US10098733B2 (en) | 2008-12-23 | 2018-10-16 | Sorin Group Italia S.R.L. | Expandable prosthetic valve having anchoring appendages |
US8834563B2 (en) | 2008-12-23 | 2014-09-16 | Sorin Group Italia S.R.L. | Expandable prosthetic valve having anchoring appendages |
US20180193143A1 (en) * | 2009-03-30 | 2018-07-12 | Suzhou Jiecheng Medical Technology Co., Ltd. | Devices and methods for delivery of valve prostheses |
US10828156B2 (en) * | 2009-03-30 | 2020-11-10 | Jc Medical, Inc. | Devices and methods for delivery of valve prostheses |
US20100249908A1 (en) * | 2009-03-31 | 2010-09-30 | Edwards Lifesciences Corporation | Prosthetic heart valve system with positioning markers |
US9980818B2 (en) | 2009-03-31 | 2018-05-29 | Edwards Lifesciences Corporation | Prosthetic heart valve system with positioning markers |
US10842623B2 (en) | 2009-03-31 | 2020-11-24 | Edwards Lifesciences Corporation | Methods of implanting prosthetic heart valve using position markers |
US9248016B2 (en) | 2009-03-31 | 2016-02-02 | Edwards Lifesciences Corporation | Prosthetic heart valve system |
US9931207B2 (en) | 2009-03-31 | 2018-04-03 | Edwards Lifesciences Corporation | Methods of implanting a heart valve at an aortic annulus |
US20100249894A1 (en) * | 2009-03-31 | 2010-09-30 | Edwards Lifesciences Corporation | Prosthetic heart valve system |
US9333073B2 (en) * | 2009-04-15 | 2016-05-10 | Edwards Lifesciences Cardiaq Llc | Vascular implant and delivery method |
US10441412B2 (en) | 2009-04-15 | 2019-10-15 | Edwards Lifesciences Cardiaq Llc | Vascular implant and delivery system |
US9339378B2 (en) * | 2009-04-15 | 2016-05-17 | Edwards Lifesciences Cardiaq Llc | Vascular implant and delivery system |
US9339380B2 (en) * | 2009-04-15 | 2016-05-17 | Edwards Lifesciences Cardiaq Llc | Vascular implant |
US20140309731A1 (en) * | 2009-04-15 | 2014-10-16 | Cardiaq Valve Technologies, Inc. | Vascular implant |
US11376119B2 (en) * | 2009-04-15 | 2022-07-05 | Edwards Lifesciences Cardiaq Llc | Vascular implant and delivery system |
US9333074B2 (en) * | 2009-04-15 | 2016-05-10 | Edwards Lifesciences Cardiaq Llc | Vascular implant and delivery system |
US9585747B2 (en) * | 2009-04-15 | 2017-03-07 | Edwards Lifesciences Cardiaq Llc | Vascular implant |
US9339379B2 (en) * | 2009-04-15 | 2016-05-17 | Edwards Lifesciences Cardiaq Llc | Vascular implant and delivery system |
US8795356B2 (en) | 2009-04-15 | 2014-08-05 | Cardiaq Valve Technologies, Inc. | Vascular implant |
US20130144380A1 (en) * | 2009-04-15 | 2013-06-06 | Cardiaq Valve Technologies, Inc. | Vascular implant and delivery system |
US20140172086A1 (en) * | 2009-04-15 | 2014-06-19 | Cardiaq Valve Technologies, Inc. | Vascular implant and delivery system |
US20130138207A1 (en) * | 2009-04-15 | 2013-05-30 | Cardiaq Valve Technologies, Inc. | Vascular implant and delivery system |
US8512397B2 (en) | 2009-04-27 | 2013-08-20 | Sorin Group Italia S.R.L. | Prosthetic vascular conduit |
US20210161657A1 (en) * | 2009-04-29 | 2021-06-03 | The Cleveland Clinic Foundation | Apparatus and method for replacing a diseased cardiac valve |
US8696742B2 (en) | 2009-06-26 | 2014-04-15 | Edwards Lifesciences Corporation | Unitary quick-connect prosthetic heart valve deployment methods |
US8348998B2 (en) | 2009-06-26 | 2013-01-08 | Edwards Lifesciences Corporation | Unitary quick connect prosthetic heart valve and deployment system and methods |
US10555810B2 (en) | 2009-06-26 | 2020-02-11 | Edwards Lifesciences Corporation | Prosthetic heart valve deployment systems |
US9005277B2 (en) | 2009-06-26 | 2015-04-14 | Edwards Lifesciences Corporation | Unitary quick-connect prosthetic heart valve deployment system |
US20110098805A1 (en) * | 2009-08-27 | 2011-04-28 | Joshua Dwork | Transcatheter valve delivery systems and methods |
US8414645B2 (en) | 2009-08-27 | 2013-04-09 | Medtronic, Inc. | Transcatheter valve delivery systems and methods |
US8562673B2 (en) | 2009-09-21 | 2013-10-22 | Medtronic, Inc. | Stented transcatheter prosthetic heart valve delivery system and method |
US8974524B2 (en) | 2009-09-21 | 2015-03-10 | Medtronic, Inc. | Stented transcatheter prosthetic heart valve delivery system and method |
US20110098804A1 (en) * | 2009-09-21 | 2011-04-28 | Hubert Yeung | Stented transcatheter prosthetic heart valve delivery system and method |
US9949827B2 (en) | 2009-09-29 | 2018-04-24 | Edwards Lifesciences Cardiaq Llc | Replacement heart valves, delivery devices and methods |
US10166097B2 (en) | 2009-09-29 | 2019-01-01 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve and method |
US9730790B2 (en) | 2009-09-29 | 2017-08-15 | Edwards Lifesciences Cardiaq Llc | Replacement valve and method |
US10524901B2 (en) | 2009-09-29 | 2020-01-07 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve |
US9023100B2 (en) | 2009-09-29 | 2015-05-05 | Cardiaq Valve Technologies, Inc. | Replacement heart valves, delivery devices and methods |
US9480560B2 (en) | 2009-09-29 | 2016-11-01 | Edwards Lifesciences Cardiaq Llc | Method of securing an intralumenal frame assembly |
US10813758B2 (en) | 2009-10-01 | 2020-10-27 | Kardium Inc. | Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve |
US9867703B2 (en) | 2009-10-01 | 2018-01-16 | Kardium Inc. | Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve |
US10687941B2 (en) | 2009-10-01 | 2020-06-23 | Kardium Inc. | Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve |
US9204964B2 (en) | 2009-10-01 | 2015-12-08 | Kardium Inc. | Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve |
US8808369B2 (en) | 2009-10-05 | 2014-08-19 | Mayo Foundation For Medical Education And Research | Minimally invasive aortic valve replacement |
US8449625B2 (en) | 2009-10-27 | 2013-05-28 | Edwards Lifesciences Corporation | Methods of measuring heart valve annuluses for valve replacement |
US10231646B2 (en) | 2009-10-27 | 2019-03-19 | Edwards Lifesciences Corporation | Device for measuring an aortic valve annulus in an expanded condition |
US9603553B2 (en) | 2009-10-27 | 2017-03-28 | Edwards Lifesciences Corporation | Methods of measuring heart valve annuluses for valve replacement |
US11412954B2 (en) | 2009-10-27 | 2022-08-16 | Edwards Lifesciences Corporation | Device for measuring an aortic valve annulus in an expanded condition |
US20110098602A1 (en) * | 2009-10-27 | 2011-04-28 | Edwards Lifesciences Corporation | Apparatus and Method for Measuring Body Orifice |
WO2011068262A1 (en) * | 2009-12-03 | 2011-06-09 | 주식회사 엠아이텍 | Stent for bile duct |
US10111748B2 (en) | 2009-12-04 | 2018-10-30 | Edwards Lifesciences Corporation | Prosthetic valve for replacing mitral valve |
US10758342B2 (en) | 2009-12-04 | 2020-09-01 | Edwards Lifesciences Corporation | Prosthetic valve for replacing mitral valve |
US10507102B2 (en) | 2009-12-04 | 2019-12-17 | Edwards Lifesciences Corporation | Prosthetic valve for replacing mitral valve |
US9717591B2 (en) | 2009-12-04 | 2017-08-01 | Edwards Lifesciences Corporation | Prosthetic valve for replacing mitral valve |
US11911264B2 (en) | 2009-12-04 | 2024-02-27 | Edwards Lifesciences Corporation | Valve repair and replacement devices |
US12115062B2 (en) | 2009-12-04 | 2024-10-15 | Edwards Lifesciences Corporation | Prosthetic valve having multi-part frame |
US11583396B2 (en) | 2009-12-04 | 2023-02-21 | Edwards Lifesciences Corporation | Prosthetic valve for replacing mitral valve |
US11839541B2 (en) | 2009-12-08 | 2023-12-12 | Cardiovalve Ltd. | Prosthetic heart valve with upper skirt |
US11141268B2 (en) | 2009-12-08 | 2021-10-12 | Cardiovalve Ltd. | Prosthetic heart valve with upper and lower skirts |
US10610359B2 (en) | 2009-12-08 | 2020-04-07 | Cardiovalve Ltd. | Folding ring prosthetic heart valve |
US10660751B2 (en) | 2009-12-08 | 2020-05-26 | Cardiovalve Ltd. | Prosthetic heart valve with upper skirt |
US11351026B2 (en) | 2009-12-08 | 2022-06-07 | Cardiovalve Ltd. | Rotation-based anchoring of an implant |
WO2011106137A1 (en) | 2010-02-24 | 2011-09-01 | Medtronic Inc. | Mitral prosthesis |
US9226826B2 (en) | 2010-02-24 | 2016-01-05 | Medtronic, Inc. | Transcatheter valve structure and methods for valve delivery |
US10398546B2 (en) | 2010-02-24 | 2019-09-03 | Medtronic Ventor Technologies Ltd. | Mitral prosthesis and methods for implantation |
US9522062B2 (en) | 2010-02-24 | 2016-12-20 | Medtronic Ventor Technologies, Ltd. | Mitral prosthesis and methods for implantation |
US11109964B2 (en) | 2010-03-10 | 2021-09-07 | Cardiovalve Ltd. | Axially-shortening prosthetic valve |
WO2011112706A2 (en) | 2010-03-11 | 2011-09-15 | Medtronic Inc. | Sinus-engaging fixation member |
US8652204B2 (en) | 2010-04-01 | 2014-02-18 | Medtronic, Inc. | Transcatheter valve with torsion spring fixation and related systems and methods |
US11833041B2 (en) | 2010-04-01 | 2023-12-05 | Medtronic, Inc. | Transcatheter valve with torsion spring fixation and related systems and methods |
US10716665B2 (en) | 2010-04-01 | 2020-07-21 | Medtronic, Inc. | Transcatheter valve with torsion spring fixation and related systems and methods |
US9925044B2 (en) | 2010-04-01 | 2018-03-27 | Medtronic, Inc. | Transcatheter valve with torsion spring fixation and related systems and methods |
US11554010B2 (en) | 2010-04-01 | 2023-01-17 | Medtronic, Inc. | Transcatheter valve with torsion spring fixation and related systems and methods |
US10456254B2 (en) | 2010-04-09 | 2019-10-29 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery system with recapturing feature and method |
US8512400B2 (en) | 2010-04-09 | 2013-08-20 | Medtronic, Inc. | Transcatheter heart valve delivery system with reduced area moment of inertia |
US8771344B2 (en) | 2010-04-09 | 2014-07-08 | Medtronic, Inc. | Transcatheter heart valve delivery system with reduced area moment of inertia |
US8926692B2 (en) | 2010-04-09 | 2015-01-06 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery device with partial deployment and release features and methods |
US11666438B2 (en) | 2010-04-09 | 2023-06-06 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery system with recapturing feature and method |
US8998980B2 (en) | 2010-04-09 | 2015-04-07 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery system with recapturing feature and method |
US9522063B2 (en) | 2010-04-09 | 2016-12-20 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery system with recapturing feature and method |
US8512401B2 (en) | 2010-04-12 | 2013-08-20 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery system with funnel recapturing feature and method |
US8986372B2 (en) | 2010-04-12 | 2015-03-24 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery system with funnel recapturing feature and method |
US9173738B2 (en) | 2010-04-21 | 2015-11-03 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery system and method with controlled expansion of prosthetic heart valve |
US8740976B2 (en) | 2010-04-21 | 2014-06-03 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery system with flush report |
US8623075B2 (en) | 2010-04-21 | 2014-01-07 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery system and method with controlled expansion of prosthetic heart valve |
US8876892B2 (en) | 2010-04-21 | 2014-11-04 | Medtronic, Inc. | Prosthetic heart valve delivery system with spacing |
US9456899B2 (en) | 2010-04-26 | 2016-10-04 | Medtronic, Inc. | Transcatheter prosthetic heart valve post-dilatation remodeling devices and methods |
US10449045B2 (en) | 2010-04-26 | 2019-10-22 | Medtronic, Inc. | Transcatheter prosthetic heart valve post-dilatation remodeling devices and methods |
US8568474B2 (en) | 2010-04-26 | 2013-10-29 | Medtronic, Inc. | Transcatheter prosthetic heart valve post-dilatation remodeling devices and methods |
US11399936B2 (en) | 2010-04-26 | 2022-08-02 | Medtronic, Inc. | Transcatheter prosthetic heart valve post-dilatation remodeling devices and methods |
US9132008B2 (en) | 2010-04-27 | 2015-09-15 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery device with passive trigger release |
US8852271B2 (en) | 2010-04-27 | 2014-10-07 | Medtronic Vascular, Inc. | Transcatheter prosthetic heart valve delivery device with biased release features |
US9687344B2 (en) | 2010-04-27 | 2017-06-27 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery device with biased release features |
US8876893B2 (en) | 2010-04-27 | 2014-11-04 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery device with passive trigger release |
US9770329B2 (en) | 2010-05-05 | 2017-09-26 | Neovasc Tiara Inc. | Transcatheter mitral valve prosthesis |
US11432924B2 (en) | 2010-05-05 | 2022-09-06 | Neovasc Tiara Inc. | Transcatheter mitral valve prosthesis |
US11419720B2 (en) | 2010-05-05 | 2022-08-23 | Neovasc Tiara Inc. | Transcatheter mitral valve prosthesis |
US10449042B2 (en) | 2010-05-05 | 2019-10-22 | Neovasc Tiara Inc. | Transcatheter mitral valve prosthesis |
US11571299B2 (en) | 2010-05-10 | 2023-02-07 | Edwards Lifesciences Corporation | Methods for manufacturing resilient prosthetic surgical heart valves |
US10702383B2 (en) | 2010-05-10 | 2020-07-07 | Edwards Lifesciences Corporation | Methods of delivering and implanting resilient prosthetic surgical heart valves |
US9980816B2 (en) * | 2010-05-10 | 2018-05-29 | Edwards Lifesciences Corporation | Prosthetic heart valve, system, and method |
US8986374B2 (en) | 2010-05-10 | 2015-03-24 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US20150230922A1 (en) * | 2010-05-10 | 2015-08-20 | Edwards Lifesciences Corporation | Prosthetic heart valve, system, and method |
US11266497B2 (en) | 2010-05-12 | 2022-03-08 | Edwards Lifesciences Corporation | Low gradient prosthetic heart valves |
US9554901B2 (en) | 2010-05-12 | 2017-01-31 | Edwards Lifesciences Corporation | Low gradient prosthetic heart valve |
US10463480B2 (en) | 2010-05-12 | 2019-11-05 | Edwards Lifesciences Corporation | Leaflet for low gradient prosthetic heart valve |
US9248017B2 (en) | 2010-05-21 | 2016-02-02 | Sorin Group Italia S.R.L. | Support device for valve prostheses and corresponding kit |
US11589981B2 (en) | 2010-05-25 | 2023-02-28 | Jenavalve Technology, Inc. | Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent |
US11833045B2 (en) | 2010-06-02 | 2023-12-05 | Medtronic, Inc. | Transcatheter delivery system and method with controlled expansion and contraction of prosthetic heart valve |
US9561102B2 (en) | 2010-06-02 | 2017-02-07 | Medtronic, Inc. | Transcatheter delivery system and method with controlled expansion and contraction of prosthetic heart valve |
US11020223B2 (en) | 2010-06-02 | 2021-06-01 | Medtronic, Inc. | Transcatheter delivery system and method with controlled expansion and contraction of prosthetic heart valve |
US11452597B2 (en) | 2010-06-21 | 2022-09-27 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve |
US10485660B2 (en) | 2010-06-21 | 2019-11-26 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve |
US10639146B2 (en) | 2010-06-21 | 2020-05-05 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve |
US20210169467A1 (en) * | 2010-07-21 | 2021-06-10 | Cardiovalve Ltd. | Valve prosthesis configured for deployment in annular spacer |
US11653910B2 (en) | 2010-07-21 | 2023-05-23 | Cardiovalve Ltd. | Helical anchor implantation |
US10531872B2 (en) * | 2010-07-21 | 2020-01-14 | Cardiovalve Ltd. | Valve prosthesis configured for deployment in annular spacer |
US11969163B2 (en) * | 2010-07-21 | 2024-04-30 | Cardiovalve Ltd. | Valve prosthesis configured for deployment in annular spacer |
US20190015093A1 (en) * | 2010-07-21 | 2019-01-17 | Mitraltech Ltd. | Valve prosthesis configured for deployment in annular spacer |
US20130261741A1 (en) * | 2010-07-21 | 2013-10-03 | Kevin D. Accola | Prosthetic Heart Valves and Devices, Systems and Methods for Prosthetic Heart Valves |
US10925595B2 (en) * | 2010-07-21 | 2021-02-23 | Cardiovalve Ltd. | Valve prosthesis configured for deployment in annular spacer |
US11426155B2 (en) | 2010-07-21 | 2022-08-30 | Cardiovalve Ltd. | Helical anchor implantation |
US9474597B2 (en) * | 2010-07-21 | 2016-10-25 | Kevin D. Accola | Prosthetic heart valves and devices, systems and methods for prosthetic heart valves |
US20200146671A1 (en) * | 2010-07-21 | 2020-05-14 | Cardiovalve Ltd. | Valve prosthesis configured for deployment in annular spacer |
US11786368B2 (en) | 2010-09-01 | 2023-10-17 | Medtronic Vascular Galway | Prosthetic valve support structure |
US9918833B2 (en) | 2010-09-01 | 2018-03-20 | Medtronic Vascular Galway | Prosthetic valve support structure |
US10835376B2 (en) | 2010-09-01 | 2020-11-17 | Medtronic Vascular Galway | Prosthetic valve support structure |
US11197757B2 (en) | 2010-09-10 | 2021-12-14 | Edwards Lifesciences Corporation | Methods of safely expanding prosthetic heart valves |
US9370418B2 (en) | 2010-09-10 | 2016-06-21 | Edwards Lifesciences Corporation | Rapidly deployable surgical heart valves |
US10722358B2 (en) | 2010-09-10 | 2020-07-28 | Edwards Lifesciences Corporation | Systems for rapidly deployable surgical heart valves |
US12053377B2 (en) | 2010-09-10 | 2024-08-06 | Edwards Lifesciences Corporation | Methods for rapidly deployable surgical heart valves |
US10548728B2 (en) | 2010-09-10 | 2020-02-04 | Edwards Lifesciences Corporation | Safety systems for expansion of prosthetic heart valves |
US9968450B2 (en) | 2010-09-10 | 2018-05-15 | Edwards Lifesciences Corporation | Methods for ensuring safe and rapid deployment of prosthetic heart valves |
US9504563B2 (en) | 2010-09-10 | 2016-11-29 | Edwards Lifesciences Corporation | Rapidly deployable surgical heart valves |
US8641757B2 (en) | 2010-09-10 | 2014-02-04 | Edwards Lifesciences Corporation | Systems for rapidly deploying surgical heart valves |
US10039641B2 (en) | 2010-09-10 | 2018-08-07 | Edwards Lifesciences Corporation | Methods of rapidly deployable surgical heart valves |
US9125741B2 (en) | 2010-09-10 | 2015-09-08 | Edwards Lifesciences Corporation | Systems and methods for ensuring safe and rapid deployment of prosthetic heart valves |
US11775613B2 (en) | 2010-09-10 | 2023-10-03 | Edwards Lifesciences Corporation | Methods of safely expanding prosthetic heart valves |
US11471279B2 (en) | 2010-09-10 | 2022-10-18 | Edwards Lifesciences Corporation | Systems for rapidly deployable surgical heart valves |
US9308086B2 (en) | 2010-09-21 | 2016-04-12 | Hocor Cardiovascular Technologies Llc | Method and system for balloon counterpulsation during aortic valve replacement |
US10881412B2 (en) | 2010-09-21 | 2021-01-05 | Hocor Cardiovascular Technologies, Llc | Method and system for balloon counterpulsation during aortic valve replacement |
US10098644B2 (en) | 2010-09-21 | 2018-10-16 | Hocor Cardiovascular Technologies Llc | Method and system for balloon counterpulsation during aortic valve replacement |
US8652203B2 (en) | 2010-09-23 | 2014-02-18 | Cardiaq Valve Technologies, Inc. | Replacement heart valves, delivery devices and methods |
US10610362B2 (en) | 2010-09-23 | 2020-04-07 | Edwards Lifesciences Cardiaq Llc | Replacement heart valves, delivery devices and methods |
US10881510B2 (en) | 2010-09-23 | 2021-01-05 | Edwards Lifesciences Cardiaq Llc | Replacement heart valves, delivery devices and methods |
US10736741B2 (en) | 2010-09-27 | 2020-08-11 | Edwards Lifesciences Corporation | Methods of delivery of heart valves |
US11207178B2 (en) | 2010-09-27 | 2021-12-28 | Edwards Lifesciences Corporation | Collapsible-expandable heart valves |
US8845720B2 (en) | 2010-09-27 | 2014-09-30 | Edwards Lifesciences Corporation | Prosthetic heart valve frame with flexible commissures |
US9861479B2 (en) | 2010-09-27 | 2018-01-09 | Edwards Lifesciences Corporation | Methods of delivery of flexible heart valves |
US20150141897A1 (en) * | 2010-12-07 | 2015-05-21 | Zoll Lifebridge Gmbh | Cardiopulmonary apparatus and methods for preserving life |
US9844618B2 (en) * | 2010-12-07 | 2017-12-19 | Zoll Lifebridge Gmbh | Cardiopulmonary apparatus and methods for preserving life |
US9161836B2 (en) | 2011-02-14 | 2015-10-20 | Sorin Group Italia S.R.L. | Sutureless anchoring device for cardiac valve prostheses |
US9289289B2 (en) | 2011-02-14 | 2016-03-22 | Sorin Group Italia S.R.L. | Sutureless anchoring device for cardiac valve prostheses |
US11903825B2 (en) | 2011-02-23 | 2024-02-20 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve and method |
US10779938B2 (en) | 2011-02-23 | 2020-09-22 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve and method |
US10058318B2 (en) | 2011-03-25 | 2018-08-28 | Kardium Inc. | Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve |
US9554897B2 (en) | 2011-04-28 | 2017-01-31 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
US9713529B2 (en) | 2011-04-28 | 2017-07-25 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US10543080B2 (en) | 2011-05-20 | 2020-01-28 | Edwards Lifesciences Corporation | Methods of making encapsulated heart valves |
US11517426B2 (en) | 2011-05-20 | 2022-12-06 | Edwards Lifesciences Corporation | Encapsulated heart valves |
DE102011108143A1 (en) * | 2011-07-21 | 2013-01-24 | Maximilian Kütting | Modular system for producing catheter-based heart valve prostheses and prosthesis for other human flap positions, has sail sheet carrying base element and anchoring elements, which is connected to base element |
US11291546B2 (en) | 2011-08-05 | 2022-04-05 | Cardiovalve Ltd. | Leaflet clip with collars |
US11951005B2 (en) | 2011-08-05 | 2024-04-09 | Cardiovalve Ltd. | Implant for heart valve |
US11369469B2 (en) | 2011-08-05 | 2022-06-28 | Cardiovalve Ltd. | Method for use at a heart valve |
US11517429B2 (en) | 2011-08-05 | 2022-12-06 | Cardiovalve Ltd. | Apparatus for use at a heart valve |
US11690712B2 (en) | 2011-08-05 | 2023-07-04 | Cardiovalve Ltd. | Clip-secured implant for heart valve |
US11517436B2 (en) | 2011-08-05 | 2022-12-06 | Cardiovalve Ltd. | Implant for heart valve |
US10702385B2 (en) | 2011-08-05 | 2020-07-07 | Cardiovalve Ltd. | Implant for heart valve |
US11864995B2 (en) | 2011-08-05 | 2024-01-09 | Cardiovalve Ltd. | Implant for heart valve |
US11344410B2 (en) | 2011-08-05 | 2022-05-31 | Cardiovalve Ltd. | Implant for heart valve |
US11291545B2 (en) | 2011-08-05 | 2022-04-05 | Cardiovalve Ltd. | Implant for heart valve |
US9668859B2 (en) | 2011-08-05 | 2017-06-06 | California Institute Of Technology | Percutaneous heart valve delivery systems |
US11291547B2 (en) | 2011-08-05 | 2022-04-05 | Cardiovalve Ltd. | Leaflet clip with collars |
US20130109960A1 (en) * | 2011-11-01 | 2013-05-02 | Vascular Solutions, Inc. | Aortic valve positioning systems, devices, and methods |
US9078993B2 (en) * | 2011-11-01 | 2015-07-14 | Vascular Solutions, Inc. | Aortic valve positioning systems, devices, and methods |
US11413139B2 (en) | 2011-11-23 | 2022-08-16 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US12053369B2 (en) | 2011-11-23 | 2024-08-06 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US10537422B2 (en) | 2011-11-23 | 2020-01-21 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US9078747B2 (en) | 2011-12-21 | 2015-07-14 | Edwards Lifesciences Corporation | Anchoring device for replacing or repairing a heart valve |
US11452602B2 (en) | 2011-12-21 | 2022-09-27 | Edwards Lifesciences Corporation | Anchoring device for replacing or repairing a native heart valve annulus |
US10849752B2 (en) | 2011-12-21 | 2020-12-01 | Edwards Lifesciences Corporation | Methods for anchoring a device at a native heart valve annulus |
US10238489B2 (en) | 2011-12-21 | 2019-03-26 | Edwards Lifesciences Corporation | Anchoring device and method for replacing or repairing a heart valve |
US8685084B2 (en) | 2011-12-29 | 2014-04-01 | Sorin Group Italia S.R.L. | Prosthetic vascular conduit and assembly method |
US9138314B2 (en) | 2011-12-29 | 2015-09-22 | Sorin Group Italia S.R.L. | Prosthetic vascular conduit and assembly method |
US10363133B2 (en) | 2012-02-14 | 2019-07-30 | Neovac Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
US11497602B2 (en) | 2012-02-14 | 2022-11-15 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
US12115069B2 (en) | 2012-02-29 | 2024-10-15 | Valcare Medical, Inc. | Percutaneous annuloplasty system with anterior-posterior adjustment |
US10940001B2 (en) | 2012-05-30 | 2021-03-09 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
US10016275B2 (en) | 2012-05-30 | 2018-07-10 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
US11617650B2 (en) | 2012-05-30 | 2023-04-04 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
US10314705B2 (en) | 2012-05-30 | 2019-06-11 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
US11389294B2 (en) | 2012-05-30 | 2022-07-19 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
US9375310B2 (en) | 2012-12-31 | 2016-06-28 | Edwards Lifesciences Corporation | Surgical heart valves adapted for post-implant expansion |
US11883282B2 (en) | 2012-12-31 | 2024-01-30 | Edwards Lifesciences Corporation | Assembly of heart valves and intermediate adapter stent |
US10543085B2 (en) | 2012-12-31 | 2020-01-28 | Edwards Lifesciences Corporation | One-piece heart valve stents adapted for post-implant expansion |
US11576772B2 (en) | 2012-12-31 | 2023-02-14 | Edwards Lifesciences Corporation | One-piece heart valve stents adapted for post-implant expansion |
US9364322B2 (en) | 2012-12-31 | 2016-06-14 | Edwards Lifesciences Corporation | Post-implant expandable surgical heart valve configurations |
US10485661B2 (en) | 2012-12-31 | 2019-11-26 | Edwards Lifesciences Corporation | Surgical heart valves adapted for post-implant expansion |
US10631982B2 (en) | 2013-01-24 | 2020-04-28 | Cardiovale Ltd. | Prosthetic valve and upstream support therefor |
US10835377B2 (en) | 2013-01-24 | 2020-11-17 | Cardiovalve Ltd. | Rolled prosthetic valve support |
US11135059B2 (en) | 2013-01-24 | 2021-10-05 | Cardiovalve Ltd. | Prosthetic valve and upstream support therefor |
US11844691B2 (en) | 2013-01-24 | 2023-12-19 | Cardiovalve Ltd. | Partially-covered prosthetic valves |
US10583002B2 (en) | 2013-03-11 | 2020-03-10 | Neovasc Tiara Inc. | Prosthetic valve with anti-pivoting mechanism |
US9333077B2 (en) | 2013-03-12 | 2016-05-10 | Medtronic Vascular Galway Limited | Devices and methods for preparing a transcatheter heart valve system |
US10010411B2 (en) | 2013-03-12 | 2018-07-03 | Medtronic Vascular Galway | Devices and methods for preparing a transcatheter heart valve system |
US10716664B2 (en) | 2013-03-14 | 2020-07-21 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
US10583000B2 (en) | 2013-03-14 | 2020-03-10 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
US9730791B2 (en) | 2013-03-14 | 2017-08-15 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
US9681951B2 (en) | 2013-03-14 | 2017-06-20 | Edwards Lifesciences Cardiaq Llc | Prosthesis with outer skirt and anchors |
US11951001B2 (en) | 2013-03-14 | 2024-04-09 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grapsing intralumenal tissue and methods of delivery |
US11324591B2 (en) | 2013-03-14 | 2022-05-10 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
US11007058B2 (en) | 2013-03-15 | 2021-05-18 | Edwards Lifesciences Corporation | Valved aortic conduits |
US11648116B2 (en) | 2013-03-15 | 2023-05-16 | Edwards Lifesciences Corporation | Methods of assembling valved aortic conduits |
US20140276616A1 (en) * | 2013-03-15 | 2014-09-18 | Syntheon Cardiology, Llc | Catheter-based devices and methods for identifying specific anatomical landmarks of the human aortic valve |
US9744037B2 (en) | 2013-03-15 | 2017-08-29 | California Institute Of Technology | Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves |
US10058425B2 (en) | 2013-03-15 | 2018-08-28 | Edwards Lifesciences Corporation | Methods of assembling a valved aortic conduit |
US9572665B2 (en) | 2013-04-04 | 2017-02-21 | Neovasc Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
US10383728B2 (en) | 2013-04-04 | 2019-08-20 | Neovasc Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
US11389291B2 (en) | 2013-04-04 | 2022-07-19 | Neovase Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
US9629718B2 (en) | 2013-05-03 | 2017-04-25 | Medtronic, Inc. | Valve delivery tool |
US11793637B2 (en) | 2013-05-03 | 2023-10-24 | Medtronic, Inc. | Valve delivery tool |
US10568739B2 (en) | 2013-05-03 | 2020-02-25 | Medtronic, Inc. | Valve delivery tool |
US9468527B2 (en) | 2013-06-12 | 2016-10-18 | Edwards Lifesciences Corporation | Cardiac implant with integrated suture fasteners |
US10314706B2 (en) | 2013-06-12 | 2019-06-11 | Edwards Lifesciences Corporation | Methods of implanting a cardiac implant with integrated suture fasteners |
US9968451B2 (en) | 2013-06-12 | 2018-05-15 | Edwards Lifesciences Corporation | Cardiac implant with integrated suture fasteners |
US11464633B2 (en) | 2013-06-12 | 2022-10-11 | Edwards Lifesciences Corporation | Heart valve implants with side slits |
US9724083B2 (en) | 2013-07-26 | 2017-08-08 | Edwards Lifesciences Cardiaq Llc | Systems and methods for sealing openings in an anatomical wall |
US11304797B2 (en) | 2013-08-14 | 2022-04-19 | Mitral Valve Technologies Sarl | Replacement heart valve methods |
US10588742B2 (en) * | 2013-08-14 | 2020-03-17 | Mitral Valve Technologies Sarl | Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device |
US11234811B2 (en) | 2013-08-14 | 2022-02-01 | Mitral Valve Technologies Sarl | Replacement heart valve systems and methods |
US11229515B2 (en) | 2013-08-14 | 2022-01-25 | Mitral Valve Technologies Sarl | Replacement heart valve systems and methods |
US12011348B2 (en) | 2013-08-14 | 2024-06-18 | Mitral Valve Technologies Sarl | Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device |
US11523899B2 (en) | 2013-08-14 | 2022-12-13 | Mitral Valve Technologies Sarl | Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device |
US9919137B2 (en) | 2013-08-28 | 2018-03-20 | Edwards Lifesciences Corporation | Integrated balloon catheter inflation system |
US10702680B2 (en) | 2013-08-28 | 2020-07-07 | Edwards Lifesciences Corporation | Method of operating an integrated balloon catheter inflation system |
US11185405B2 (en) | 2013-08-30 | 2021-11-30 | Jenavalve Technology, Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
US20160206426A1 (en) * | 2013-08-30 | 2016-07-21 | Cedars-Sinai Medical Center | Devices and methods for transcatheter retrieval of mechanical heart valve leaflets |
US11266499B2 (en) | 2013-09-20 | 2022-03-08 | Edwards Lifesciences Corporation | Heart valves with increased effective orifice area |
US10441415B2 (en) | 2013-09-20 | 2019-10-15 | Edwards Lifesciences Corporation | Heart valves with increased effective orifice area |
US12089971B2 (en) | 2013-11-06 | 2024-09-17 | Edwards Lifesciences Corporation | Bioprosthetic heart valves having adaptive seals to minimize perivalvular leakage |
US10722316B2 (en) | 2013-11-06 | 2020-07-28 | Edwards Lifesciences Corporation | Bioprosthetic heart valves having adaptive seals to minimize paravalvular leakage |
US10898320B2 (en) | 2014-02-21 | 2021-01-26 | Mitral Valve Technologies Sarl | Devices, systems and methods for delivering a prosthetic mitral valve and anchoring device |
US10952849B2 (en) | 2014-02-21 | 2021-03-23 | Edwards Lifesciences Cardiaq Llc | Prosthesis, delivery device and methods of use |
US11974914B2 (en) | 2014-02-21 | 2024-05-07 | Mitral Valve Technologies Sarl | Devices, systems and methods for delivering a prosthetic mitral valve and anchoring device |
US11633279B2 (en) | 2014-02-21 | 2023-04-25 | Edwards Lifesciences Cardiaq Llc | Prosthesis, delivery device and methods of use |
US10004599B2 (en) | 2014-02-21 | 2018-06-26 | Edwards Lifesciences Cardiaq Llc | Prosthesis, delivery device and methods of use |
USD755384S1 (en) | 2014-03-05 | 2016-05-03 | Edwards Lifesciences Cardiaq Llc | Stent |
US9549816B2 (en) | 2014-04-03 | 2017-01-24 | Edwards Lifesciences Corporation | Method for manufacturing high durability heart valve |
US10307249B2 (en) | 2014-04-30 | 2019-06-04 | Edwards Lifesciences Corporation | Holder and deployment system for surgical heart valves |
US9585752B2 (en) | 2014-04-30 | 2017-03-07 | Edwards Lifesciences Corporation | Holder and deployment system for surgical heart valves |
US11980544B2 (en) | 2014-04-30 | 2024-05-14 | Edwards Lifesciences Corporation | Holder and deployment system for prosthetic heart valves |
US11376122B2 (en) | 2014-04-30 | 2022-07-05 | Edwards Lifesciences Corporation | Holder and deployment system for surgical heart valves |
US11571300B2 (en) | 2014-05-07 | 2023-02-07 | Baylor College Of Medicine | Serially expanding an artificial heart valve within a pediatric patient |
US11464632B2 (en) | 2014-05-07 | 2022-10-11 | Baylor College Of Medicine | Transcatheter and serially-expandable artificial heart valve |
US10179044B2 (en) | 2014-05-19 | 2019-01-15 | Edwards Lifesciences Cardiaq Llc | Replacement mitral valve |
US12083011B2 (en) | 2014-05-19 | 2024-09-10 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve |
US11045313B2 (en) | 2014-05-19 | 2021-06-29 | Edwards Lifesciences Cardiaq Llc | Replacement mitral valve |
US10687939B2 (en) | 2014-06-06 | 2020-06-23 | Edwards Lifesciences Corporation | Prosthetic valve for replacing a mitral valve |
US10010414B2 (en) | 2014-06-06 | 2018-07-03 | Edwards Lifesciences Corporation | Prosthetic valve for replacing a mitral valve |
US11684471B2 (en) | 2014-06-06 | 2023-06-27 | Edwards Lifesciences Corporation | Prosthetic valve for replacing a native mitral or tricuspid valve |
US11154394B2 (en) | 2014-06-20 | 2021-10-26 | Edwards Lifesciences Corporation | Methods of identifying and replacing implanted heart valves |
US10130469B2 (en) | 2014-06-20 | 2018-11-20 | Edwards Lifesciences Corporation | Expandable surgical heart valve indicators |
US9504566B2 (en) | 2014-06-20 | 2016-11-29 | Edwards Lifesciences Corporation | Surgical heart valves identifiable post-implant |
US11872130B2 (en) | 2014-07-30 | 2024-01-16 | Cardiovalve Ltd. | Prosthetic heart valve implant |
US12053380B2 (en) | 2014-07-30 | 2024-08-06 | Cardiovalve Ltd. | Anchoring of a prosthetic valve |
US11701225B2 (en) | 2014-07-30 | 2023-07-18 | Cardiovalve Ltd. | Delivery of a prosthetic valve |
US10864078B2 (en) | 2015-02-05 | 2020-12-15 | Cardiovalve Ltd. | Prosthetic valve with separably-deployable valve body and tissue anchors |
US11793635B2 (en) | 2015-02-05 | 2023-10-24 | Cardiovalve Ltd. | Prosthetic valve with angularly offset frames |
US10695177B2 (en) | 2015-02-05 | 2020-06-30 | Cardiovalve Ltd. | Prosthetic valve with aligned inner and outer frames |
US10888422B2 (en) | 2015-02-05 | 2021-01-12 | Cardiovalve Ltd. | Prosthetic valve with flexible tissue anchor portions |
US10722360B2 (en) | 2015-02-05 | 2020-07-28 | Cardiovalve Ltd. | Prosthetic valve with radially-deflectable tissue anchors |
US11793638B2 (en) | 2015-02-05 | 2023-10-24 | Cardiovalve Ltd. | Prosthetic valve with pivoting tissue anchor portions |
US10507105B2 (en) | 2015-02-05 | 2019-12-17 | Cardiovalve Ltd. | Prosthetic valve with tissue anchors free from lateral interconnections |
US11534298B2 (en) | 2015-02-05 | 2022-12-27 | Cardiovalve Ltd. | Prosthetic valve with s-shaped tissue anchors |
US10667908B2 (en) | 2015-02-05 | 2020-06-02 | Cardiovalve Ltd. | Prosthetic valve with S-shaped tissue anchors |
US10758344B2 (en) | 2015-02-05 | 2020-09-01 | Cardiovalve Ltd. | Prosthetic valve with angularly offset frames |
US10682227B2 (en) | 2015-02-05 | 2020-06-16 | Cardiovalve Ltd. | Prosthetic valve with pivoting tissue anchor portions |
US10849748B2 (en) | 2015-02-05 | 2020-12-01 | Cardiovalve Ltd. | Prosthetic valve delivery system with independently-movable capsule portions |
US10524903B2 (en) | 2015-02-05 | 2020-01-07 | Cardiovalve Ltd. | Prosthetic valve with aligned inner and outer frames |
US11801135B2 (en) | 2015-02-05 | 2023-10-31 | Cardiovalve Ltd. | Techniques for deployment of a prosthetic valve |
US10973636B2 (en) | 2015-02-05 | 2021-04-13 | Cardiovalve Ltd. | Prosthetic valve with tissue anchors free from lateral interconnections |
US10736742B2 (en) | 2015-02-05 | 2020-08-11 | Cardiovalve Ltd. | Prosthetic valve with atrial arms |
US11672658B2 (en) | 2015-02-05 | 2023-06-13 | Cardiovalve Ltd. | Prosthetic valve with aligned inner and outer frames |
US10441416B2 (en) | 2015-04-21 | 2019-10-15 | Edwards Lifesciences Corporation | Percutaneous mitral valve replacement device |
US11850147B2 (en) | 2015-04-21 | 2023-12-26 | Edwards Lifesciences Corporation | Percutaneous mitral valve replacement device |
US10376363B2 (en) | 2015-04-30 | 2019-08-13 | Edwards Lifesciences Cardiaq Llc | Replacement mitral valve, delivery system for replacement mitral valve and methods of use |
US11389292B2 (en) | 2015-04-30 | 2022-07-19 | Edwards Lifesciences Cardiaq Llc | Replacement mitral valve, delivery system for replacement mitral valve and methods of use |
US11337800B2 (en) | 2015-05-01 | 2022-05-24 | Jenavalve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
US10779936B2 (en) * | 2015-05-18 | 2020-09-22 | Mayo Foundation For Medical Education And Research | Percutaneously-deployable prosthetic tricuspid valve |
US20180289472A1 (en) * | 2015-05-18 | 2018-10-11 | Mayo Foundation For Medical Education And Research | Percutaneously-deployable prosthetic tricuspid valve |
US20190110894A1 (en) * | 2015-06-12 | 2019-04-18 | St. Jude Medical, Cardiology Division, Inc. | Heart Valve Repair and Replacement |
US10856974B2 (en) * | 2015-06-12 | 2020-12-08 | St. Jude Medical, Cardiology Division, Inc. | Heart valve repair and replacement |
USD867594S1 (en) | 2015-06-19 | 2019-11-19 | Edwards Lifesciences Corporation | Prosthetic heart valve |
USD893031S1 (en) | 2015-06-19 | 2020-08-11 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US11083576B2 (en) | 2015-06-22 | 2021-08-10 | Edwards Lifesciences Cardiaq Llc | Actively controllable heart valve implant and method of controlling same |
US10226335B2 (en) | 2015-06-22 | 2019-03-12 | Edwards Lifesciences Cardiaq Llc | Actively controllable heart valve implant and method of controlling same |
US11844690B2 (en) | 2015-06-23 | 2023-12-19 | Edwards Lifesciences Cardiaq Llc | Systems and methods for anchoring and sealing a prosthetic heart valve |
US10092400B2 (en) | 2015-06-23 | 2018-10-09 | Edwards Lifesciences Cardiaq Llc | Systems and methods for anchoring and sealing a prosthetic heart valve |
US10842620B2 (en) | 2015-06-23 | 2020-11-24 | Edwards Lifesciences Cardiaq Llc | Systems and methods for anchoring and sealing a prosthetic heart valve |
US10456246B2 (en) | 2015-07-02 | 2019-10-29 | Edwards Lifesciences Corporation | Integrated hybrid heart valves |
US10695170B2 (en) | 2015-07-02 | 2020-06-30 | Edwards Lifesciences Corporation | Hybrid heart valves adapted for post-implant expansion |
US11654020B2 (en) | 2015-07-02 | 2023-05-23 | Edwards Lifesciences Corporation | Hybrid heart valves |
US11690714B2 (en) | 2015-07-02 | 2023-07-04 | Edwards Lifesciences Corporation | Hybrid heart valves adapted for post-implant expansion |
US10117744B2 (en) | 2015-08-26 | 2018-11-06 | Edwards Lifesciences Cardiaq Llc | Replacement heart valves and methods of delivery |
US12004949B2 (en) | 2015-08-26 | 2024-06-11 | Edwards Lifesciences Cardiaq Llc | Replacement heart valves and methods of delivery |
US10575951B2 (en) | 2015-08-26 | 2020-03-03 | Edwards Lifesciences Cardiaq Llc | Delivery device and methods of use for transapical delivery of replacement mitral valve |
US12023245B2 (en) | 2015-08-26 | 2024-07-02 | Edwards Lifesciences Cardiaq Llc | Delivery device and methods of use for transapical delivery of replacement valve |
US10758345B2 (en) | 2015-08-26 | 2020-09-01 | Edwards Lifesciences Cardiaq Llc | Replacement heart valves and methods of delivery |
US11278405B2 (en) | 2015-08-26 | 2022-03-22 | Edwards Lifesciences Cardiaq Llc | Delivery device and methods of use for transapical delivery of replacement valve |
US10350066B2 (en) | 2015-08-28 | 2019-07-16 | Edwards Lifesciences Cardiaq Llc | Steerable delivery system for replacement mitral valve and methods of use |
US11253364B2 (en) | 2015-08-28 | 2022-02-22 | Edwards Lifesciences Cardiaq Llc | Steerable delivery system for replacement mitral valve and methods of use |
US11690709B2 (en) | 2015-09-02 | 2023-07-04 | Edwards Lifesciences Corporation | Methods for securing a transcatheter valve to a bioprosthetic cardiac structure |
WO2017041029A1 (en) * | 2015-09-02 | 2017-03-09 | Edwards Lifesciences Corporation | Spacer for securing a transcatheter valve to bioprosthetic cardiac structure |
US10080653B2 (en) | 2015-09-10 | 2018-09-25 | Edwards Lifesciences Corporation | Limited expansion heart valve |
US10751174B2 (en) | 2015-09-10 | 2020-08-25 | Edwards Lifesciences Corporation | Limited expansion heart valve |
US11806232B2 (en) | 2015-09-10 | 2023-11-07 | Edwards Lifesciences Corporation | Limited expansion valve-in-valve procedures |
US20170121638A1 (en) * | 2015-10-29 | 2017-05-04 | The Procter & Gamble Company | Liquid detergent composition |
US20220015901A1 (en) * | 2015-11-23 | 2022-01-20 | T-Heart SAS | Assembly for replacing the tricuspid atrioventricular valve |
US11937795B2 (en) | 2016-02-16 | 2024-03-26 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
US11298117B2 (en) | 2016-02-16 | 2022-04-12 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
US11471275B2 (en) | 2016-03-08 | 2022-10-18 | Edwards Lifesciences Corporation | Valve implant with integrated sensor and transmitter |
US10667904B2 (en) | 2016-03-08 | 2020-06-02 | Edwards Lifesciences Corporation | Valve implant with integrated sensor and transmitter |
US12121461B2 (en) | 2016-03-17 | 2024-10-22 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath |
USD815744S1 (en) | 2016-04-28 | 2018-04-17 | Edwards Lifesciences Cardiaq Llc | Valve frame for a delivery system |
US11065138B2 (en) | 2016-05-13 | 2021-07-20 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system |
US10456245B2 (en) | 2016-05-16 | 2019-10-29 | Edwards Lifesciences Corporation | System and method for applying material to a stent |
US10350062B2 (en) | 2016-07-21 | 2019-07-16 | Edwards Lifesciences Corporation | Replacement heart valve prosthesis |
US11224507B2 (en) | 2016-07-21 | 2022-01-18 | Edwards Lifesciences Corporation | Replacement heart valve prosthesis |
US10952850B2 (en) | 2016-08-01 | 2021-03-23 | Cardiovalve Ltd. | Minimally-invasive delivery systems |
US12053379B2 (en) | 2016-08-01 | 2024-08-06 | Cardiovalve Ltd. | Minimally-invasive delivery systems |
US10856975B2 (en) | 2016-08-10 | 2020-12-08 | Cardiovalve Ltd. | Prosthetic valve with concentric frames |
US11779458B2 (en) | 2016-08-10 | 2023-10-10 | Cardiovalve Ltd. | Prosthetic valve with leaflet connectors |
US10646340B2 (en) | 2016-08-19 | 2020-05-12 | Edwards Lifesciences Corporation | Steerable delivery system for replacement mitral valve |
US11931258B2 (en) | 2016-08-19 | 2024-03-19 | Edwards Lifesciences Corporation | Steerable delivery system for replacement mitral valve and methods of use |
US10639143B2 (en) | 2016-08-26 | 2020-05-05 | Edwards Lifesciences Corporation | Multi-portion replacement heart valve prosthesis |
US11504229B2 (en) | 2016-08-26 | 2022-11-22 | Edwards Lifesciences Corporation | Multi-portion replacement heart valve prosthesis |
US10758348B2 (en) | 2016-11-02 | 2020-09-01 | Edwards Lifesciences Corporation | Supra and sub-annular mitral valve delivery system |
US11510778B2 (en) | 2016-11-02 | 2022-11-29 | Edwards Lifesciences Corporation | Supra and sub-annular mitral valve delivery system |
USD846122S1 (en) | 2016-12-16 | 2019-04-16 | Edwards Lifesciences Corporation | Heart valve sizer |
US11197754B2 (en) | 2017-01-27 | 2021-12-14 | Jenavalve Technology, Inc. | Heart valve mimicry |
US10932909B2 (en) | 2017-02-07 | 2021-03-02 | Shanghai Joy Medical Devices Co., Ltd | Device for treating regurgitation of tricuspid and implantation method therefor |
CN109310497A (en) * | 2017-02-07 | 2019-02-05 | 上海甲悦医疗器械有限公司 | For treating the device and its method for implantation of tricuspid regurgitation |
WO2018145249A1 (en) * | 2017-02-07 | 2018-08-16 | 上海甲悦医疗器械有限公司 | Device for treating regurgitation of tricuspid valve and implantation method therefor |
US11376125B2 (en) | 2017-04-06 | 2022-07-05 | Edwards Lifesciences Corporation | Prosthetic valve holders with automatic deploying mechanisms |
US10463485B2 (en) | 2017-04-06 | 2019-11-05 | Edwards Lifesciences Corporation | Prosthetic valve holders with automatic deploying mechanisms |
US10799353B2 (en) | 2017-04-28 | 2020-10-13 | Edwards Lifesciences Corporation | Prosthetic heart valve with collapsible holder |
US11911273B2 (en) | 2017-04-28 | 2024-02-27 | Edwards Lifesciences Corporation | Prosthetic heart valve with collapsible holder |
US11135057B2 (en) | 2017-06-21 | 2021-10-05 | Edwards Lifesciences Corporation | Dual-wireform limited expansion heart valves |
US10813757B2 (en) | 2017-07-06 | 2020-10-27 | Edwards Lifesciences Corporation | Steerable rail delivery system |
US11123186B2 (en) | 2017-07-06 | 2021-09-21 | Edwards Lifesciences Corporation | Steerable delivery system and components |
US11883287B2 (en) | 2017-07-06 | 2024-01-30 | Edwards Lifesciences Corporation | Steerable rail delivery system |
US11793633B2 (en) | 2017-08-03 | 2023-10-24 | Cardiovalve Ltd. | Prosthetic heart valve |
US11571298B2 (en) | 2017-08-03 | 2023-02-07 | Cardiovalve Ltd. | Prosthetic valve with appendages |
US12029646B2 (en) | 2017-08-03 | 2024-07-09 | Cardiovalve Ltd. | Prosthetic heart valve |
US12090048B2 (en) | 2017-08-03 | 2024-09-17 | Cardiovalve Ltd. | Prosthetic heart valve |
US12064347B2 (en) | 2017-08-03 | 2024-08-20 | Cardiovalve Ltd. | Prosthetic heart valve |
US11246704B2 (en) | 2017-08-03 | 2022-02-15 | Cardiovalve Ltd. | Prosthetic heart valve |
US10575948B2 (en) | 2017-08-03 | 2020-03-03 | Cardiovalve Ltd. | Prosthetic heart valve |
US11304805B2 (en) | 2017-09-19 | 2022-04-19 | Cardiovalve Ltd. | Prosthetic valve with inflatable cuff configured to fill a volume between atrial and ventricular tissue anchors |
US11337804B2 (en) | 2017-09-19 | 2022-05-24 | Cardiovalve Ltd. | Prosthetic valve with radially-deformable tissue anchors configured to restrict axial valve migration |
US12023243B2 (en) | 2017-09-19 | 2024-07-02 | Cardiovalve Ltd. | Prosthetic valve with protective fabric covering around tissue anchor bases |
US11337802B2 (en) | 2017-09-19 | 2022-05-24 | Cardiovalve Ltd. | Heart valve delivery systems and methods |
US11864996B2 (en) | 2017-09-19 | 2024-01-09 | Cardiovalve Ltd. | Prosthetic valve with protective sleeve around an outlet rim |
US10888421B2 (en) | 2017-09-19 | 2021-01-12 | Cardiovalve Ltd. | Prosthetic heart valve with pouch |
US10799345B2 (en) | 2017-09-19 | 2020-10-13 | Cardiovalve Ltd. | Prosthetic valve with protective fabric covering around tissue anchor bases |
US11819405B2 (en) | 2017-09-19 | 2023-11-21 | Cardiovalve Ltd. | Prosthetic valve with inflatable cuff configured for radial extension |
US11337803B2 (en) | 2017-09-19 | 2022-05-24 | Cardiovalve Ltd. | Prosthetic valve with inner and outer frames connected at a location of tissue anchor portion |
US11304806B2 (en) | 2017-09-19 | 2022-04-19 | Cardiovalve Ltd. | Prosthetic valve with atrial tissue anchors having variable flexibility and ventricular tissue anchors having constant flexibility |
US10881511B2 (en) | 2017-09-19 | 2021-01-05 | Cardiovalve Ltd. | Prosthetic valve with tissue anchors configured to exert opposing clamping forces on native valve tissue |
US11318015B2 (en) | 2017-09-19 | 2022-05-03 | Cardiovalve Ltd. | Prosthetic valve configured to fill a volume between tissue anchors with native valve tissue |
US11318014B2 (en) | 2017-09-19 | 2022-05-03 | Cardiovalve Ltd. | Prosthetic valve delivery system with multi-planar steering |
US11304804B2 (en) | 2017-09-19 | 2022-04-19 | Cardiovalve, Ltd. | Prosthetic valve with connecting struts of variable size and tissue anchoring legs of variable size that extend from junctions |
US10905549B2 (en) | 2017-09-19 | 2021-02-02 | Cardiovalve Ltd. | Prosthetic valve with overlapping atrial tissue anchors and ventricular tissue anchors |
US10905548B2 (en) | 2017-09-19 | 2021-02-02 | Cardio Valve Ltd. | Prosthetic valve with protective sleeve around an outlet rim |
US10856972B2 (en) | 2017-09-19 | 2020-12-08 | Cardiovalve Ltd. | Prosthetic valve with angularly offset atrial anchoring arms and ventricular anchoring legs |
US11648122B2 (en) | 2017-10-19 | 2023-05-16 | Cardiovalve Ltd. | Techniques for use with prosthetic valve leaflets |
US11980547B2 (en) | 2017-10-19 | 2024-05-14 | Cardiovalve Ltd. | Techniques for use with prosthetic valve leaflets |
US11065122B2 (en) | 2017-10-19 | 2021-07-20 | Cardiovalve Ltd. | Techniques for use with prosthetic valve leaflets |
US11382746B2 (en) | 2017-12-13 | 2022-07-12 | Cardiovalve Ltd. | Prosthetic valve and delivery tool therefor |
US11872131B2 (en) | 2017-12-13 | 2024-01-16 | Cardiovalve Ltd. | Prosthetic valve and delivery tool therefor |
US11633277B2 (en) | 2018-01-10 | 2023-04-25 | Cardiovalve Ltd. | Temperature-control during crimping of an implant |
US11872124B2 (en) | 2018-01-10 | 2024-01-16 | Cardiovalve Ltd. | Temperature-control during crimping of an implant |
US11337805B2 (en) | 2018-01-23 | 2022-05-24 | Edwards Lifesciences Corporation | Prosthetic valve holders, systems, and methods |
US11684474B2 (en) | 2018-01-25 | 2023-06-27 | Edwards Lifesciences Corporation | Delivery system for aided replacement valve recapture and repositioning post-deployment |
US11051934B2 (en) | 2018-02-28 | 2021-07-06 | Edwards Lifesciences Corporation | Prosthetic mitral valve with improved anchors and seal |
US11969341B2 (en) | 2018-05-23 | 2024-04-30 | Corcym S.R.L. | Cardiac valve prosthesis |
US11504231B2 (en) | 2018-05-23 | 2022-11-22 | Corcym S.R.L. | Cardiac valve prosthesis |
USD944398S1 (en) | 2018-06-13 | 2022-02-22 | Edwards Lifesciences Corporation | Expanded heart valve stent |
USD979061S1 (en) | 2018-06-13 | 2023-02-21 | Edwards Lifesciences Corporation | Expanded heart valve stent |
USD952143S1 (en) | 2018-07-11 | 2022-05-17 | Edwards Lifesciences Corporation | Collapsible heart valve sizer |
USD908874S1 (en) | 2018-07-11 | 2021-01-26 | Edwards Lifesciences Corporation | Collapsible heart valve sizer |
USD995774S1 (en) | 2018-07-11 | 2023-08-15 | Edwards Lifesciences Corporation | Collapsible heart valve sizer |
US11883293B2 (en) | 2018-09-17 | 2024-01-30 | Cardiovalve Ltd. | Leaflet-grouping system |
US11491011B2 (en) | 2018-09-17 | 2022-11-08 | Cardiovalve Ltd. | Leaflet-grouping system |
US11026792B2 (en) | 2018-09-17 | 2021-06-08 | Cardiovalve Ltd. | Leaflet-grouping system |
US10779946B2 (en) | 2018-09-17 | 2020-09-22 | Cardiovalve Ltd. | Leaflet-testing apparatus |
US12127757B2 (en) | 2019-02-11 | 2024-10-29 | Cardiovalve Ltd. | Device for conditioning ex vivo pericardial tissue |
US11951006B2 (en) | 2019-12-16 | 2024-04-09 | Edwards Lifesciences Corporation | Valve holder assembly with suture looping protection |
US11554012B2 (en) | 2019-12-16 | 2023-01-17 | Edwards Lifesciences Corporation | Valve holder assembly with suture looping protection |
US12097116B2 (en) * | 2022-06-28 | 2024-09-24 | Seven Summits Medical, Inc | Prosthetic heart valve for multiple positions and assembling method thereof |
US11701224B1 (en) * | 2022-06-28 | 2023-07-18 | Seven Summits Medical, Inc. | Prosthetic heart valve for multiple positions and applications |
Also Published As
Publication number | Publication date |
---|---|
EP2455042A3 (en) | 2013-09-11 |
ES2708934T3 (en) | 2019-04-12 |
EP1804726A1 (en) | 2007-07-11 |
US20080161911A1 (en) | 2008-07-03 |
ES2933685T3 (en) | 2023-02-13 |
WO2006029062A1 (en) | 2006-03-16 |
US20210007845A1 (en) | 2021-01-14 |
US20170020666A1 (en) | 2017-01-26 |
EP3466373B1 (en) | 2022-10-26 |
EP2455042A2 (en) | 2012-05-23 |
EP3466373A1 (en) | 2019-04-10 |
US8591570B2 (en) | 2013-11-26 |
US20080161910A1 (en) | 2008-07-03 |
US20140052242A1 (en) | 2014-02-20 |
US11253355B2 (en) | 2022-02-22 |
EP2455042B1 (en) | 2018-10-31 |
EP1804726B1 (en) | 2016-03-23 |
US9480556B2 (en) | 2016-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210007845A1 (en) | Replacement prosthetic heart valve, system and method of implant | |
US20200405478A1 (en) | Stented prosthetic heart valves | |
US10172709B2 (en) | Delivery systems and methods of implantation for replacement prosthetic heart valve | |
JP5687070B2 (en) | Stent for prosthetic heart valve | |
EP1883375B1 (en) | Rapid deployment prosthetic heart valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MEDTRONIC, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:REVUELT, JOSE M.;LEMMON, JACK D.;RYAN, TIMOTHY R.;REEL/FRAME:023561/0087;SIGNING DATES FROM 20040913 TO 20041004 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |