US20030153491A1 - Methods and compositions for oxygen transport comprising a high oxygen affinity modified hemoglobin - Google Patents

Methods and compositions for oxygen transport comprising a high oxygen affinity modified hemoglobin Download PDF

Info

Publication number
US20030153491A1
US20030153491A1 US10/114,400 US11440002A US2003153491A1 US 20030153491 A1 US20030153491 A1 US 20030153491A1 US 11440002 A US11440002 A US 11440002A US 2003153491 A1 US2003153491 A1 US 2003153491A1
Authority
US
United States
Prior art keywords
hemoglobin
blood
oxygen
blood substitute
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/114,400
Other languages
English (en)
Inventor
Robert Winslow
Kim Vandegrift
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sangart Inc
Original Assignee
Sangart Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sangart Inc filed Critical Sangart Inc
Priority to US10/114,400 priority Critical patent/US20030153491A1/en
Assigned to SANGART, INC. reassignment SANGART, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VANDEGRIFF, KIM D., WINSLOW, ROBER TM.
Priority to BR0306846-3A priority patent/BR0306846A/pt
Priority to US10/340,141 priority patent/US6844317B2/en
Priority to KR1020047010847A priority patent/KR100964604B1/ko
Priority to PCT/US2003/000696 priority patent/WO2003059363A1/en
Priority to CN2013100910214A priority patent/CN103203013A/zh
Priority to SI200331155T priority patent/SI1465643T1/sl
Priority to EP03705713A priority patent/EP1465643B1/de
Priority to DE60318388T priority patent/DE60318388T2/de
Priority to ES03705713T priority patent/ES2299686T3/es
Priority to EP07022374.8A priority patent/EP1894573A3/de
Priority to MXPA04006733A priority patent/MXPA04006733A/es
Priority to PT03705713T priority patent/PT1465643E/pt
Priority to DK03705713T priority patent/DK1465643T3/da
Priority to AU2003207504A priority patent/AU2003207504B2/en
Priority to CA002473662A priority patent/CA2473662C/en
Priority to CN038036487A priority patent/CN1630527B/zh
Priority to JP2003559525A priority patent/JP5149480B2/ja
Priority to AT03705713T priority patent/ATE382358T1/de
Publication of US20030153491A1 publication Critical patent/US20030153491A1/en
Priority to US10/925,067 priority patent/US6974795B2/en
Priority to US11/088,934 priority patent/US20050164915A1/en
Priority to US11/717,364 priority patent/US7625862B2/en
Priority to US12/625,900 priority patent/US7989414B2/en
Priority to JP2010052387A priority patent/JP2010138197A/ja
Priority to US13/180,291 priority patent/US8377868B2/en
Priority to US13/714,853 priority patent/US20130102521A1/en
Priority to US13/923,617 priority patent/US9241979B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/41Porphyrin- or corrin-ring-containing peptides
    • A61K38/42Haemoglobins; Myoglobins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/08Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to blood products, and more particularly to compositions comprising a modified hemoglobin having a high affinity for oxygen and methods for making such compositions.
  • the blood is the means for delivering nutrients to the tissues and removing waste products from the tissues for excretion.
  • the blood is composed of plasma in which red blood cells (RBCs or erythrocytes), white blood cells (WBCs), and platelets are suspended.
  • Red blood cells comprise approximately 99% of the cells in blood, and their principal function is the transport of oxygen to the tissues and the removal of carbon dioxide therefrom.
  • the left ventricle of the heart pumps the blood through the arteries and the smaller arterioles of the circulatory system.
  • the blood then enters the capillaries, where the majority of the exchange of nutrients and cellular waste products occurs.
  • the blood travels through the venules and veins in its return to the right atrium of the heart.
  • the blood that returns to the heart is oxygen-poor compared to that which is pumped from the heart, when at rest, the returning blood still contains about 75% of the original oxygen content.
  • the reversible oxygenation function (i.e., the delivery of oxygen) of RBCs is carried out by the protein hemoglobin.
  • hemoglobin In mammals, hemoglobin has a molecular weight of approximately 64,000 daltons and is composed of about 6% heme and 94% globin. In its native form, it contains two pairs of subunits (i.e., it is a tetramer), each containing a heme group and a globin polypeptide chain. In aqueous solution, hemoglobin is present in equilibrium between the tetrameric (MW 64,000) and dimeric forms (MW 32,000); outside of the RBC, the dimers are prematurely excreted by the kidney (plasma half-life of approximately 2-4 hours).
  • RBCs contain stroma (the RBC membrane), which comprises proteins, cholesterol, and phospholipids.
  • a blood substitute is a blood product that is capable of carrying and supplying oxygen to the tissues.
  • Blood substitutes have a number of uses, including replacing blood lost during surgical procedures and following acute hemorrhage, and for resuscitation procedures following traumatic injury.
  • Plasma expanders are blood substitutes that are administered into the vascular system but are typically not capable of carrying oxygen. Plasma expanders can be used, for example, for replacing plasma lost from burns, to treat volume deficiency shock, and to effect hemodilution (e.g., for the maintenance of normovolemia and to lower blood viscosity).
  • blood substitutes can be used for these purposes or any purpose in which banked blood is currently administered to patients.
  • FIG. 1 See, e.g., U.S. Pat. No. 4,001,401 to Bonson et al., and U.S. Pat. No. 4,061,736 to Morris et al.
  • the current human blood supply is associated with several limitations that can be alleviated through the use of an exogenous blood substitute.
  • an exogenous blood substitute To illustrate, the widespread availability of safe and effective blood substitutes would reduce the need for banked (allogeneic) blood.
  • such blood substitutes would allow the immediate infusion of a resuscitation solution following traumatic injury without regard to cross-matching (as is required for blood), thereby saving valuable time in resupplying oxygen to ischemic tissue.
  • blood substitutes can be administered to patients prior to surgery, allowing removal of autologous blood from the patients which could be returned later in the procedure, if needed, or after surgery.
  • exogenous blood products not only protects patients from exposure to non-autologous (allogeneic) blood, it conserves either autologous or allogeneic (banked, crossmatched) blood for its optimal use.
  • Blood substitutes can be grouped into the following three categories: i) perfluorocarbon-based emulsions, ii) liposome-encapsulated hemoglobin, and iii) modified cell-free hemoglobin. As discussed below, none has been entirely successful, though products comprising modified cell-free hemoglobin are thought to be the most promising.
  • Perfluorochemical-based compositions dissolve oxygen as opposed to binding it as a ligand. In order to be used in biological systems, the perfluorochemical must be emulsified with a lipid, typically egg-yolk phospholipid. Though the perfluorocarbon emulsions are inexpensive to manufacture, they do not carry sufficient oxygen at clinically tolerated doses to be effective.
  • hemoglobin-based oxygen carriers HBOCs
  • HBOCs hemoglobin-based oxygen carriers
  • stroma red cell residue
  • FSH stroma-free hemoglobin
  • animal blood e.g., bovine or porcine hemoglobin
  • bacteria or yeast or transgenic animals or plants molecularly altered to produce a desired hemoglobin product.
  • the chemical modification is generally one of intramolecular cross-linking, oligomerization and/or polymer conjugation to modify the hemoglobin such that its persistence in the circulation is prolonged relative to that of unmodified hemoglobin, and its oxygen binding properties are similar to those of blood.
  • Intramolecular cross-linking chemically binds together subunits of the tetrameric hemoglobin unit to prevent the formation of dimers which, as previously indicated, are prematurely excreted. (See, e.g., U.S. Pat. No. 5,296,465 to Rausch et al.)
  • the present invention relates to a blood substitute that comprises an HBOC with high oxygen affinities in an aqueous diluent.
  • the methods and compositions of the present invention are useful in a variety of settings including emergency rooms, operating rooms, military conflicts, cancer hospitals, and veterinary clinics.
  • the low toxicity and high stability of the present invention permits storage at room temperature without compromising the efficacy of the described blood substitute.
  • the present invention also circumvents the requirement for blood-type cross-matching and the associated laboratory testing, allowing for earlier and safer intervention in patient treatment.
  • the combination of low toxicity, long-term stability, and universal applicability of the present invention therefore presents a particularly useful substitute for blood.
  • the present invention provides a blood substitute product comprising surface-modified oxygenated hemoglobin, wherein the surface-modified oxygenated hemoglobin has a P50 less than native stroma-free hemoglobin from the same animal source (i.e. from the same species of animal) when measured under the same conditions.
  • the blood substitute product takes the form of a composition comprising the surface-modified oxygenated hemoglobin and an aqueous diluent.
  • the surface-modified oxygenated hemoglobin has a P50 less than 10 torr, preferably less than 7 torr.
  • the present invention provides a blood substitute product produced by covalently attaching one or more polyalkylene oxides to the oxygenated hemoglobin.
  • the blood substitute product is produced by covalently attaching a polymer of a polyalkylene oxide such as polyethylene glycol (PEG) having the formula H(OCH 2 CH 2 ) n OH, where n is greater than or equal to 4.
  • PEG polyethylene glycol
  • the product has a methemoglobin/total hemoglobin ratio less than 0.10.
  • the present invention provides a blood substitute product stable to autooxidation at 24° C., comprising a PEG-hemoglobin conjugate, wherein the methemoglobin/total hemoglobin ratio is less than 0.10 and the PEG-hemoglobin conjugate has a P50 less than 10 torr.
  • the present invention provides a method of making a blood substitute composition comprising the steps of: a) preparing hemoglobin having a methemoglobin/total hemoglobin ratio less than 0.10; b) covalently attaching polyalkylene oxide to the hemoglobin to form surface-modified oxygenated hemoglobin having a P50 less than 10 torr; and c) suspending the surface-modified oxygenated hemoglobin in a suitable diluent.
  • preparing hemoglobin further comprises isolating hemoglobin from red blood cells.
  • the step of preparing the hemoglobin can further comprise isolating hemoglobin from red blood cells, wherein the hemoglobin has a methemoglobin/total hemoglobin ratio of 0.10 or greater, and exposing the hemoglobin to aerobic conditions (i.e. to the atmosphere) for a time sufficient to lower the methemoglobin/total hemoglobin ratio to less than 0.10.
  • the present invention provides a method of using a blood substitute product to deliver oxygen to a tissue, comprising administering the product in an aqueous diluent to a mammal in need thereof.
  • FIG. 1 depicts the FPLC chromatogram of MalPEG-Hb and SFH.
  • FIG. 2 depicts oxygen equilibrium curves for MalPEG-Hb and SFH.
  • FIG. 3 depicts FPLC patterns of elution for the two PEG-modified hemoglobins (PHP and POE) and unmodified hemoglobin (SFH). Note that the patterns for PHP and POE are qualitatively, but not quantitatively, similar. Also, note the small peak of apparently unmodified hemoglobin in the POE curve.
  • FIG. 4 depicts oxygen equilibrium curves for the two PEG-modified hemoglobins (PHP and POE). Note that neither has significant cooperativity.
  • FIG. 5 depicts the rate of oxidation over time when MalPEG-hemoglobin is at room temperature. Samples were measured in duplicate from 2 separate bottles stored in the same way. The rate of oxidation is 1 percent per hour of total hemoglobin, going from 5.0 to 5.5 percent in 10 hours.
  • FIG. 6 depicts Kaplan-Meier survival analysis of the two groups of animals that received either PHP or POE.
  • FIG. 7 depicts mean arterial pressure in animals that received the two PEG-modified hemoglobins (PHP and POE). The response is immediate and greater in the animals that received PHP. However, pressure is better maintained in the POE animals during the hemorrhage period.
  • FIG. 8 depicts a summary of various rates of oxidation over time when MalPEG-Hb is stored for six days at ⁇ 20° C., five days at +4° C., and ten hours at room temperature (24° C.).
  • FIG. 9 depicts the rate of oxidation over time when MalPEG-Hb is stored for five days at +4° C.
  • FIG. 10 depicts the rate of oxidation over time when MalPEG-Hb is stored for ten hours at room temperature.
  • the present invention is directed to blood substitutes comprising HBOCs having high oxygen affinity.
  • these compositions are capable of delivering oxygen to tissues more efficiently than blood substitutes with oxygen affinities that approximate native hemoglobin.
  • hemoglobin refers generally to the protein contained within red blood cells that transports oxygen.
  • Each molecule of hemoglobin has 4 subunits, 2 ⁇ chains and 2 ⁇ chains, which are arranged in a tetrameric structure.
  • Each subunit also contains one heme group, which is the iron-containing center that binds oxygen.
  • each hemoglobin molecule can bind 4 oxygen molecules.
  • modified hemoglobin includes, but is not limited to, hemoglobin altered by a chemical reaction such as intra- and inter-molecular cross-linking, genetic manipulation, polymerization, and/or conjugation to other chemical groups (e.g., polyalkylene oxides, for example polyethylene glycol, or other adducts such as proteins, peptides, carbohydrates, synthetic polymers and the like).
  • hemoglobin is “modified” if any of its structural or functional properties have been altered from its native state.
  • the term “hemoglobin” by itself refers both to native, unmodified, hemoglobin, as well as modified hemoglobin.
  • surface-modified hemoglobin is used to refer to hemoglobin described above to which chemical groups such as dextran or polyalkylene oxide have been attached, most usually covalently.
  • surface modified oxygenated hemoglobin refers to hemoglobin that is in the “R” state when it is surface modified.
  • stroma-free hemoglobin refers to hemoglobin from which all red blood cell membranes have been removed.
  • hemoglobin refers to an oxidized form of hemoglobin that contains iron in the ferric state and cannot function as an oxygen carrier.
  • MalPEG-Hb refers to hemoglobin to which malemidyl-activated PEG has been conjugated.
  • MalPEG may be further referred to by the following formula:
  • Hb refers to tetrameric hemoglobin
  • S is a surface thiol group
  • Y is the succinimido covalent link between Hb and Mal-PEG
  • R is an alkyl, amide, carbamate or phenyl group (depending on the source of raw material and the method of chemical synthesis)
  • PHP and POE are two different PEG-modified hemoglobin.
  • perfluorocarbons refers to synthetic, inert, molecules that contain fluorine atoms, and that consist entirely of halogen (Br, F, Cl) and carbon atoms. In the form of emulsions, they are under development as blood substances, because they have the ability to dissolve many times more oxygen than equivalent amounts of plasma or water.
  • plasma expander refers to any solution that may be given to a subject to treat blood loss.
  • oxygen carrying capacity refers to the capacity of a blood substitute to carry oxygen, but does not necessarily correlate with the efficiency in which it delivers oxygen. Oxygen carrying capacity is generally calculated from hemoglobin concentration, since it is known that each gram of hemoglobin binds 1.34 ml of oxygen. Thus, the hemoglobin concentration in g/dl multiplied by the factor 1.34 yields the oxygen capacity in ml/dl. Hemoglobin concentration can be measured by any known method, such as by using the ⁇ -Hemoglobin Photometer (HemoCue, Inc., Angelholm, Sweden). Similarly, oxygen capacity can be measured by the amount of oxygen released from a sample of hemoglobin or blood by using, for example, a fuel cell instrument (e.g., Lex-O 2 -Con; Lexington Instruments).
  • a fuel cell instrument e.g., Lex-O 2 -Con; Lexington Instruments.
  • oxygen affinity refers to the avidity with which an oxygen carrier such as hemoglobin binds molecular oxygen. This characteristic is defined by the oxygen equilibrium curve which relates the degree of saturation of hemoglobin molecules with oxygen (Y axis) with the partial pressure of oxygen (X axis). The position of this curve is denoted by the value, P50, the partial pressure of oxygen at which the oxygen carrier is half-saturated with oxygen, and is inversely related to oxygen affinity. Hence the lower the P50, the higher the oxygen affinity.
  • the oxygen affinity of whole blood (and components of whole blood such as red blood cells and hemoglobin) can be measured by a variety of methods known in the art. (See, e.g., Winslow et al., J.
  • Oxygen affinity may also be determined using a commercially available HEMOXTM Analyzer (TCS Scientific Corporation, New Hope, Pa.). (See, e.g., Vandegriff and Shrager in “Methods in Enzymology” (Everse et al., eds.) 232:460 (1994)).
  • hypothalamic means a colloidal solution with a colloidal osmotic pressure (oncotic) than blood (>approximately 25-27 mm Hg).
  • Colloid osmotic pressure may be measured by any suitable technique, such as in a Wescor instrument.
  • oxygen-carrying component refers broadly to a substance capable of carrying oxygen in the body's circulatory system and delivering at least a portion of that oxygen to the tissues.
  • the oxygen-carrying component is native or modified hemoglobin, and is also referred to herein as a “hemoglobin based oxygen carrier,” or “HBOC”.
  • hemodynamic parameters refers broadly to measurements indicative of blood pressure, flow and volume status, including measurements such as blood pressure, cardiac output, right atrial pressure, and left ventricular end diastolic pressure.
  • crystalloid refers to small molecules (usually less than 10 ⁇ ) such as salts, sugars, and buffers. Unlike colloids, crystalloids do not contain any oncotically active components and equilibrate in between the circulation and interstitial spaces very quickly.
  • crystalloid in contrast to “crystalloid” refers to larger molecules (usually greater than 10 ⁇ ) that equilabrate across biological membranes depending on their size and charge and includes proteins such as albumin and gelatin, as well as starches such as pentastarch and hetastarch.
  • colloid osmotic pressure refers to the pressure exerted by a colloid to equilibrate fluid balance across a membrane.
  • stable to autooxidation refers to the ability of a HBOC to maintain a low rate of autoxidation.
  • HBOC is considered stable at 24° C. if the methemoglobin/total hemoglobin ratio does not increase more than 2% after 10 hours at 24° C. For example, if the rate of autoxidation is 0.2 hr ⁇ 1 , then if the initial percentage of methemoglobin is 5%, HBOC would be considered stable at room temperature for 10 hours if this percentage did not increase above 7%.
  • metalhemoglobin/total hemoglobin ratio refers to the ratio of deoxygenated hemoglobin to total hemoglobin.
  • mixture refers to a mingling together of two or more substances without the occurrence of a reaction by which they would lose their individual properties;
  • solution refers to a liquid mixture;
  • aqueous solution refers to a solution that contains some water and may also contain one or more other liquid substances with water to form a multi-component solution;
  • approximately refers to the actual value being within a range, e.g. 10%, of the indicated value.
  • polyethylene glycol refers to liquid or solid polymers of the general chemical formula H(OCH 2 CH 2 ) n OH, where n is greater than or equal to 4. Any PEG formulation, substituted or unsubstituted, can be used.
  • compositions and methods of the present invention do not require comprehension of the underlying mechanisms of oxygen delivery and consumption, basic knowledge regarding some of these putative mechanisms may assist in understanding the discussion that follows. It has generally been assumed that the capillaries are the primary conveyors of oxygen to the tissue. However, regarding tissue at rest, current findings indicate that there is approximately an equipartition between arteriolar and capillary oxygen release. That is, hemoglobin in the arterial system is believed to deliver approximately one third of its oxygen content in the arteriolar network and one-third in the capillaries, while the remainder exits the microcirculation via the venous system.
  • the artery wall requires energy to effect regulation of blood flow through contraction against vascular resistance.
  • the arterial wall is normally a significant site for the diffusion of oxygen out of the blood.
  • current oxygen-delivering compositions e.g., HBOCs
  • HBOCs may release too much of their oxygen content in the arterial system, and thereby induce an autoregulatory reduction in capillary perfusion. Accordingly, the efficiency of oxygen delivery of a blood substitute may actually be hampered by having too much oxygen or too low an oxygen affinity.
  • the rate of oxygen consumption by the vascular wall i.e., the combination of oxygen required for mechanical work and oxygen required for biochemical synthesis, can be determined by measuring the gradient at the vessel wall. See, e.g., Winslow, et al., in “Advances in Blood Substitutes” (1997), Birkhauser, ed., Boston, Mass., pages 167-188.
  • Present technology allows accurate oxygen partial pressure measurements in a variety of vessels.
  • the measured gradient is directly proportional to the rate of oxygen utilization by the tissue in the region of the measurement.
  • Such measurements show that the vessel wall has a baseline oxygen utilization which increases with increases in inflammation and constriction, and is lowered by relaxation.
  • the vessel wall gradient is inversely proportional to tissue oxygenation.
  • Vasoconstriction increases the oxygen gradient (tissue metabolism), while vasodilation lowers the gradient. Higher gradients are indicative of the fact that more oxygen is used by the vessel wall, while less oxygen is available for the tissue. The same phenomenon is believed to be present throughout the microcirculation.
  • Winslow “Acute changes in systemic blood pressure and urine output of conscious rats following exchange transfusion with diaspirin-crosslinked hemoglobin solution,” Transfusion 33: 701-708, (1993)).
  • Human hemoglobin crosslinked between ⁇ chains with bis-dibromosalicyl-fumarate ( ⁇ Hb) was developed by the U.S. Army as a model red cell substitute, but was abandoned by the Army after demonstration of severe increases in pulmonary and systemic vascular resistance (Hess, J., V. Macdonald, A. Murray, V. Coppes, and C. Gomez, “Pulmonary and systemic hypertension after hemoglobin administration” Blood 78: 356A (1991)).
  • a commercial version of this product was also abandoned after a disappointing Phase III clinical trial (Winslow, R. M. “ ⁇ -Crosslinked hemoglobin: Was failure predicted by preclinical testing?” Vox sang 79: 1-20 (2000).
  • vasoconstriction produced by cell-free hemoglobin is that it readily binds the endothelium-derived relaxing factor, nitric oxide (NO).
  • NO endothelium-derived relaxing factor
  • recombinant hemoglobins with reduced affinity for NO have been produced which appear to be less hypertensive in top-load rat experiments (Doherty, D. H., M. P. Doyle, S. R. Curry, R. J. Vali, T. J. Fattor, J. S. Olson, and D. D. Lemon, “Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin,” Nature Biotechnology 16: 672-676 (1998)) (Lemon, D. D., D. H.
  • Oxygen affinity of cell-free hemoglobin may play an additional role in the regulation of vascular tone, since the release of O 2 to vessel walls in the arterioles will trigger vasoconstriction (Lindbom, L., R. Tuma, and K. Arfors, “Influence of oxygen on perfusion capillary density and capillary red cell velocity in rabbit skeletal muscle,” Microvasc Res 19: 197-208 (1980)).
  • the PO 2 in such vessels is in the range of 20-40 Torr, where the normal red cell oxygen equilibrium curve is steepest (Intaglietta, M., P. Johnson, and R.
  • the oxygen carrier i.e., the oxygen-carrying component
  • the oxygen carrier is a hemoglobin-based oxygen carrier, or HBOC.
  • the hemoglobin may be either native (unmodified); subsequently modified by a chemical reaction such as intra- or inter-molecular cross-linking, polymerization, or the addition of chemical groups (e.g., polyalkylene oxides, or other adducts); or it may be recombinantly engineered.
  • Human alpha- and beta-globin genes have both been cloned and sequenced. Liebhaber, et al., P.N.A.S. 77: 7054-7058 (1980); Marotta, et al., J. Biol. Chem.
  • the present invention is not limited by the source of the hemoglobin.
  • the hemoglobin may be derived from animals and humans. Preferred sources of hemoglobin are humans, cows and pigs.
  • hemoglobin may be produced by other methods, including chemical synthesis and recombinant techniques.
  • the hemoglobin can be added to the blood product composition in free form, or it may be encapsulated in a vessicle, such as a synthetic particle, microballoon or liposome.
  • the preferred oxygen-carrying components of the present invention should be stroma free and endotoxin free. Representative examples of oxygen-carrying components are disclosed in a number of issued United States Patents, including U.S. Pat. No.
  • the HBOC has an oxygen affinity that is greater than whole blood, and preferably twice that of whole blood, or alternatively, greater than that of stroma-free hemoglobin (SFH), when measured under the same conditions. In most instances, this means that the HBOC in the blood substitute will have a P50 less than 10, and more preferably less than 6. In the free state, SFH has a P50 of approximately 15 torr, whereas the P50 for whole blood is approximately 28 torr. It has previously been suggested that increasing oxygen affinity, and thereby lowering the P50, may enhance delivery of oxygen to tissues, although it was implied that a P50 lower than that of SFH would not be acceptable.
  • SFH stroma-free hemoglobin
  • Hemoglobin is known to exhibit autooxidation when it reversibly changes from the ferrous (Fe 2+ ) to the ferrie (Fe 3+ ) or methemoglobin form. When this happens, molecular oxygen dissociates from the oxyhemoglobin in the form of a superoxide anion (O 2 ⁇ ). This also results in destabilization of the heme-globin complex and eventual denaturation of the globin chains. Both oxygen radical formation and protein denaturation are believed to play a role in vivo toxicity of HBOCs (Vandegriff, K. D., Blood Substitutes, Physiological Basis of Efficacy, pages 105-130, Winslow et al., ed., Birkhauser, Boston, Mass. (1995).)
  • the present invention relates, in part, to the unexpected finding that the PEG-Hb conjugates described herein exhibit very low rates of autooxidation. When measured as a rate of oxidation, this value should be as low as possible (i.e.,0.2% per hour of total hemoglobin, more preferably 0.1% per hour of total hemoglobin, at room temperature for at least 3 hours, and more preferably at least 10 hours. Thus, the HBOCs of the present invention remain stable during administration and/or storage at room temperature.
  • the oxygen-carrying component is modified hemoglobin.
  • a preferred modification to hemoglobin is “surface-modification,” i.e. covalent attachment of chemical groups to the exposed amino acid side chains on the hemoglobin molecule.
  • Modification is carried out principally to increase the molecular size of the hemoglobin, most often by covalent attachment of polymeric moieities such as synthetic polymers, carbohydrates, proteins and the like. Generally, synthetic polymers are preferred.
  • Suitable synthetic hydrophilic polymers include, inter alia, polyalkylene oxide, such as polyethylene oxide ((CH 2 CH 2 O) n ), polypropylene oxide ((CH(CH 3 )CH 2 O) n ) or a polyethylene/polypropylene oxide copolymer ((CH 2 CH 2 O) n —(CH(CH 3 )CH 2 O) n ).
  • polyalkylene oxide such as polyethylene oxide ((CH 2 CH 2 O) n ), polypropylene oxide ((CH(CH 3 )CH 2 O) n ) or a polyethylene/polypropylene oxide copolymer ((CH 2 CH 2 O) n —(CH(CH 3 )CH 2 O) n ).
  • Other straight, branched chain and optionally substituted synthetic polymers that would be suitable in the practice of the present invention are well known in the medical field.
  • PEG polyethylene glycol
  • PEGs are polymers of the general chemical formula H(OCH 2 CH 2 ) n OH, where n is generally greater than or equal to 4.
  • PEG formulations are usually followed by a number that corresponds to their average molecular weight.
  • PEG-200 has an average molecular weight of 200 and may have a molecular weight range of 190-210.
  • PEGs are commercially available in a number of different forms, and in many instances come preactivated and ready to conjugate to proteins.
  • An important aspect of preferred embodiments of the present invention is that surface modification takes place when the hemoglobin is in the oxygenated or “R” state. This is easily accomplished by allowing the hemoglobin to equilibrate with the atmosphere (or, alternatively, active oxygenation can be carried out) prior to conjugation. By performing the conjugation to oxygenated hemoglobin, the oxygen affinity of the resultant hemoglobin is enhanced. Such a step is generally regarded as being contraindicated, since many researchers describe deoxygenation prior to conjugation to diminish oxygen affinity. See, e.g. U.S. Pat. No. 5,234,903.
  • the number of PEGs to be added to the hemoglobin molecule may vary, depending on the size of the PEG.
  • the molecular size of the resultant modified hemoglobin should be sufficiently large to avoid being cleared by the kidneys to achieve the desired half-life.
  • Blumenstein, et al. determined that this size is achieved above 84,000 molecular weight.
  • Blumenstein, et al. in “Blood Substitutes and Plasma Expanders,” Alan R. Liss, editors, New York, N.Y., pages 205-212 (1978).
  • the HBOC have a molecular weight of at least 84,000.
  • the HBOC is a “MalPEG,” which stands for hemoglobin to which malemidyl-activated PEG has been conjugated.
  • MalPEG may be further referred to by the following formula:
  • Hb refers to tetrameric hemoglobin
  • S is a surface thiol group
  • Y is the succinimido covalent link between Hb and Mal-PEG
  • R is an alkyl, amide, carbamate or phenyl group (depending on the source of raw material and the method of chemical synthesis)
  • the blood substitute may also comprise a crystalloid.
  • the crystalloid component can be any crystalloid which, in the form of the blood substitute composition, is preferably capable of achieving an osmolarity greater than 800 mOsm/l, i.e. it makes the blood substitute “hypertonic”.
  • suitable crystalloids and their concentrations in the blood substitute include, e.g., 3% NaCl, 7% NaCl, 7.5% NaCl, and 7.5% NaCl in 6% dextran. More preferably, the blood substitute has an osmolarity of between 800 and 2400 mOsm/l.
  • the compositions of present invention may provide improved functionality for rapid recovery of hemodynamic parameters over other blood substitute compositions, which include a colloid component.
  • Small volume highly hypertonic crystalloid infusion e.g., 1-10 ml/kg
  • the blood substitutes of the present invention are formulated by mixing the oxygen carrier and other optional excipients with a suitable diluent.
  • concentration of the oxygen carrier in the diluent may vary according to the application, and in particular based on the expected post-administration dilution, in preferred embodiments, because of the other features of the compositions of the present invention that provide for enhanced oxygen delivery and therapeutic effects, it is usually unnecessary for the concentration to be above 6 g/dl, and is more preferably between 0.1 to 4 g/dl.
  • Suitable diluents include, intra alia, proteins, glycoproteins, polysaccharides, and other colloids. It is not intended that these embodiments be limited to any particular diluent. Thus, it is intended that the diluent encompass aqueous cell-free solutions of albumin, other colloids, or other non-oxygen carrying components, and the aqueous solution has a viscosity of at least 2.5 cP. In some preferred embodiments, the viscosity of the aqueous solution is between 2.5 and 4 cP. It is contemplated that the present invention also encompasses solutions with a viscosity of 6 cP or greater.
  • Trauma An acute loss of whole blood can result in a fluid shift from the interstitial and intracellular spaces to replace the lost volume of blood while shunting of blood away from the low priority organs including the skin and gut. Shunting of blood away from organs reduces and sometimes eliminates O 2 levels in these organs and results in progressive tissue death. Rapid restoration of O 2 levels is contemplated as perhaps resulting in a signficantly better salvage of tissues in patients suffering such acute blood loss.
  • Ischemia In ischemia, a particular organ (or organs) are “starved” for oxygen. Small sections of the organ, known as infarcts, begin to die as a result of the lack of O 2 . Rapid restoration of O 2 levels is critical is stemming infarct formation in critical tissues. Conditions resulting in ischemia include heart attack, stroke, or cerbrovascular trauma.
  • Hemodilution In this clinical application, a blood substitute is required to replace blood that is removed pre-operatively. It is contemplated that the patient blood removal occurs to prevent a requirement for allogeneic transfusions post-operatively. In this application, the blood substitute is administered to replace (or substitute for) the O 2 levels of the removed autologous blood. This permits the use of the removed autologous blood for necessary transfusions during and after surgery. One such surgery requiring pre-operative blood removal would be a cardiopulmonary bypass procedure.
  • Sickle cell anemia In sickle cell anemia, the patient is debilitated by a loss of O 2 levels that occurs during the sickling process as well as a very high red blood cell turnover rate.
  • the sickling process is a function of PO 2 where the lower the PO 2 , the greater the sickling rate. It is contemplated that the ideal blood substitute would restore patient O 2 levels to within a normal range during a sickling crisis.
  • Cardioplegia In certain cardiac surgical procedures, the heart is stopped by appropriate electrocyte solutions and reducing patient temperature. Reduction of the temperature will significantly reduce the P50, possibly preventing unloading of O 2 under any ordinary physiological conditions. Replacement of O 2 levels is contemplated as potentially reducing tissue damage and death during such procedures.
  • Organ Perfusion During the time an organ is maintained ex vivo, maintaining O 2 content is essential to preserving structural and cellular intergrity and minimizing infarct formation. It is contemplated that a blood substitute would sustain the O 2 requirements for such an organ.
  • Hematopoiesis It is contemplated that the blood substitute serves as a source for heme and iron for use in the synthesis of new hemoglobin during hematopoiesis.
  • the present invention can also be used in non-humans.
  • the methods and compositions of the present invention may be used with domestic animals such as livestock and companion animals (e.g, dogs, cats, horses, birds, reptiles), as well as other animals in aquaria, zoos, oceanaria, and other facilities that house animals. It is contemplated that the present invention finds utility in the emergency treatment of domestic and wild animals suffering a loss of blood due to injury, hemolytic anemias, etc.
  • embodiments of the present invention are useful in conditions such as equine infectious anemia, feline infectious anemia, hemolytic anemia due to chemicals and other physical agents, bacterial infection, Factor IV fragmentation, hypersplenation and splenomegaly, hemorrhagic syndrome in poultry, hypoplastic anemia, aplastic anemia, idiopathic immune hemolytic conditions, iron deficiency, isoimmune hemolytic anemia, microangiopathic hemolytic, parasitism, etc.
  • the present invention finds use in areas where blood donors for animals of rare and/or exotic species are difficult to find.
  • Step-1 Provided of Outdated Red Blood Cells
  • Outdated packed red blood cells are procured from a commercial source, such as the San Diego Blood Bank or the American Red Cross. Preferably, outdated material is received not more than 45 days from the time of collection. Packed RBCs (pRBCs) are stored at 4 +2° C. until further processed (1-7 days). All units are screened for viral infection and subjected to nucleic acid testing prior to use.
  • Packed red blood cells are pooled into a sterile vessel in a clean facility. Packed red blood cell volume is noted, and hemoglobin concentration is determined using a commercially available co-oximeter or other art-recognized method.
  • Leukodepletion i.e. removal of white blood cells
  • membrane filtration i.e. removal of white blood cells
  • Step-4 Cell Separation and Cell Wash
  • Red blood cells are washed with six volumes of 0.9% sodium chloride. The process is carried out at 4 ⁇ 2° C. The cell wash is analyzed to verify removal of plasma components by a spectrophotometric assay for albumin.
  • Step-5 Red Blood Cell Lysis and Removal of Cell Debris
  • Washed red blood cells are lysed at least 4 hours or overnight at 4 ⁇ 2° C. with stirring using 6 volumes of water. Lysate is processed in the cold to purify hemoglobin. This is achieved by processing the lysate through a 0.16- ⁇ m membrane. Purified hemoglobin is collected in a sterile depyrogenated vessel. All steps in this process are carried out at 4 ⁇ 2° C.
  • Viral removal is performed by ultrafiltration at 4 ⁇ 2° C.
  • Hemoglobin purified from lysate and ultrafiltration is exchanged into Ringer's lactate (RL) or phosphate-buffered saline (PBS, pH 7.4) using a 10-kD membrane.
  • the hemoglobin is then concentrated using the same membrane to a final concentration of 1.1-1.5 mM (in tetramer).
  • Ten to 12 volumes of RL or PBS are used for solvent exchange. This process is carried out at 4 ⁇ 2° C.
  • the pH of the solution prepared in RL is adjusted to 7.0-7.6.
  • Hemoglobin in PBS or Ringer's lactate(RL) is sterile-filtered through a 0.45- or 0.2- ⁇ m disposable filter capsule and stored at 4 ⁇ 2° C. before the chemical modification reaction is performed.
  • Thiolation is carried out using 10-fold molar excess iminothiolane over hemoglobin for 4 hours at 4+2° C. with continuous stirring.
  • Thiolated hemoglobin is PEGylated using a 20-fold molar excess of Mal-PEG (with an alkyl or phenyl linker) based on starting tetrameric hemoglobin concentration.
  • the hemoglobin is first allowed to equilibrate with the atmosphere to oxygenate the hemoglobin. The reaction takes place for 2 hours at 4 ⁇ 2° C. with continuous stirring.
  • PEGylated-Hb is processed through a 70-kD membrane to remove excess unreacted reagents or hemoglobin. A 20-volume filtration is carried out to ensure removal of unreacted reagents, which is monitored by size-exclusion chromatography at 540 nm and 280 nm. The protein concentration is diluted to 4 g/dl. The pH is adjusted to 7.3 ⁇ 0.3 using 1 N NaOH.
  • the final MalPEG-Hb product is sterile-filtered using a 0.2- ⁇ m sterile disposable capsule and collected into a sterile depyrogenated vessel at 4 ⁇ 2° C.
  • PEGylated Hb is diluted to 4 g/dl RL, pH adjusted to 7.4 ⁇ 2
  • the final blood substitute composition is sterile-filtered (0.2 ⁇ m) and aliquoted by weight into sterile glass vials and closed with sterile rubber stoppers with crimped seals in a laminar flow hood and stored at ⁇ 80° C. until use.
  • Homogeneity and molecular size of the MalPEG-Hb blood substitute are characterized by Liquid Chromatography (LC).
  • Analytical LC is used to evaluate homogeneity of the PEGylated hemoglobin and extent of removal of unreacted Mal-PEG.
  • Absorbance at 540 nm is used to evaluate hemoglobin and resolves PEGylated hemoglobin from unreacted hemoglobin by peak position.
  • Absorbance at 280 nm is used to resolve PEGylated hemoglobin from free Mal-PEG, which absorbs in the ultraviolet (UV) spectrum due to the ring structures in MalPEG.
  • UV ultraviolet
  • Optical spectra are collected using a rapid scanning diode array spectrophotometer (Milton Roy 2000 or Hewlett Packard Model 8453) in the Soret and visible regions for analysis of hemoglobin concentration and percent methemoglobin by multicomponent analysis (Vandegriff, K. D., and R. E., Shrager. Evaluation of oxygen equilibrium binding to hemoglobin by rapid-scanning spcetrophotometry and singular value decomposition. Meth. Enzymol. 232: 460-485 (1994).
  • MalPEG-Hb concentration and percentage methemoglobin are determined using a co-oximeter. Viscosity is determined using a Rheometer. Colloid Osmotic Pressure is determined using a colloid osmometer. Oxygen binding parameters are determined from oxygen equilibrium curves.
  • the number “m” in Formula I is the parameter that defines the number of PEG polymers attached to the surface of hemoglobin.
  • a dithiopyridine calorimetric assay (Ampulski, R., V. Ayers, and S. Morell. Determination of the reactive sulfhydryl groups in heme proteins with 4, 4′-dipyridinesdisulde. Biocheim. Biophys. Acta 163-169, 1969) is used to measure the number of available thiol groups on the surface of the Hb tetramer before and after thiolation and then again after Hb PEGylation. Human hemoglobin contains 2 intrinsic reactive thiol groups at the ⁇ 93Cys residues, which is confirmed by the dithiopyridine reaction.
  • FPLC is performed for analysis of the final MalPEG-Hb product.
  • Typical chromatograms are displayed in FIG. 1 for MalPEG-Hb compared to unmodified SFH.
  • the retention time for SFH is approximately 57 min.
  • the retention time for MalPEG-Hb is approximately 44 min.
  • Hemoglobin-oxygen equilibrium binding curves were measured as described previously (Vandegriff, K. D., R. K. Rohlfs, M.D. Magde, and R M. Winslow. Hemoglobinoxygen equilibrium cures measured during enzymatic oxygen consumption. Anal. Biochem. 256:107-116, 1998).
  • FIG. 2 shows representative curves comparing stroma-free hemoglobin (SFH) and MalPEG-Hb solutions.
  • This solution property of MalPEG-Hb is due to the strong interaction between polyethylene glycol chains and solvent water molecules. This is believed to be an important attribute for a blood substitute for two reasons: 1) higher viscosity decreases the diffusion constant of both the PEG-Hb molecule and gaseous ligand molecules diffusing through the solvent, and 2) higher viscosity increases the shear stress of the solution flowing against the endothelial wall, eliciting the release of vasodilators to counteract vasoconstriction. As shown in Table 2, the viscosity of the MalPEG-Hb solution is 2.5 cPs.
  • Tetrameric hemoglobins show nearly ideal solution behavior; whereas hemoglobins conjugated to PEG have significantly higher colloid osmotic activity and exhibit solution non-ideality (Vandegriff, K. D., M. Mcarthy, R. J. Rohls and R. M. Winslow. Colloid osmotic properties of modified hemoglobins: chemically cross-linked versus polyethylene glycol surface-conjugated. Biophys. Chem. 69: 23-30 (1997). As shown in Table 2, the COP of the MalPEG-Hb solution is 50.
  • the hemorrhage protocol we used is based on the model of Hannon and Wade (Hannon, J., C. Wade, C. Bossone, M. Hunt, R. Coppes, and J. Loveday, “Blood gas and acid-base status of conscious pigs subjected to fixed-volume hemorrhage and resuscitated with hypertonic sali dextran,” Circ Shock 32: 19-29 (1990)). Hemorrhage was begun approximately 3 minutes after completion of the exchange transfusion by pumping out arterial blood from the femoral artery at a rate of 0.5 m/min to remove 60% of the blood volume by the end of 60 minutes. Blood samples (0.3 ml) were taken every 10 minutes for hematologic and blood gas analysis.
  • the baseline, post-ET and post-hemorrhage (60 minute) measurements are shown in Table 5.
  • the mean hematocrit was slightly higher in the POE compared to PHP animals, but after exchange transfusion the values were identical in the two groups.
  • the mean hematocrit in the POE animals was again slightly higher than in the PHP animals.
  • Similar minor differences are found in the total hemoglobin values, with POE animals being slightly higher at all sampling points. Plasma hemoglobin was not different in the two groups, but was significantly higher in the POE animals after the exchange period.
  • the mean arterial pressure during exchange transfusion is shown in FIG. 6. Baseline mean arterial pressures are indistinguishable for the two groups. However, the blood pressure response to infusion of the PEG-hemoglobins is significantly different between the two groups. The initial rise in MAP is greater in the PHP compared to the POE animals, and it is sustained for the duration of the infusion period. In contrast, the MAP in the POE animals returns to baseline by the end of the infusion.
  • the fall in MAP is immediate in the PHP animals and delayed in the POE group. Furthermore, the MAP is sustained at or near baseline values for the entire hemorrhage and beyond for the POE animals, while the MAP never returns to baseline values in the PHP animals. Especially in the PHP animals, the scatter in the data, as indicated by increasing standard errors, increases with time as animals drop out of the PHP group.
  • stage I represented the transfer from frozen storage at the production facility to temperature conditions during shipping to the clinical site (frozen storage study).
  • Stage II represented the thawing of the MalPEG-Hb for 24 hours to +4° C. and subsequent storage at +4° C. for five days (refrigerated study).
  • Stage III represented the thawing of the MalPEG-Hb for 24 hours to +4° C. and subsequent storage of MalPEG-Hb at room temperature for several days prior to patient administration (room temperature study).
  • Stability was defined by the rate of oxidation of the MalPEG-Hb test material.
  • the percentage of methemoglobin in the sample was measured using co-oximetry (IL Co-oximetry 682). Measurements were made in duplicate at each time point according to the protocol.
  • Temperatures were monitored by thermometer or termperature chart recorders.
  • the frozen storage study was conducted over a temperature range of ⁇ 21.0 ⁇ 3.0° C.
  • the refrigerated study was conducted over a temperature range of +4.0 ⁇ 0.2° C.
  • the room temperature study was conducted over a temperature range of +21.0 ⁇ 1.0° C.
  • MalPEG-Hb showed no change in percent methemoglobin during 6 day storage at ⁇ 20° C. as shown in FIG. 8. Similarly, MalPEG-Hb showed no change in percent methemoglobin during five day storage at +4° C. as shown in FIG. 9. During storage at room temperature, MalPEG-Hb showed less than 1 percent increase in methemoglobin over a ten hour period as shown in FIG. 10.
US10/114,400 2002-01-11 2002-04-01 Methods and compositions for oxygen transport comprising a high oxygen affinity modified hemoglobin Abandoned US20030153491A1 (en)

Priority Applications (27)

Application Number Priority Date Filing Date Title
US10/114,400 US20030153491A1 (en) 2002-01-11 2002-04-01 Methods and compositions for oxygen transport comprising a high oxygen affinity modified hemoglobin
AT03705713T ATE382358T1 (de) 2002-01-11 2003-01-10 Verfahren und zusammensetzungen zum sauerstofftransport mit hoher sauerstoffaffinität
PT03705713T PT1465643E (pt) 2002-01-11 2003-01-10 Métodos e composições para transporte de oxigénio compreendendo uma afinidade para o oxigénio elevada.
AU2003207504A AU2003207504B2 (en) 2002-01-11 2003-01-10 Methods and compositions for oxygen transport comprising a high oxygen affinity modified hemoglobin
KR1020047010847A KR100964604B1 (ko) 2002-01-11 2003-01-10 산소 친화도가 높은 개질된 헤모글로빈을 포함하는 산소 전달용 조성물 및 방법
PCT/US2003/000696 WO2003059363A1 (en) 2002-01-11 2003-01-10 Methods and compositions for oxygen transport comprising a high oyzgen affinity
CN2013100910214A CN103203013A (zh) 2002-01-11 2003-01-10 包含高氧亲和力的修饰血红蛋白的氧气输送方法和组合物
SI200331155T SI1465643T1 (sl) 2002-01-11 2003-01-10 Postopki in sestavki za transport kisika z visokoafiniteto za kisik
EP03705713A EP1465643B1 (de) 2002-01-11 2003-01-10 Verfahren und zusammensetzungen zum sauerstofftransport mit hoher sauerstoffaffinität
DE60318388T DE60318388T2 (de) 2002-01-11 2003-01-10 Verfahren und zusammensetzungen zum sauerstofftransport mit hoher sauerstoffaffinität
ES03705713T ES2299686T3 (es) 2002-01-11 2003-01-10 Procedimientos y composiciones para el transporte de oxigeno con alta afinidad por el oxigeno.
EP07022374.8A EP1894573A3 (de) 2002-01-11 2003-01-10 Verfahren und Zusammensetzungen für den Sauerstofftransport mit hoher Sauerstoffaffinität
MXPA04006733A MXPA04006733A (es) 2002-01-11 2003-01-10 Metodos y composiciones para transporte de oxigeno que comprenden una alta afinidad al oxigeno.
BR0306846-3A BR0306846A (pt) 2002-01-11 2003-01-10 Produto substituto do sangue, composição útil como um substituto do sangue, método para fazer um produto substituto do sangue, e, método de uso de um produto substituto do sangue para fornecer oxigênio a um tecido
DK03705713T DK1465643T3 (da) 2002-01-11 2003-01-10 Fremgangsmåder og sammensætninger til oxygentransport med höj oxygenaffinitet
US10/340,141 US6844317B2 (en) 2002-01-11 2003-01-10 Methods for oxygen transport comprising a high oxygen affinity modified hemoglobin
CA002473662A CA2473662C (en) 2002-01-11 2003-01-10 Methods and compositions for oxygen transport comprising a high oxygen affinity modified hemoglobin
CN038036487A CN1630527B (zh) 2002-01-11 2003-01-10 包含高氧亲和力的修饰血红蛋白的氧气输送方法和组合物
JP2003559525A JP5149480B2 (ja) 2002-01-11 2003-01-10 高酸素親和性改変ヘモグロビンを含む、酸素輸送のための方法および組成物
US10/925,067 US6974795B2 (en) 2002-01-11 2004-08-24 Compositions for oxygen transport comprising a high oxygen affinity modified hemoglobin
US11/088,934 US20050164915A1 (en) 2002-04-01 2005-03-23 Compositions for oxygen transport comprising a high oxygen affinity modified hemoglobin
US11/717,364 US7625862B2 (en) 2002-01-11 2007-03-13 Method for making a high oxygen affinity modified hemoglobin for oxygen transport
US12/625,900 US7989414B2 (en) 2002-01-11 2009-11-25 Compositions for oxygen transport comprising a high oxygen affinity modified hemoglobin
JP2010052387A JP2010138197A (ja) 2002-01-11 2010-03-09 高酸素親和性改変ヘモグロビンを含む、酸素輸送のための方法および組成物
US13/180,291 US8377868B2 (en) 2002-01-11 2011-07-11 Compositions for oxygen transport comprising a high oxygen affinity modified hemoglobin
US13/714,853 US20130102521A1 (en) 2002-01-11 2012-12-14 Compositions for oxygen transport comprising a high oxygen affinity modified hemoglobin
US13/923,617 US9241979B2 (en) 2002-01-11 2013-06-21 Compositions for oxygen transport comprising a high oxygen affinity modified hemoglobin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34774102P 2002-01-11 2002-01-11
US10/114,400 US20030153491A1 (en) 2002-01-11 2002-04-01 Methods and compositions for oxygen transport comprising a high oxygen affinity modified hemoglobin

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/340,141 Continuation-In-Part US6844317B2 (en) 2002-01-11 2003-01-10 Methods for oxygen transport comprising a high oxygen affinity modified hemoglobin
US11/088,934 Continuation-In-Part US20050164915A1 (en) 2002-01-11 2005-03-23 Compositions for oxygen transport comprising a high oxygen affinity modified hemoglobin

Publications (1)

Publication Number Publication Date
US20030153491A1 true US20030153491A1 (en) 2003-08-14

Family

ID=26812138

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/114,400 Abandoned US20030153491A1 (en) 2002-01-11 2002-04-01 Methods and compositions for oxygen transport comprising a high oxygen affinity modified hemoglobin
US10/340,141 Expired - Lifetime US6844317B2 (en) 2002-01-11 2003-01-10 Methods for oxygen transport comprising a high oxygen affinity modified hemoglobin
US10/925,067 Expired - Lifetime US6974795B2 (en) 2002-01-11 2004-08-24 Compositions for oxygen transport comprising a high oxygen affinity modified hemoglobin

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/340,141 Expired - Lifetime US6844317B2 (en) 2002-01-11 2003-01-10 Methods for oxygen transport comprising a high oxygen affinity modified hemoglobin
US10/925,067 Expired - Lifetime US6974795B2 (en) 2002-01-11 2004-08-24 Compositions for oxygen transport comprising a high oxygen affinity modified hemoglobin

Country Status (15)

Country Link
US (3) US20030153491A1 (de)
EP (1) EP1465643B1 (de)
JP (2) JP5149480B2 (de)
KR (1) KR100964604B1 (de)
CN (2) CN103203013A (de)
AT (1) ATE382358T1 (de)
AU (1) AU2003207504B2 (de)
BR (1) BR0306846A (de)
CA (1) CA2473662C (de)
DE (1) DE60318388T2 (de)
DK (1) DK1465643T3 (de)
ES (1) ES2299686T3 (de)
MX (1) MXPA04006733A (de)
PT (1) PT1465643E (de)
WO (1) WO2003059363A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006026739A3 (en) * 2004-08-31 2006-05-11 Sangart Inc Methods to enhance hemodynamic stability using oxygen carrying compositions
US20100323029A1 (en) * 2009-06-16 2010-12-23 The University Of Pittsburgh - Of The Commonwealth System Of Higher Five-coordinate neuroglobin and use thereof as a blood substitute
US9138464B2 (en) 2005-03-07 2015-09-22 Robert M. Winslow MalPEG Hb conjugate-containing compositions for delivering nitric oxide (NO) to cells
CN105497894A (zh) * 2015-12-21 2016-04-20 中国科学院深圳先进技术研究院 用于肿瘤光动力治疗的血红蛋白-光敏剂试剂及其应用
US9493616B2 (en) 2010-02-25 2016-11-15 Sangart, Inc. Methods for preparing PEG-hemoglobin conjugates using reduced reactant ratios
US10821158B2 (en) 2013-03-15 2020-11-03 William Schindler Polyalkylene oxide valerate hemoglobin conjugates

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062827A2 (en) 2000-02-22 2001-08-30 Shearwater Corporation N-maleimidyl polymer derivatives
US20050164915A1 (en) * 2002-04-01 2005-07-28 Sangart, Inc. Compositions for oxygen transport comprising a high oxygen affinity modified hemoglobin
AU2003299700B2 (en) * 2002-12-23 2009-03-26 Albert Einstein College Of Medicine Of Yeshiva University Modified hemoglobin and methods of making same
ATE444984T1 (de) * 2002-12-31 2009-10-15 Nektar Therapeutics Al Corp Hydrolysestabile maleimidendgruppen-enthaltende polymere
US7432331B2 (en) 2002-12-31 2008-10-07 Nektar Therapeutics Al, Corporation Hydrolytically stable maleimide-terminated polymers
US7790835B2 (en) * 2003-12-03 2010-09-07 Nektar Therapeutics Method of preparing maleimide functionalized polymers
US8455437B2 (en) * 2005-02-04 2013-06-04 The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services Method to predict and prevent oxygen-induced inflammatory tissue injury
US20090215670A1 (en) * 2005-05-11 2009-08-27 Acharya Seetharama A Site specific pegylated hemoglobin, method of preparing same, and uses thereof
US8071546B2 (en) * 2005-06-10 2011-12-06 La Jolla Bioengineering Institute Uses of pegylated albumin
US8741832B2 (en) * 2005-06-10 2014-06-03 Albert Einstein College Of Medicine Of Yeshiva University Pegylated albumin and uses thereof
EP1915412B1 (de) * 2005-07-19 2010-03-24 Nektar Therapeutics Verfahren zur herstellung von polymermaleimiden
JP5698905B2 (ja) 2006-05-22 2015-04-08 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 一酸化窒素の送達のための方法
US7504377B2 (en) * 2006-10-23 2009-03-17 Ikor, Inc. Nitric oxide-blocked cross-linked tetrameric hemoglobin
CN101158676B (zh) * 2006-12-31 2011-12-14 重庆大学 一种评价血液及其代用品携氧、释氧功能的分析方法及装置
US20090191244A1 (en) 2007-09-27 2009-07-30 Children's Medical Center Corporation Microbubbles and methods for oxygen delivery
US10172949B2 (en) 2009-06-09 2019-01-08 Prolong Pharmaceuticals, LLC Hemoglobin compositions
ES2966234T3 (es) * 2009-06-09 2024-04-18 Prolong Pharmaceuticals Llc Composiciones de hemoglobina
US10172950B2 (en) 2009-06-09 2019-01-08 Prolong Pharmaceuticals, LLC Hemoglobin compositions
US8273857B2 (en) * 2009-09-22 2012-09-25 Jen-Chang Hsia Compositions and methods of use of neurovascular protective multifunctional polynitroxylated pegylated carboxy hemoglobins for transfusion and critical care medicine
US20130041134A1 (en) * 2009-11-05 2013-02-14 Sangart ,Inc. Methods for preparing polyethylene glycol maleimide using n-(2-hydroxyethyl) maleimide as a starting material
US7989593B1 (en) 2010-05-27 2011-08-02 Bing Lou Wong Method for the preparation of a high-temperature stable oxygen-carrier-containing pharmaceutical composition and the use thereof
US7932356B1 (en) 2010-06-23 2011-04-26 Bing Lou Wong Method for the preparation of a heat stable oxygen carrier-containing pharmaceutical composition
US8048856B1 (en) 2010-06-23 2011-11-01 Billion King, Ltd. Treatment methods using a heat stable oxygen carrier-containing pharmaceutical composition
US20130177641A1 (en) * 2011-01-07 2013-07-11 Vindico NanoBio Technology Inc. Compositions and methods for delivery of high-affinity oxygen binding agents to tumors
US20120196270A1 (en) * 2011-02-02 2012-08-02 Sangart, Inc. Methods for preserving an organ for transplantation using a hemoglobin-carbon monoxide complex
JP6083674B2 (ja) 2011-03-01 2017-02-22 学校法人 中央大学 ヘモグロビン−アルブミン複合体、並びに該複合体を含む人工血漿増量剤及び人工酸素運搬体
US8084581B1 (en) 2011-04-29 2011-12-27 Bing Lou Wong Method for removing unmodified hemoglobin from cross-linked hemoglobin solutions including polymeric hemoglobin with a high temperature short time heat treatment apparatus
US20130052232A1 (en) 2011-08-31 2013-02-28 Bing Lou Wong Method for the preparation of a heat stable oxygen carrier-containing composition facilating beta-beta cross-linking
JP6389125B2 (ja) * 2011-11-07 2018-09-12 ザ ジェネラル ホスピタル コーポレイション 赤血球の処理法
WO2013148375A1 (en) 2012-03-29 2013-10-03 Sangart, Inc. Diaspirin crosslinked pegylated hemoglobin
AU2013243875B2 (en) 2012-04-03 2017-11-30 Schindler, William Succinimide-activated nitroxyl compounds and methods for the use thereof for nitroxylation of proteins
WO2013151682A1 (en) 2012-04-06 2013-10-10 Children's Medical Center Corporation Process for forming microbubbles with high oxygen content and uses thereof
US10385116B2 (en) 2013-01-07 2019-08-20 Omniox, Inc. Polymeric forms of H-NOX proteins
US10577554B2 (en) 2013-03-15 2020-03-03 Children's Medical Center Corporation Gas-filled stabilized particles and methods of use
US10456452B2 (en) 2015-07-02 2019-10-29 Poseida Therapeutics, Inc. Compositions and methods for improved encapsulation of functional proteins in polymeric vesicles
CA3014651A1 (en) 2016-02-16 2017-08-24 Omniox, Inc. Modulation of hypoxia associated with stroke
EP3449004B1 (de) 2016-04-29 2021-02-24 Poseida Therapeutics, Inc. Mizellen auf poly(histidin)-basis zur komplexierung und abgabe von proteinen und nukleinsäuren
WO2018008729A1 (ja) 2016-07-06 2018-01-11 学校法人 中央大学 虚血性疾患の治療剤
ES2651717B1 (es) * 2016-07-26 2018-11-16 Lara OLLER DUQUE Solución acuosa cristaloide isotónica
US11147890B2 (en) 2017-02-28 2021-10-19 Children's Medical Center Corporation Stimuli-responsive particles encapsulating a gas and methods of use
WO2020037052A1 (en) 2018-08-15 2020-02-20 Omniox, Inc. H-nox proteins for treating cardiovascular and pulmonary conditions
CN111499732B (zh) * 2020-04-22 2022-05-13 中国科学院过程工程研究所 一种基于双重化学修饰的血红蛋白氧载体及其制备方法和应用
WO2021261712A1 (en) * 2020-06-26 2021-12-30 Sunbio, Inc. Hemoglobin derivative co-conjugated with fatty acid-linked peg and alkoxy peg as a blood substitute
CN114617957B (zh) * 2022-03-10 2024-01-16 中国人民解放军军事科学院军事医学研究院 羟乙基淀粉血红蛋白偶联物及其制备方法与应用

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3925344A (en) * 1973-04-11 1975-12-09 Community Blood Council Plasma protein substitute
US4001401A (en) * 1975-02-02 1977-01-04 Alza Corporation Blood substitute and blood plasma expander comprising polyhemoglobin
US4061736A (en) * 1975-02-02 1977-12-06 Alza Corporation Pharmaceutically acceptable intramolecularly cross-linked, stromal-free hemoglobin
US4301144A (en) * 1979-07-11 1981-11-17 Ajinomoto Company, Incorporated Blood substitute containing modified hemoglobin
US4473496A (en) * 1981-09-14 1984-09-25 The United States Of America As Represented By The Secretary Of The Army Intramolecularly crosslinked hemoglobin
US4529719A (en) * 1983-05-04 1985-07-16 Tye Ross W Modified crosslinked stroma-free tetrameric hemoglobin
US4587130A (en) * 1982-12-10 1986-05-06 Cpc International Inc. Storable product which can be whipped up to a dessert mousse, and a process for its preparation
US4600531A (en) * 1984-06-27 1986-07-15 University Of Iowa Research Foundation Production of alpha-alpha cross-linked hemoglobins in high yield
US4826811A (en) * 1986-06-20 1989-05-02 Northfield Laboratories, Inc. Acellular red blood cell substitute
US4857636A (en) * 1987-05-05 1989-08-15 Hsia Jen Chang Pasteurizable, freeze-driable hemoglobin-based blood substitute
US5028588A (en) * 1987-05-16 1991-07-02 Somatogenetics International, Inc. Blood substitutes
US5194590A (en) * 1986-06-20 1993-03-16 Northfield Laboratories, Inc. Acellular red blood cell substitute
US5234903A (en) * 1989-11-22 1993-08-10 Enzon, Inc. Chemically modified hemoglobin as an effective, stable non-immunogenic red blood cell substitute
US5250665A (en) * 1991-05-31 1993-10-05 The University Of Toronto Innovations Foundation Specifically β-β cross-linked hemoglobins and method of preparation
US5296465A (en) * 1986-11-10 1994-03-22 Biopure Corporation Ultra pure hemoglobin solutions and blood-substitutes
US5661124A (en) * 1987-05-16 1997-08-26 Somatogen, Inc. Blood substitutes
US6054427A (en) * 1997-02-28 2000-04-25 The Regents Of The University Of California Methods and compositions for optimization of oxygen transport by cell-free systems

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3507146A (en) 1968-02-09 1970-04-21 Webb James E Method and system for respiration analysis
US3956259A (en) 1973-01-30 1976-05-11 Baxter Laboratories, Inc. Fractionation of blood using block copolymer of ethylene oxide and polyoxypropylene polymer to recover fraction suitable for organ perfusate
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
DE2449885C3 (de) 1974-10-21 1980-04-30 Biotest-Serum-Institut Gmbh, 6000 Frankfurt Verfahren zur Herstellung von chemisch modifizierten haltbaren Hämoglobinpräparaten sowie das nach diesem Verfahren hergestellte modifizierte Hämoglobinpräparat
US4001200A (en) 1975-02-27 1977-01-04 Alza Corporation Novel polymerized, cross-linked, stromal-free hemoglobin
US4053590A (en) 1975-02-27 1977-10-11 Alza Corporation Compositions of matter comprising macromolecular hemoglobin
CA1055932A (en) 1975-10-22 1979-06-05 Hematech Inc. Blood substitute based on hemoglobin
GB1578776A (en) 1976-06-10 1980-11-12 Univ Illinois Hemoglobin liposome and method of making the same
JPS5329908A (en) 1976-08-27 1978-03-20 Green Cross Corp:The Immobilized haptoglobin preparation
US4209300A (en) 1978-09-25 1980-06-24 The United States Of America As Represented By The Department Of Health, Education And Welfare Hemoglobin-oxygen equilibrium curve analyzer
JPS5716815A (en) 1980-07-02 1982-01-28 Ajinomoto Co Inc Oxygen transporting agent for artificial blood
US4401652A (en) 1980-12-31 1983-08-30 Allied Corporation Process for the preparation of stroma-free hemoglobin solutions
JPS57206622A (en) 1981-06-10 1982-12-18 Ajinomoto Co Inc Blood substitute
US4532130A (en) 1981-07-06 1985-07-30 Rush-Presbyterian-St. Luke's Medical Center Preparation of synthetic frythrocytes
DE3130770C2 (de) 1981-08-04 1986-06-19 Biotest-Serum-Institut Gmbh, 6000 Frankfurt Verfahren zur Gewinnung von hepatitissicheren, sterilen, pyrogenfreien und stromafreien Hämoglobinlösungen
DE3144705C2 (de) 1981-11-11 1983-12-08 Biotest-Serum-Institut Gmbh, 6000 Frankfurt Verfahren zur Herstellung eines lagerstabilen, vernetzten Hämoglobinpräparates mit hoher Sauerstoff-Transportkapazität, sowie das nach diesem Verfahren hergestellte Hämoglobinpräparat
US4473494A (en) 1983-05-04 1984-09-25 The United States Of America As Represented By The Secretary Of The Army Preparation of stroma-free, non-heme protein-free hemoglobin
GB8328917D0 (en) 1983-10-28 1983-11-30 Fisons Plc Blood substitute
US5281579A (en) 1984-03-23 1994-01-25 Baxter International Inc. Purified virus-free hemoglobin solutions and method for making same
US4831012A (en) 1984-03-23 1989-05-16 Baxter International Inc. Purified hemoglobin solutions and method for making same
DE3412144A1 (de) 1984-03-31 1985-10-10 Biotest Pharma GmbH, 6000 Frankfurt Verfahren zur herstellung hochgereinigter, stromafreier, hepatitissicherer human- und tierhaemoglobinloesungen
US4738952A (en) 1984-04-27 1988-04-19 Synthetic Blood Corporation Substitute for human blood and a method of making the same
US4598064A (en) 1984-06-27 1986-07-01 University Of Iowa Research Foundation Alpha-alpha cross-linked hemoglobins
US4584130A (en) 1985-03-29 1986-04-22 University Of Maryland Intramolecularly cross-linked hemoglobin and method of preparation
DE3675588D1 (de) 1985-06-19 1990-12-20 Ajinomoto Kk Haemoglobin, das an ein poly(alkenylenoxid) gebunden ist.
US5080885A (en) 1986-01-14 1992-01-14 Alliance Pharmaceutical Corp. Brominated perfluorocarbon emulsions for internal animal use for contrast enhancement and oxygen transport
US5077036A (en) 1986-01-14 1991-12-31 Alliance Pharmaceutical Corp. Biocompatible stable fluorocarbon emulsions for contrast enhancement and oxygen transport comprising 40-125% wt./volume fluorocarbon combined with a phospholipid
US4987154A (en) 1986-01-14 1991-01-22 Alliance Pharmaceutical Corp. Biocompatible, stable and concentrated fluorocarbon emulsions for contrast enhancement and oxygen transport in internal animal use
US5684050A (en) 1986-01-24 1997-11-04 Hemagen/Pfc Stable emulsions of highly fluorinated organic compounds
US5464814A (en) 1986-06-20 1995-11-07 Northfield Laboratories, Inc. Acellular red blood cell substitute
DE3620873A1 (de) 1986-06-21 1987-12-23 Rau Guenter Vorrichtung zur bestimmung des partialdruckes von in einem fluid geloesten gasen und gasgemischen
US4911929A (en) 1986-08-29 1990-03-27 The United States Of America As Represented By The Secretary Of The Navy Blood substitute comprising liposome-encapsulated hemoglobin
DE3636590A1 (de) 1986-10-28 1988-05-26 Braun Melsungen Ag Blutersatzmittel
US5084558A (en) 1987-10-13 1992-01-28 Biopure Corporation Extra pure semi-synthetic blood substitute
US4861867A (en) 1988-02-03 1989-08-29 Baxter International, Inc. Purified hemoglobin solutions and method for making same
US4900780A (en) 1988-05-25 1990-02-13 Masonic Medical Research Laboratory Acellular resuscitative fluid
CA1338244C (en) 1988-08-17 1996-04-09 Xiang-Fu Wu Purification of hemoglobin and methemoglobin by bioselective elution
US5061688A (en) 1988-08-19 1991-10-29 Illinois Institute Of Technology Hemoglobin multiple emulsion
US5128452A (en) 1989-04-19 1992-07-07 Baxter International Inc. Process for the production of crosslinked hemoglobin in the presence of sodium tripolyphosphate
US5545727A (en) * 1989-05-10 1996-08-13 Somatogen, Inc. DNA encoding fused di-alpha globins and production of pseudotetrameric hemoglobin
US5599907A (en) 1989-05-10 1997-02-04 Somatogen, Inc. Production and use of multimeric hemoglobins
US5386014A (en) 1989-11-22 1995-01-31 Enzon, Inc. Chemically modified hemoglobin as an effective, stable, non-immunogenic red blood cell substitute
US5312808A (en) 1989-11-22 1994-05-17 Enzon, Inc. Fractionation of polyalkylene oxide-conjugated hemoglobin solutions
US5478806A (en) 1989-11-22 1995-12-26 Enzon, Inc. Enhancement of antitumor therapy with hemoglobin-based conjugates
US5650388A (en) 1989-11-22 1997-07-22 Enzon, Inc. Fractionated polyalkylene oxide-conjugated hemoglobin solutions
US5041615A (en) 1989-12-05 1991-08-20 Baxter International Inc. Preparation of bis(salicyl) diesters
US5239061A (en) 1990-06-20 1993-08-24 Research Corporation Technologies, Inc. Modified human hemoglobin, blood substitutes containing the same, and vectors for expressing the modified hemoglobin
US5352773A (en) 1990-08-06 1994-10-04 Baxter International Inc. Stable hemoglobin based composition and method to store same
US5248766A (en) 1990-08-17 1993-09-28 Baxter International Inc. Oxirane-modified hemoglobin based composition
US5114932A (en) 1990-11-30 1992-05-19 Runge Thomas M Hyperosmolar oxyreplete hemosubstitute
US5234555A (en) * 1991-02-05 1993-08-10 Ibbott Jack Kenneth Method and apparatus for ionizing fluids utilizing a capacitive effect
CA2066374C (en) 1991-04-19 2002-01-29 Paul E. Segall Solution for perfusing primates
US5295944A (en) 1991-05-14 1994-03-22 Dana-Farber Cancer Institute Method for treating a tumor with ionizing radiation
US5349054A (en) 1991-08-15 1994-09-20 Duke University Activated benzenepentacarboxylate-crosslinked low oxygen affinity hemoglobin
US5334705A (en) 1991-08-15 1994-08-02 Duke University Benzenetricarboxylate derivative-crosslinked low oxygen affinity hemoglobin
US5334706A (en) 1992-01-30 1994-08-02 Baxter International Administration of low dose hemoglobin to increase perfusion
US5200323A (en) 1992-01-31 1993-04-06 Mcgill University In vitro method to determine the safety of modified hemoglobin blood substitutes for human prior to clinical use
US5296466A (en) 1992-02-19 1994-03-22 Board Of Regents, The University Of Texas System Inhibition of nitric oxide-mediated hypotension and septic shock with iron-containing hemoprotein
US5344393A (en) 1992-02-28 1994-09-06 Alliance Pharmaceutical Corp. Use of synthetic oxygen carriers to facilitate oxygen delivery
US5264555A (en) 1992-07-14 1993-11-23 Enzon, Inc. Process for hemoglobin extraction and purification
US5628930A (en) 1992-10-27 1997-05-13 Alliance Pharmaceutical Corp. Stabilization of fluorocarbon emulsions
US5558855A (en) 1993-01-25 1996-09-24 Sonus Pharmaceuticals Phase shift colloids as ultrasound contrast agents
US5635538A (en) 1993-03-16 1997-06-03 Alliance Pharmaceutical Corp. Fluorocarbon emulsions with reduced pulmonary gas-trapping properties
WO1994021682A1 (en) 1993-03-16 1994-09-29 Hemosol Inc. Selective crosslinking of hemoglobins by oxidized, ring-opened saccharides
US5554638A (en) 1993-05-24 1996-09-10 Duke University Methods for improving therapeutic effectiveness of agents for the treatment of solid tumors and other disorders
US5612310A (en) * 1993-05-24 1997-03-18 Duke University Methods for improving therapeutic effectiveness of agents for the treatment of solid tumors and other disorders
KR100267604B1 (ko) 1993-06-04 2000-11-01 이 세갈 폴 혈장 유사 용액
US5407428A (en) 1993-06-04 1995-04-18 Biotime, Inc. Solutions for use as plasma expanders and substitutes
US5578564A (en) 1993-07-23 1996-11-26 Somatogen, Inc. Nickel-free hemoglobin and methods for producing such hemoglobin
TW381022B (en) 1993-08-16 2000-02-01 Hsia Jen Chang Compositions and methods utilizing nitroxides to avoid oxygen toxicity, particularly in stabilized, polymerized, conjugated, or encapsulated hemoglobin used as a red cell substitute
US5545328A (en) 1993-09-21 1996-08-13 Hemosol Inc. Purification of hemoglobin by displacement chromatography
CA2106612C (en) 1993-09-21 2001-02-06 Diana Pliura Displacement chromatography process
US5631219A (en) 1994-03-08 1997-05-20 Somatogen, Inc. Method of stimulating hematopoiesis with hemoglobin
US5585484A (en) * 1995-04-19 1996-12-17 Albert Einstein College Of Medicine Of Yeshiva University, A Division Of Yeshiva University Hemoglobin crosslinkers
US5525630A (en) 1995-06-01 1996-06-11 Allos Therapeutics, Inc. Treatment for carbon monoxide poisoning
US5814601A (en) * 1997-02-28 1998-09-29 The Regents Of The University Of California Methods and compositions for optimization of oxygen transport by cell-free systems
DE69824892D1 (de) 1997-10-17 2004-08-05 Univ California System und verfahren zum charakterisieren von gastransporteigenschaften
US5985825A (en) 1998-02-28 1999-11-16 The Regents Of The University Of California Methods and compositions for optimization of oxygen transport by cell-free systems
CA2233725A1 (en) * 1998-03-31 1999-09-30 Hemosol Inc. Hemoglobin-hydroxyethyl starch complexes
EP1469811A4 (de) * 2002-01-11 2006-01-04 Sangart Inc Verfahren und zusammensetzungen für den sauerstofftransport mit modifiziertem hämoglobin in plasma
WO2003059287A2 (en) * 2002-01-11 2003-07-24 Sangart, Inc. Methods and compositions for oxygen transport comprising an oxygen carrier and a crystalloid in hypertonic solution
AU2003299700B2 (en) * 2002-12-23 2009-03-26 Albert Einstein College Of Medicine Of Yeshiva University Modified hemoglobin and methods of making same

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3925344A (en) * 1973-04-11 1975-12-09 Community Blood Council Plasma protein substitute
US4001401A (en) * 1975-02-02 1977-01-04 Alza Corporation Blood substitute and blood plasma expander comprising polyhemoglobin
US4061736A (en) * 1975-02-02 1977-12-06 Alza Corporation Pharmaceutically acceptable intramolecularly cross-linked, stromal-free hemoglobin
US4301144A (en) * 1979-07-11 1981-11-17 Ajinomoto Company, Incorporated Blood substitute containing modified hemoglobin
US4473496A (en) * 1981-09-14 1984-09-25 The United States Of America As Represented By The Secretary Of The Army Intramolecularly crosslinked hemoglobin
US4587130A (en) * 1982-12-10 1986-05-06 Cpc International Inc. Storable product which can be whipped up to a dessert mousse, and a process for its preparation
US4529719A (en) * 1983-05-04 1985-07-16 Tye Ross W Modified crosslinked stroma-free tetrameric hemoglobin
US4600531A (en) * 1984-06-27 1986-07-15 University Of Iowa Research Foundation Production of alpha-alpha cross-linked hemoglobins in high yield
US4826811A (en) * 1986-06-20 1989-05-02 Northfield Laboratories, Inc. Acellular red blood cell substitute
US5194590A (en) * 1986-06-20 1993-03-16 Northfield Laboratories, Inc. Acellular red blood cell substitute
US5296465A (en) * 1986-11-10 1994-03-22 Biopure Corporation Ultra pure hemoglobin solutions and blood-substitutes
US4857636A (en) * 1987-05-05 1989-08-15 Hsia Jen Chang Pasteurizable, freeze-driable hemoglobin-based blood substitute
US5028588A (en) * 1987-05-16 1991-07-02 Somatogenetics International, Inc. Blood substitutes
US5661124A (en) * 1987-05-16 1997-08-26 Somatogen, Inc. Blood substitutes
US5234903A (en) * 1989-11-22 1993-08-10 Enzon, Inc. Chemically modified hemoglobin as an effective, stable non-immunogenic red blood cell substitute
US5250665A (en) * 1991-05-31 1993-10-05 The University Of Toronto Innovations Foundation Specifically β-β cross-linked hemoglobins and method of preparation
US6054427A (en) * 1997-02-28 2000-04-25 The Regents Of The University Of California Methods and compositions for optimization of oxygen transport by cell-free systems

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006026739A3 (en) * 2004-08-31 2006-05-11 Sangart Inc Methods to enhance hemodynamic stability using oxygen carrying compositions
AU2005279780B2 (en) * 2004-08-31 2011-02-03 Sangart, Inc. Methods to enhance hemodynamic stability using oxygen carrying compositions
US9138464B2 (en) 2005-03-07 2015-09-22 Robert M. Winslow MalPEG Hb conjugate-containing compositions for delivering nitric oxide (NO) to cells
US9138463B2 (en) 2005-03-07 2015-09-22 Robert M. Winslow MalPEG-Hb conjugate-containing compositions for delivering carbon monoxide (CO) to cells
US20100323029A1 (en) * 2009-06-16 2010-12-23 The University Of Pittsburgh - Of The Commonwealth System Of Higher Five-coordinate neuroglobin and use thereof as a blood substitute
US9114109B2 (en) * 2009-06-16 2015-08-25 University of Pittsburgh—of the Commonwealth System of Higher Education Five-coordinate neuroglobin and use thereof as a blood substitute
US20150306183A1 (en) * 2009-06-16 2015-10-29 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Five-coordinate neuroglobin and use thereof as a blood substitute
US9493616B2 (en) 2010-02-25 2016-11-15 Sangart, Inc. Methods for preparing PEG-hemoglobin conjugates using reduced reactant ratios
US10821158B2 (en) 2013-03-15 2020-11-03 William Schindler Polyalkylene oxide valerate hemoglobin conjugates
CN105497894A (zh) * 2015-12-21 2016-04-20 中国科学院深圳先进技术研究院 用于肿瘤光动力治疗的血红蛋白-光敏剂试剂及其应用
CN105497894B (zh) * 2015-12-21 2019-01-04 中国科学院深圳先进技术研究院 用于肿瘤光动力治疗的血红蛋白-光敏剂试剂及其应用

Also Published As

Publication number Publication date
US20050026816A1 (en) 2005-02-03
KR100964604B1 (ko) 2010-06-21
ATE382358T1 (de) 2008-01-15
CN103203013A (zh) 2013-07-17
DE60318388T2 (de) 2008-12-24
AU2003207504A1 (en) 2003-07-30
PT1465643E (pt) 2008-03-27
BR0306846A (pt) 2004-12-07
JP5149480B2 (ja) 2013-02-20
WO2003059363A1 (en) 2003-07-24
US6974795B2 (en) 2005-12-13
EP1465643A1 (de) 2004-10-13
EP1465643B1 (de) 2008-01-02
US6844317B2 (en) 2005-01-18
AU2003207504B2 (en) 2007-05-24
DK1465643T3 (da) 2008-05-13
CN1630527A (zh) 2005-06-22
MXPA04006733A (es) 2005-12-05
CN1630527B (zh) 2013-04-24
KR20040081451A (ko) 2004-09-21
ES2299686T3 (es) 2008-06-01
JP2010138197A (ja) 2010-06-24
CA2473662C (en) 2009-12-22
EP1465643A4 (de) 2004-10-20
CA2473662A1 (en) 2003-07-24
JP2005515225A (ja) 2005-05-26
DE60318388D1 (de) 2008-02-14
US20030162693A1 (en) 2003-08-28

Similar Documents

Publication Publication Date Title
US6974795B2 (en) Compositions for oxygen transport comprising a high oxygen affinity modified hemoglobin
US9241979B2 (en) Compositions for oxygen transport comprising a high oxygen affinity modified hemoglobin
US8278275B2 (en) Method to enhance hemodynamic stability using oxygen carrying compositions
US7271145B2 (en) Methods and compositions for oxygen transport comprising modified hemoglobin in plasma
EP1894573A2 (de) Verfahren und Zusammensetzungen für den Sauerstofftransport mit hoher Sauerstoffaffinität
US20050119161A1 (en) Methods and compositions for oxygen transport comprising an oxygen carrier and a crystalloid in hypertonic solution

Legal Events

Date Code Title Description
AS Assignment

Owner name: SANGART, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WINSLOW, ROBER TM.;VANDEGRIFF, KIM D.;REEL/FRAME:013082/0319

Effective date: 20020909

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION