New! View global litigation for patent families

US20030206144A1 - Active matrix display device - Google Patents

Active matrix display device Download PDF

Info

Publication number
US20030206144A1
US20030206144A1 US10442057 US44205703A US2003206144A1 US 20030206144 A1 US20030206144 A1 US 20030206144A1 US 10442057 US10442057 US 10442057 US 44205703 A US44205703 A US 44205703A US 2003206144 A1 US2003206144 A1 US 2003206144A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
bank
film
formed
electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10442057
Inventor
Ichio Yudasaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/28Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including components using organic materials as the active part, or using a combination of organic materials with other materials as the active part
    • H01L27/32Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including components using organic materials as the active part, or using a combination of organic materials with other materials as the active part with components specially adapted for light emission, e.g. flat-panel displays using organic light-emitting diodes [OLED]
    • H01L27/3241Matrix-type displays
    • H01L27/3244Active matrix displays
    • H01L27/3246Banks, i.e. pixel defining layers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/28Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including components using organic materials as the active part, or using a combination of organic materials with other materials as the active part
    • H01L27/32Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including components using organic materials as the active part, or using a combination of organic materials with other materials as the active part with components specially adapted for light emission, e.g. flat-panel displays using organic light-emitting diodes [OLED]
    • H01L27/3241Matrix-type displays
    • H01L27/3244Active matrix displays
    • H01L27/3276Wiring lines
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0001Processes specially adapted for the manufacture or treatment of devices or of parts thereof
    • H01L51/0002Deposition of organic semiconductor materials on a substrate
    • H01L51/0003Deposition of organic semiconductor materials on a substrate using liquid deposition, e.g. spin coating
    • H01L51/0004Deposition of organic semiconductor materials on a substrate using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing, screen printing
    • H01L51/0005Deposition of organic semiconductor materials on a substrate using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing, screen printing ink-jet printing
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • H01L51/52Details of devices
    • H01L51/5281Arrangements for contrast improvement, e.g. preventing reflection of ambient light
    • H01L51/5284Arrangements for contrast improvement, e.g. preventing reflection of ambient light comprising a light absorbing layer, e.g. black layer

Abstract

An active matrix display device is provided in which parasistic capacitance or the like is suppressed by forming a thick insulating film around an organic semiconductor film, and disconnection or the like does not occur in an opposing electrode formed on the upper layer of the thick insulating film. In the active matrix display device, first, a bank layer composed of a resist film is formed along data lines and scanning lines. By depositing an opposing electrode of a thin film luminescent element on the upper layer side of the bank layer, capacitance that parasitizes the data lines can be suppressed. Additionally, a discontinuities portion is formed in the bank layer. Since the discontinuities portion is a planar section which does not have any a step due to the existence of the bank layer, disconnection of opposing electrode does not occur at this section. When an organic semiconductor film is formed by an ink jet process, a liquid material discharged from an ink jet head is blocked by the bank layer.

Description

    TECHNICAL FIELD
  • [0001]
    The present invention relates to an active matrix display device in which a thin film luminescent element such as an EL (electroluminescence) element or LED (light emitting diode) element, that emits light by application of a driving current to an organic semiconductor film, is driven and controlled by a thin film transistor (hereinafter referred to as a TFT).
  • BACKGROUND ART
  • [0002]
    Active matrix display devices using current-controlled luminescent elements such as EL elements or LED elements have been disclosed. Since luminescent elements used in display devices of this type are self-luminescent, backlights are not required, unlike in liquid crystal display devices, and the viewing angle dependence is small, all of which are advantageous.
  • [0003]
    [0003]FIG. 13 is a block diagram of an active matrix display device which uses organic thin-film EL elements of the charge-injection type as described above. In an active matrix display device 1A shown in the drawing, on a transparent substrate 10, a plurality of scanning lines gate, a plurality of data lines sig extending in the direction orthogonal to the direction of extension of the scanning lines gate, a plurality of common feeders com which run parallel to the data lines sig, and a plurality of pixels 7 which are formed in a matrix by the data lines sig and the scanning lines gate are arrayed. A data side drive circuit 3 and a scanning side drive circuit 4 are formed for data lines sig and scanning lines gate, respectively. Each of the pixels 7 includes a conduction control circuit 50 to which scanning signals are supplied through the scanning line gate and a thin film luminescent element 40 which emits light in response to picture signals supplied from the data line sig through the conduction control circuit 50. In this example, the conduction control circuit 50 includes a first TFT 20 in which scanning signals are supplied to a gate electrode through the scanning line gate, a storage capacitor cap for retaining picture signals supplied from the data line sig through the first TFT 20, and a second TFT 30 in which picture signals retained by the storage capacitor cap are supplied to a gate electrode. The second TFT 30 and the thin film luminescent element 40 are connected in series between an opposing electrode op (which will be described later in detail) and the common feeder com. The thin film luminescent element 40 emits light in response to a driving current applied from the common feeder com when the second TFT 30 is ON, and the emission is retained by the storage capacitor cap for a predetermined period of time.
  • [0004]
    With respect to the active matrix display device 1A having the configuration described above, as shown in FIG. 14 and FIGS. 15(A) and 15(B), in any pixel 7, the first TFT 20 and the second TFT 30 are formed using an island-like semiconductor film. The first TFT 20 has a gate electrode 21 as a portion of the scanning line gate. In the first TFT 20, the data line sig is electrically connected to one of the source and drain regions through a contact hole of a first interlayer insulating film 51, and a drain electrode 22 is electrically connected to the other of the source and drain regions. The drain electrode 22 extends toward the region in which the second TFT 30 is formed, and a gate electrode 31 of the second TFT 30 is electrically connected to this extension through a contact hole of the first interlayer insulating film 51. In the second TFT 30, an interconnecting electrode 35 is electrically connected to one of the source and drain regions through a contact hole of the first interlayer insulating film 51, and a pixel electrode 41 of the thin film luminescent element 40 is electrically connected to the interconnecting electrode 35 through a contact hole of a second interlayer insulating film 52.
  • [0005]
    As is clear from the FIG. 14 and FIGS. 15(B) and 15(C), the pixel electrode 41 is formed independently in each pixel 7. On the upper layer side of the pixel electrode 41, an organic semiconductor film 43 and the opposing electrode op are deposited in that order. Although the organic semiconductor film 43 is formed in each pixel 7, it may be formed in a strip so as to extend over a plurality of pixels 7. As is seen from FIG. 13, the opposing electrode op is formed not only on a display area 11 in which pixels 7 are arrayed, but also over substantially the entire surface of the transparent substrate 10.
  • [0006]
    Again, in FIG. 14 and FIG. 15(A), the common feeder com is electrically connected to the other one of the source and drain regions of the second TFT 30 through a contact hole of the first interlayer insulating film 51. An extension 39 of the common feeder com opposes an extension 36 of the gate electrode 31 of the second TFT 30 with the first interlayer insulating film 51 as a dielectric film therebetween to form the storage capacitor cap.
  • [0007]
    However, in the active matrix display device 1A, since only the second interlayer insulating film 52 is interposed between the opposing electrode op facing the pixel electrode 41 and the data line sig on the same transparent substrate 10, which is different from a liquid crystal active matrix display device, a large amount of capacitance parasitizes the data line sig and the load on the data side drive circuit 3 increases.
  • [0008]
    Therefore, as shown in FIG. 13, FIG. 14, and FIGS. 16(A), 16(B), and 16(C), the present inventor suggests that by providing a thick insulating film (bank layer bank, a shaded region in which lines that slant to the left are drawn at a large pitch) between the opposing electrode op and the data line sig and the like, the capacitance that parasitizes the data line sig is decreased. At the same time, the present inventor suggests that by surrounding a region in which the organic semiconductor film 43 is formed by the insulating film (bank layer bank), when the organic semiconductor film 43 is formed of a liquid material (discharged liquid) discharged from an ink jet head, the discharged liquid is blocked by the bank layer bank and the discharged liquid is prevented from spreading to the sides. However, if such a configuration is adopted, a large step bb is formed due to the existence of the thick bank layer bank, the opposing electrode op formed on the upper layer of the bank layer bank is easily disconnected at the step bb. If such disconnection of the opposing electrode op occurs at the step bb, the opposing electrode op in this portion is insulated from the surrounding opposing electrode op, resulting in a dot defect or line defect in display. If disconnection of the opposing electrode op occurs along the periphery of the bank layer bank that covers the surface of the data side drive circuit 3 and the scanning side drive circuit 4, the opposing electrode op in the display area 11 is completely insulated from a terminal 12, resulting in disenabled display.
  • [0009]
    Accordingly, it is an object of the present invention to provide an active matrix display device in which, even when parasitic capacitance is suppressed by forming a thick insulating film around an organic semiconductor film, disconnection or the like does not occur in the opposing electrode formed on the upper layer of the thick insulating film.
  • DISCLOSURE OF INVENTION
  • [0010]
    In order to achieve the object described above, in the present invention, an active matrix display device includes a display area having a plurality of scanning lines on a substrate, a plurality of data lines extending in the direction orthogonal to the direction of extension of the scanning lines, and a plurality of pixels formed in a matrix by the data lines and the scanning lines. Each of the pixels is provided with a thin film luminescent element having a conduction control circuit which includes a TFT in which scanning signals are supplied to a gate electrode through the scanning lines, a pixel electrode, an organic semiconductor film deposited on the upper layer side of the pixel electrode, and an opposing electrode formed at least over the entire surface of the display area on the upper layer side of the organic semiconductor film. The thin film luminescent element emits light in response to picture signals supplied from the data lines through the conduction control circuit. A region in which the organic semiconductor film is formed is bound by an insulating film formed in the lower layer side of the opposing electrode with a thickness that is larger than that of the organic semiconductor film, and the insulating film is provided with a discontinuities portion for connecting the individual opposing electrode sections of the pixels to each other through a planar section which does not have a step due to the existence of the insulating film.
  • [0011]
    In the present invention, since the opposing electrode is formed at least on the entire surface of the display area and opposes the data lines, a large amount of capacitance parasitizes the data lines if no measures are taken. In the present invention, however, since a thick insulating film is interposed between the data lines and the opposing electrode, parasitization of capacitance in the data lines can be prevented. As a result, the load on the data side drive circuit can be decreased, resulting in lower consumption of electric power or faster display operation. If a thick insulating film is formed, although the insulating film may form a large step and disconnection may occur in the opposing electrode formed on the upper layer side of the insulating film, in the present invention, a discontinuities portion is configured at a predetermined position of the thick insulating film and this section is planar. Accordingly, the opposing electrodes in the individual regions are electrically connected to each other through a section formed in the planar section, and even if disconnection occurs at a step due to the existence of the insulating film, since electrical connection is secured through the planar section which corresponds to the discontinuities portion of the insulating film, disadvantages resulting from disconnection of the opposing substrate do not occur. Therefore, in the active matrix display device, even if a thick insulating film is formed around the organic semiconductor film to suppress parasitic capacitance and the like, disconnection does not occur in the opposing electrode formed on the upper layer of the insulating film, and thereby display quality and reliability of the active matrix display device can be improved.
  • [0012]
    In the present invention, preferably, the conduction control circuit is provided with a first TFT in which the scanning signals are supplied to a gate electrode and a second TFT in which a gate electrode is connected to the data line through the first TFT, and the second TFT and the thin film luminescent element are connected in series between the opposing electrode and a common feeder for feeding a driving current formed independently of the data line and the scanning line. That is, although it is possible to configure the conduction control circuit with one TFT and a storage capacitor, in view of an increase in display quality, it is preferable that the conduction control circuit of each pixel be configured with two TFTs and a storage capacitor.
  • [0013]
    In the present invention, preferably, the insulating film is used as a bank layer for preventing the spread of a discharged liquid when the organic semiconductor film is formed in the area bound by the insulating film by an ink jet process. In such a case, the insulating film preferably has a thickness of 1 μm or more.
  • [0014]
    In the present invention, when the insulating film is formed along the data lines and the scanning lines such that the insulating film surrounds a region in which the organic semiconductor film is formed, the discontinuities portion is formed in a section between the adjacent pixels in the direction of extension of the data lines, between the adjacent pixels in the direction of extension of the scanning lines, or between the adjacent pixels in both directions.
  • [0015]
    In a different manner from the mode described above, the insulating film may extend along the data lines in a strip, and in such a case, the discontinuities portion may be formed on at least one end in the direction of extension.
  • [0016]
    In the present invention, preferably, in the region in which a pixel electrode is formed, a region overlapping the region in which the conduction control circuit is formed is covered with the insulating film. That is, preferably, in the region in which the pixel electrode is formed, the thick insulating film is opened only at a planar section in which the conduction control circuit is not formed, and the organic semiconductor film is formed only in the interior of this section. In such a configuration, display unevenness due to the layer thickness irregularity of the organic semiconductor film can be prevented. In the region in which the pixel electrode is formed, in a region overlapping the region in which the conduction control circuit is formed, even if the organic semiconductor film emits light because of a driving current applied from the opposing electrode, the light is shielded by the conduction control circuit and does not contribute to the display. The driving current that is applied to the organic semiconductor film in the section which does not contribute to the display is a reactive current in terms of display. In the present invention, the thick insulating film is formed in the section in which such a reactive current should have flowed in the conventional structure, and a driving current is prevented from being applied thereat. As a result, the amount of current applied to the common feeder can be reduced, and by decreasing the width of the common feeder by that amount, the emission area can be increased, thereby display characteristics such as luminance and contrast ratio can be improved.
  • [0017]
    In the present invention, preferably, an active matrix display device includes a data side drive circuit for supplying data signals through the data lines and a scanning side drive circuit for supplying scanning signals through the scanning lines in the periphery of the display area; the insulating film is also formed on the upper layer side of the scanning side drive circuit and the data side drive circuit, and the insulating film is provided with a discontinuities portion for connecting the opposing electrodes between the display area side and the substrate periphery side through a planar section which does not have a step caused by the existence of the insulating film at the position between the region in which the scanning side drive circuit is formed and the region in which the data side drive circuit is formed. In such a configuration, even if disconnection of the opposing electrode occurs along the periphery of the insulating film that covers the surface of the data side drive circuit and the scanning side drive circuit, the opposing electrode on the display area side and the opposing electrode on the substrate periphery side are connected through the planar section which does not have a step caused by the existence of insulating film, and the electrical connection between the opposing electrode on the display area side and the opposing electrode on the substrate periphery side can be secured.
  • [0018]
    In the present invention, when the insulating film is composed of an organic material such as a resist film, a thick film can be formed easily. In contrast, when the insulating film is composed of an inorganic material, an alteration in the organic semiconductor film can be prevented even if the insulating film is in contact with the organic semiconductor film.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0019]
    [0019]FIG. 1 is a block diagram which schematically shows the general layout of an active matrix display device as embodiment 1 of the present invention.
  • [0020]
    [0020]FIG. 2 is a plan view which shows a pixel included in the active matrix display device shown in FIG. 1.
  • [0021]
    FIGS. 3(A), 3(B), and 3(C) are sectional views taken along the line A-A′, the line B-B′, and the line C-C′ of FIG. 2, respectively.
  • [0022]
    [0022]FIG. 4 is a block diagram which schematically shows the general layout of an active matrix display device as variation 1 of the embodiment 1 of the present invention.
  • [0023]
    [0023]FIG. 5 is a plan view which shows a pixel included in the active matrix display device shown in FIG. 4.
  • [0024]
    FIGS. 6(A), 6(B), and 6(C) are sectional views taken along the line A-A′, the line B-B′, and the line C-C′ of FIG. 5, respectively.
  • [0025]
    [0025]FIG. 7 is a block diagram which schematically shows the general layout of an active matrix display device as variation 2 of the embodiment 1 of the present invention.
  • [0026]
    [0026]FIG. 8 is a plan view which shows a pixel included in the active matrix display device shown in FIG. 7.
  • [0027]
    FIGS. 9(A), 9(B), and 9(C) are sectional views taken along the line A-A′, the line B-B′, and the line C-C′ of FIG. 8, respectively.
  • [0028]
    [0028]FIG. 10 is a block diagram which schematically shows the general layout of an active matrix display device as embodiment 2 of the present invention.
  • [0029]
    [0029]FIG. 11 is a plan view which shows a pixel included in the active matrix display device shown in FIG. 10.
  • [0030]
    FIGS. 12(A), 12(B), and 12(C) are sectional views taken along the line A-A′, the line B-B′, and the line C-C′ of FIG. 11, respectively.
  • [0031]
    [0031]FIG. 13 is a block diagram which schematically shows the general layout of an active matrix display device as a comparative example with respect to the conventional device and a device in accordance with the present invention.
  • [0032]
    [0032]FIG. 14 is a plan view which shows a pixel included in the active matrix display device shown in FIG. 13.
  • [0033]
    FIGS. 15(A), 15(B), and 15(C) are sectional views taken along the line A-A′, the line B-B′, and the line C-C′ of FIG. 14, respectively.
  • [0034]
    FIGS. 16(A), 16(B), and 16(C) are other sectional views taken along the line A-A′, the line B-B′, and the line C-C′ of FIG. 14, respectively.
    Reference Numerals
     1 active matrix display device
     2 display area
     3 data side drive circuit
     4 scanning side drive circuit
     7 pixel
    10 transparent substrate
    12 terminal
    20 first TFT
    21 gate electrode of the first TFT
    30 second TFT
    31 gate electrode of the second TFT
    40 luminescent element
    41 pixel electrode
    43 organic semiconductor
    bank bank layer (insulating film)
    cap storage capacitor
    com common feeder
    gate scanning line
    op opposing electrode
    sig data line
    off discontinuities portion of the bank layer
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • [0035]
    Embodiments of the present invention will be described with reference to the drawings. In the following description, the same reference numerals are used for the elements which are the same as those described in FIG. 13 through FIG. 16.
  • EMBODIMENT 1
  • [0036]
    (General Configuration)
  • [0037]
    [0037]FIG. 1 is a block diagram which schematically shows the general layout of an active matrix display device. FIG. 2 is a plan view which shows a pixel included in the device shown in FIG. 1. FIGS. 3(A), 3(B), and 3(C) are sectional views taken along the line A-A′, the line B-B′, and the line C-C′ of the FIG. 2, respectively.
  • [0038]
    In an active matrix display device 1 shown in FIG. 1, the central section of a transparent substrate 10 as a base is defined as a display area 11. In the periphery of the transparent substrate 10, a data side drive circuit 3 for outputting picture signals is formed on the end of data lines sig, and a scanning side drive circuit 4 is formed on the end of scanning lines gate. In the drive circuits 3 and 4, complementary TFTs are configured by n-type TFTs and p-type TFTs, and the complementary TFTs constitute a shift register circuit, a level shifter circuit, an analog switch circuit, and the like. In the display area 11, in a manner similar to that in the active matrix substrate in the liquid crystal active matrix display device, on the transparent substrate 10, a plurality of scanning lines gate, a plurality of data lines sig extending in the direction orthogonal to the direction of extension of the scanning lines gate, and a plurality of pixels 7 which are formed in a matrix by the data lines sig and the scanning lines gate are arrayed.
  • [0039]
    Each of the pixels 7 includes a conduction control circuit 50 to which scanning signals are supplied through a scanning line gate and a thin film luminescent element 40 which emits light in response to picture signals supplied from a data line sig through the conduction control circuit 50. In the example shown here, the conduction control circuit 50 includes a first TFT 20 in which scanning signals are supplied to a gate electrode through the scanning line gate, a storage capacitor cap for retaining picture signals supplied from the data line sig through the first TFT 20, and a second TFT 30 in which picture signals retained by the storage capacitor cap are supplied to a gate electrode. The second TFT 30 and the thin film luminescent element 40 are connected in series between an opposing electrode op (which will be described later in detail) and a common feeder com.
  • [0040]
    With respect to the active matrix display device 1 having the configuration described above, as shown in FIG. 2 and FIGS. 3(A) and 3(B), in any pixel 7, the first TFT 20 and the second TFT 30 are formed using an island-like semiconductor film (silicon film).
  • [0041]
    The first TFT 20 has a gate electrode 21 as a portion of the scanning line gate. In the first TFT 20, the data line sig is electrically connected to one of the source and drain regions through a contact hole of a first interlayer insulating film 51, and a drain electrode 22 is electrically connected to the other of the source and drain regions. The drain electrode 22 extends toward the region in which the second TFT 30 is formed, and to this extension, a gate electrode 31 of the second TFT 30 is electrically connected through a contact hole of the first interlayer insulating film 51.
  • [0042]
    An interconnecting electrode 35 simultaneously formed with the data line sig is electrically connected to one of source and drain regions of the second TFT 30 through a contact hole of the first interlayer insulating film 51, and a transparent pixel electrode 41 composed of an ITO film of the thin film luminescent element 40 is electrically connected to the interconnecting electrode 35 through a contact hole of a second interlayer insulating film 52.
  • [0043]
    As is clear from FIG. 2 and FIGS. 3(B) and 3(C), the pixel electrode 41 is independently formed for each pixel 7. On the upper layer side of the pixel electrode 41, an organic semiconductor film 43 composed of polyphenylene vinylene (PPV) or the like and the opposing electrode op composed of a metal film such as lithium-containing aluminum or calcium are deposited in that order to form the thin film luminescent element 40. Although the organic semiconductor film 43 is formed in each pixel 7, it may be formed in a strip so as to extend over a plurality of pixels 7. The opposing electrode op is formed on the entire display area 11 and in a region excluding the periphery of a portion in which terminals 12 of the transparent substrate 10 are formed. The terminals 12 include a terminal of the opposing electrode op which is connected to wiring (not shown in the drawing) simultaneously formed with the opposing electrode op.
  • [0044]
    Additionally, for the thin film luminescent element 40, a structure in which luminous efficiency (hole injection efficiency) is increased by providing a hole injection layer, a structure in which luminous efficiency (electron injection efficiency) is increased by providing an electron injection layer, or a structure in which both a hole injection layer and an electron injection layer are formed, may be employed.
  • [0045]
    Again, in FIG. 2 and FIG. 3(A), the common feeder corn is electrically connected through a contact hole of the first interlayer insulating film 51 to the other one of source and drain regions of the second TFT 30. An extension 39 of the common feeder corn opposes an extension 36 of the gate electrode 31 of the second TFT 30 with the first interlayer insulating film 51 as a dielectric film therebetween to form the storage capacitor cap.
  • [0046]
    As described above, in the active matrix display device 1, when the first TFT 20 is ON by being selected by scanning signals, picture signals from a data line sig are applied to the gate electrode 31 of the second TFT 30 through the first TFT 20, and at the same time, the picture signals are stored in the storage capacitor cap through the first TFT 20. As a result, when the second TFT 30 is ON, a voltage is applied with the opposing electrode op and the pixel electrode 41 serving as a negative pole and a positive pole, respectively, and in the region in which the applied voltage exceeds the threshold voltage, a current (driving current) applied to the organic semiconductor film 43 sharply increases. Accordingly, the luminescent element 40 emits light as an electroluminescence element or an LED element, and light of the luminescent element 40 is reflected from the opposing electrode op and is emitted after passing through the transparent pixel electrode 41 and the transparent substrate 10. Since the driving current for emitting light as described above flows through a current path composed of the opposing electrode op, the organic semiconductor film 43, the pixel electrode 41, the second TFT 30, and the common feeder com, when the second TFT 30 is OFF, the driving current stops flowing. However, in the gate electrode of the second TFT 30, even if the first TFT 20 is OFF, the storage capacitor cap maintains an electric potential that is equivalent to the picture signals, and thereby the second TFT 30 remains ON. Therefore, the driving current continues to be applied to the luminescent element 40, and the pixel stays illuminated. This state is maintained until new image data are stored in the storage capacitor cap and the second TFT 30 is OFF.
  • [0047]
    (Structure of Bank Layer)
  • [0048]
    In the active matrix display device 1 having the configuration described above, in this embodiment, in order to prevent the data lines sig from being parasitized with a large amount of capacitance, as shown in FIG. 1, FIG. 2, and FIGS. 3(A), 3(B), and 3(C), a thick insulating film composed of a resist film or polyimide film (bank layer bank, a shaded region in which lines that slant to the left are drawn at a large pitch) is provided along the data lines sig and the scanning lines gate, and the opposing electrode op is formed on the upper layer side of the bank layer bank. Thereby, since the second interlayer insulating film 52 and the thick bank layer bank are interposed between the data line sig and the opposing electrode op, capacitance that parasitizes the data line sig is significantly reduced. Therefore, the load on the drive circuits 3 and 4 can be decreased and lower consumption of electric power or faster display operation can be achieved.
  • [0049]
    As shown in FIG. 1, the bank layer bank (diagonally shaded region) is also formed in the periphery of the transparent substrate 10 (a region external to the display area 11). Accordingly, both the data side drive circuit 3 and the scanning side drive circuit 4 are covered with the bank layer bank. The opposing electrode op is required to be formed at least on the display area 11, and is not required to be formed in drive circuit regions. However, since the opposing electrode op is generally formed by mask-sputtering, alignment accuracy is low and the opposing electrode op may sometimes overlap drive circuits. However, in this embodiment, even if the opposing electrode op overlaps the region in which the drive circuits are formed, the bank layer bank is interposed between the lead layer of the drive circuits and the opposing electrode op. Therefore, the parasitization of capacitance in the drive circuits 3 and 4 can be prevented, thereby the load on the drive circuits 3 and 4 can be decreased, and lower consumption of electric power or faster display operation can be achieved.
  • [0050]
    Further, in this embodiment, in the region in which the pixel electrode 41 is formed, in a region in which the conduction control circuit 50 overlaps the interconnecting electrode 35, the bank layer bank is also formed. Therefore, the organic semiconductor film 43 is not formed in the region overlapping with the interconnecting electrode 35. That is, since the organic semiconductor film 43 is formed only in the planar section in the region in which the pixel electrode 41 is formed, the organic semiconductor film 43 is formed at a given thickness, and display unevenness does not occur. If there is no bank layer bank in the region overlapping with the interconnecting electrode 35, a driving current flows between this section and the opposing electrode op, and the organic semiconductor film 43 emits light. However, the light sandwiched between the interconnecting electrode 35 and the opposing electrode op, is not emitted externally, and does not contribute to display. Such a driving current which flows in the section that does not contribute to display is a reactive current in view of display. However, in this embodiment, the bank layer bank is formed in the section in which such a reactive current should have flowed in the conventional structure, and a driving current is prevented from being applied thereat; a useless current can thereby be prevented from flowing through the common feeder com. Therefore, the width of the common feeder corn can be decreased by that amount. As a result, the emission area can be increased, and thereby display characteristics such as luminance and contrast ratio can be improved.
  • [0051]
    Moreover, in this embodiment, since the bank layer bank is formed along the data lines sig and the scanning lines gate, any pixel 7 is surrounded by the thick bank layer bank. Thereby, if no measures are taken, the opposing electrode op of each pixel 7 is connected to the opposing electrode op of the adjacent pixel 7 by extending over the bank layer bank. In this embodiment, however, a discontinuities portion off is formed in the bank layer bank at the section corresponding to a section between the adjacent pixels 7 in the direction of extension of the data line sig. A discontinuities portion off is also formed in the bank layer bank at the section corresponding to a section between the adjacent pixels 7 in the direction of extension of the scanning line gate. Further, a discontinuities portion off is also formed in the bank layer bank at each end of the data lines sig and the scanning lines gate in each of the directions of extension.
  • [0052]
    Since such a discontinuities portion off does not have the thick bank layer bank, it is a planar section which does not have a large step due to the existence of the bank layer bank, and the opposing electrode op formed in this section does not suffer from disconnection. Thereby, the opposing electrode 7 of each pixel 7 is securely connected to each other through the planar section which does not have a step due to the existence of the bank layer bank. Therefore, even if a thick insulating layer (bank layer bank) is formed around the pixel 7 to suppress parasitic capacitance and the like, disconnection does not occur in the opposing electrode op formed on the upper layer of the thick insulating film (bank layer bank).
  • [0053]
    Moreover, the bank layer bank formed on the upper layer side of the scanning side drive circuit 4 and the data side drive circuit 3 is provided with a discontinuities portion off at the position between the region in which the scanning side drive circuit 4 is formed and the region in which the data side drive circuit 3 is formed. Thereby, the opposing electrode op on the side of the display area 11 and the opposing electrode op in the periphery of the substrate are connected through the discontinuities portion off of the bank layer bank, and this discontinuities portion is also a planar section which does not have a step due to the existence of the bank layer bank. Accordingly, since the opposing electrode op formed in the discontinuities portion off is not disconnected, the opposing electrode op on the side of the display area 11 and the opposing electrode op in the periphery of the substrate are securely connected through the discontinuities portion off of the bank layer bank, and the terminals 12 that are wired and connected to the opposing electrode op in the periphery of the substrate and the opposing electrode op in the display area 11 are securely connected.
  • [0054]
    If the bank layer bank is formed of a black resist, the bank layer bank functions as a black matrix, resulting in improvement in display quality such as the contrast ratio. That is, in the active matrix display device 1 of this embodiment, since the opposing electrode op is formed over the entire surface of the pixel 7 on the face side of the transparent substrate 10, reflected light from the opposing electrode op decreases contrast ratio. However, if the bank layer bank that functions as a preventer of parasitic capacitance is composed of a black resist, the bank layer bank also functions as a black matrix and shields the reflected light from the opposing electrode op, resulting in improvement in contrast ratio.
  • [0055]
    (Method for Fabricating Active Matrix Display Device)
  • [0056]
    Since the bank layer bank formed as described above is configured so as to surround the region in which the organic semiconductor film 43 is formed, when the organic semiconductor film 43 is formed of a liquid material (discharged liquid) discharged from an ink jet head in the fabricating process of the active matrix display device, the bank layer bank blocks the discharged liquid and prevents the discharged liquid from spreading to the sides. In the method for fabricating the active matrix display device 1 described below, since the steps up to the fabrication of the first TFT 20 and the second TFT 30 on the transparent substrate 10 are substantially the same as those for fabricating the active matrix substrate of the liquid crystal active matrix display device 1, the outline will be briefly described with reference to FIGS. 3(A), 3(B), and 3(C).
  • [0057]
    First, on the transparent substrate 10, as required, a protective film (not shown in the drawing) composed of a silicon oxide film having a thickness of approximately 2,000 to 5,000 angstroms is formed by a plasma CVD process using TEOS (tetraethoxysilane) or oxygen gas as a source gas, and then on the surface of the protective film, a semiconductor film composed of an amorphous silicon film having a thickness of approximately 300 to 700 angstroms is formed by a plasma CVD process. Next, the semiconductor film composed of the amorphous silicon film is subjected to a crystallization step such as laser-annealing or solid phase epitaxy to crystallize the semiconductor film into a polysilicon film.
  • [0058]
    Next, the island-like semiconductor film is formed by patterning the semiconductor film, and on the surface thereof, a gate insulating film 57 composed of a silicon oxide film or nitride film having a thickness of approximately 600 to 1,500 angstroms is formed by a plasma CVD process using TEOS (tetraethoxysilane) or oxygen gas as a source gas.
  • [0059]
    Next, a conductive film composed of a metal film such as aluminum, tantalum, molybdenum, titanium, or tungsten is formed by sputtering and is then patterned to form gate electrodes 21 and 31, and an extension 36 of the gate electrode 31 (gate electrode formation step). In this step, scanning lines gate are also formed.
  • [0060]
    In this state, source and drain regions are formed in a self-aligned manner with respect to the gate electrodes 21 and 31 by implanting high-concentration phosphorus ions. The section in which impurities are not implanted becomes a channel region.
  • [0061]
    Next, after the first interlayer insulating film 51 is formed, the individual contact holes are formed. Then, the data line sig, the drain electrode 22, the common feeder com, the extension 39 of the common feeder com, and the interconnecting electrode 35 are formed. As a result, the first TFT 20, the second TFT 30, and the storage capacitor cap are formed.
  • [0062]
    Next, the second interlayer insulating film 52 is formed, and a contact hole is formed-in the interlayer insulating film at the section corresponding to the interconnecting electrode 35. Then, after an ITO film is formed on the entire surface of the second interlayer insulating film 52, by patterning, the pixel electrode 41 that is electrically connected to the source/drain region of the second TFT 30 through the contact hole is formed in each pixel 7.
  • [0063]
    Next, after a resist layer is formed on the surface side of the second interlayer insulating film 52, the resist layer is patterned so as to remain along the scanning line gate and the data line sig to form the bank layer bank. A discontinuities portion off is formed at a predetermined section of the bank layer bank. At this stage, the resist section to be left along the data line sig is formed broadly so as to cover the common feeder com. As a result, the region in which the organic semiconductor film 43 of the luminescent element 40 is to be formed is surrounded by the bank layer bank.
  • [0064]
    Next, in the ′region bound in a matrix by the bank layer bank, the individual organic semiconductor films 43 corresponding to R, G, and B are formed using an ink jet process. To this end, a liquid material (precursor) for constituting the organic semiconductor film 43 is discharged from an ink jet head to the interior region of the bank layer bank, and is fixed in the interior region of the bank layer bank to form the organic semiconductor film 43. The bank layer bank is water-repellent because it is composed of a resist layer. In contrast, since the precursor of the organic semiconductor film 43 uses a hydrophilic solvent, even if there is a discontinuities portion off in the bank layer bank that bounds the region in which the organic semiconductor film 43 is formed, since such a discontinuities portion off is narrow, the region in which the organic semiconductor film 43 is applied is securely defined by the bank layer bank and spreading to the adjacent pixel 7 does not occur. Therefore, the organic semiconductor film 43, etc., can be formed only within the predetermined region. In this step, since the precursor discharged from the ink jet head swells to a thickness of approximately 2 to 4 μm under the influence of surface tension, the bank layer bank must have a thickness of approximately 1 to 3 μm. The fixed organic semiconductor film 43 has a thickness of approximately 0.05 to 0.2 μm. Additionally, when the barrier of the bank layer bank has a height of 1 μm or more, even if the bank layer bank is not water repellent, the bank layer bank functions satisfactorily as a barrier. By forming such a thick bank layer bank, the region in which the organic semiconductor film 43 is formed can be defined when the film 43 is formed by an application process instead of the ink jet process.
  • [0065]
    Then, the opposing electrode op is formed substantially on the entire surface of the transparent substrate 10.
  • [0066]
    In accordance with the fabrication method described above, since the individual organic semiconductor films 43 corresponding to R, G, and B can be formed in the predetermined region using the ink jet process, the full color active matrix display device 1 can be fabricated with high productivity.
  • [0067]
    Additionally, although TFTs are also formed in the data side drive circuit 3 and the scanning side drive circuit 4 shown in FIG. 1, the TFTs are formed entirely or partially by repeating the steps of forming the TFTs in the pixel 7 described above. Therefore, TFTs included in the drive circuits are formed between the same layers as those of the TFTs of the pixel 7. With respect to the first TFT 20 and the second TFT 30, both may be n-type or p-type, or one may be n-type and the other may be p-type. In any combination, since TFTs can be formed in a known manner, description thereof will be omitted.
  • [0068]
    Variation 1 of Embodiment 1
  • [0069]
    [0069]FIG. 4 is a block diagram which schematically shows the general layout of an active matrix display device. FIG. 5 is a plan view which shows a pixel included in the device shown in FIG. 4. FIGS. 6(A), 6(B), and 6(C) are sectional views taken along the line A-A′, the line B-B′, and the line C-C′ of FIG. 5, respectively. Since this embodiment has basically the same configuration as that of embodiment 1, the same reference numerals are used for the parts that are the same as those of embodiment 1, and detailed description thereof will be omitted.
  • [0070]
    As shown in FIG. 4, FIG. 5, and FIGS. 6(A), 6(B), and 6(C), in an active matrix display device 1 of this embodiment, a thick insulating film composed of a resist film (bank layer bank, a shaded region in which lines that slant to the left are drawn at a large pitch) is also provided along the data lines sig and the scanning lines gate, and the opposing electrode op is formed on the upper layer side of the bank layer bank. Thereby, since the second interlayer insulating film 52 and the thick bank layer bank are interposed between the data line sig and the opposing electrode op, the capacitance that parasitizes the data line sig is significantly reduced. Therefore, the load on the drive circuits 3 and 4 can be decreased and lower consumption of electric power or faster display operation can be achieved.
  • [0071]
    The bank layer bank (diagonally shaded region) is also formed in the periphery of the transparent substrate 10 (a region external to the display area 11). Accordingly, both the data side drive circuit 3 and the scanning side drive circuit 4 are covered with the bank layer bank. Even if the opposing electrode op overlaps the region in which the drive circuits are formed, the bank layer bank is interposed between the wiring layer of the drive circuits and the opposing electrode op. Therefore, the parasitization of capacitance in the drive circuits 3 and 4 can be prevented, and thus the load on the drive circuits 3 and 4 can be decreased, and lower consumption of electric power or faster display operation can be achieved.
  • [0072]
    Further, in this embodiment, in the region in which the pixel electrode 41 is formed, in a region in which the conduction control circuit 50 overlaps the interconnecting electrode 35, the bank layer bank is also formed, and thereby a useless reactive current can be prevented from flowing. Therefore, the width of the common feeder com can be decreased by that amount.
  • [0073]
    Moreover, in this embodiment, since the bank layer bank is formed along the data lines sig and the scanning lines gate, any pixel 7 is surrounded by the bank layer bank. Therefore, since the individual organic semiconductor films 43 corresponding to R, G, and B can be formed in the predetermined region using an ink jet process, the full color active matrix display device 1 can be fabricated with high productivity.
  • [0074]
    Moreover, a discontinuities portion off is formed in the bank layer bank at the section corresponding to a section between the adjacent pixels 7 in the extending direction of the scanning lines gate. A discontinuities portion off is also formed in the bank layer bank at each end of the data lines sig and the scanning lines gate in each of the extending directions. Further, the bank layer bank formed on the upper layer side of the scanning side drive circuit 4 and the data side drive circuit 3 is provided with a discontinuities portion off at the position between the region in which the scanning side drive circuit 4 is formed and the region in which the data side drive circuit 3 is formed. Accordingly, the opposing electrodes op are securely connected to each other through a planar section (discontinuities portion off) which does not have a step due to the existence of the bank layer bank, and disconnection does not occur.
  • [0075]
    Variation 2 of Embodiment 1
  • [0076]
    [0076]FIG. 7 is a block diagram which schematically shows the general layout of an active matrix display device. FIG. 8 is a plan view which shows a pixel included in the device shown in FIG. 7. FIGS. 9(A), 9(B), and 9(C) are sectional views taken along the line A-A′, the line B-B′, and the line C-C′ of FIG. 8, respectively. Since this embodiment has basically the same configuration as that of embodiment 1, the same reference numerals are used for the parts that are the same as those of embodiment 1, and detailed description thereof will be omitted.
  • [0077]
    As shown in FIG. 7, FIG. 8, and FIGS. 9(A), 9(B), and 9(C), in an active matrix display device 1 of this embodiment, a thick insulating film composed of a resist film (bank layer bank, a shaded region in which lines that slant to the left are drawn at a large pitch) is also provided along the data lines sig and the scanning lines gate, and the opposing electrode op is formed on the upper layer side of the bank layer bank. Thereby, since the second interlayer insulating film 52 and the thick bank layer bank are interposed between the data line sig and the opposing electrode op, the capacitance that parasitizes the data line sig is significantly reduced. Therefore, the load on the drive circuits 3 and 4 can be decreased and lower consumption of electric power or faster display operation can be achieved.
  • [0078]
    The bank layer bank (diagonally shaded region) is also formed in the periphery of the transparent substrate 10 (a region external to the display area 11). Accordingly, both the data side drive circuit 3 and the scanning side drive circuit 4 are covered with the bank layer bank. Even if the opposing electrode op overlaps the region in which the drive circuits are formed, the bank layer bank is interposed between the wiring layer of the drive circuits and the opposing electrode op. Therefore, the parasitization of capacitance in the drive circuits 3 and 4 can be prevented, and thus the load on the drive circuits 3 and 4 can be decreased, and lower consumption of electric power or faster display operation can be achieved.
  • [0079]
    Further, in this embodiment, in the region in which the pixel electrode 41 is formed, in a region in which the conduction control circuit 50 overlaps the interconnecting electrode 35, the bank layer bank is also formed, and thereby a useless reactive current can be prevented from flowing. Therefore, the width of the common feeder com can be decreased by that amount.
  • [0080]
    Moreover, in this embodiment, since the bank layer bank is formed along the data lines sig and the scanning lines gate, any pixel 7 is surrounded by the bank layer bank. Therefore, since the individual organic semiconductor films 43 corresponding to R, G, and B can be formed in the predetermined region using an ink jet process, the full color active matrix display device 1 can be fabricated with high productivity.
  • [0081]
    Moreover, a discontinuities portion off is formed in the bank layer bank at the section corresponding to a section between the adjacent pixels 7 in the extending direction of the data lines sig. A discontinuities portion off is also formed in the bank layer bank at each end of the data lines sig and the scanning lines gate in each of the extending directions. Further, the bank layer bank formed on the upper layer side of the scanning side drive circuit 4 and the data side drive circuit 3 is provided with a discontinuities portion off at the position between the region in which the scanning side drive circuit 4 is formed and the region in which the data side drive circuit 3 is formed. Accordingly, the opposing electrodes op are securely connected to each other through a planar section (discontinuities portion off) which does not have a step due to the existence of the bank layer bank, and disconnection does not occur.
  • [0082]
    Embodiment 2
  • [0083]
    [0083]FIG. 10 is a block diagram which schematically shows the general layout of an active matrix display device. FIG. 11 is a plan view which shows a pixel included in the device shown in FIG. 10. FIGS. 12(A), 12(B), and 12(C) are sectional views taken along the line A-A′, the line B-B′, and the line C-C′ of FIG. 11, respectively. Since this embodiment basically has the same configuration as that of embodiment 1, the same reference numerals are used for the parts that are the same as those of embodiment 1, and detailed description thereof will be omitted.
  • [0084]
    As shown in FIG. 10, FIG. 11, and FIGS. 12(A), 12(B), and 12(C), in an active matrix display device 1 of this embodiment, a thick insulating film composed of a resist film (bank layer bank, a shaded region in which lines that slant to the left are drawn at a large pitch) is formed in a strip along the data lines sig, and the opposing electrode op is formed on the upper layer side of the bank layer bank. Thereby, since the second interlayer insulating film 52 and the thick bank layer bank are interposed between the data line sig and the opposing electrode op, the capacitance that parasitizes the data line sig is significantly reduced. Therefore, the load on the drive circuits 3 and 4 can be decreased and lower consumption of electric power or faster display operation can be achieved.
  • [0085]
    The bank layer bank (diagonally shaded region) is also formed in the periphery of the transparent substrate 10 (a region external to the display area 11). Accordingly, both the data side drive circuit 3 and the scanning side drive circuit 4 are covered with the bank layer bank. Even if the opposing electrode op overlaps the region in which the drive circuits are formed, the bank layer bank is interposed between the wiring layer of the drive circuits and the opposing electrode op. Therefore, the parasitization of capacitance in the drive circuits 3 and 4 can be prevented, and thus the load on the drive circuits 3 and 4 can be decreased and lower consumption of electric power or faster display operation can be achieved.
  • [0086]
    Moreover, in this embodiment, since the bank layer bank is formed along the data lines sig, the individual organic semiconductor films 43 corresponding to R, G, and B can be formed in a strip in the region bound in a strip by the bank layer bank using an ink jet process. Thereby, the full color active matrix display device 1 can be fabricated with high productivity.
  • [0087]
    Moreover, the bank layer bank is provided with a discontinuities portion off at each end of the data lines sig in the extending direction. Thereby, the opposing electrode op of each pixel 7 is connected to the opposing electrode op of the adjacent pixel 7 by extending over the bank layer bank. By tracing the extending direction of the data lines sig, it is found that the opposing electrodes op of the individual pixels 7 are connected to the adjacent row of pixels in the extending direction of the scanning lines gate, at the end of the data lines sig, through a discontinuities portion off (planar section which does not have a step due to the existence of the bank layer bank). Therefore, the opposing electrodes op of the individual pixels 7 are connected to each other through the planar section which does not have a step due to the existence of the bank layer bank, and the opposing electrode op of any pixel 7 is not disconnected.
  • [0088]
    Other Embodiment
  • [0089]
    Additionally, when the bank layer bank (insulating film) is composed of an organic material such as a resist film or a polyimide film, a thick film can be easily formed. When the bank layer bank (insulating film) is composed of an inorganic material such as a silicon oxide film or silicon nitride film deposited by a CVD process or SOG process, an alteration in the organic semiconductor film 43 can be prevented even if the insulating film is in contact with the organic semiconductor film 43.
  • [0090]
    Besides the structure in which the storage capacitor cap is formed by the common feeder com, the storage capacitor cap may be formed by a capacitance line formed in parallel to the scanning line gate.
  • [0091]
    Industrial Applicability
  • [0092]
    As descried above, in an active matrix display device in accordance with the present invention, since a thick insulating film is interposed between data lines and opposing electrodes, the parasitization of capacitance in the data lines can be prevented. Therefore, the load on a data side drive circuit can be decreased, resulting in lower consumption of electric power or faster display operation. Additionally, a discontinuities portion is formed at a predetermined position of the thick insulating film and the section is planar. Accordingly, the opposing electrodes in the individual regions are electrically connected to each other through a section formed in the planar section, and even if disconnection occurs at a step due to the existence of the insulating film, electrical connection is secured through the planar section corresponding to the discontinuities portion of the insulating film. Thereby, even if a thick insulating film is formed around an organic semiconductor film to suppress parasitic capacitance or the like, disconnection does not occur in the opposing electrodes formed on the upper layer of the insulating film, and thus display quality and reliability of the active matrix display device can be improved.

Claims (10)

    What is claimed is:
  1. 1. A display device, comprising:
    a substrate;
    a first insulating film above the substrate; and
    a plurality of pixels, each of the plurality of pixels including a pixel electrode on the first insulating film and a luminescent film disposed between the pixel electrode and an opposing electrode disposed above the pixel electrode,
    a first part where a second insulating film is disposed on the first insulating film and a second part where the second insulating film is not disposed and the opposing electrode is contacted to the first insulating film being provided at the periphery of the luminescent film.
  2. 2. The display device according to claim 1, wherein the second part is provided between two luminescent films included in one pixel of the plurality of pixels and an adjacent one, respectively.
  3. 3. The display device according to claim 1, further comprising a plurality of data lines and a plurality of scanning lines, the second insulating film covering the plurality of scanning lines.
  4. 4. The display device according to claim 1, further comprising a plurality of data lines and a plurality of scanning lines, the second insulating film covering the plurality of data lines.
  5. 5. The display according to claim 1, further comprising a plurality of data lines, a plurality of scanning lines, and a plurality of common feeders, the second insulating film covering the plurality of common feeders.
  6. 6. The display device according to claim 1, wherein the second part is provided between two luminescent films included in at least one pixel of the plurality of pixels and any one pixel adjacent to the at least one pixel, respectively.
  7. 7. The display device according to claim 1, further comprising a plurality of data lines and a plurality of scanning lines, the first part provided at intersections between the plurality of data lines and the plurality of scanning lines.
  8. 8. The display device according to claim 1, further comprising a plurality of data lines, a plurality of scanning lines, and a plurality of common feeders, the first part being provided at intersections between the plurality of common feeders and the plurality of scanning lines.
  9. 9. The display device according to claim 1, further comprising a plurality of data lines and a plurality of scanning lines, and a transistor provided at each pixel of the plurality of pixels, a gate of the transistor being connected to one the plurality of scanning lines, any one of a source and drain of the transistor being connected to one of the plurality of data lines, and the second insulating film covering at least one part of the transistor.
  10. 10. The display device according to claim 9, wherein the other of the source and drain of the transistor being connected to a storage capacitor, and the storage capacitor being covered by the second insulating film.
US10442057 1997-08-21 2003-05-21 Active matrix display device Abandoned US20030206144A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9-225433 1997-08-21
JP22543397A JP3580092B2 (en) 1997-08-21 1997-08-21 Active matrix display device
US09993565 US20020075207A1 (en) 1997-08-21 2001-11-27 Active matrix display device
US10442057 US20030206144A1 (en) 1997-08-21 2003-05-21 Active matrix display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10442057 US20030206144A1 (en) 1997-08-21 2003-05-21 Active matrix display device
US11905591 US20080036699A1 (en) 1997-08-21 2007-10-02 Active matrix display device
US12540806 US20090303165A1 (en) 1997-08-21 2009-08-13 Active matrix display device
US12606219 US20100045577A1 (en) 1997-08-21 2009-10-27 Active matrix display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09993565 Continuation US20020075207A1 (en) 1997-08-21 2001-11-27 Active matrix display device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11905591 Division US20080036699A1 (en) 1997-08-21 2007-10-02 Active matrix display device

Publications (1)

Publication Number Publication Date
US20030206144A1 true true US20030206144A1 (en) 2003-11-06

Family

ID=16829301

Family Applications (6)

Application Number Title Priority Date Filing Date
US09284774 Active US6373453B1 (en) 1997-08-21 1998-08-18 Active matrix display
US09993565 Abandoned US20020075207A1 (en) 1997-08-21 2001-11-27 Active matrix display device
US10442057 Abandoned US20030206144A1 (en) 1997-08-21 2003-05-21 Active matrix display device
US11905591 Abandoned US20080036699A1 (en) 1997-08-21 2007-10-02 Active matrix display device
US12540806 Abandoned US20090303165A1 (en) 1997-08-21 2009-08-13 Active matrix display device
US12606219 Abandoned US20100045577A1 (en) 1997-08-21 2009-10-27 Active matrix display device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09284774 Active US6373453B1 (en) 1997-08-21 1998-08-18 Active matrix display
US09993565 Abandoned US20020075207A1 (en) 1997-08-21 2001-11-27 Active matrix display device

Family Applications After (3)

Application Number Title Priority Date Filing Date
US11905591 Abandoned US20080036699A1 (en) 1997-08-21 2007-10-02 Active matrix display device
US12540806 Abandoned US20090303165A1 (en) 1997-08-21 2009-08-13 Active matrix display device
US12606219 Abandoned US20100045577A1 (en) 1997-08-21 2009-10-27 Active matrix display device

Country Status (7)

Country Link
US (6) US6373453B1 (en)
EP (2) EP0940796B1 (en)
JP (1) JP3580092B2 (en)
KR (1) KR100509239B1 (en)
CN (1) CN1146843C (en)
DE (2) DE69829357D1 (en)
WO (1) WO1999010861A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010053559A1 (en) * 2000-01-25 2001-12-20 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating display device
US20040169624A1 (en) * 2003-02-28 2004-09-02 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electric appliance
US20060028130A1 (en) * 2004-08-05 2006-02-09 Jae-Bon Koo Organic thin film transistor and flat panel display device including the same
US7393792B2 (en) 2000-12-12 2008-07-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method of fabricating the same
US20090026946A1 (en) * 2001-04-23 2009-01-29 Semiconductor Energy Laboratory Co., Ltd. Display Device and Method of Manufacturing the Same
WO2009052087A1 (en) * 2007-10-15 2009-04-23 E. I. Du Pont De Nemours And Company Backplane structures for solution processed electronic devices
US20090243464A1 (en) * 2000-09-18 2009-10-01 Semiconductor Energy Laboratory Co., Ltd. Display Device and Method of Fabricating the Display Device
US7701134B2 (en) 1999-06-04 2010-04-20 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device with improved operating performance
WO2010070800A1 (en) 2008-12-18 2010-06-24 パナソニック株式会社 Organic el light emitting device
US20100194269A1 (en) * 2007-08-31 2010-08-05 Sharp Kabushiki Kaisha Organic el display and manufacturing method thereof
US20100214326A1 (en) * 2009-02-20 2010-08-26 Tpo Displays Corp. Active matrix liquid crystal display and method of driving the same and electronic device
US20110227088A1 (en) * 1999-09-17 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. EL Display Device and Method for Manufacturing the Same
USRE43738E1 (en) 2002-01-16 2012-10-16 Seiko Epson Corporation Display device having a connection area outside the display area
US8735898B2 (en) 2000-02-22 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Self-light-emitting display device comprising an insulating layer between a pixel electrode and a light-emitting layer
US8772774B2 (en) 2007-12-14 2014-07-08 E. I. Du Pont De Nemours And Company Backplane structures for organic light emitting electronic devices using a TFT substrate
US8830146B2 (en) 1999-06-21 2014-09-09 Semiconductor Energy Laboratory Co., Ltd. EL display device, driving method thereof, and electronic equipment provided with the EL display device
US9837451B2 (en) 1999-04-27 2017-12-05 Semiconductor Energy Laboratory Co., Ltd. Electronic device and electronic apparatus

Families Citing this family (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3520396B2 (en) * 1997-07-02 2004-04-19 セイコーエプソン株式会社 Active matrix substrate and the display device
JP3580092B2 (en) * 1997-08-21 2004-10-20 セイコーエプソン株式会社 Active matrix display device
CN101068025B (en) * 1997-08-21 2010-05-12 精工爱普生株式会社 Display device
JP3692844B2 (en) * 1998-07-24 2005-09-07 セイコーエプソン株式会社 Electroluminescent device, and an electronic device
JP2000231346A (en) * 1999-02-09 2000-08-22 Sanyo Electric Co Ltd Electro-luminescence display device
EP1065724B1 (en) 1999-06-28 2007-04-18 Sel Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing an electro-optical device
US7473928B1 (en) 1999-10-12 2009-01-06 Semiconductor Energy Laboratory Co., Ltd. EL display device and a method of manufacturing the same
JP4854840B2 (en) * 1999-10-12 2012-01-18 株式会社半導体エネルギー研究所 The method for manufacturing a light emitting device
JP4827290B2 (en) 1999-10-13 2011-11-30 株式会社半導体エネルギー研究所 The thin film forming apparatus
JP2001148291A (en) * 1999-11-19 2001-05-29 Sony Corp Display device and its manufacturing method
JP4906145B2 (en) * 1999-11-29 2012-03-28 株式会社半導体エネルギー研究所 El display device
JP4963158B2 (en) * 2000-01-25 2012-06-27 株式会社半導体エネルギー研究所 The method for manufacturing a display device, a manufacturing method of an electro-optical device
JP4785257B2 (en) * 2000-02-04 2011-10-05 株式会社半導体エネルギー研究所 The method for manufacturing a light emitting device
EP1122801B1 (en) * 2000-02-04 2017-03-22 Semiconductor Energy Laboratory Co., Ltd. Thin film formation apparatus and method of manufacturing self-light-emitting device using thin film formation apparatus
US6869635B2 (en) 2000-02-25 2005-03-22 Seiko Epson Corporation Organic electroluminescence device and manufacturing method therefor
JP4748147B2 (en) * 2000-02-25 2011-08-17 セイコーエプソン株式会社 Organic el device
CN1905239A (en) * 2000-03-27 2007-01-31 株式会社半导体能源研究所 Self-light emitting device and method of manufacturing the same
JP4214660B2 (en) * 2000-04-11 2009-01-28 ソニー株式会社 Direct-view-type display device
US6762735B2 (en) * 2000-05-12 2004-07-13 Semiconductor Energy Laboratory Co., Ltd. Electro luminescence display device and method of testing the same
GB0014962D0 (en) * 2000-06-20 2000-08-09 Koninkl Philips Electronics Nv Matrix array display devices with light sensing elements and associated storage capacitors
US7180496B2 (en) 2000-08-18 2007-02-20 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method of driving the same
US7250927B2 (en) * 2000-08-23 2007-07-31 Semiconductor Energy Laboratory Co., Ltd. Portable information apparatus and method of driving the same
JP4646874B2 (en) * 2000-09-18 2011-03-09 株式会社半導体エネルギー研究所 Display devices, mobile phones, digital cameras and electronic equipment
JP3695308B2 (en) * 2000-10-27 2005-09-14 日本電気株式会社 The active matrix organic el display device and manufacturing method thereof
CN100502030C (en) * 2000-11-27 2009-06-17 精工爱普生株式会社 Organic electroluminescent device, and electronic devices therewith
KR100672628B1 (en) * 2000-12-29 2007-01-23 엘지.필립스 엘시디 주식회사 Active Matrix Organic Electroluminescence Display Device
US20020093286A1 (en) * 2001-01-12 2002-07-18 Tohoku Pioneer Corporation Organic EL display and method for producing the same
US7569849B2 (en) 2001-02-16 2009-08-04 Ignis Innovation Inc. Pixel driver circuit and pixel circuit having the pixel driver circuit
US7248236B2 (en) 2001-02-16 2007-07-24 Ignis Innovation Inc. Organic light emitting diode display having shield electrodes
CN101232027B (en) 2001-02-19 2012-07-04 株式会社半导体能源研究所 Light emitting device and its formation method
JP5137279B2 (en) * 2001-03-27 2013-02-06 株式会社半導体エネルギー研究所 The method for manufacturing a light emitting device
JP4789341B2 (en) * 2001-03-30 2011-10-12 三洋電機株式会社 A semiconductor device and a manufacturing mask
DE10117663B4 (en) 2001-04-09 2004-09-02 Samsung SDI Co., Ltd., Suwon A process for the preparation of arrays on the basis of various organic conductive materials
US6639281B2 (en) 2001-04-10 2003-10-28 Sarnoff Corporation Method and apparatus for providing a high-performance active matrix pixel using organic thin-film transistors
JP2002329583A (en) * 2001-05-02 2002-11-15 Sony Corp Organic electro-luminescence display device
US6515547B2 (en) 2001-06-26 2003-02-04 Koninklijke Philips Electronics N.V. Self-biased cascode RF power amplifier in sub-micron technical field
KR100439648B1 (en) 2001-08-29 2004-07-12 엘지.필립스 엘시디 주식회사 The organic electro-luminescence device
JP4305811B2 (en) 2001-10-15 2009-07-29 株式会社日立製作所 The liquid crystal display device, an image display device and a manufacturing method thereof
US7483001B2 (en) 2001-11-21 2009-01-27 Seiko Epson Corporation Active matrix substrate, electro-optical device, and electronic device
CN1209662C (en) * 2001-12-17 2005-07-06 精工爱普生株式会社 Display device and electronic apparatus
US7109653B2 (en) * 2002-01-15 2006-09-19 Seiko Epson Corporation Sealing structure with barrier membrane for electronic element, display device, electronic apparatus, and fabrication method for electronic element
US7148508B2 (en) 2002-03-20 2006-12-12 Seiko Epson Corporation Wiring substrate, electronic device, electro-optical device, and electronic apparatus
KR100537611B1 (en) 2002-04-10 2005-12-19 삼성에스디아이 주식회사 Organic light emitting diode and method for producing thereof
US7109650B2 (en) 2002-07-08 2006-09-19 Lg.Philips Lcd Co., Ltd. Active matrix organic electroluminescent display device and method of fabricating the same
KR100528910B1 (en) 2003-01-22 2005-11-15 삼성에스디아이 주식회사 Polymer organic light emitting diode
US7123332B2 (en) * 2003-05-12 2006-10-17 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, electronic device having the same, and semiconductor device
GB0313041D0 (en) 2003-06-06 2003-07-09 Koninkl Philips Electronics Nv Display device having current-driven pixels
US20040263072A1 (en) * 2003-06-24 2004-12-30 Joon-Young Park Flat panel display
US7317455B2 (en) * 2003-09-10 2008-01-08 Xerox Corporation Bias voltage offset circuit
CA2443206A1 (en) 2003-09-23 2005-03-23 Ignis Innovation Inc. Amoled display backplanes - pixel driver circuits, array architecture, and external compensation
JP4581408B2 (en) * 2004-01-19 2010-11-17 ソニー株式会社 Display device
US20050253803A1 (en) * 2004-05-13 2005-11-17 Xerox Corporation Electric paper display with a thin film transistor active matrix and integrated addressing logic
CA2472671A1 (en) 2004-06-29 2005-12-29 Ignis Innovation Inc. Voltage-programming scheme for current-driven amoled displays
JP2004326130A (en) * 2004-07-30 2004-11-18 Sony Corp Tiling display device
US7105375B2 (en) * 2004-07-30 2006-09-12 Xerox Corporation Reverse printing
WO2006016662A1 (en) * 2004-08-11 2006-02-16 Sanyo Electric Co., Ltd. Semiconductor element matrix array and manufacturing method of the same, and display panel
US8350466B2 (en) 2004-09-17 2013-01-08 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US7753751B2 (en) 2004-09-29 2010-07-13 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating the display device
US8772783B2 (en) * 2004-10-14 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Display device
KR101090250B1 (en) 2004-10-15 2011-12-06 삼성전자주식회사 Thin film transistor array panel using organic semiconductor and manufacturing method thereof
US7288469B2 (en) * 2004-12-03 2007-10-30 Eastman Kodak Company Methods and apparatuses for forming an article
CA2490858A1 (en) 2004-12-07 2006-06-07 Ignis Innovation Inc. Driving method for compensated voltage-programming of amoled displays
US8063551B1 (en) * 2004-12-29 2011-11-22 E.I. Du Pont De Nemours And Company Pixel intensity homogeneity in organic electronic devices
KR100685811B1 (en) 2005-01-04 2007-02-22 삼성에스디아이 주식회사 Organic electro luminescence display and method for manufacturing the same
CA2495726A1 (en) 2005-01-28 2006-07-28 Ignis Innovation Inc. Locally referenced voltage programmed pixel for amoled displays
KR101133767B1 (en) * 2005-03-09 2012-04-09 삼성전자주식회사 Organic thin film transistor array panel and method for manufacturing the same
JP4531596B2 (en) * 2005-03-09 2010-08-25 株式会社半導体エネルギー研究所 Light-emitting device and an electronic device
JP2006261240A (en) * 2005-03-15 2006-09-28 Seiko Epson Corp Board for electronic device, manufacturing method thereof, display apparatus and electronic apparatus
KR101187207B1 (en) 2005-08-04 2012-10-02 삼성디스플레이 주식회사 Liquid crystal display
JP5148086B2 (en) 2005-08-18 2013-02-20 三星電子株式会社Samsung Electronics Co.,Ltd. The organic thin film transistor array panel
KR100703157B1 (en) * 2005-09-15 2007-04-06 삼성전자주식회사 Display device
JP4640085B2 (en) * 2005-09-30 2011-03-02 カシオ計算機株式会社 Display panel
US8441185B2 (en) * 2005-10-17 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with improved pixel arrangement
KR20090006198A (en) 2006-04-19 2009-01-14 이그니스 이노베이션 인크. Stable driving scheme for active matrix displays
CN100389358C (en) 2006-06-15 2008-05-21 友达光电股份有限公司 Picture element structure for preventing light leak
CA2617752A1 (en) 2007-12-24 2009-06-24 Ignis Innovation Inc Power scavenging and harvesting for power efficient display
JP2008198626A (en) * 2008-05-23 2008-08-28 Seiko Epson Corp Organic el device
US9929220B2 (en) * 2009-01-08 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
US8283967B2 (en) 2009-11-12 2012-10-09 Ignis Innovation Inc. Stable current source for system integration to display substrate
JP4990415B2 (en) 2009-12-04 2012-08-01 パナソニック株式会社 Organic el device and manufacturing method thereof
JP4752968B2 (en) * 2009-12-25 2011-08-17 カシオ計算機株式会社 Organic el light-emitting device
US8717259B2 (en) * 2010-12-28 2014-05-06 Samsung Display Co., Ltd. Organic light emitting display device, driving method thereof, and manufacturing method thereof
US9134825B2 (en) 2011-05-17 2015-09-15 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9606607B2 (en) 2011-05-17 2017-03-28 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
JP2011187459A (en) * 2011-06-29 2011-09-22 Semiconductor Energy Lab Co Ltd Light emitting device
US8901579B2 (en) 2011-08-03 2014-12-02 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
US9070775B2 (en) 2011-08-03 2015-06-30 Ignis Innovations Inc. Thin film transistor
US9385169B2 (en) 2011-11-29 2016-07-05 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
JP5600704B2 (en) * 2012-04-17 2014-10-01 株式会社半導体エネルギー研究所 The light-emitting device
KR20140017435A (en) 2012-08-01 2014-02-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
JP5288662B2 (en) * 2012-08-07 2013-09-11 株式会社半導体エネルギー研究所 Display device
JP6204012B2 (en) 2012-10-17 2017-09-27 株式会社半導体エネルギー研究所 The light-emitting device
JP6076683B2 (en) 2012-10-17 2017-02-08 株式会社半導体エネルギー研究所 The light-emitting device
JP6155020B2 (en) 2012-12-21 2017-06-28 株式会社半導体エネルギー研究所 Emitting device and manufacturing method thereof
JP5564556B2 (en) * 2012-12-26 2014-07-30 株式会社半導体エネルギー研究所 El display device
JP6216125B2 (en) 2013-02-12 2017-10-18 株式会社半導体エネルギー研究所 The light-emitting device
JP6104649B2 (en) 2013-03-08 2017-03-29 株式会社半導体エネルギー研究所 The light-emitting device
US9502653B2 (en) 2013-12-25 2016-11-22 Ignis Innovation Inc. Electrode contacts
CA2872563A1 (en) 2014-11-28 2016-05-28 Ignis Innovation Inc. High pixel density array architecture
KR20160082558A (en) * 2014-12-26 2016-07-08 삼성디스플레이 주식회사 Organic light emitting display device and manufacturing method of the same
KR20170024197A (en) * 2015-08-24 2017-03-07 엘지디스플레이 주식회사 Transparent display
KR20170099460A (en) * 2016-02-23 2017-09-01 삼성디스플레이 주식회사 Organic light emitting display device and method of manufacturing an organic light emitting display device

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264758A (en) * 1989-10-18 1993-11-23 Noritake Co., Limited Plasma display panel and method of producing the same
US5317432A (en) * 1991-09-04 1994-05-31 Sony Corporation Liquid crystal display device with a capacitor and a thin film transistor in a trench for each pixel
US5377031A (en) * 1990-12-31 1994-12-27 Kopin Corporation Single crystal silicon tiles for liquid crystal display panels including light shielding layers
US5414547A (en) * 1991-11-29 1995-05-09 Seiko Epson Corporation Liquid crystal display device and manufacturing method therefor
US5500750A (en) * 1993-03-24 1996-03-19 Sharp Kabushiki Kaisha Manufacturing method of reflection type liquid crystal display devices having light shield elements and reflective electrodes formed of same material
US5550066A (en) * 1994-12-14 1996-08-27 Eastman Kodak Company Method of fabricating a TFT-EL pixel
US5587329A (en) * 1994-08-24 1996-12-24 David Sarnoff Research Center, Inc. Method for fabricating a switching transistor having a capacitive network proximate a drift region
US5627557A (en) * 1992-08-20 1997-05-06 Sharp Kabushiki Kaisha Display apparatus
US5640067A (en) * 1995-03-24 1997-06-17 Tdk Corporation Thin film transistor, organic electroluminescence display device and manufacturing method of the same
US5684365A (en) * 1994-12-14 1997-11-04 Eastman Kodak Company TFT-el display panel using organic electroluminescent media
US5701055A (en) * 1994-03-13 1997-12-23 Pioneer Electronic Corporation Organic electoluminescent display panel and method for manufacturing the same
US5742129A (en) * 1995-02-21 1998-04-21 Pioneer Electronic Corporation Organic electroluminescent display panel with projecting ramparts and method for manufacturing the same
US5828429A (en) * 1991-10-16 1998-10-27 Semiconductor Energy Laboratory Co., Lt.D Electro-optical device and method of driving with voltage supply lines parallel to gate lines and two transistors per pixel
US5986723A (en) * 1996-09-25 1999-11-16 Kabushiki Kaisha Toshiba Liquid crystal display with TFT channel at gate source crossing and capacitor dividing pixel
US5989945A (en) * 1996-05-15 1999-11-23 Seiko Epson Corporation Thin film device provided with coating film, liquid crystal panel and electronic device, and method for making the thin film device
US6002463A (en) * 1996-01-30 1999-12-14 Seiko Epson Corporation Liquid crystal device having a light blocking layer provided over an alignment layer, method for making the same
US6038004A (en) * 1996-04-30 2000-03-14 Matsushita Electric Industrial Co., Ltd. Active matrix liquid crystal display for projection system
US6072450A (en) * 1996-11-28 2000-06-06 Casio Computer Co., Ltd. Display apparatus
US6114715A (en) * 1996-11-29 2000-09-05 Sanyo Electric Co., Ltd. Display apparatus using electroluminescence elements
US6115014A (en) * 1994-12-26 2000-09-05 Casio Computer Co., Ltd. Liquid crystal display by means of time-division color mixing and voltage driving methods using birefringence
US6175186B1 (en) * 1996-02-26 2001-01-16 Idemitsu Kosan Co., Ltd. Organic electroluminescent element and method for manufacturing the same
US6194837B1 (en) * 1997-07-02 2001-02-27 Seiko Epson Corporation Display device with thin film transistor (TFT) and organic semiconductor film in a luminescent element
US6373453B1 (en) * 1997-08-21 2002-04-16 Seiko Epson Corporation Active matrix display
US6380672B1 (en) * 1997-08-21 2002-04-30 Seiko Epson Corporation Active matrix display device
US6462722B1 (en) * 1997-02-17 2002-10-08 Seiko Epson Corporation Current-driven light-emitting display apparatus and method of producing the same
US6522315B2 (en) * 1997-02-17 2003-02-18 Seiko Epson Corporation Display apparatus
US6618029B1 (en) * 1997-07-02 2003-09-09 Seiko Epson Corporation Display apparatus
US7012367B2 (en) * 2001-12-18 2006-03-14 Seiko Epson Corporation Display device having light blocking layer, and electric device

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042854A (en) * 1975-11-21 1977-08-16 Westinghouse Electric Corporation Flat panel display device with integral thin film transistor control system
US4006383A (en) * 1975-11-28 1977-02-01 Westinghouse Electric Corporation Electroluminescent display panel with enlarged active display areas
US4087793A (en) * 1976-10-28 1978-05-02 Motorola, Inc. Digital electronic control and switching arrangement
US4087792A (en) * 1977-03-03 1978-05-02 Westinghouse Electric Corp. Electro-optic display system
US4636038A (en) * 1983-07-09 1987-01-13 Canon Kabushiki Kaisha Electric circuit member and liquid crystal display device using said member
FR2629634B1 (en) * 1984-12-18 1990-10-12 Thomson Csf A traveling wave tube comprising a delay line-type propeller fixed at a sheath by dielectric support intermediate boron nitride
US4738514A (en) * 1986-01-16 1988-04-19 Rca Corporation Crystal variation compensation circuit for liquid crystal displays
US4820222A (en) * 1986-12-31 1989-04-11 Alphasil, Inc. Method of manufacturing flat panel backplanes including improved testing and yields thereof and displays made thereby
JPH01186655A (en) * 1988-01-14 1989-07-26 Fujitsu Ltd Semiconductor integrated circuit
JPH088146B2 (en) * 1988-08-31 1996-01-29 松下電器産業株式会社 Color el display device and a method of manufacturing the same
US5892244A (en) * 1989-01-10 1999-04-06 Mitsubishi Denki Kabushiki Kaisha Field effect transistor including πconjugate polymer and liquid crystal display including the field effect transistor
JP3112021B2 (en) * 1990-07-09 2000-11-27 株式会社日立製作所 Semiconductor memory
JP2717454B2 (en) * 1990-07-16 1998-02-18 日本石油株式会社 The organic thin film electroluminescent elements
EP0659282B1 (en) * 1992-09-11 1998-11-25 Kopin Corporation Color filter system for display panels
US5177406A (en) * 1991-04-29 1993-01-05 General Motors Corporation Active matrix vacuum fluorescent display with compensation for variable phosphor efficiency
US5631753A (en) * 1991-06-28 1997-05-20 Dai Nippon Printing Co., Ltd. Black matrix base board and manufacturing method therefor, and liquid crystal display panel and manufacturing method therefor
US5302966A (en) * 1992-06-02 1994-04-12 David Sarnoff Research Center, Inc. Active matrix electroluminescent display and method of operation
DE4240427C1 (en) * 1992-12-02 1994-01-20 Novopress Gmbh press tool
US5592199A (en) * 1993-01-27 1997-01-07 Sharp Kabushiki Kaisha Assembly structure of a flat type device including a panel having electrode terminals disposed on a peripheral portion thereof and method for assembling the same
US5506375A (en) * 1993-02-22 1996-04-09 Wacom Co., Ltd. Circuit board for coordinate detecting apparatus with noise suppression
JP3244843B2 (en) * 1993-03-08 2002-01-07 株式会社日立製作所 Color cathode-ray tube
US5416034A (en) * 1993-06-30 1995-05-16 Sgs-Thomson Microelectronics, Inc. Method of making resistor with silicon-rich silicide contacts for an integrated circuit
DE69415903D1 (en) * 1993-08-30 1999-02-25 Sharp Kk Data signal line structure in a liquid crystal display device having an active matrix
JP2821347B2 (en) * 1993-10-12 1998-11-05 日本電気株式会社 Current-controlled luminous element array
DE4446330B4 (en) * 1993-12-24 2007-07-19 Sharp K.K. Image display device
US5432358A (en) * 1994-03-24 1995-07-11 Motorola, Inc. Integrated electro-optical package
DE69532017D1 (en) * 1994-06-06 2003-12-04 Canon Kk DC compensation for display interlaced
DE69428363D1 (en) * 1994-06-24 2001-10-25 Hitachi Ltd Liquid crystal display device of active matrix and control method therefor
JPH0855910A (en) * 1994-07-29 1996-02-27 Texas Instr Inc <Ti> Manufacture of semiconductor device
US5525867A (en) * 1994-08-05 1996-06-11 Hughes Aircraft Company Electroluminescent display with integrated drive circuitry
US5747928A (en) * 1994-10-07 1998-05-05 Iowa State University Research Foundation, Inc. Flexible panel display having thin film transistors driving polymer light-emitting diodes
KR0145902B1 (en) * 1995-01-27 1998-09-15 김광호 Resistance part and its manufacturing method of thin film transistor liquid crystal display elements
US5804917A (en) * 1995-01-31 1998-09-08 Futaba Denshi Kogyo K.K. Organic electroluminescent display device and method for manufacturing same
DE69623443T2 (en) * 1995-02-06 2003-01-23 Idemitsu Kosan Co Multicolored light-emitting device and method for manufacturing the same
US5726678A (en) * 1995-03-06 1998-03-10 Thomson Consumer Electronics, S.A. Signal disturbance reduction arrangement for a liquid crystal display
DE69622618T2 (en) * 1995-04-04 2003-03-20 Canon Kk Metal-containing composition for forming an electron-emitting device and method for producing an electron-emitting device, an electron source and an image forming apparatus
US6372534B1 (en) * 1995-06-06 2002-04-16 Lg. Philips Lcd Co., Ltd Method of making a TFT array with photo-imageable insulating layer over address lines
JP3286152B2 (en) * 1995-06-29 2002-05-27 シャープ株式会社 TFT circuit and an image display device
JP3107743B2 (en) * 1995-07-31 2000-11-13 カシオ計算機株式会社 Electron emission electrode and a manufacturing method thereof, and a cold cathode fluorescent tube and a plasma display using the same
JPH0980416A (en) * 1995-09-13 1997-03-28 Sharp Corp Liquid crystal display device
US5675185A (en) * 1995-09-29 1997-10-07 International Business Machines Corporation Semiconductor structure incorporating thin film transistors with undoped cap oxide layers
JPH09105953A (en) * 1995-10-12 1997-04-22 Semiconductor Energy Lab Co Ltd Liquid crystal display device
JP3526992B2 (en) * 1995-11-06 2004-05-17 シャープ株式会社 Matrix type display device
US5977562A (en) * 1995-11-14 1999-11-02 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
JPH09161970A (en) 1995-12-08 1997-06-20 Stanley Electric Co Ltd Organic led element of dot matrix type
JP2853656B2 (en) * 1996-05-22 1999-02-03 日本電気株式会社 The liquid crystal panel
JP3640224B2 (en) * 1996-06-25 2005-04-20 株式会社半導体エネルギー研究所 The liquid crystal display panel
US5812188A (en) * 1996-07-12 1998-09-22 Adair; Edwin L. Sterile encapsulated endoscopic video monitor
DE69734054D1 (en) * 1996-09-26 2005-09-29 Seiko Epson Corp display device
GB9623185D0 (en) * 1996-11-09 1997-01-08 Epigem Limited Improved micro relief element and preparation thereof
US6091195A (en) * 1997-02-03 2000-07-18 The Trustees Of Princeton University Displays having mesa pixel configuration
JP3641342B2 (en) * 1997-03-07 2005-04-20 Tdk株式会社 A semiconductor device and an organic el display device
US5903246A (en) * 1997-04-04 1999-05-11 Sarnoff Corporation Circuit and method for driving an organic light emitting diode (O-LED) display
JPH1154268A (en) * 1997-08-08 1999-02-26 Sanyo Electric Co Ltd Organic electroluminescent display device
JP3830238B2 (en) * 1997-08-29 2006-10-04 セイコーエプソン株式会社 Active matrix type devices
US6229508B1 (en) * 1997-09-29 2001-05-08 Sarnoff Corporation Active matrix light emitting diode pixel structure and concomitant method
JP3543170B2 (en) * 1998-02-24 2004-07-14 カシオ計算機株式会社 Electroluminescent device and a manufacturing method thereof
JP3203227B2 (en) * 1998-02-27 2001-08-27 三洋電機株式会社 Method for manufacturing a display device
EP0962984A3 (en) * 1998-05-29 2000-01-12 Lucent Technologies Inc. Thin-film transistor monolithically integrated with an organic light-emitting diode
KR100423395B1 (en) * 2001-07-02 2004-03-18 삼성전기주식회사 A Chip Antenna

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264758A (en) * 1989-10-18 1993-11-23 Noritake Co., Limited Plasma display panel and method of producing the same
US5377031A (en) * 1990-12-31 1994-12-27 Kopin Corporation Single crystal silicon tiles for liquid crystal display panels including light shielding layers
US5317432A (en) * 1991-09-04 1994-05-31 Sony Corporation Liquid crystal display device with a capacitor and a thin film transistor in a trench for each pixel
US5828429A (en) * 1991-10-16 1998-10-27 Semiconductor Energy Laboratory Co., Lt.D Electro-optical device and method of driving with voltage supply lines parallel to gate lines and two transistors per pixel
US5414547A (en) * 1991-11-29 1995-05-09 Seiko Epson Corporation Liquid crystal display device and manufacturing method therefor
US5627557A (en) * 1992-08-20 1997-05-06 Sharp Kabushiki Kaisha Display apparatus
US5500750A (en) * 1993-03-24 1996-03-19 Sharp Kabushiki Kaisha Manufacturing method of reflection type liquid crystal display devices having light shield elements and reflective electrodes formed of same material
US5701055A (en) * 1994-03-13 1997-12-23 Pioneer Electronic Corporation Organic electoluminescent display panel and method for manufacturing the same
US5587329A (en) * 1994-08-24 1996-12-24 David Sarnoff Research Center, Inc. Method for fabricating a switching transistor having a capacitive network proximate a drift region
US5550066A (en) * 1994-12-14 1996-08-27 Eastman Kodak Company Method of fabricating a TFT-EL pixel
US5684365A (en) * 1994-12-14 1997-11-04 Eastman Kodak Company TFT-el display panel using organic electroluminescent media
US6115014A (en) * 1994-12-26 2000-09-05 Casio Computer Co., Ltd. Liquid crystal display by means of time-division color mixing and voltage driving methods using birefringence
US5742129A (en) * 1995-02-21 1998-04-21 Pioneer Electronic Corporation Organic electroluminescent display panel with projecting ramparts and method for manufacturing the same
US5640067A (en) * 1995-03-24 1997-06-17 Tdk Corporation Thin film transistor, organic electroluminescence display device and manufacturing method of the same
US6002463A (en) * 1996-01-30 1999-12-14 Seiko Epson Corporation Liquid crystal device having a light blocking layer provided over an alignment layer, method for making the same
US6175186B1 (en) * 1996-02-26 2001-01-16 Idemitsu Kosan Co., Ltd. Organic electroluminescent element and method for manufacturing the same
US6038004A (en) * 1996-04-30 2000-03-14 Matsushita Electric Industrial Co., Ltd. Active matrix liquid crystal display for projection system
US5989945A (en) * 1996-05-15 1999-11-23 Seiko Epson Corporation Thin film device provided with coating film, liquid crystal panel and electronic device, and method for making the thin film device
US5986723A (en) * 1996-09-25 1999-11-16 Kabushiki Kaisha Toshiba Liquid crystal display with TFT channel at gate source crossing and capacitor dividing pixel
US6072450A (en) * 1996-11-28 2000-06-06 Casio Computer Co., Ltd. Display apparatus
US6114715A (en) * 1996-11-29 2000-09-05 Sanyo Electric Co., Ltd. Display apparatus using electroluminescence elements
US6462722B1 (en) * 1997-02-17 2002-10-08 Seiko Epson Corporation Current-driven light-emitting display apparatus and method of producing the same
US6522315B2 (en) * 1997-02-17 2003-02-18 Seiko Epson Corporation Display apparatus
US6194837B1 (en) * 1997-07-02 2001-02-27 Seiko Epson Corporation Display device with thin film transistor (TFT) and organic semiconductor film in a luminescent element
US6618029B1 (en) * 1997-07-02 2003-09-09 Seiko Epson Corporation Display apparatus
US6373453B1 (en) * 1997-08-21 2002-04-16 Seiko Epson Corporation Active matrix display
US6380672B1 (en) * 1997-08-21 2002-04-30 Seiko Epson Corporation Active matrix display device
US7012367B2 (en) * 2001-12-18 2006-03-14 Seiko Epson Corporation Display device having light blocking layer, and electric device

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9837451B2 (en) 1999-04-27 2017-12-05 Semiconductor Energy Laboratory Co., Ltd. Electronic device and electronic apparatus
US9368680B2 (en) 1999-06-04 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic device
US8853696B1 (en) 1999-06-04 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic device
US7741775B2 (en) 1999-06-04 2010-06-22 Semiconductor Energy Laboratories Co., Ltd. Electro-optical device and electronic device
US7701134B2 (en) 1999-06-04 2010-04-20 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device with improved operating performance
US8227809B2 (en) 1999-06-04 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic device
US9123854B2 (en) 1999-06-04 2015-09-01 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic device
US9659524B2 (en) 1999-06-21 2017-05-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device including substrate having cavity, and method for fabricating the light-emitting device
US8830146B2 (en) 1999-06-21 2014-09-09 Semiconductor Energy Laboratory Co., Ltd. EL display device, driving method thereof, and electronic equipment provided with the EL display device
US8941565B2 (en) 1999-06-21 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. EL display device, driving method thereof, and electronic equipment provided with the EL display device
US9059049B2 (en) 1999-09-17 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. EL display device
US9431470B2 (en) 1999-09-17 2016-08-30 Semiconductor Energy Laboratory Co., Ltd. Display device
US8735900B2 (en) 1999-09-17 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. EL display device
US8450745B2 (en) 1999-09-17 2013-05-28 Semiconductor Energy Laboratory Co., Ltd. EL display device
US9735218B2 (en) 1999-09-17 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. EL display device and method for manufacturing the same
US20110227088A1 (en) * 1999-09-17 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. EL Display Device and Method for Manufacturing the Same
US8183571B2 (en) 1999-09-17 2012-05-22 Semiconductor Energy Laboratory Co., Ltd. EL display device and method for manufacturing the same
US20050042798A1 (en) * 2000-01-25 2005-02-24 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating display device
US20010053559A1 (en) * 2000-01-25 2001-12-20 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating display device
US9293513B2 (en) 2000-02-22 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Self-light-emitting device comprising protective portions on a pixel electrode
US8735898B2 (en) 2000-02-22 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Self-light-emitting display device comprising an insulating layer between a pixel electrode and a light-emitting layer
US9793328B2 (en) 2000-02-22 2017-10-17 Semiconductor Energy Laboratory Co., Ltd. Self-light-emitting device
US9263503B2 (en) 2000-09-18 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the display device
US20110133635A1 (en) * 2000-09-18 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Display Device and Method of Fabricating the Display Device
US8421352B2 (en) 2000-09-18 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8618732B2 (en) 2000-09-18 2013-12-31 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the display device
US8044588B2 (en) 2000-09-18 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the display device
US20090243464A1 (en) * 2000-09-18 2009-10-01 Semiconductor Energy Laboratory Co., Ltd. Display Device and Method of Fabricating the Display Device
US7393792B2 (en) 2000-12-12 2008-07-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method of fabricating the same
US8853940B2 (en) 2001-04-23 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Display device with seal member
US20090026946A1 (en) * 2001-04-23 2009-01-29 Semiconductor Energy Laboratory Co., Ltd. Display Device and Method of Manufacturing the Same
US8415881B2 (en) 2001-04-23 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Display device and method of manufacturing the same
USRE43738E1 (en) 2002-01-16 2012-10-16 Seiko Epson Corporation Display device having a connection area outside the display area
USRE44902E1 (en) 2002-01-16 2014-05-20 Seiko Epson Corporation Display device having a connection area outside the display area
USRE45556E1 (en) 2002-01-16 2015-06-09 Seiko Epson Corporation Display device having a connection area outside the display area
US20040169624A1 (en) * 2003-02-28 2004-09-02 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electric appliance
US7466294B2 (en) 2003-02-28 2008-12-16 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electric appliance
US7538480B2 (en) * 2004-08-05 2009-05-26 Samsung Mobile Display Co., Ltd. Organic thin film transistor and flat panel display device including the same
US20060028130A1 (en) * 2004-08-05 2006-02-09 Jae-Bon Koo Organic thin film transistor and flat panel display device including the same
US8207667B2 (en) 2007-08-31 2012-06-26 Sharp Kabushiki Kaisha Organic EL display and manufacturing method thereof
US20100194269A1 (en) * 2007-08-31 2010-08-05 Sharp Kabushiki Kaisha Organic el display and manufacturing method thereof
WO2009052087A1 (en) * 2007-10-15 2009-04-23 E. I. Du Pont De Nemours And Company Backplane structures for solution processed electronic devices
US8772774B2 (en) 2007-12-14 2014-07-08 E. I. Du Pont De Nemours And Company Backplane structures for organic light emitting electronic devices using a TFT substrate
WO2010070800A1 (en) 2008-12-18 2010-06-24 パナソニック株式会社 Organic el light emitting device
US8570252B2 (en) 2008-12-18 2013-10-29 Panasonic Corporation Organic EL light emitting device
US20100214326A1 (en) * 2009-02-20 2010-08-26 Tpo Displays Corp. Active matrix liquid crystal display and method of driving the same and electronic device
US8390655B2 (en) * 2009-02-20 2013-03-05 Chimei Innolux Corporation Active matrix liquid crystal display and method of driving the same and electronic device

Also Published As

Publication number Publication date Type
CN1146843C (en) 2004-04-21 grant
US20100045577A1 (en) 2010-02-25 application
KR20000068764A (en) 2000-11-25 application
US20080036699A1 (en) 2008-02-14 application
DE69829357T2 (en) 2005-07-28 grant
EP0940796B1 (en) 2005-03-16 grant
EP1524696A3 (en) 2005-08-10 application
CN1242855A (en) 2000-01-26 application
JPH1165487A (en) 1999-03-05 application
EP1524696A2 (en) 2005-04-20 application
DE69829357D1 (en) 2005-04-21 grant
JP3580092B2 (en) 2004-10-20 grant
US20090303165A1 (en) 2009-12-10 application
EP0940796A4 (en) 2002-08-21 application
WO1999010861A1 (en) 1999-03-04 application
KR100509239B1 (en) 2005-08-22 grant
US20020075207A1 (en) 2002-06-20 application
US6373453B1 (en) 2002-04-16 grant
EP0940796A1 (en) 1999-09-08 application

Similar Documents

Publication Publication Date Title
US6522079B1 (en) Electroluminescence display device
US7460094B2 (en) Display apparatus
US6876346B2 (en) Thin film transistor for supplying power to element to be driven
EP1028471A2 (en) Electroluminescence display device
US7247878B2 (en) Dual panel-type organic electroluminescent device
US6545424B2 (en) Display device
US20030137255A1 (en) Active matric organic electroluminescence display device
US20050179374A1 (en) Organic electro-luminescent display device and method of manufacturing the same
US20020190924A1 (en) Active matrix display
US6548867B2 (en) Semiconductor device having thin film transistor for supplying current to driven element
US6501448B1 (en) Electroluminescence display device with improved driving transistor structure
US20040079945A1 (en) Device including OLED controlled by n-type transistor
US20070188089A1 (en) Organic light emitting device and manufacturing method of the same
US20060197458A1 (en) Oled display with improved active matrix circuitry
US6724149B2 (en) Emissive display device and electroluminescence display device with uniform luminance
US6541918B1 (en) Active-matrix emitting apparatus and fabrication method therefor
US20070075955A1 (en) Organic light emitting diode display
US20030067458A1 (en) Active matrix type display device
US20060197086A1 (en) Organic light emitting diode display and manufacturing method thereof
US20060097628A1 (en) Flat panel display
US20060244696A1 (en) Organic light emitting diode display
US6885148B2 (en) Active matrix display device
EP1503422A2 (en) Flat panel display
US6359606B1 (en) Active matrix display
JP2000242196A (en) Electroluminescence display device