US20040096660A1 - Fiber-reinforced laminates - Google Patents

Fiber-reinforced laminates Download PDF

Info

Publication number
US20040096660A1
US20040096660A1 US10/706,111 US70611103A US2004096660A1 US 20040096660 A1 US20040096660 A1 US 20040096660A1 US 70611103 A US70611103 A US 70611103A US 2004096660 A1 US2004096660 A1 US 2004096660A1
Authority
US
United States
Prior art keywords
layer
irradiation
fiber
polymer
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/706,111
Other languages
English (en)
Inventor
Rami-Raimund Awad
Florian Lunzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allnex Austria GmbH
Original Assignee
Surface Specialties Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Surface Specialties Austria GmbH filed Critical Surface Specialties Austria GmbH
Assigned to SURFACE SPECIALTIES AUSTRIA GMBH reassignment SURFACE SPECIALTIES AUSTRIA GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AWAD, RAMI-RAIMUND, LUNZER, FLORIAN
Publication of US20040096660A1 publication Critical patent/US20040096660A1/en
Priority to US11/266,946 priority Critical patent/US20060057397A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0076Curing, vulcanising, cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/08Reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/74Partially cured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Definitions

  • the invention relates to fiber-reinforced laminates having at least two layers.
  • This object is achieved through the use of binders, at least of one outer layer, which are curable by irradiation with high-energy light.
  • the invention accordingly provides fiber-reinforced laminates having at least two layers wherein an outer layer A′ containing a polymer A containing allyl groups, acrylic groups and/or methacrylic groups and being curable by high-energy radiation and an adjacent layer comprises reinforcing fibers and a curable composition B′ comprising a polymer B selected from systems polymerizable free-radically (B1) and by irradiation with high-energy light (B2).
  • the invention further provides a process for producing cured laminates which comprises the steps of (1) producing a cured polymer layer A′ from a polymer A by irradiation with high-energy light and (2) applying a further layer to the layer A′ produced in step (1), the further layer comprising reinforcing fibers and a curable composition B′ which originates by free-radical polymerization from a free-radically polymerizable system B1 and/or by irradiation of a system B2 with high-energy light.
  • the invention likewise provides a process for producing shaped laminates which comprises bringing the incompletely cured laminates into the desired shape under the action of heat and pressure and subsequently curing them.
  • a molding or a surface of a smooth substrate is coated with a layer Z which has an antiadhesive effect, after which in step (1) this layer is coated with a composition comprising a substance A polymerizable by irradiation with high-energy light, the substance A being polymerized by irradiation and so cured, in step (2) the free surface of this layer is coated with a curable composition B′ comprising a polymer B selected from systems polymerizable free-radically (B1) and by irradiation with high-energy light (B2) and reinforcing fibers, and then the curable composition B′ is at least partly cured, and then detached from the surface or molding for ultimate curing.
  • a curable composition B′ comprising a polymer B selected from systems polymerizable free-radically (B1) and by irradiation with high-energy light (B2) and reinforcing fibers
  • the polymers A and B2 are selected independently of one another from epoxy acrylates, urethane acrylates, melamine acrylates, polyether acrylates, polyester acrylates, the corresponding methacrylates, and esters of other olefinically unsaturated acids, and polyesters or polyethers both containing allyl groups, and also mixtures thereof.
  • Epoxy acrylates are reaction products of epoxy resins C with carboxyl group-containing olefinically unsaturated compounds G.
  • epoxy resins C it is possible to use the glycidyl ethers of dihydroxyaromatics such as resorcinol, dihydroxybenzophenone, dihydroxydiphenylsulfone, and, preferably, bisphenol A and bisphenol F; it is also possible to use glycidyl ethers of aliphatic diols such as butanediol and hexanediol, and also epoxy resins of higher molar mass, which are obtainable preferentially from bisphenol A and/or bisphenol F by the Taffy process (reaction of these bisphenols with epichlorohydrin) and by the so-called advancement reaction (reaction of bisphenol diglycidyl ethers with the free bisphenols). It is also possible to use epoxy resins based on novolaks and epoxidized oils.
  • Carboxyl group-containing olefinically unsaturated compounds G which can be used here are in particular acrylic acid and methacrylic acid, but also crotonic acid, vinylacetic acid, and the monoesters of olefinically unsaturated dicarboxylic acids, such as monomethyl maleate, monomethyl fumarate, and the monoalkyl esters of citraconic, itaconic, and mesaconic acids. Preference is given to the first-mentioned acrylic acid and methacrylic acid.
  • Urethane acrylates are reaction products D(E)F of polyfunctional isocyanates D and hydroxyl group-containing olefinically unsaturated compounds F and also, where appropriate, polyfunctional aliphatic alcohols E.
  • the polyfunctional isocyanates D are at least difunctional and can be selected from aromatic and aliphatic linear, cyclic, and branched isocyanates, especially diisocyanates. Preference is given to diisocyanates, where it is possible for up to 5% of their mass to be replaced by isocyanates having a functionality of three or more.
  • the diisocyanates preferably possess the formula Q(NCO) 2 , where Q is a hydrocarbon radical having 4 to 40 carbon atoms, in particular 4 to 20 carbon atoms, and preferably an aliphatic hydrocarbon radical having 4 to 12 carbon atoms, a cycloaliphatic hydrocarbon radical having 6 to 15 carbon atoms, an aromatic hydrocarbon radical having 6 to 15 carbon atoms or an araliphatic hydrocarbon radical having 7 to 15 carbon atoms.
  • Q is a hydrocarbon radical having 4 to 40 carbon atoms, in particular 4 to 20 carbon atoms, and preferably an aliphatic hydrocarbon radical having 4 to 12 carbon atoms, a cycloaliphatic hydrocarbon radical having 6 to 15 carbon atoms, an aromatic hydrocarbon radical having 6 to 15 carbon atoms or an araliphatic hydrocarbon radical having 7 to 15 carbon atoms.
  • diisocyanates for use with preference are tetramethylene diisocyanate, hexamethylene diisocyanate, dodecamethylene diisocyanate, 1,4-diisocyanatocyclohexane, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), 4,4′-diisocyanatodicyclohexylmethane, 2,2-bis(4-isocyanatocyclohexyl)propane, 1,4-diisocyanatobenzene, 2,4- or 2,6-diisocyanatotoluene and mixtures of these isomers, 4,4′- or 2,4′-diisocyanatodiphenylmethane, 2,2-bis(4-isocyanatophenyl)propane, p-xylylene diisocyanate, and ⁇ , ⁇ , ⁇ ′, ⁇ ′
  • polyisocyanates In addition to these simple polyisocyanates, also those are suitable which contain heteroatoms in the radical linking the isocyanate groups. Examples of such are polyisocyanates containing carbodiimide groups, allophanate groups, isocyanurate groups, urethane groups, acylated urea groups or biuret groups. For further suitable polyisocyanates reference may be made, for example, to DE-A 29 28 552.
  • the polyfunctional aliphatic alcohols E used if desired have at least two hydroxyl groups per molecule and 2 to 150 carbon atoms, preferably 3 to 40, and in particular 4 to 20 carbon atoms. They can be linear, branched or cyclic and can also contain heteroatoms, such as ether bonds, ester bonds or secondary or tertiary amine bonds, in the molecule.
  • Compounds of this kind are ether alcohols or polyether alcohols such as polyethylene glycol, polypropylene glycol, mixtures thereof and copolymers and polyoxybutylenediol (“poly-THF”), and also polyester alcohols and amino alcohols.
  • the hydroxyl group-containing ethylenically unsaturated compounds F are aliphatic mono- or polyunsaturated compounds having 3 to 20 carbon atoms and at least one hydroxyl group. Particular preference is given to allyl alcohol and to the monoesters of dihydric alcohols F1 with the abovementioned olefinically unsaturated acids G, such as hydroxyethyl acrylate, hydroxyethyl methacrylate, 2- and 3-hydroxypropyl (meth)acrylate, 1-hydroxy-2-propyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, and 6-hydroxyhexyl (meth)acrylate, esters of trihydric or higher polyhydric alcohols with an acid containing olefinically unsaturated groups, with at least one hydroxyl group remaining unesterified, examples being trimethylolpropane di(meth)acrylate, pentaerythritol tri(meth)acrylate, and the acrylates and
  • Melamine acrylates are reaction products of hydroxyl group-containing olefinically unsaturated compounds F with alkylolmelamines obtained by reacting melamine and aldehydes, especially formaldehyde. Melamine acrylates are prepared in particular by transetherification of hexamethoxymethylmelamine with the compounds F. It is also possible to etherify the compounds F directly with methylolated melamine, for example, hexamethylolmelamine; this process, however, is not carried out on the industrial scale.
  • Polyether acrylates are esters of polyalkylene glycols having degrees of polymerization of preferably from 4 to 100, especially polypropylene glycol, poly(oxy-1,4-butylene) glycol and mixed copolymers having oxyethylene and oxypropylene units, with the olefinically unsaturated acids specified under G; they are normally prepared by transesterification with ethyl (meth)acrylate or similar esters.
  • Polyester acrylates are esterification products of olefinically unsaturated acids G with hydroxyl group-containing polyols or polyesters or esterification products of hydroxyl group-containing olefinically unsaturated compounds F with acid groups of a polyester.
  • the polyesters are normally derived from linear or branched aliphatic polyols having two or more hydroxyl groups and from 2 to 20 carbon atoms, such as glycol, neopentylglycol, butanediol, 1,6-hexanediol, diethylene and triethylene glycol, trimethylolpropane, pentaerythritol, and sorbitol, and aliphatic linear or cyclic dicarboxylic acids such as adipic acid and cyclohexanedicarboxylic acid, the hydroxyl group-containing polyether polyols based on ethylene oxide and propylene oxide or mixtures thereof and on polytetrahydrofuran, and also on ethoxylated and/or propoxylated polyhydric alcohols, such as those mentioned above.
  • linear or branched aliphatic polyols having two or more hydroxyl groups and from 2 to 20 carbon atoms
  • glycol neopent
  • acrylates are referred to above, in the context of the disclosure these acrylates also of course include the corresponding methacrylates and the esters of the other acids mentioned under G.
  • Allyl group-containing compounds are ethers or esters or mixed ether-esters of allyl alcohol with polyhydric alcohols or their ethoxylation and/or propoxylation products or allyl esters of the abovementioned aliphatic carboxyl group-containing polyesters.
  • the unsaturated polyesters B1 are styrene-free polyesters based on allyl ethers of polyhydric alcohols, the number of allyl groups always being less by one than the number of hydroxyl groups of the unetherified alcohol, aliphatic linear, branched or cyclic diols having 2 to 20 carbon atoms, olefinically unsaturated dicarboxylic acids having 4 to 20 carbon atoms, such as fumaric acid in particular, and small amounts of monohydric alcohols, especially benzyl alcohol, the amount of the latter being such that crosslinking through the polyunsaturated compounds is kept within limits.
  • Suitable reinforcing fibers are glass fibers in particular but also carbon fibers, aramid fibers, particularly those of the so-called high-modulus polymers such as poly-para-phenyleneterephthalamide ®Kevlar or ®Twaron) and copolymers (e.g., ®Teijin HM50) containing more than 30% of units derived from terephthalic acid and para-phenylenediamine, and also fibers of liquid-crystalline polyesters and fibers of ultrahigh molar mass polyethylene (e.g., ®Dyneema).
  • aramid fibers particularly those of the so-called high-modulus polymers such as poly-para-phenyleneterephthalamide ®Kevlar or ®Twaron
  • copolymers e.g., ®Teijin HM50
  • liquid-crystalline polyesters and fibers of ultrahigh molar mass polyethylene e.g., ®Dyneema
  • antiadhesive layer Z it is possible to use a standard release agent (for example, waxes, silicone-modified waxes, fatty acid amide waxes, salts of long-chain fatty acids like zinc stearate, polyvinyl alcohol, fluorinated polymers, and natural phospholipids such as soya lecithin).
  • a standard release agent for example, waxes, silicone-modified waxes, fatty acid amide waxes, salts of long-chain fatty acids like zinc stearate, polyvinyl alcohol, fluorinated polymers, and natural phospholipids such as soya lecithin).
  • the laminates of the invention can be employed in all applications where use has been made to date, for example, of laminates comprising glass fiber mats with unsaturated polyesters with a gel coat surface.
  • UV-curable coatings 2.1 and 2.2 according to table 3 were applied to glass plates as described in example 1 coated with release agent as above.
  • the coatings were cured under 2 mercury lamps and 2 gallium-doped mercury lamps, each with a power of 80 W/cm, at a belt speed of 5 m/min from a distance of 10 cm, and after curing were detached from the glass plates and joined to a UV-curable laminating layer.
  • This layer consisted of a 10 ⁇ 20 cm 2 glass fiber mat (approximately 5 g/m 2 ) to which approximately 20 g of the UV laminating materials 2.3 and 2.4, in accordance with the indication in table 3, have been applied.
  • This molding i.e. the veneer/laminate composite
  • a UV clearcoat material in accordance with coating 3.3 (see table 5), the clearcoat material being applied in one instance in 2 coats and in another instance with 3 coats, the wet thickness of each coat being 200 ⁇ m.
  • the coating was cured again by exposure to 2 mercury lamps each with a power of 80 W/cm at a belt speed of 10 m/min.
  • the surface coated with the UV clearcoat material and cured matches a high-build polyester coating that can be completed within a short time.
  • a high-build polyester coating requires at least 6 or 7 applications each at a rate of approximately 250 g/m 2 , possibly with subsequent sanding/polishing/buffing; the overall layer thickness at the end of the processing operation is in that case about 700 to 800 ⁇ m; the coating operation takes about 4 to 5 hours, and finishing by sanding and polishing cannot take place until 72 h after the coating operation.
  • styrene-containing unsaturated polyester resins with the conventional free-radical curing by means of cobalt salts and peroxides can be replaced by styrene-free UV-curable systems.
  • the advantage of these systems is the absence of styrene and the increased reactivity of the UV-curable system and consequent higher productivity.
  • Veneer/laminate composites can be produced in one work step using the UV technology.
  • the use of a UV clearcoat system to replace UP coating material produces a distinct increase in productivity owing to more rapid curing.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
US10/706,111 2002-11-15 2003-11-12 Fiber-reinforced laminates Abandoned US20040096660A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/266,946 US20060057397A1 (en) 2002-11-15 2005-11-04 Fiber-reinforced laminates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0172502A AT502316A1 (de) 2002-11-15 2002-11-15 Faserverstärkte laminate
ATA1725/2002 2002-11-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/266,946 Division US20060057397A1 (en) 2002-11-15 2005-11-04 Fiber-reinforced laminates

Publications (1)

Publication Number Publication Date
US20040096660A1 true US20040096660A1 (en) 2004-05-20

Family

ID=32111258

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/706,111 Abandoned US20040096660A1 (en) 2002-11-15 2003-11-12 Fiber-reinforced laminates
US11/266,946 Abandoned US20060057397A1 (en) 2002-11-15 2005-11-04 Fiber-reinforced laminates

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/266,946 Abandoned US20060057397A1 (en) 2002-11-15 2005-11-04 Fiber-reinforced laminates

Country Status (3)

Country Link
US (2) US20040096660A1 (de)
EP (1) EP1419874A1 (de)
AT (1) AT502316A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010117440A2 (en) 2009-04-08 2010-10-14 Bayer Materialscience Llc Reinforced uv-a curable composite compositions and methods
US20110011520A1 (en) * 2009-07-17 2011-01-20 Gentex Corporation Method of making a composite sheet

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4410179B2 (ja) * 2005-09-22 2010-02-03 東芝テック株式会社 無線タグゲートリーダ
DE102010064106A1 (de) * 2010-12-23 2012-06-28 Airbus Operations Gmbh Verfahren zur Herstellung eines Faserverstärkten Verbundteils, Formteil sowie Verbundbauteil
SI24258A (sl) * 2012-12-28 2014-06-30 RC31 Razvojni center kreativne pohištvene industrije d.o.o. Visoko sijajni enokomponentni UV-utrdljiv emajl na vodni osnovi in njegova uporaba za zaščito z melaminsko folijo prevlečene površine
JP6654380B2 (ja) * 2015-08-31 2020-02-26 ニチハ株式会社 建材の製造方法
DE102021130810B4 (de) 2021-11-24 2024-02-08 Lamilux Composites Gmbh Faserverstärkter Kunststoffverbund mit verbesserten UV- und Glanzeigenschaften, ein Herstellungsverfahren hiervon sowie dessen Verwendung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3616028A (en) * 1967-04-04 1971-10-26 Weyerhaeuser Co Process of bonding resin-impregnated overlay material to a coated substrate material utilizing high-energy radiation
US4164459A (en) * 1977-10-11 1979-08-14 Akzo N.V. U.V.-curable coating composition
US4789604A (en) * 1985-09-21 1988-12-06 Hoechst Aktiengesellschaft Decorative panel having improved surface properties
US5849411A (en) * 1995-06-05 1998-12-15 Kimberly-Clark Worldwide, Inc. Polymer film, nonwoven web and fibers containing a photoreactor composition

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2045640A1 (de) * 1969-06-12 1971-03-05 Progil
JPS5549967B2 (de) * 1972-05-24 1980-12-15
US4232058A (en) * 1978-10-13 1980-11-04 Gte Products Corporation Method of coating a lamp with a U.V. curable resin with fibers therein
DE2928552A1 (de) * 1979-07-14 1981-01-29 Bayer Ag Waessrige dispersionen urethanmodifizierter polyester, verfahren zu ihrer herstellung und ihre verwendung zur herstellung von lacken
US4369224A (en) * 1979-12-28 1983-01-18 Freeman Chemical Corporation Glass fiber reinforced laminate
DE3612442A1 (de) * 1986-04-12 1987-10-22 Bayer Ag Verfahren zur herstellung von uv-gehaerteten deckend pigmentierten beschichtungen
US4803022A (en) * 1987-05-06 1989-02-07 Glasteel Industrial Laminates, Inc. Method of continuously bonding and curing a zinc-coated metal-clad polyester-epoxy-glass fiber laminate
GB2241194B (en) * 1990-02-06 1994-07-27 Honda Motor Co Ltd Method for molding fiber-reinforced resin
US5217656A (en) * 1990-07-12 1993-06-08 The C. A. Lawton Company Method for making structural reinforcement preforms including energetic basting of reinforcement members
CA2052273C (en) * 1990-09-29 1995-02-14 Katsumi Kohama Sheet for molding fiber-reinforced resin and method for producing it
IT1247009B (it) * 1991-05-06 1994-12-12 Proel Tecnologie Spa Metodo per la realizzazione di manufatti in resina o materiale composito con matrice in resina polimerizzabile con fasci elettronici
FR2698636B1 (fr) * 1992-11-27 1995-02-17 Aerospatiale Adhésif structural monocomposant durcissable sous rayonnement ionisant et procédé d'assemblage utilisant cet adhésif.
FR2744054B1 (fr) * 1996-01-29 1998-04-30 Aerospatiale Procede de realisation de pieces en materiau composite a haute precision dimensionnelle mettant en oeuvre une polymerisation par ionisation et pieces ainsi obtenues
US6235228B1 (en) * 1999-04-08 2001-05-22 Morton International, Inc. Method for on-mold coating molded articles with a coating powder as a liquid gel coat replacement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3616028A (en) * 1967-04-04 1971-10-26 Weyerhaeuser Co Process of bonding resin-impregnated overlay material to a coated substrate material utilizing high-energy radiation
US4164459A (en) * 1977-10-11 1979-08-14 Akzo N.V. U.V.-curable coating composition
US4789604A (en) * 1985-09-21 1988-12-06 Hoechst Aktiengesellschaft Decorative panel having improved surface properties
US5849411A (en) * 1995-06-05 1998-12-15 Kimberly-Clark Worldwide, Inc. Polymer film, nonwoven web and fibers containing a photoreactor composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010117440A2 (en) 2009-04-08 2010-10-14 Bayer Materialscience Llc Reinforced uv-a curable composite compositions and methods
EP2416891A4 (de) * 2009-04-08 2017-08-02 Allnex IP S.à.r.l. Verstärkte uv-a-härtbare verbundzusammensetzungen und verfahren dafür
US20110011520A1 (en) * 2009-07-17 2011-01-20 Gentex Corporation Method of making a composite sheet
US8388787B2 (en) 2009-07-17 2013-03-05 Gentex Corporation Method of making a composite sheet

Also Published As

Publication number Publication date
EP1419874A1 (de) 2004-05-19
AT502316A1 (de) 2007-02-15
US20060057397A1 (en) 2006-03-16

Similar Documents

Publication Publication Date Title
US20060057397A1 (en) Fiber-reinforced laminates
US9334420B2 (en) Decorated sheet and decorated resin molded article using same
KR101152489B1 (ko) 방사선 경화 복합층 플레이트 또는 필름
RU2406574C2 (ru) Покрытие поверхности, отверждаемое в несколько этапов
TWI619737B (zh) 碳纖維強化塑膠用樹脂組成物
JPH0564104B2 (de)
KR20140010099A (ko) 삼차원 성형용 장식 시트 및 그 제조 방법과 상기 장식 시트를 사용한 장식 성형품 및 그 제조 방법
KR20140001983A (ko) 장식 시트 및 그것을 사용하여 이루어지는 장식 수지 성형품
JPH06228251A (ja) 放射線硬化性組成物および使用方法
TW202104344A (zh) 纖維強化塑膠中間基材用液狀組成物、纖維強化塑膠中間基材及前述纖維強化塑膠中間基材之製造方法
CN108350696A (zh) 具有改善的耐磨层的表面覆盖物
JP5708157B2 (ja) 三次元成形用加飾シート、該加飾シートの製造方法、加飾樹脂成形品及び加飾樹脂成形品の製造方法
TW201819441A (zh) 預浸體薄片、及纖維強化複合材料之製造方法
JP4180626B2 (ja) 構造物、及び軟質塩化ビニル樹脂の基材への接着方法
JP4022507B2 (ja) 接着コンポジットの調製法
WO1988006973A1 (en) Laminated board and electron beam curable composition used in manufacture thereof
JP5708156B2 (ja) 三次元成形用加飾シート、該加飾シートの製造方法、加飾樹脂成形品及び該加飾樹脂成形品の製造方法
JP5830901B2 (ja) 三次元成形用加飾シート、該加飾シートの製造方法、加飾樹脂成形品及び加飾樹脂成形品の製造方法
JPS6145663B2 (de)
KR101725523B1 (ko) 탄소섬유 프리프레그의 제조방법 및 광·열경화 방식을 이용한 열가소성 탄소섬유 복합재료의 제조방법
JP2020128510A (ja) 繊維強化プラスチック中間基材用液状組成物、繊維強化プラスチック中間基材、及び前記繊維強化プラスチック中間基材の製造方法
JP5975118B2 (ja) 三次元成形用加飾シート、該加飾シートの製造方法、加飾樹脂成形品及び加飾樹脂成形品の製造方法
JP5887888B2 (ja) 有機ガラス用積層体
JP6269697B2 (ja) 有機ガラス用積層体
JP5828576B2 (ja) ポリエステル化粧板の製造方法及びポリエステル化粧板製造用酸素遮断フィルム。

Legal Events

Date Code Title Description
AS Assignment

Owner name: SURFACE SPECIALTIES AUSTRIA GMBH, AUSTRIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AWAD, RAMI-RAIMUND;LUNZER, FLORIAN;REEL/FRAME:014702/0372

Effective date: 20031007

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION