US20050238526A1 - Heat resistant super alloy and its use - Google Patents
Heat resistant super alloy and its use Download PDFInfo
- Publication number
- US20050238526A1 US20050238526A1 US10/995,993 US99599304A US2005238526A1 US 20050238526 A1 US20050238526 A1 US 20050238526A1 US 99599304 A US99599304 A US 99599304A US 2005238526 A1 US2005238526 A1 US 2005238526A1
- Authority
- US
- United States
- Prior art keywords
- percent
- weight
- contents
- heat resistant
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/057—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2203/00—Non-metallic inorganic materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
Definitions
- the present invention relates to a heat resistant super alloy, particularly on a nickel basis.
- Such alloys are used in turbines for a variety of components, but also for other parts, for example for components of furnaces or appliances to be installed in furnaces and kilns.
- the invention relates also to a special use of this super alloy.
- alloys As mentioned above, a variety of alloys is known for similar purposes, as may be seen from U.S. Pat. Nos. 3,466,171; 4,236,921 or 5,439,640.
- the alloy MAR 247 LC on the market is also known and is particularly used in turbine wheels for achieving higher vibration strength. It consists of eleven elements, among them a large amount of cobalt, but also relative large proportions of tantalum and hafnium. This renders this alloy relative unfavorable as to costs.
- this object is achieved in that the alloy suffices the following conditions: carbon 0.01-0.2 percent in weight chromium 8-10 percent in weight aluminum 4-6 percent in weight titanium 2-4 percent in weight molybdenum 1.5-2.8 percent in weight tungsten 10-13.5 percent in weight niobium 1.5-2.5 percent in weight boron 0 ⁇ B ⁇ 0.04 percent in weight zircon 0 ⁇ Zr ⁇ 0.15 percent in weight the contents of hafnium and lanthanum together amounts to 0 ⁇ Hf + La ⁇ 1.5 percent in weight, optionally traces of tantalum, the remainder being nickel.
- this alloy does not present any cobalt at all and has only small proportions of tantalum and hafnium so that it is more cost saving than up to now.
- the alloy permits direction oriented solidification, is resistant against breaking open the particle size grading during casting, is adapted for a thin wall thickness and shows, as compared with the prior art, an improved microstructure of carbide, an improved stability of carbide and a relative high ductility which is also particularly important.
- the traces of tantalum should, in any case, be below 2 percent in weight, preferably below 1.5 percent in weight, and more particularly below 1 percent in weight.
- Ni3 is due to the proportions of aluminum and titanium which preferably amount together to a proportion of >7 percent in weight.
- the proportion of aluminum serves a double purpose, i.e. for forming the ⁇ ′ phase of nickel, on the one hand, and for obtaining a long-time corrosion protection, because it forms a protective layer of Al 2 O 3 at the surface that is especially effective at high temperatures, particularly of the waste gas driving the turbine of a turbocharger.
- the elements Ti, Nb and Al are responsible for precipitation-hardening and intermetallic bonding, the latter being particularly dense in the alloy according to the invention. These three elements together, therefore, should preferably have a greater proportion than 9.5 percent in weight.
- precipitation-hardening attains a higher level of nominal strength so that the matrix of material has to stand less plastic than elastic thermodynamic vibration amplitudes, thus achieving higher vibration strength.
- hafnium and lanthanum which, in this case, has a multiple and synergetic function
- attain micro-alloys which result in an absolute increase of ductility and the cohesion/adhesion ratio at the grain boundaries of the matrix. Therefore, is it preferred if the contents of hafnium and lanthanum together amounts to 0.7 percent in weight in maximum.
- the contents of lanthanum will amount to at least 0.0035 percent in weight, and will suitably not exceed 0.015 percent in weight, preferably 0.01 percent in weight in maximum.
- the contents of hafnium should amount at least to 0.3 percent in weight, and advantageously 0.7 percent in weight, preferably 0.6 percent in weight in maximum.
- the element hafnium is incorporated into the ⁇ ′ phase of nickel in the alloy and increases, therefore, its strength.
- the hot-crackiness when casting the alloy is reduced by the hafnium proportion, especially with materials having columnar dendrites (columnar grain).
- the elements B and Zr improve creep resistance, longtime rupture strength and ductility (to which, thus, several elements of this alloy will contribute) by intercrystalline cohesion. Both elements prevent the formation of carbide films on the grain boundaries. These elements should, however, incorporated only in traces just enough to saturate the grain boundaries. Therefore, it is preferred, if the contents of boron is between 0.01 and 0.035 percent in weight and/or if the contents of zircon is between 0.02 and 0.08 percent in weight.
- the element niobium substitutes aluminum in the ⁇ ′ phase, thus increasing the ⁇ ′ proportion in a desired manner.
- low-cycle fatigue is strongly influenced by fineness of the ⁇ ′ phase, and it is the element niobium which counteracts very effectively to coarsening of the ⁇ ′ phase.
- this element in the matrix according to the invention, plays also the role of a mixed crystal former.
- the alloy according to the invention in an environment of up to 900° C., is free of any formation of a sigma phase. This fact, in conjunction with the improved low-cycle fatigue, makes the alloy according to the invention especially adapted for the use for turbine wheels, particularly in turbochargers.
- FIG. 1 is a micro-section of an alloy according to the invention of which
- FIG. 2 illustrates a detail at an enlarged scale for clarifying the grain boundaries.
- FIG. 1 a micro-section of an alloy according to example 1, discussed later in detail, may be seen.
- the surface of the alloy which comprises the layer of Al 2 O 3 protecting against corrosion, is not visible in this figure.
- it shows clearly the ⁇ ′ phase of dense, approximately elongated hexagonal crystallites with a surprising low extend of dislocation and with a direction oriented solidification which provides for extremely high strength and low-cycle fatigue.
- it is stable against breaking open the grain boundaries when casting, and it is adapted for producing a thin wall thickness, as is required particularly for the rotor blades of turbine rotors, particularly of a turbine, that is subjected to high temperatures, such as in a turbocharger.
- Eutectic needles (dendrites) of the ⁇ / ⁇ ′ phase cannot be observed in this figure.
- the grain boundaries show margins, which can better be seen in FIG. 2 (10-fold magnification), of a layer just of predominantly titanium, tantalum, hafnium and lanthanum, that the grain surface is just covered, as may be seen.
- This has two important advantages, because on the one hand, the proportion of the last-named, expensive elements may be very small, while on the other hand, as has already been mentioned, the elements hafnium and lanthanum cause an absolute increase in ductility and of the cohesion/adhesion ratio at the grain boundaries of the matrix, where they, optionally together with the proportion of molybdenum, act like a “lubricant” of the grain boundaries which permits good ductility, but in the end contributes also to less fatigue.
- FIG. 2 clarifies why the above-mentioned elements are present in so small amounts.
- the thus formed alloy was subsequently subjected to high-temperature isostatic pressing at 1200° C. and a pressure of 1400 bar during four hours. Then, samples were made and tested in accordance with ASTM, Standard E 139. During this test, the samples were subjected to a vibration strength test at 500° C., at 750′ C. and at 900° C., and at a frequency of 1.s ⁇ 1 and 5.s ⁇ 1 , i.e. it was a series of 6 tests in total. In all tests, the improved longer service life hoped for up to breaking of the sample was attained, the performance in the domain of fatigue strength being defines as follows:
- Corrosion resistance was tested in a hot gas test, and this showed a micrograph under the scanning electron microscope having a clear aluminum layer at the surface, which oxidized to Al 2 O 3 , thus providing a corrosion protective layer. This micrograph indicated clearly also the saturation of the grain boundaries by boron and zircon. Neither dendrites had been formed that are worth mentioning, nor were there columnar crystals, and there was a rather uniform grain, as may be desired (see FIG. 1 ).
- a second alloy of the following composition (in percent in weight) has been used, the remainder being nickel: C Cr Al Ti Mo W Nb B Zr Hf La 0.09 9.5 5.5 2.5 2 13 1.75 0.025 0.08 0.45 0.005
- a third alloy of the following composition (in percent in weight) has been used, the remainder being nickel: C Cr Al Ti Mo W Nb B Zr Hf La Ta 0.12 8.5 4.5 3.5 2.75 11.5 2.3 0.01 0.03 0.6 0.004 0.6
- this alloy had, therefore, a total contents of hafnium and lanthanum of 0.604 percent in weight, a total contents of tungsten and molybdenum of 15 percent in weight, and a total contents of aluminum and titanium of 8 percent in weight, the sum of the contents of titanium, niobium and aluminum totaling 10 percent in weight.
- turbine rotors for a turbocharger were produced which were then subjected to solution annealing at 1200° C. for 8 hours, and then to precipitation hardening at 860° C. for 16 hours, each time with subsequent air cooling. All sample rotors were subjected to a long-time test and stood the tests beyond expectance.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Supercharger (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/105,024 US9051844B2 (en) | 2003-11-20 | 2008-04-17 | Heat resistant super alloy and its use |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03026683.7 | 2003-11-20 | ||
EP03026683 | 2003-11-20 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/105,024 Division US9051844B2 (en) | 2003-11-20 | 2008-04-17 | Heat resistant super alloy and its use |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050238526A1 true US20050238526A1 (en) | 2005-10-27 |
Family
ID=34717191
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/995,993 Abandoned US20050238526A1 (en) | 2003-11-20 | 2004-11-22 | Heat resistant super alloy and its use |
US12/105,024 Expired - Fee Related US9051844B2 (en) | 2003-11-20 | 2008-04-17 | Heat resistant super alloy and its use |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/105,024 Expired - Fee Related US9051844B2 (en) | 2003-11-20 | 2008-04-17 | Heat resistant super alloy and its use |
Country Status (4)
Country | Link |
---|---|
US (2) | US20050238526A1 (ja) |
EP (1) | EP1568795B1 (ja) |
JP (1) | JP4583894B2 (ja) |
DE (1) | DE502004006994D1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080260568A1 (en) * | 2005-09-15 | 2008-10-23 | Shah Bipin H | High Silicon Niobium Casting Alloy and Process for Producing the Same |
US20100028197A1 (en) * | 2006-09-21 | 2010-02-04 | Mark Heazle | Nickel-based alloys and articles made therefrom |
US20110175025A1 (en) * | 2008-09-25 | 2011-07-21 | Borgwarner Inc. | Turbocharger and subassembly for bypass control in the turbine casing therefor |
US8118556B2 (en) | 2007-01-31 | 2012-02-21 | Caterpillar Inc. | Compressor wheel for a turbocharger system |
EP2730669A1 (en) * | 2012-11-13 | 2014-05-14 | Honeywell International Inc. | Nickel-based superalloys |
CN110381982A (zh) * | 2017-02-24 | 2019-10-25 | 得克萨斯州大学系统董事会 | 与myomixer促进的肌细胞融合相关的组合物和方法 |
US10933469B2 (en) | 2018-09-10 | 2021-03-02 | Honeywell International Inc. | Method of forming an abrasive nickel-based alloy on a turbine blade tip |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013210990A1 (de) * | 2013-06-13 | 2014-12-18 | Continental Automotive Gmbh | Abgasturbolader mit einem Radial-Axial-Turbinenrad |
KR101669440B1 (ko) * | 2014-12-24 | 2016-10-26 | 재단법인 포항산업과학연구원 | 니켈 크롬계 리본 섬유 및 그 제조방법 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3888663A (en) * | 1972-10-27 | 1975-06-10 | Federal Mogul Corp | Metal powder sintering process |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4078951A (en) * | 1976-03-31 | 1978-03-14 | University Patents, Inc. | Method of improving fatigue life of cast nickel based superalloys and composition |
US4907947A (en) * | 1988-07-29 | 1990-03-13 | Allied-Signal Inc. | Heat treatment for dual alloy turbine wheels |
JP3812773B2 (ja) * | 1997-10-27 | 2006-08-23 | 日立金属株式会社 | Ni基超耐熱鋳造合金およびNi基超耐熱合金製タービンホイール |
JP4811841B2 (ja) * | 2001-04-04 | 2011-11-09 | 日立金属株式会社 | Ni基超耐熱鋳造合金およびNi基超耐熱合金製タービンホイール |
-
2004
- 2004-10-18 DE DE200450006994 patent/DE502004006994D1/de not_active Expired - Lifetime
- 2004-10-18 EP EP20040024768 patent/EP1568795B1/de not_active Expired - Lifetime
- 2004-11-22 JP JP2004337379A patent/JP4583894B2/ja not_active Expired - Fee Related
- 2004-11-22 US US10/995,993 patent/US20050238526A1/en not_active Abandoned
-
2008
- 2008-04-17 US US12/105,024 patent/US9051844B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3888663A (en) * | 1972-10-27 | 1975-06-10 | Federal Mogul Corp | Metal powder sintering process |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080260568A1 (en) * | 2005-09-15 | 2008-10-23 | Shah Bipin H | High Silicon Niobium Casting Alloy and Process for Producing the Same |
US8012410B2 (en) | 2005-09-15 | 2011-09-06 | Grede Llc | High silicon niobium casting alloy and process for producing the same |
US20100028197A1 (en) * | 2006-09-21 | 2010-02-04 | Mark Heazle | Nickel-based alloys and articles made therefrom |
US7824606B2 (en) | 2006-09-21 | 2010-11-02 | Honeywell International Inc. | Nickel-based alloys and articles made therefrom |
US8118556B2 (en) | 2007-01-31 | 2012-02-21 | Caterpillar Inc. | Compressor wheel for a turbocharger system |
US20110175025A1 (en) * | 2008-09-25 | 2011-07-21 | Borgwarner Inc. | Turbocharger and subassembly for bypass control in the turbine casing therefor |
EP2730669A1 (en) * | 2012-11-13 | 2014-05-14 | Honeywell International Inc. | Nickel-based superalloys |
US8858873B2 (en) | 2012-11-13 | 2014-10-14 | Honeywell International Inc. | Nickel-based superalloys for use on turbine blades |
CN110381982A (zh) * | 2017-02-24 | 2019-10-25 | 得克萨斯州大学系统董事会 | 与myomixer促进的肌细胞融合相关的组合物和方法 |
US10933469B2 (en) | 2018-09-10 | 2021-03-02 | Honeywell International Inc. | Method of forming an abrasive nickel-based alloy on a turbine blade tip |
Also Published As
Publication number | Publication date |
---|---|
EP1568795B1 (de) | 2008-04-30 |
JP4583894B2 (ja) | 2010-11-17 |
JP2005171384A (ja) | 2005-06-30 |
EP1568795A1 (de) | 2005-08-31 |
DE502004006994D1 (de) | 2008-06-12 |
US9051844B2 (en) | 2015-06-09 |
US20080271822A1 (en) | 2008-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9051844B2 (en) | Heat resistant super alloy and its use | |
US7597843B2 (en) | Nickel based superalloys with excellent mechanical strength, corrosion resistance and oxidation resistance | |
EP0848071B1 (en) | Superalloy compositions | |
EP1842934B1 (en) | Heat-resistant superalloy | |
JP4036091B2 (ja) | ニッケル基耐熱合金及びガスタービン翼 | |
JP5147037B2 (ja) | ガスタービン燃焼器用Ni基耐熱合金 | |
WO2011062231A1 (ja) | 耐熱超合金 | |
US5516381A (en) | Rotating blade or stationary vane of a gas turbine | |
JPWO2004053177A1 (ja) | Ni基単結晶超合金 | |
JP3781402B2 (ja) | 低熱膨張Ni基超合金 | |
JP5626920B2 (ja) | ニッケル基合金の鋳造品、ガスタービン翼及びガスタービン | |
US8916092B2 (en) | Ni-based alloy, and turbine rotor and stator blade for gas turbine | |
JP3854643B2 (ja) | 耐脆化性のステンレス鋼 | |
JP4523264B2 (ja) | 単結晶部材を製造するためのニッケル基超合金 | |
JP2010084166A (ja) | ニッケル基合金及びそれを用いたガスタービン翼 | |
JP5595495B2 (ja) | ニッケル基超合金 | |
JPH09268337A (ja) | 鍛造製高耐食超耐熱合金 | |
JP5427642B2 (ja) | ニッケル基合金及びそれを用いたランド用ガスタービン部品 | |
US20030049156A1 (en) | Rhodium-based alloy and articles made therefrom | |
JP6738010B2 (ja) | 高温強度特性および高温クリープ特性に優れたニッケル基合金 | |
JP2002097537A (ja) | Co−Ni基耐熱合金およびその製造方法 | |
JP2001234292A (ja) | 高温強度に優れた低熱膨張Fe基耐熱合金 | |
JP6095237B2 (ja) | 高温クリープ特性に優れたNi基合金およびこのNi基合金を用いたガスタービン用部材 | |
JPH0617171A (ja) | ガスタービン翼用合金 | |
JP3135691B2 (ja) | 低熱膨張超耐熱合金 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BORGWARNER INC., POWERTRAIN TECHNICAL CENTER, MICH Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHALL, GERALD;REEL/FRAME:016322/0365 Effective date: 20041028 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |