US20060039646A1 - Optical switch and matrix optical switch - Google Patents

Optical switch and matrix optical switch Download PDF

Info

Publication number
US20060039646A1
US20060039646A1 US10/922,601 US92260104A US2006039646A1 US 20060039646 A1 US20060039646 A1 US 20060039646A1 US 92260104 A US92260104 A US 92260104A US 2006039646 A1 US2006039646 A1 US 2006039646A1
Authority
US
United States
Prior art keywords
optical switch
optical
waveguide layer
optical waveguide
side channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/922,601
Other languages
English (en)
Inventor
Keiichi Nashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nozomi Photonics Co Ltd
Original Assignee
Nozomi Photonics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nozomi Photonics Co Ltd filed Critical Nozomi Photonics Co Ltd
Priority to US10/922,601 priority Critical patent/US20060039646A1/en
Assigned to NOZOMI PHOTONICS CO., LTD. reassignment NOZOMI PHOTONICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NASHIMOTO, KEIICHI
Priority to JP2005010970A priority patent/JP2006058837A/ja
Publication of US20060039646A1 publication Critical patent/US20060039646A1/en
Priority to US11/398,151 priority patent/US7302140B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3137Digital deflection, i.e. optical switching in an optical waveguide structure with intersecting or branching waveguides, e.g. X-switches and Y-junctions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12145Switch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/1215Splitter
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/315Digital deflection, i.e. optical switching based on the use of controlled internal reflection

Definitions

  • the present invention relates to an optical switch and a matrix optical switch, and particularly to an optical switch which switches optical paths of a light signal propagating through a channel waveguide and a matrix optical switch in which multiple of the optical switches are arranged in a matrix.
  • Optical communication networks are developing, from: point-to-point optical communication, in which nodes are connected individually; through optical communication, in which Add-Drop Multiplexing is performed between points; and further to optical communication in which plural nodes are directly connected, without converting a light signal into an electric signal. Therefore, development of various optical components necessary for the above optical communication becomes important, such as optical splitter/couplers, optical multiplexers, optical demultiplexers, optical switches, and the like. Among these, matrix optical switches are some of the most important components, being used for switching light signal paths among plural optical fibers in response to demand, or for switching light signal paths in order to secure diversion paths in the case of a network failure.
  • the optical switches include a bulk type of optical switches in which prisms, mirrors, fibers, and the like are mechanically moved to switch the light signal paths, and optical waveguide types of optical switch.
  • the bulk type of optical switch has the advantage that wavelength dependence is small and loss is relatively low.
  • problems with the bulk type of optical switch such as: low switching speed; unsuitability for formation into matrices, due to the difficulty of miniaturization; unsuitability for mass production, because the assembly and adjustment process is complicated; expense; and the like.
  • the optical waveguide type of optical switch is significantly superior to the bulk type of optical switch in terms of switching speed, miniaturization, integration, mass production, and the like, the optical waveguide type of optical switch is being avidly investigated.
  • Optical waveguide type of matrix optical switches can be divided into two main modes.
  • the paths of propagating light signals are switched by connecting a branching type of channel waveguide between input and output ports, and optical switches or optical gates, operated by predetermined principles are arranged at branching points.
  • a light deflector is provided between the input and output ports to deflect the incident light from input ports toward output ports.
  • the matrix optical switch of the first mode is being most actively investigated, because of its design flexibility and small optical loss.
  • a channel waveguide is formed in a thin film made of LiNbO 3 , compound semiconductor, quartz, polymer, or the like.
  • an optical switch electrically controlling the direction of travel of the light
  • an optical gate electrically controlling the direction of travel of the light by opening and closing.
  • the operating principles of the optical switch include: a method of controlling the light signal path by applying an electric field to a directional coupler in which two optical waveguides are arranged close to each other; a Mach-Zehnder type of method in which an input light beam is separated into two light beams by a directional coupler, phase difference is provided between the light beams passing through the respective paths by means of a refractive index generated by an electric field, and output ends are switched by controlling interference states using a directional coupler positioned on an exit side; a method of switching light signal paths by controlling interference between optical modes at X-crossover portions; a so-called digital type of method in which light signal paths are switched by controlling a field distribution in transverse direction of the optical mode, by means of a refractive index generated by an electric field at Y-branching portions or at asymmetrical X-crossover portions; and a method of switching light signal paths in which total reflection or Bragg reflection is made to occur by providing electrodes at X-crossover portions to control the ref
  • the digital type of optical switch is superior in operational tolerance.
  • the digital type of optical switch after light signal paths are switched with a predetermined voltage or current, this state can be maintained, and plural operation points are not generated, even if a voltage or current greater than predetermined is applied thereto.
  • advantages such as a digital type of optical switch independent of the wave polarization being possible, small degree of wavelength dependence, and the like, make the digital type of optical switch particularly noteworthy among optical switches.
  • FIG. 18 shows a standard Y-branching type of structure for a digital type of optical switch.
  • electrodes 2 constituting an optical control portion are provided at the branching portion of a Y-branching type of channel waveguide 1 .
  • An acute angle portion of the crossover portion of the channel waveguide 1 has a shape with a crossing angle less than 10 in which the channel separation gradually narrows to become zero. Because of this, with a patterning process of photolithography, it is difficult to produce an ideal shape due to resolution limitations. Therefore, usually it is necessary to form a shape where the tip end is not sharp and the distance between the channels is not less than 1.5 ⁇ m, as in the acute angle portion 3 depicted in FIG. 19 . The shift from the ideal shape greatly affects the degree of loss and crosstalk, because the optical control portion is located at the branching portion on the downstream side of the crossover portion in the light propagation direction.
  • the difference in light quantity between outgoing ports can be made greater or equal to 20 dB when light from an incident port is guided to the outgoing ports or other.
  • the shape is not sharp, as shown in FIG. 19 , the difference in light quantity between the outgoing ports is degraded to about 12 dB.
  • a larger change in refractive index is required. That is, in a Y-branching type of digital optical switch, there is a problem that a drive voltage or drive current increases.
  • an electrode is formed on the channel waveguide having a width of a few micrometers, production errors during photolithography easily occur, and symmetry of switching characteristics is easily lost.
  • an X-crossover type of total reflection optical switch as shown in FIG. 20 , digital type of operation can also be performed.
  • An X-crossover type of total reflection optical switch is suitable for high-speed response because electrode length can be more easily shortened when compared with other types.
  • the optical control portion is located within the crossover portion, unlike in a Y-branching type of optical switch, the X-crossover type of total reflection optical switch is less sensitive to the above-described production limitations.
  • an incident light beam 4 propagates rectilinearly when the refractive index of a channel waveguide 1 is uniform.
  • a crossing angle 6 of the channel waveguide 1 and an angle formed by the incident light beam 4 and the reflection plane 5 are determined by the degree of decrease in refractive index of the reflection plane 5 .
  • the degree of decrease in refractive index becomes smaller, i.e., a drive voltage or drive current is lowered, as the crossing angle 6 and the reflection supplementary angle 7 are decreased.
  • the crossing angle 6 can usually be decreased to about 0.5°.
  • the X-crossover type of total reflection optical switch in which an epitaxial PLZT thin film waveguide layer is grown on a sapphire substrate, which is an insulating material, to form a channel waveguide having a crossing angle of 2.0° and a width of 20 ⁇ m is described in K. Wasa, et al., J. Lightwave Technology, (1984) 710.
  • the X-crossover type of total reflection optical switch is formed by providing electrodes with a gap of 4 ⁇ m on the channel waveguide, and a response speed of 1 GHz is obtained at 4.7V.
  • crosstalk is still as large as 12 dB.
  • a digital type of response can be obtained, and the total reflection optical switch is suitable for a high-speed response.
  • the total reflection type it is difficult to obtain an optical switch in which both the drive voltage or drive current is low and crosstalk is low.
  • the invention provides an optical switch that is of a total reflection optical switch in which a digital response and miniaturization can be realized, and in which a drive voltage or a drive current is low and crosstalk is decreased, and a matrix optical switch in which the multiplicity of optical switches are arrayed in a matrix.
  • An optical switch of a first aspect of the invention includes a substrate which has conductivity or semiconductivity, an optical waveguide layer which is formed on the substrate, the optical waveguide layer including an incident-side channel waveguide on which a light signal is incident and plural outgoing-side channel waveguides branching from the incident-side channel waveguide, and a control electrode which is formed on the optical waveguide layer, the control electrode forming, near a crossover portion of the plural outgoing-side channel waveguides, a reflection plane which reflects the incident light signal by applying with the substrate a voltage to the optical waveguide layer to control the refractive index of the optical waveguide layer, and the control electrode switching propagation paths of the light signal.
  • the control electrode and the substrate apply voltage to the optical waveguide layer, and a reflection plane is formed near the crossover portion of the plural outgoing-side channel waveguides branched from the incident-side channel waveguide. Therefore, a digital type total reflection optical switch can be formed and an angle (reflection supplementary angle) formed by the centerline of the outgoing-side channel waveguide and the reflection plane can be decreased. For example, even if the crossing angle of the Y-branching outgoing-side channel waveguide is equal to the crossing angle of the X-crossover type of total reflection optical switch, the reflection supplementary angle of the optical switch of the first aspect can become a half of the reflection supplementary angle of the X-crossover type of total reflection optical switch. Therefore, a degree of the decrease in refractive index can be made smaller at the reflection plane and a drive voltage or a drive current can be decreased.
  • An optical switch of a second aspect of the invention includes a substrate which has conductivity or semiconductivity, an optical waveguide layer which is formed on the substrate, the optical waveguide layer including an incident-side channel waveguide on which a light signal is incident and plural outgoing-side channel waveguides branching from the incident-side channel waveguide, the optical waveguide layer having a grooved portion formed between adjacent outgoing-side channel waveguides, and a control electrode which is formed on the optical waveguide layer, the control electrode forming, near a crossover portion of the plural outgoing-side channel waveguides, a reflection plane which reflects the incident light signal by applying a voltage with the substrate to the optical waveguide layer to control a refractive index of the optical waveguide layer, the reflection plane being contiguous to an interface between the optical waveguide layer and the grooved portion, and the control electrode switching propagation paths of the light signal.
  • a matrix optical switch of a third aspect of the invention includes a substrate which has conductivity or semiconductivity and plural optical switch units which are arranged in a matrix on the substrate, wherein each of the plural optical switch units includes an optical waveguide layer which is formed on the substrate, the optical waveguide layer including an incident-side channel waveguide on which a light signal is incident and plural outgoing-side channel waveguides branching from the incident-side channel waveguide, and a control electrode which is formed on the optical waveguide layer, the control electrode forming, near a crossover portion of the plural outgoing-side channel waveguides, a reflection plane which reflects the incident light signal by applying a voltage with the substrate to the optical waveguide layer to control the refractive index of the optical waveguide layer, and the control electrode switching propagation paths of the light signal.
  • a matrix optical switch of a fourth aspect of the invention includes a substrate which has conductivity or semiconductivity and plural optical switch units which are arranged in a matrix on the substrate, wherein each of the plural optical switch units includes an optical waveguide layer which is formed on the substrate, the optical waveguide layer including an incident-side channel waveguide on which a light signal is incident and plural outgoing-side channel waveguides branching from the incident-side channel waveguide, the optical waveguide layer having a grooved portion formed between adjacent outgoing-side channel waveguides, and a control electrode which is formed on the optical waveguide layer, the control electrode forming, near a crossover portion of the plural outgoing-side channel waveguides, a reflection plane reflecting the incident light signal by applying with the substrate a voltage to the optical waveguide layer to control the refractive index of the optical waveguide layer, the reflection plane being contiguous to an interface between the optical waveguide layer and the grooved portion, and the control electrode switching propagation paths of the light signal.
  • a total reflection optical switch in which a digital response and miniaturization can be realized, has an effect that crosstalk is decreased while a drive voltage or a drive current is decreased.
  • FIG. 1 is a plan view showing a structure of a Y-branching type of 1 ⁇ 2 optical switch according to an embodiment of the invention
  • FIG. 2 is a sectional view of the 1 ⁇ 2 optical switch taken on line A-A′ of FIG. 1 ;
  • FIG. 3 is a plan view showing a waveguide structure of the 1 ⁇ 2 optical switch of FIG. 1 ;
  • FIGS. 4A to 4 C are a plan view for explaining operation of the 1 ⁇ 2 optical switch of FIG. 1 ;
  • FIG. 5 is a sectional view along a light propagation direction of the 1 ⁇ 2 optical switch of FIG. 1 ;
  • FIG. 6 is a graph showing calculation result of a change in refractive index necessary to obtain a 20-dB crosstalk when a maximum width of a taper portion is changed;
  • FIG. 7 is a graph showing calculation result of a change in refractive index necessary to obtain a 20-dB crosstalk when a taper length is changed;
  • FIG. 8 is a graph showing calculation result of a change in refractive index necessary to obtain a 20-dB crosstalk when a length of a linear portion is changed;
  • FIG. 9 is a graph showing a relationship between drive voltage and crosstalk in the 1 ⁇ 2 optical switch of Example 1;
  • FIG. 10 is a plan view showing another structure of the Y-branching type of 1 ⁇ 2 optical switch of the invention.
  • FIG. 11 is a plan view showing a structure of the 1 ⁇ 2 optical switch of Example 2.
  • FIG. 12 is a graph showing a relationship between drive voltage and crosstalk in the 1 ⁇ 2 optical switch of Example 2;
  • FIG. 13 is a graph showing a relationship between drive voltage and crosstalk in the 1 ⁇ 2 optical switch of Example 3;
  • FIG. 14 is a plan view showing a schematic configuration of a 1 ⁇ 8 optical switch of Example 4.
  • FIG. 15 is a plan view showing a structure of the 1 ⁇ 2 optical switch of Example 6;
  • FIG. 16 is a sectional view of the 1 ⁇ 2 optical switch taken on line B-B′ of FIG. 15 ;
  • FIG. 17 is a plan view showing a structure of the Y-branching type of 1 ⁇ 2 optical switch formed by a LiNbO 3 waveguide;
  • FIG. 18 is a plan view showing a schematic configuration of the conventional Y-branching type of 1 ⁇ 2 optical switch
  • FIG. 19 is a partially expanded view showing a structure of a branching portion in the optical switch of FIG. 18 ;
  • FIG. 20 is a plan view showing a schematic configuration of an X-crossover type of total reflection optical switch.
  • FIG. 1 is a plan view of a Y-branching type of optical switch according to an embodiment of the invention
  • FIG. 2 is a sectional view of the optical switch taken on line A-A′ of FIG. 1 .
  • an optical switch 10 includes a conductive substrate 12 which becomes a lower electrode, an optical waveguide layer 16 in which a channel waveguide 24 is formed, a buffer layer 14 , and an upper electrode 26 .
  • the signal light propagates through the channel waveguide 24 .
  • the buffer layer 14 has the refractive index lower than that of the optical waveguide layer 16 .
  • the buffer layer 14 prevents the light propagating through the optical waveguide layer 16 from exuding to the conductive substrate 12 .
  • a voltage is applied to the optical waveguide layer 16 with the lower electrode and the upper electrode 26 .
  • the optical waveguide layer 16 is laminated on the conductive substrate 12 through the buffer layer 14 , and the upper electrode 26 is formed on the optical waveguide layer 16 . It is also possible that a cladding layer having the refractive index lower than that of the optical waveguide layer 16 is provided between the optical waveguide layer 16 and the upper electrode 26 . In the optical switch 10 , the refractive index of the optical waveguide layer 16 is partially decreased by applying a voltage between the upper and lower electrodes, which allows a reflection plane to be formed along an edge of the upper electrode 26 in the optical waveguide layer 16 to switch the propagation path of the signal light.
  • the optical switch 10 is a 1 ⁇ 2 optical switch including one incident port 18 and two outgoing ports 20 and 22 .
  • the channel waveguide 24 branched in the Y-shape is formed in the optical waveguide layer 16 .
  • the Y-shaped channel waveguide 24 includes a channel waveguide 24 A and channel waveguides 24 B and 24 C branched from the channel waveguide 24 A.
  • a light signal is incident to the channel waveguide 24 A from the incident port 18 .
  • the channel waveguides 24 B and 24 C output the light signal to the outgoing ports 20 and 22 , respectively.
  • a taper portion 34 A is formed in a tapered shape on the outgoing side of the channel waveguide 24 A so as to extend toward the propagation direction of the light signal.
  • a linear portion 36 A is continuously added to the taper portion 34 A.
  • Taper portions 34 B and 34 C are formed in a reversely tapered shape on the incident sides of the channel waveguides 24 B and 24 C so as to extend toward the opposite direction to the propagation direction of the light signal.
  • Linear portions 36 B and 36 C are continuously added to taper portions 34 B and 34 C respectively.
  • a Y-crossover portion 30 in which these channel waveguides are crossed with each other is formed in a widened shape by the taper portions 34 A, 34 B, and 34 C and the linear portions 36 A, 36 B, and 36 C, and the crosstalk is prevented. It is possible that the linear portions 36 A, 36 B, and 36 C may not be provided, if appropriate, in accordance with a degree of crossover among the taper portions 34 A, 34 B, and 34 C.
  • FIG. 4A shows each of centerlines of the channel waveguides 24 A, 24 B, and 24 C.
  • a crossing angle 38 is one which is formed at the Y crossover portion 30 by the centerline of the channel waveguide 24 B and the centerline of the channel waveguides 24 C.
  • the crossing angle 38 has the same value in both an X-crossover and an Y-crossover. In order to decrease drive voltage (or drive current) to the range from about 5V to about 20V, it is preferable that the crossing angle 38 ranges from 0.5° to 2.0°.
  • upper electrodes 26 A, 26 B, and 26 C are disposed as a control electrode on the Y-crossover portion 30 .
  • Each of the upper electrodes 26 A, 26 B, and 26 C is arranged in a predetermined layout so that signal light 44 incident from the incident port 18 is totally reflected from the reflection plane formed along the edge of each electrode to be outputted to the outgoing port 20 or 22 .
  • the signal light when the signal light is coupled to the outgoing port 20 , as shown in FIG. 4B , a voltage is applied between the conductive substrate 12 and the upper electrodes 26 B and 26 C to form a reflection plane 42 B along the edges of the upper electrodes 26 B and 26 C on the waveguide side.
  • the signal light 44 incident from the incident port 18 propagates along the centerline of the channel waveguide 24 A to be totally reflected from the reflection plane 42 B, and the signal light 44 is outputted to the outgoing port 20 along the centerline of the channel waveguide 24 B.
  • the condition of the total reflection is that the angle formed by the centerline of the channel waveguide 24 A and the reflection plane 42 B becomes equal to the angle formed by the centerline of the channel waveguide 24 B and the reflection plane 42 B.
  • the angle of the total reflection is a total reflection supplementary angle 40 .
  • the signal light when the signal light is coupled to the outgoing port 22 , as shown in FIG. 4C , a voltage is applied between the conductive substrate 12 and the upper electrodes 26 A and 26 C to form a reflection plane 42 A along the edges of the upper electrodes 26 A and 26 C on the waveguide side.
  • the signal light 44 incident from the incident port 18 propagates along the centerline of the channel waveguide 24 A to be totally reflected from the reflection plane 42 A, and the signal light 44 is outputted to the outgoing port 22 along the centerline of the channel waveguide 24 C.
  • the upper electrode 26 C is formed in a triangle having two sides that are the edges along the reflection plane 42 A and along the reflection plane 42 B, respectively.
  • the upper electrode 26 C is used as a common electrode to which a voltage is applied when the signal light 44 is coupled to either of the outgoing port 20 or 22 .
  • a part of the channel waveguide corresponding to the upper electrode 26 C is removed by etching or the like to form a groove portion (trench) 46 .
  • the switching can be performed only by applying the voltage to the upper electrodes formed at two positions, which simplifies the control of the refractive index.
  • the total reflection supplementary angle is a half of the crossing angle in an X-crossover
  • the total reflection supplementary angle 40 can be set to a quarter of the crossing angle 38 in the optical switch having the above-described structure because the optical switch has a Y-crossover. Therefore, the decrease in refractive index can be suppressed to a small amount in the reflection plane 42 B, which allows the drive voltage or the drive current to be decreased.
  • the reflection plane is not formed on the branched channel waveguides 24 B and 24 C, but the reflection plane is formed by providing the electrode on the Y-crossover portion 30 , so that the reflection plane is hardly affected by the shape of the branching portion or a production error of the upper electrode 26 , and the crosstalk is decreased when compared with the conventional Y-branching optical switch.
  • the upper electrode 26 is formed on the Y-crossover portion 30 having a large area in the embodiment, so that the degradation of the switching characteristics is hardly generated by the production error of the upper electrode 26 .
  • the maximum width of the taper portion ranges from 5 ⁇ m to 50 ⁇ m.
  • the maximum width of the taper portion is appropriately optimized in accordance with the refractive index of the optical waveguide layer, the difference in refractive index between the optical waveguide layer and the cladding layer, the width of the channel waveguide, the crossing angle, and the like.
  • FIG. 6 shows calculation result of the change in refractive index necessary to obtain a 20-dB crosstalk when the maximum width of the taper portion is variously changed on the following conditions with respect to the optical switch according to the embodiment.
  • Refractive index of optical waveguide layer 2.43
  • Width of channel waveguide 4 ⁇ m
  • the maximum width of the taper portion when the maximum width of the taper portion is not more than the range from 10 ⁇ m to 18 ⁇ m, a large and rapid change in refractive index is required. Therefore, in order not to generate the degradation of the switching characteristics, it is desirable that the maximum width of the taper portion is not lower than at least 10 ⁇ m. Since a large change in refractive index is also required when the maximum width of the taper portion is not less than the range from 24 ⁇ m to 26 ⁇ m, it is desirable that the maximum width of the taper portion is not more than at least 26 ⁇ m.
  • the taper length ranges from 200 ⁇ m to 2000 ⁇ m.
  • the taper length is appropriately optimized in accordance with the refractive index of the optical waveguide layer, the difference in refractive index between the optical waveguide layer and the cladding layer, the width of the channel waveguide, the crossing angle, and the like.
  • the taper length is shorter than 200 ⁇ m, degradation of the switching characteristics or increase in radiation loss is generated.
  • the taper length is longer than 2000 ⁇ m, the switching characteristics are also gradually degraded. Further, when the taper length is increased, there is a problem that the device becomes large or the like.
  • FIG. 7 shows the calculation result of the change in refractive index necessary to obtain a 20-dB crosstalk when the taper length is variously changed on the following conditions with respect to the optical switch according to the embodiment.
  • Refractive index of optical waveguide layer 2.43
  • Width of channel waveguide 4 ⁇ m
  • the taper length is not more than the range from 400 ⁇ m to 600 ⁇ m, a large and rapid change in refractive index is required. Therefore, in order not to generate degradation of the switching characteristics, it is desirable that the taper length is not less than 600 ⁇ m. Although a somewhat large change in refractive index is also required when the taper length is not less than the range from 700 ⁇ m to 800 ⁇ m, the switching characteristics are not remarkably degraded. Therefore, in view of miniaturization of the device, it is desirable that the taper length is not more than 1000 ⁇ m.
  • the taper length on the incident-side of the channel waveguide is different from the taper length on the outgoing-side of the channel waveguide.
  • the switching characteristics can be optimized by the different taper lengths.
  • the length of the linear portion (L 2 of FIG. 3 ) connected to the taper portion can be mainly determined by the relationship with the taper length. It is preferable that the length of the linear portion ranges up to 1600 ⁇ m.
  • the length of the linear portion is appropriately optimized in accordance with the refractive index of the optical waveguide layer, the difference in refractive index between the optical waveguide layer and the cladding layer, the width of the channel waveguide, the crossing angle, and the like.
  • the length of the linear portion is shorter than 200 ⁇ m, the tendency of the switching characteristics degradation is generated.
  • the length of the linear portion is longer than 1600 ⁇ m, the switching characteristics are also degraded. Further, there is a problem that the device becomes large or the like.
  • FIG. 8 shows the calculation result of the change in refractive index necessary to obtain a 20-dB crosstalk when the length of the linear portion is variously changed on the following conditions with respect to the optical switch according to the embodiment.
  • Refractive index of optical waveguide layer 2.43
  • Width of channel waveguide 4 ⁇ m
  • the length of the linear portion ranges from 200 ⁇ m to 800 ⁇ m.
  • the exuded component When light is introduced into the optical waveguide layer provided on the substrate, generally, part of total light intensity exudes to the conductive substrate having lower transparency, the exuded component is absorbed into the conductive substrate, and propagation loss is generated in accordance with the light propagation. However, as shown in FIG. 5 , when a portion of the thickness where exuding occurs is replaced with the buffer layer 14 , the exuded component is not absorbed into the conductive substrate 12 and the propagation loss can be decreased. In order that the buffer layer 14 functions as an isolation layer between the optical waveguide layer 16 and the conductive substrate 12 , it is necessary that the refractive index of the material of the buffer layer 14 is smaller than that of the optical waveguide layer 16 .
  • the material of the buffer layer 14 In order that the light propagation loss arising from scattering by grain boundaries existing on the surface of the optical waveguide layer 16 or in the optical waveguide layer 16 is decreased to a practical level, it is essential that the material of the buffer layer 14 hold an epitaxial relationship with the material of the conductive substrate or the optical waveguide layer. It is desirable that the material of the optical waveguide layer 16 has a higher electro-optic coefficient, and it is desirable that the material of the conductive substrate 12 has lower resistivity. In order to decrease the propagation loss to a value not more than 1 dB/cm, it is necessary that a film thickness ratio of the buffer layer 14 to the optical waveguide layer 16 should be not less than at least 0.1. When operation is predicated in a TE 0 single mode, it is proper to set the film thickness ratio not less than 0.5.
  • the voltage applied between the upper and lower electrodes is distributed in accordance with each capacity of the optical waveguide layer 16 and the buffer layer 14 , which causes decrease in effective voltage that can be applied to the optical waveguide layer 16 , when the buffer layer 14 exists between the conductive substrate 12 and the optical waveguide layer 16 .
  • a higher effective voltage can be applied to the optical waveguide layer 16 by using the buffer layer 14 which has a constant film thickness and high dielectric constant.
  • LiNbO 3 a compound semiconductor, quartz, polymer, and the like can be utilized as the waveguide material. From the viewpoints of high-speed response, low power consumption, low light loss, and miniaturization, it is desirable, in particular, to use the following materials.
  • a conductive or semiconductive single crystal substrate or a substrate in which an epitaxial thin film or a conductive or semiconductive thin film having a single orientation is provided on the surface can be used as the conductive substrate 12 which is of a lower electrode.
  • An oxide such as SrTiO 3 doped with Nb, La, or the like, Al-doped ZnO, In 2 O 3 , RuO 2 , BaPbO 3 , SrRuO 3 , YBa 2 CU 3 O 7-X , SrVO 3 , LaNiO 3 , La 0.5 Sr 0.5 CoO 3 , ZnGa 2 O 4 , CdGa 2 O 4 , CdGa 2 O 4 , Mg 2 TiO 4 , and MgTi 2 O 4 ; a single semiconductor such as Si, Ge, and diamond; a III-V compound semiconductor such as AlAs, AlSb, AlP, GaAs, GaSb, InP, InAs, InSb, AlG
  • the conductive or semiconductive thin film is provided on the non-oxide substrate, it is effective that an oxide such as SrTiO 3 , BaTiO 3 , BaZrO 3 , LaAlO 3 , ZrO 2 , 8% Y 2 O 3 —ZrO 2 , MgO, MgAl 2 O 4 , LiNbO 3 , LiTaO 3 , Al 2 O 3 , and ZnO is formed as the buffer layer on the surface of the non-oxide substrate, and thereafter, the conductive or semiconductive thin film is formed thereon.
  • an oxide such as SrTiO 3 , BaTiO 3 , BaZrO 3 , LaAlO 3 , ZrO 2 , 8% Y 2 O 3 —ZrO 2 , MgO, MgAl 2 O 4 , LiNbO 3 , LiTaO 3 , Al 2 O 3 , and ZnO is formed as the buffer layer on the surface of the non-oxide
  • the material which has the refractive index lower than that of the optical waveguide layer 16 and the relative dielectric constant not less than 8 is used as the buffer layer 14 .
  • the ratio of the relative dielectric constant of the buffer layer 14 to the relative dielectric constant of the optical waveguide layer 16 is preferably not less than 0.002, and the ratio is more preferably not less than 0.006. It is necessary that the material of the buffer layer 14 holds an epitaxial relationship with the materials of the conductive substrate 12 and the optical waveguide layer 16 .
  • a similar crystal structure and a difference in lattice constant of not more than 10% can be cited as the condition that the epitaxial relationship can be held. However, as long as the epitaxial relationship can be held, it is not always necessary to satisfy the condition.
  • a perovskite type of oxide of an ABO 3 type SrTiO 3 , BaTiO 3 , (Sr 1-x Ba x )TiO 3 (0 ⁇ x ⁇ 1.0), PbTiO 3 , Pb 1-x La x (Zr y Ti 1-y ) 1-x/4 O 3 (0 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 1.0, and PZT, PLT, and PLZT depending on values of x and y), Pb(Mg 1/3 Nb 2/3 )O 3 , and KNbO 3 can be cited as a tetragonal system, a trigonal system, an orthorhombic system, or a quasi-cubic system, and a ferroelectric substance such as LiNbO 3 and LiTaO 3 can be cited as a hexagonal system.
  • Bi 4 Ti 3 O 12 , Pb 2 KNb 5 O 15 , K 3 Li 2 Nb 5 O 15 , and ZnO and substituted derivatives of these compounds can be cited in addition to Sr x Ba 1-x Nb 2 O 6 and Pb x Ba 1-x Nb 2 O 6 .
  • the film thickness of the buffer layer 14 is not less than 10 nm.
  • the film thickness ratio of the buffer layer 14 to the optical waveguide layer 16 is preferably not less than 0.1, and the ratio is more preferably not less than 0.5.
  • the oxide having a refractive index larger than that of the buffer layer 14 is used for the optical waveguide layer 16 .
  • PbTiO 3 , PbTiO 3 , Pb 1-x La x (Zr y Ti 1-y ) 1-x/4 O 3 (PZT, PLT, and PLZT depending on values of x and y) Pb(Mg 1/3 Nb 2/3 )O 3 , and KNbO 3 can be cited as the tetragonal system, the trigonal system, the orthorhombic system, or the quasi-cubic system, and the ferroelectric substance such as LiNbO 3 and LiTaO 3 can be cited as the hexagonal system.
  • the film thickness of the optical waveguide layer 16 is set in the range from 0.1 ⁇ m to 10 ⁇ m, and the film thickness of the optical waveguide layer 16 can be appropriately selected in accordance with the purpose.
  • the material similar to the buffer layer 14 can be used as the cladding layer.
  • the material of the cladding layer it is not always necessary to hold an epitaxial relationship with the optical waveguide layer, and it is possible to use a polycrystalline thin film.
  • a uniform interface it is necessary to hold the epitaxial relationship with the optical waveguide layer.
  • a similar crystal structure and a difference in lattice constant of not more than 10% can be cited as the condition that the epitaxial relationship can be held. However, as long as the epitaxial relationship can be held, it is not always necessary to satisfy the condition.
  • SrTiO 3 , BaTiO 3 , (Sr 1-x Ba x )TiO 3 , PbTiO 3 , Pb 1-x La x (Zr y Ti 1-y ) 1-x/4 O 3 , Pb(Mg 1/3 Nb 2/3 )O 3 , and KNbO 3 can be cited as the tetragonal system, the trigonal system, the orthorhombic system, or the quasi-cubic system, and the ferroelectric substance such as LiNbO 3 and LiTaO 3 can be cited as the hexagonal system.
  • the film thickness of the cladding layer is not less than 10 nm.
  • the film thickness ratio of the cladding layer to the optical waveguide layer 16 is preferably not less than 0.1, and the ratio is more preferably not less than 0.5.
  • the various combinations satisfying the above-described conditions can be adopted as the combination of the materials of the conductive substrate, the buffer layer, the optical waveguide layer, and the cladding layer. It is preferable to use a doped SrTiO 3 single crystal semiconductor substrate, it is preferable that a doped SrTiO 3 semiconductor thin film is used as the conductive substrate, or it is preferable to use the substrate in which a SrRuO 3 conductive thin film is grown after an MgO buffer layer is grown on the Si single crystal. When the conductive substrate is used, it is most effective that Pb 1-x La x (Zr y Ti 1-y ) 1-x/4 O 3 (PLZT) is used for each of the buffer layer, the optical waveguide layer, and the cladding layer.
  • Pb 1-x La x (Zr y Ti 1-y ) 1-x/4 O 3 (PLZT) is used for each of the buffer layer, the optical waveguide layer, and the cladding layer.
  • PLZT has a perovskite structure similar to the above-described conductive substrate, so that the difference in lattice constant is small and good epitaxial growth is possible.
  • PLZT has the refractive index larger than the refractive index of 2.399 of the conductive substrate, and PLZT has a higher electro-optic coefficient. Further, the refractive index of each layer can be largely changed by changing the composition, i.e., the ratio of Pb, La, Zr, and Ti.
  • the metal such as Al, Ti, Cr, Ni, Cu, Pd, Ag, In, Sn, Ta, W, Ir, Pt, and Au and the alloy of these metals, and the oxide such as Al-doped ZnO, In 2 O 3 , ITO, RuO 2 , BaPbO 3 , SrRuO 3 , YBa 2 Cu 3 O 7-x , SrVO 3 , LaNiO 3 , La 0.5 Sr 0.5 CoO 3 , ZnGa 2 O 4 , CdGa 2 O 4 , CdGa 2 O 4 , Mg 2 TiO 4 , and MgTi 2 O 4 can be used as the upper electrode 26 .
  • a metal electrode When a cladding layer is used, it is desirable to use a metal electrode in which micropatterning can be easily performed. When a cladding layer is not used, it is effective to use an oxide electrode, and it is desirable to use a transparent oxide electrode such as ITO. When fatigue or DC drift is generated with increasing operating time, it is effective to use an oxide electrode.
  • Each of the cladding layer, the optical waveguide layer, and the buffer layer can be produced by any one of a vapor phase epitaxial growth method such as electron-beam evaporation, flash evaporation, ion plating, RF-magnetron sputtering, ion-beam sputtering, laser abrasion, MBE, CVD, plasma CVD, and MO-CVD; a solid phase epitaxial growth method which heats an amorphous thin film formed by the above-described vapor phase growth; and a solid phase epitaxial growth method which heats the amorphous thin film produced by a wet process such as a sol-gel process and an MOD method.
  • a vapor phase epitaxial growth method such as electron-beam evaporation, flash evaporation, ion plating, RF-magnetron sputtering, ion-beam sputtering, laser abrasion, MBE, CVD, plasma CVD, and MO-CV
  • the solid phase epitaxial growth method is preferable from the viewpoint of waveguide quality and waveguide patterning.
  • the solid phase epitaxial growth method can include an applying process for applying to the substrate a solution of a metal organic compound such as metal alkoxide and organometallic salt by the wet process such as the sol-gel process and the MOD method; a process for forming the amorphous phase by heating; and a process for performing crystallization by heating.
  • the solid phase epitaxial growth method described above facilities cost becomes lower when compared with each of the vapor phase epitaxial growth methods, good uniformity is obtained in a substrate plane, and it is easy to control the refractive index which is important for structure control of the buffer layer, optical waveguide layer, and the cladding layer, so that the optical switch can be produced with good reproducibility. Therefore, in the solid phase epitaxial growth method, it is possible to grow the buffer layer and the like in which light propagation loss is low.
  • the solid phase epitaxial growth method is also most suitable for the patterning because the solid phase epitaxial growth method includes the process for forming an amorphous thin film.
  • the optical switch is produced by the epitaxial growth of each layer, when compared with the conventional material and structure, it is easy to control the refractive index and thickness of each of the substrate, the buffer layer, the thin film optical waveguide, and the cladding layer.
  • the buffer layer when Pb(Zr x Ti 1-x )O 3 (0 ⁇ x ⁇ 1.0) is used for the buffer layer, the thin film optical waveguide, and the cladding layer, not only mutual crystal conformation is good, but also the refractive index for the wavelength of 0.633 ⁇ m can be selected from a wide range of about 2.45 to about 2.70 in accordance with the composition.
  • the channel waveguides having various shapes can be easily produced by producing each layer by the thin film growth process.
  • the effective refractive index of the channel optical waveguide or the difference in refractive index between the channel optical waveguide and the outside can be designed over the wide range, and a curvature of a curved channel can be increased if necessary while the radiation loss is suppressed, so that a large-scale matrix optical switch can be easily produced.
  • any one of the embedded type, the ridge type, and the rib type which are usually adopted can be used for the channel optical waveguide.
  • An epitaxial or single-orientated buffer layer is provided on a conductive or semiconductive single crystal substrate which becomes a lower electrode.
  • an epitaxial or single-orientated oxide thin film optical waveguide which has the refractive index larger than that of the buffer layer and an electro-optic effect is provided.
  • a cladding layer which has the refractive index smaller than that of the optical waveguide and the high dielectric constant is provided if necessary, an the upper electrode is provided on the cladding layer.
  • the structure in which the optical waveguide is sandwiched between the upper and lower electrodes can be formed, and the low voltage can induce a large change in refractive index without losing the low light-propagation-loss characteristics.
  • the epitaxial or single-orientated buffer layer is provided on the conductive or semiconductive single crystal substrate which becomes the lower electrode, the epitaxial or single-orientated oxide thin film optical waveguide which has the refractive index larger than that of the buffer layer and the electro-optic effect is provided on the buffer layer, and the upper electrode is provided on the optical waveguide. Therefore, the change in refractive index can be effectively performed by applying the voltage to obtain a clear refractive index contrast necessary for the total reflection type of optical switch. As a result, the structure described above is extremely effective for decreasing drive voltage, and the length of each electrode can be significantly reduced.
  • the optical switch is produced by the epitaxial growth of each layer, when compared with the conventional material and structure, it is easy to control the refractive index and thickness of each of the substrate, the buffer layer, the thin film optical waveguide, and the cladding layer.
  • the buffer layer when Pb(Zr x Ti 1-x )O 3 (0 ⁇ x ⁇ 1.0) is used for the buffer layer, the thin film optical waveguide, and the cladding layer, not only mutual crystal conformation is good, but also the refractive index for the wavelength of 0.633 ⁇ m can be selected from a wide range of about 2.45 to about 2.70 in accordance with the composition.
  • the channel waveguides having various shapes can be easily produced by producing each layer by the thin film growth process.
  • the effective refractive index of the channel optical waveguide or the difference in refractive index between the channel optical waveguide and the outside can be designed over the wide range, and the curvature of the curved channel can be increased if necessary while the radiation loss is suppressed, so that a large-scale matrix optical switch can be easily produced.
  • an end face for incidence from N optical fibers and an end face for outgoing to the optical fiber are provided at both ends of the single crystal substrate, wiring between the incident end face and the outgoing end face is performed with the channel optical waveguide and the curved optical waveguide which constitute the total reflection type of optical switch, and the light beam incident from each optical fiber through the incident end face is switched by applying the voltage between the upper and lower electrodes which are provided on the crossover portion of the total reflection type of switch.
  • the optical path can be switched to the desired M optical fibers, the switching between ports with a proper interval can be realized with low drive voltage, and the electrode length and the length of the curved channel optical waveguide can be also reduced if necessary, so that the multiplicity of optical switches can be integrated in the substrate wafer having the same size as the conventional one to obtain a large-scale matrix optical switch.
  • the PLZT buffer layer 14 having the refractive index of 2.410 at the wavelength of 1.55 ⁇ m is formed by the solid phase epitaxial growth on the conductive substrate 12 made of Nb-doped SrTiO 3 ( 100 ) single crystal semiconductor so that the thickness of the buffer layer 14 becomes 2000 nm, and then the PLZT optical waveguide layer 16 having the refractive index of 2.446 is formed by the solid phase epitaxial growth so that the thickness of the optical waveguide layer 16 becomes 2500 nm.
  • the difference in refractive index between the buffer layer 14 and the optical waveguide layer 16 is 0.4%.
  • the substrate made of Nb-doped SrTiO 3 ( 100 ) single crystal, in which cleaning, etching, and drying are already performed.
  • the substrate is heated in O 2 atmosphere and held at 350° C. After the substrate is further held at 750° C., the substrate is cooled.
  • the solid phase epitaxial growth of the PLZT buffer layer 14 is performed by repeating the above process. Similarly, the solid phase epitaxial growth of the PLZT optical waveguide layer 16 is performed.
  • an electrode pattern is formed by photolithography.
  • the patterns of the upper electrodes 26 A, 26 B, and 26 C shown in FIG. 1 are formed by a lift-off method.
  • the pattern of the channel waveguide 24 C shown in FIG. 1 is formed by photolithography, and the channel waveguide 24 having the ridge structure is formed by ICP dry etching.
  • the width of the channel waveguide is 4 ⁇ m
  • the taper length is 700 ⁇ m
  • the maximum width of the taper portion is 20 ⁇ m
  • the length of the linear portion is 400 ⁇ m
  • the Y-crossing angle is 1.0°.
  • the substrate is cut into optical switch chips having an overall length of about 6 mm by dicing.
  • the incident end face and the outgoing end face are formed by polishing.
  • a crystallographic relationship of each layer of the obtained optical switch 10 is as follows.
  • the electro-optic coefficient r of 85 pm/V is obtained for the PLZT optical waveguide layer, after initialization voltage, i.e., poling voltage of 50V is applied between the lower electrode of the Nb-doped SrTiO 3 substrate and the upper electrode.
  • Single mode optical fibers are disposed at the incident end face and the outgoing end face of the 1 ⁇ 2 optical switch of Example 1.
  • a laser beam having the wavelength of 1.55 ⁇ m is introduced from the optical fiber to the incident port 18 , and voltage is applied between the conductive substrate 12 and the upper electrodes 26 B and 26 C. Accordingly, the refractive index of the optical waveguide layer 16 between the electrodes is decreased, the laser beam introduced from the incident port 18 is totally reflected from the Y-crossover portion 30 to select the outgoing port 20 , and switching of the optical fiber path is performed as a digital type of switch.
  • voltage is applied between the conductive substrate 12 and the upper electrodes 26 A and 26 C, the outgoing port 22 is selected, and switching of the optical fiber path is similarly performed as a digital type of switch.
  • FIG. 9 shows a relationship between the drive voltage and the crosstalk (difference in light quantity between the outgoing ports) which are obtained by this optical switch.
  • the crosstalk becomes 20 dB at voltage 8V, and the digital characteristic can be obtained that the crosstalk not less than 20 dB is maintained as long as the voltage not less than 8V is applied.
  • the drive voltage becomes 8V, which is about a fraction of the voltage required for the conventional 1 ⁇ 2 optical switch made of LiNbO 3 .
  • the switching speed is 3 ns
  • the crosstalk is not more than 20 dB
  • the insertion loss is not more than 3 dB.
  • the 1 ⁇ 2 optical switch which is independent of polarized wave and has good characteristics is obtained.
  • Example 2 the difference in refractive index between the buffer layer 14 and the channel optical waveguide 24 is set to 0.3%.
  • the width of the channel waveguide is set to 4 ⁇ m
  • the taper length is set to 9001m
  • the maximum width of the taper portion is set to 24 ⁇ m
  • the length of the linear portion is set to 400 ⁇ m
  • the Y-crossing angle is set to 0.5°.
  • the groove portion 46 is formed instead of the formation of the upper electrode 26 C, and the patterns of upper electrodes 26 D and 26 E are formed so that the channel waveguide 24 is substantially covered with the patterns.
  • a 1 ⁇ 2 optical switch 60 is formed in a manner similar to Example 1.
  • the optical switch 60 When the optical switch 60 is evaluated in the manner similar to Example 1, the relationship between the drive voltage and the crosstalk is obtained as shown in FIG. 12 . As can be seen from FIG. 12 , the crosstalk becomes 20 dB at voltage 5V, and the digital characteristic can be obtained that the crosstalk not less than 20 dB is maintained as long as the voltage not less than 5V is applied.
  • the drive voltage becomes 5V, which is in the range where a CMOS can be driven and which is one-tenth of the voltage required for the conventional 1 ⁇ 2 optical switch made of LiNbO 3 .
  • the switching speed is 4 ns, the crosstalk is not more than 20 dB, and the insertion loss is not more than 3 dB.
  • the 1 ⁇ 2 optical switch which is independent of polarized wave and has good characteristics is obtained.
  • the optical switch having the plane structure substantially similar to FIG. 11 can be produced.
  • the patterns of upper electrodes 26 H and 26 I of FIG. 17 can be formed as a co-planar type of electrode pattern.
  • Example 3 the difference in refractive index between the buffer layer 14 and the channel optical waveguide 24 is set to 0.2%, the width of the channel waveguide is set to 4 ⁇ m, the taper length is set to 700 ⁇ m, the maximum width of the taper portion is set to 24 ⁇ m, the length of the linear portion is set to 400 ⁇ m, and the Y-crossing angle is set to 0.5°. Except for the above, the 1 ⁇ 2 optical switch 60 in which the patterns of the upper electrodes 26 D and 26 E are formed is formed in the manner similar to Example 2.
  • the optical switch 60 When the optical switch 60 is evaluated in the manner similar to Example 1, the relationship between the drive voltage and the crosstalk is obtained as shown in FIG. 13 . As can be seen from FIG. 13 , the crosstalk becomes 20 dB at voltage 9V, and the digital characteristic can be obtained that the crosstalk not less than 20 dB is maintained as long as the voltage not less than 9V is applied.
  • the drive voltage becomes 9V which is about a fraction of the voltage required for the conventional 1 ⁇ 2 optical switch made of LiNbO 3 .
  • the switching speed is 3 ns
  • the crosstalk is not more than 20 dB
  • the insertion loss is not more than 3 dB.
  • the 1 ⁇ 2 optical switch which is independent of polarized wave and has good characteristics is obtained.
  • Example 4 as shown in FIG. 14 , plural 1 ⁇ 2 optical switches of Example 2 are arrayed on the same substrate 52 by the combination of the 1 ⁇ 2 optical switches to form a 1 ⁇ 8 optical switch 70 in which a channel waveguide 54 having plural branches is formed.
  • One single mode optical fiber is disposed at the incident end face of the optical switch 70 and eight single mode optical fibers are disposed at the outgoing end face at intervals of 254 ⁇ m.
  • a laser beam having the wavelength of 1.55 ⁇ m is introduced to the incident port of the 1 ⁇ 8 optical switch of Example 4 from the optical fiber, and the optical fiber path of the laser beam introduced from the incident port is switched in the form of a digital type of optical switch by applying voltage 8V between the conductive substrate 12 and the upper electrode 26 D.
  • the drive voltage becomes 5V, which is in the range where a CMOS can be driven and which is about one-tenth of the voltage required for the conventional 1 ⁇ 8 optical switch made of LiNbO 3 .
  • the switching speed is 4 ns, the crosstalk becomes not more than 20 dB, and the insertion loss is not more than 5 dB.
  • the 1 ⁇ 8 optical switch which is independent of polarized wave and has good characteristics is obtained.
  • Example 5 a digital type and a strictly nonblocking type of 8 ⁇ 8 optical switch 80 is formed by arraying one hundred twelve 1 ⁇ 2 optical switches of Example 2 on the same substrate.
  • a digital type and a strictly nonblocking type of 8 ⁇ 8 optical switch is formed as another example of the invention by combining one hundred twelve 1 ⁇ 2 optical switches having the same configuration as that of Example 2.
  • the incident end face, the outgoing end face, and the 1 ⁇ 2 optical switches are connected to one another with an S-shaped type, linear type, and X-shaped type of channel optical waveguide.
  • Single mode optical fiber arrays in which eight optical fibers are provided at intervals of 127 ⁇ m are disposed at the incident end face and the outgoing end face, respectively.
  • the drive voltage becomes 5V which is about one-tenth of the voltage required for the conventional 8 ⁇ 8 optical switch made of LiNbO 3 .
  • the switching speed is 4 ns
  • the crosstalk becomes not more than 40 dB because the switch is formed in two stages
  • the insertion loss is not more than 7 dB.
  • the 8 ⁇ 8 optical switch which is independent of polarized wave and has good characteristics is obtained.
  • Example 6 the epitaxial MgO ( 100 ) film 17 is grown on a Si ( 100 ) single crystal substrate, and then the SrRuO 3 ( 100 ) conductive thin film 19 is grown as a lower electrode, and thereafter the PLZT buffer layer 14 and the PLZT optical waveguide layer 16 are formed.
  • the difference in refractive index between the buffer layer 14 and the channel optical waveguide 24 is set to 0.2%, the width of the channel waveguide is set to 4 ⁇ m, the taper length is set to 600 ⁇ m, the maximum width of the taper portion is set to 24 ⁇ m, the length of the linear portion is set to 400 ⁇ m, and the Y-crossing angle is set to 0.5°. As shown in FIGS.
  • the groove portion 46 is formed instead of the formation of the upper electrode 26 C, and the patterns of upper electrodes 26 F and 26 G whose electrode lengths are shortened for the purpose of high speed are formed.
  • a polymer layer 56 is formed as a cladding layer on the optical waveguide layer 16 . Except for the above, a 1 ⁇ 2 optical switch 80 is formed in the manner similar to Example 2.
  • the produced 1 ⁇ 2 optical switch 80 is evaluated in the manner similar to Example 1, in the 1 ⁇ 2 optical switch 80 , in spite of the fact that the overall length is as small as about 6 mm, the digital characteristics that the drive voltage becomes 12V and the crosstalk is 20 dB are obtained, the switching speed is 2 ns, and the insertion loss is not more than 3 dB.
  • the 1 ⁇ 2 optical switch which is independent of polarized wave and has good characteristics is obtained.
  • the crossing angle ranges from 0.5° to 2.0°. Since the reflection plane is formed near the crossover portion located on the upstream side of the branching portion in the light propagation direction, the reflection plane is hardly affected by the shape of the branching portion of the channel waveguide or the production error of the electrode, and crosstalk is decreased when compared with the conventional Y-branching optical switch.
  • control electrode is formed on the optical waveguide layer so that the angle formed by the centerline of the incident-side channel waveguide and the edge of the control electrode on the waveguide side becomes equal to the angle formed by the centerline of the outgoing-side channel waveguide and the edge of the control electrode on the waveguide side, and the incident light signal is totally reflected from the reflection plane.
  • the taper portion extending toward the propagation direction of the light signal is formed on the outgoing-side of the incident-side channel waveguide and the taper portion is connected to the incident-side of the outgoing-side channel waveguide through the coupling portion.
  • Crosstalk can be further decreased by forming the crossover portion in the tapered shape.
  • the reverse taper portion extending toward the opposite direction to the propagation direction of the light signal is formed on the incident-side of the outgoing-side channel waveguide and the coupling portion is formed by the linear channel waveguide having the same width as that of the outgoing end of the incident-side channel waveguide.
  • the groove is formed between the outgoing-side channel waveguides adjacent to each other.
  • the control electrode forms the reflection plane which is contiguous to the interface between the optical waveguide layer and the groove.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)
US10/922,601 2004-08-20 2004-08-20 Optical switch and matrix optical switch Abandoned US20060039646A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/922,601 US20060039646A1 (en) 2004-08-20 2004-08-20 Optical switch and matrix optical switch
JP2005010970A JP2006058837A (ja) 2004-08-20 2005-01-18 光スイッチ及びマトリクス光スイッチ
US11/398,151 US7302140B2 (en) 2004-08-20 2006-04-05 Optical switch and matrix optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/922,601 US20060039646A1 (en) 2004-08-20 2004-08-20 Optical switch and matrix optical switch

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/398,151 Continuation-In-Part US7302140B2 (en) 2004-08-20 2006-04-05 Optical switch and matrix optical switch

Publications (1)

Publication Number Publication Date
US20060039646A1 true US20060039646A1 (en) 2006-02-23

Family

ID=35909713

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/922,601 Abandoned US20060039646A1 (en) 2004-08-20 2004-08-20 Optical switch and matrix optical switch
US11/398,151 Expired - Fee Related US7302140B2 (en) 2004-08-20 2006-04-05 Optical switch and matrix optical switch

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/398,151 Expired - Fee Related US7302140B2 (en) 2004-08-20 2006-04-05 Optical switch and matrix optical switch

Country Status (2)

Country Link
US (2) US20060039646A1 (ja)
JP (1) JP2006058837A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090046977A1 (en) * 2007-08-16 2009-02-19 Fuji Xerox Co., Ltd. Waveguide device and optical network system
US20090214161A1 (en) * 2005-07-08 2009-08-27 Keio Univeristy Multimode Interference Waveguide Type Optical Switch
US20090310910A1 (en) * 2004-09-21 2009-12-17 Maki Jeffery J Optical switches
US20140178005A1 (en) * 2012-11-30 2014-06-26 Yi Zhang Compact and low loss Y-junction for submicron silicon waveguide
EP2204679A3 (en) * 2008-12-30 2015-03-25 Das Photonics, S.L. Integrated photonic guide crossing structure
WO2017004276A1 (en) * 2015-06-29 2017-01-05 Coriant Advanced Technology, LLC A multi-mode interference coupler
US9557486B2 (en) 2015-06-29 2017-01-31 Elenion Technologies, Llc Optimized 2×2 3dB multi-mode interference coupler
US9946020B1 (en) * 2017-02-03 2018-04-17 Elenion Technologies, Llc Mode matched Y-junction
WO2020227761A1 (en) * 2019-05-10 2020-11-19 The University Of Queensland An optical beam scanner
CN113311541A (zh) * 2021-06-24 2021-08-27 四川梓冠光电科技有限公司 光开关、微电子机械系统及光开关安装方法
US20220091333A1 (en) * 2020-09-23 2022-03-24 Apple Inc. Light Splitting Device
US11609392B1 (en) * 2022-02-24 2023-03-21 X Development Llc Photonic coupler

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039646A1 (en) 2004-08-20 2006-02-23 Keiichi Nashimoto Optical switch and matrix optical switch
JP2007011146A (ja) * 2005-07-01 2007-01-18 Seikoh Giken Co Ltd ポリマー光導波路の電極形成方法
US8224143B2 (en) 2010-02-05 2012-07-17 Advantest Corporation Substrate structure and manufacturing method
KR101433856B1 (ko) * 2010-07-21 2014-08-27 한국전자통신연구원 광 스위치 소자 및 그의 제조방법
JP5462837B2 (ja) 2011-06-24 2014-04-02 株式会社アドバンテスト 光デバイスまたは光変調装置
JP5291764B2 (ja) 2011-06-24 2013-09-18 株式会社アドバンテスト 光デバイスおよび光変調装置
JP5464260B1 (ja) * 2012-11-28 2014-04-09 Tdk株式会社 電気光学素子
CN105452951B (zh) 2013-06-12 2018-10-19 康宁光电通信无线公司 电压控制式光学定向耦合器
KR102687727B1 (ko) * 2021-11-11 2024-07-24 한국과학기술연구원 에피택시 산화물 박막의 제조방법 및 그로부터 제조된 결정질이 향상된 에피택시 산화물 박막

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439782A (en) * 1993-12-13 1995-08-08 At&T Corp. Methods for making microstructures
US6470125B1 (en) * 1999-02-19 2002-10-22 Fuji Xerox Co., Ltd. Optical device, driving method of optical device and manufacture of optical device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259329A (ja) * 1988-04-11 1989-10-17 Hitachi Ltd 光スイツチ
JPH02201318A (ja) * 1989-01-30 1990-08-09 Oki Electric Ind Co Ltd 導波型光スイッチ
JPH0561703U (ja) * 1992-01-22 1993-08-13 日立電線株式会社 Y分岐光導波路
JPH065350A (ja) 1992-06-19 1994-01-14 Energy Support Corp 避雷素子劣化表示装置
JPH07318986A (ja) 1994-05-25 1995-12-08 Nec Corp 導波路型光スイッチ
JP2000047272A (ja) 1997-07-22 2000-02-18 Fuji Xerox Co Ltd 光導波路素子およびその作製方法
US20060039646A1 (en) 2004-08-20 2006-02-23 Keiichi Nashimoto Optical switch and matrix optical switch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439782A (en) * 1993-12-13 1995-08-08 At&T Corp. Methods for making microstructures
US6470125B1 (en) * 1999-02-19 2002-10-22 Fuji Xerox Co., Ltd. Optical device, driving method of optical device and manufacture of optical device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090310910A1 (en) * 2004-09-21 2009-12-17 Maki Jeffery J Optical switches
US20090214161A1 (en) * 2005-07-08 2009-08-27 Keio Univeristy Multimode Interference Waveguide Type Optical Switch
US7860358B2 (en) * 2005-07-08 2010-12-28 Keio University Multimode interference waveguide type optical switch
US20090046977A1 (en) * 2007-08-16 2009-02-19 Fuji Xerox Co., Ltd. Waveguide device and optical network system
EP2204679A3 (en) * 2008-12-30 2015-03-25 Das Photonics, S.L. Integrated photonic guide crossing structure
US9217829B2 (en) * 2012-11-30 2015-12-22 Coriant Advanced Technology, LLC Compact and low loss Y-junction for submicron silicon waveguide
US10185087B2 (en) 2012-11-30 2019-01-22 Elenion Technologies, Llc Compact and low loss Y-junction for submicron silicon waveguide
US9851503B2 (en) 2012-11-30 2017-12-26 Elenion Technologies, Llc Compact and low loss Y-junction for submicron silicon waveguide
US20140178005A1 (en) * 2012-11-30 2014-06-26 Yi Zhang Compact and low loss Y-junction for submicron silicon waveguide
WO2017004276A1 (en) * 2015-06-29 2017-01-05 Coriant Advanced Technology, LLC A multi-mode interference coupler
US9557486B2 (en) 2015-06-29 2017-01-31 Elenion Technologies, Llc Optimized 2×2 3dB multi-mode interference coupler
US9739947B2 (en) 2015-06-29 2017-08-22 Elenion Technologies, Llc Multi-mode interference coupler
US9798086B2 (en) 2015-06-29 2017-10-24 Elenion Technologies, Llc Optimized 2×2 3dB multi-mode interference coupler
US10012795B2 (en) 2015-06-29 2018-07-03 Elenion Technologies, Llc Multi-mode interference coupler
US10048443B2 (en) 2015-06-29 2018-08-14 Elenion Technologies, Llc Multi-mode interference coupler
US9946020B1 (en) * 2017-02-03 2018-04-17 Elenion Technologies, Llc Mode matched Y-junction
US10393961B2 (en) * 2017-02-03 2019-08-27 Elenion Technologies, Llc Mode matched Y-junction
US20200012046A1 (en) * 2017-02-03 2020-01-09 Elenion Technologies, Llc Mode matched y-junction
US10761265B2 (en) * 2017-02-03 2020-09-01 Elenion Technologies, Llc Mode matched Y-junction
WO2020227761A1 (en) * 2019-05-10 2020-11-19 The University Of Queensland An optical beam scanner
US20220091333A1 (en) * 2020-09-23 2022-03-24 Apple Inc. Light Splitting Device
CN113311541A (zh) * 2021-06-24 2021-08-27 四川梓冠光电科技有限公司 光开关、微电子机械系统及光开关安装方法
US11609392B1 (en) * 2022-02-24 2023-03-21 X Development Llc Photonic coupler
US20230266542A1 (en) * 2022-02-24 2023-08-24 X Development Llc Photonic coupler
US12117659B2 (en) * 2022-02-24 2024-10-15 X Development Llc Photonic coupler

Also Published As

Publication number Publication date
JP2006058837A (ja) 2006-03-02
US20060257073A1 (en) 2006-11-16
US7302140B2 (en) 2007-11-27

Similar Documents

Publication Publication Date Title
US7302140B2 (en) Optical switch and matrix optical switch
US6470125B1 (en) Optical device, driving method of optical device and manufacture of optical device
US6385355B1 (en) Optical deflection element
KR100888299B1 (ko) 광스위치
US5802223A (en) Optical deflecting device
US6307996B1 (en) Optical waveguide device and manufacturing method thereof
Nashimoto et al. High-speed PLZT optical switches for burst and packet switching
JP2003098559A (ja) 光偏向素子及び光スイッチ
US6873751B2 (en) Optical waveguide device and method for fabricating the same
US8131124B2 (en) Optical guided mode spatial switches and their fabrication
JP2000180905A (ja) 光スイッチ
KR100718218B1 (ko) 광학 소자 및 광 스위치
Nashimoto et al. PLZT electro-optic waveguides and switches
US6970626B2 (en) Directional optical coupler
JP2004325536A (ja) 非線形光デバイス
JP2000180904A (ja) 光スイッチ
US20030152329A1 (en) Waveguide-type optical device and optical switch
JP2000241836A (ja) 光スイッチおよび光スイッチの製造方法
JP2002244168A (ja) 光スイッチの設計方法及び光スイッチ
Nashimoto Epitaxial PLZT waveguide technologies for integrated photonics
JP2001296566A (ja) 光偏向素子
JP2000330143A (ja) 光偏向素子
US20020154852A1 (en) Electro-optical waveguide switching method and apparatus
JP4412796B2 (ja) 光導波路素子の製造方法
JP2003021850A (ja) 導波路型光制御デバイスおよびその製造方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOZOMI PHOTONICS CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NASHIMOTO, KEIICHI;REEL/FRAME:015719/0349

Effective date: 20040813

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION