US10683690B2 - Vehicular opening/closing body control device - Google Patents

Vehicular opening/closing body control device Download PDF

Info

Publication number
US10683690B2
US10683690B2 US15/923,544 US201815923544A US10683690B2 US 10683690 B2 US10683690 B2 US 10683690B2 US 201815923544 A US201815923544 A US 201815923544A US 10683690 B2 US10683690 B2 US 10683690B2
Authority
US
United States
Prior art keywords
opening
closing body
closing
vehicle
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/923,544
Other languages
English (en)
Other versions
US20180266159A1 (en
Inventor
Yoshiki BITO
Kenta IZUMI
Takeshi Nishikibe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Assigned to AISIN SEIKI KABUSHIKI KAISHA reassignment AISIN SEIKI KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BITO, YOSHIKI, IZUMI, KENTA, NISHIKIBE, TAKESHI
Publication of US20180266159A1 publication Critical patent/US20180266159A1/en
Application granted granted Critical
Publication of US10683690B2 publication Critical patent/US10683690B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/60Power-operated mechanisms for wings using electrical actuators
    • E05F15/603Power-operated mechanisms for wings using electrical actuators using rotary electromotors
    • E05F15/632Power-operated mechanisms for wings using electrical actuators using rotary electromotors for horizontally-sliding wings
    • E05F15/655Power-operated mechanisms for wings using electrical actuators using rotary electromotors for horizontally-sliding wings specially adapted for vehicle wings
    • E05F15/659Control circuits therefor
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/40Safety devices, e.g. detection of obstructions or end positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J5/00Doors
    • B60J5/04Doors arranged at the vehicle sides
    • B60J5/047Doors arranged at the vehicle sides characterised by the opening or closing movement
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B83/00Vehicle locks specially adapted for particular types of wing or vehicle
    • E05B83/36Locks for passenger or like doors
    • E05B83/40Locks for passenger or like doors for sliding doors
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B85/00Details of vehicle locks not provided for in groups E05B77/00 - E05B83/00
    • E05B85/20Bolts or detents
    • E05B85/24Bolts rotating about an axis
    • E05B85/26Cooperation between bolts and detents
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/40Safety devices, e.g. detection of obstructions or end positions
    • E05F15/42Detection using safety edges
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/60Power-operated mechanisms for wings using electrical actuators
    • E05F15/603Power-operated mechanisms for wings using electrical actuators using rotary electromotors
    • E05F15/632Power-operated mechanisms for wings using electrical actuators using rotary electromotors for horizontally-sliding wings
    • E05F15/655Power-operated mechanisms for wings using electrical actuators using rotary electromotors for horizontally-sliding wings specially adapted for vehicle wings
    • E05F15/662Motor units therefor, e.g. geared motors
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/70Power-operated mechanisms for wings with automatic actuation
    • E05F15/79Power-operated mechanisms for wings with automatic actuation using time control
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F3/00Closers or openers with braking devices, e.g. checks; Construction of pneumatic or liquid braking devices
    • E05F3/16Closers or openers with braking devices, e.g. checks; Construction of pneumatic or liquid braking devices with friction brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J5/00Doors
    • B60J5/04Doors arranged at the vehicle sides
    • B60J5/06Doors arranged at the vehicle sides slidable; foldable
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B85/00Details of vehicle locks not provided for in groups E05B77/00 - E05B83/00
    • E05B85/20Bolts or detents
    • E05B85/24Bolts rotating about an axis
    • E05B85/243Bolts rotating about an axis with a bifurcated bolt
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05DHINGES OR SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS
    • E05D15/00Suspension arrangements for wings
    • E05D15/06Suspension arrangements for wings for wings sliding horizontally more or less in their own plane
    • E05D15/10Suspension arrangements for wings for wings sliding horizontally more or less in their own plane movable out of one plane into a second parallel plane
    • E05D15/1005Suspension arrangements for wings for wings sliding horizontally more or less in their own plane movable out of one plane into a second parallel plane the wing being supported on arms movable in horizontal planes
    • E05D15/101Suspension arrangements for wings for wings sliding horizontally more or less in their own plane movable out of one plane into a second parallel plane the wing being supported on arms movable in horizontal planes specially adapted for vehicles
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/60Power-operated mechanisms for wings using electrical actuators
    • E05F15/603Power-operated mechanisms for wings using electrical actuators using rotary electromotors
    • E05F15/632Power-operated mechanisms for wings using electrical actuators using rotary electromotors for horizontally-sliding wings
    • E05F15/643Power-operated mechanisms for wings using electrical actuators using rotary electromotors for horizontally-sliding wings operated by flexible elongated pulling elements, e.g. belts, chains or cables
    • E05F15/646Power-operated mechanisms for wings using electrical actuators using rotary electromotors for horizontally-sliding wings operated by flexible elongated pulling elements, e.g. belts, chains or cables allowing or involving a secondary movement of the wing, e.g. rotational or transversal
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F5/00Braking devices, e.g. checks; Stops; Buffers
    • E05F5/003Braking devices, e.g. checks; Stops; Buffers for sliding wings
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2201/00Constructional elements; Accessories therefore
    • E05Y2201/20Brakes; Disengaging means, e.g. clutches; Holders, e.g. locks; Stops; Accessories therefore
    • E05Y2201/21Brakes
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2201/00Constructional elements; Accessories therefore
    • E05Y2201/20Brakes; Disengaging means, e.g. clutches; Holders, e.g. locks; Stops; Accessories therefore
    • E05Y2201/214Disengaging means
    • E05Y2201/216Clutches
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2201/00Constructional elements; Accessories therefore
    • E05Y2201/20Brakes; Disengaging means, e.g. clutches; Holders, e.g. locks; Stops; Accessories therefore
    • E05Y2201/218Holders
    • E05Y2201/22Locks
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2201/00Constructional elements; Accessories therefore
    • E05Y2201/20Brakes; Disengaging means, e.g. clutches; Holders, e.g. locks; Stops; Accessories therefore
    • E05Y2201/23Actuation thereof
    • E05Y2201/232Actuation thereof by automatically acting means
    • E05Y2201/242Actuation thereof by automatically acting means using threshold speed
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2201/00Constructional elements; Accessories therefore
    • E05Y2201/60Suspension or transmission members; Accessories therefore
    • E05Y2201/622Suspension or transmission members elements
    • E05Y2201/688Rollers
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2400/00Electronic control; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/20Electronic control of brakes, disengaging means, holders or stops
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2400/00Electronic control; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/30Electronic control of motors
    • E05Y2400/31Force or torque control
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2400/00Electronic control; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/30Electronic control of motors
    • E05Y2400/32Position control, detection or monitoring
    • E05Y2400/334Position control, detection or monitoring by using pulse generators
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2400/00Electronic control; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/44Sensors therefore
    • E05Y2400/445Switches
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2400/00Electronic control; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/50Fault detection
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2400/00Electronic control; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/52Safety arrangements
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/50Application of doors, windows, wings or fittings thereof for vehicles
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/50Application of doors, windows, wings or fittings thereof for vehicles
    • E05Y2900/53Application of doors, windows, wings or fittings thereof for vehicles characterised by the type of wing
    • E05Y2900/531Doors

Definitions

  • This disclosure relates to a vehicular opening/closing body control device.
  • JP 2009-127301 A (Reference 1) or JP 2014-194151 A (Reference 2) illustrates an opening/closing body, which applies a braking force to an opening/closing body (e.g., a slide door) in order to describes the opening/closing body to hold an opening/closing operation position thereof.
  • the opening/closing body control device described in Reference 1 executes braking control described above when it is detected that a latch mechanism provided on a slide door of the vehicle is in an unlatched state, i.e. that the slide door is in an opening operation state during the traveling of the vehicle, based on an output signal of a half latch switch provided in the latch mechanism. This ensures the high safety of the slide door by preventing the slide door from being opened any more.
  • a vehicular opening/closing body control device includes a braking controller configured to apply a braking force to an opening/closing body provided in an opening in a vehicle, a full-closing detection unit configured to detect that the opening/closing body is in a fully-closed state, and a failure detection unit configured to detect a failure of a latch mechanism provided on the opening/closing body, wherein the latch mechanism is provided with a pawl switch, which is switched between ON and OFF states in conjunction with an operation of a pawl, which is engaged with a latch so as to hold a state where the latch is engaged with a striker, the failure detection unit detects, based on the ON and OFF states of the pawl switch, occurrence of an engagement failure in which the latch mechanism fails to hold the opening/closing body in the fully-closed state, and, in a case where the opening/closing body is in the fully-closed state, the braking controller executes braking control for applying the
  • FIG. 1 is a side view of a vehicle having a slide door
  • FIG. 2 is a plan view of a guide rail which form a movement path of the slide door and a guide roller;
  • FIG. 3 is a view illustrating a schematic configuration of a power slide door apparatus
  • FIG. 4 is an explanatory view illustrating a latch mechanism (unlatched state).
  • FIG. 5 is an explanatory view illustrating the latch mechanism (when a striker enters);
  • FIG. 6 is an explanatory view illustrating the latch mechanism (half-latched state).
  • FIG. 7 is an explanatory view illustrating the latch mechanism (fully-latched state).
  • FIG. 8 is an explanatory view illustrating operations of sensor switches provided in the latch mechanism
  • FIG. 9 is a flowchart illustrating a mode of braking control of the slide door, which is executed when an engagement failure of the latch mechanism is detected;
  • FIG. 10 is a flowchart illustrating a processing procedure when the braking control of the slide door is terminated
  • FIG. 11 is a flowchart illustrating a mode of braking control of the slide door, which is executed when the slide door is in an opening operation state during the traveling of the vehicle;
  • FIG. 12 is an explanatory view illustrating a specific range set in a curved portion of the guide rail
  • FIG. 13 is a view for explaining load acting on the guide roller based on a force for opening/closing the slide door;
  • FIG. 14 is a flowchart illustrating a processing procedure when a detection record of a full-closing abnormality (abnormality flag) is held;
  • FIG. 15 is a flowchart illustrating a processing procedure when the braking control of the slide door is executed in a case where the detection record of the full-closing abnormality is held after the vehicle stops (when IG OFF ⁇ IG ON);
  • FIG. 16 is a flowchart illustrating a processing procedure when the braking control of the slide door is executed in a case where the detection record of the full-closing abnormality is held after the vehicle stops (upon generation of an operation input of an opening/closing operation).
  • a vehicle 1 of the present embodiment includes a slide door 4 , which opens/closes a door opening 3 provided in a side surface 2 s of a vehicle body 2 .
  • the vehicle 1 is provided with a plurality of (three) guide rails 10 ( 11 to 13 ), which extend in a longitudinal direction thereof (a transverse direction in FIG. 1 ), and a plurality of guide roller units 20 ( 21 to 23 ), which are connected to the respective guide rails 10 . That is, the slide door 4 of the present embodiment is supported on the side surface 2 s of the vehicle body 2 via the respective guide rails 10 and the respective guide roller units 20 .
  • each guide rail 10 and each guide roller units 20 enable movement of an engagement position of each guide roller unit 20 relative to the corresponding guide rail 10 along the extending direction of the guide rail 10 .
  • the slide door 4 of the present embodiment is configured to move in the longitudinal direction of the vehicle along the side surface 2 s of the vehicle body 2 .
  • each guide roller unit 20 of the present embodiment includes a guide roller 30 , which is engaged with the corresponding guide rail 10 in a state of being slidable in the extending direction of the guide rail 10 .
  • a center rail 12 which is provided on the vehicle body 2 side behind the door opening 3
  • a center roller unit 22 which is provided on the slide door 4 side and is connected to the center rail 12 .
  • the slide door 4 of the present embodiment is configured to be opened/closed along a movement path L, which is formed by the guide rail 10 and the guide roller 30 .
  • the slide door 4 becomes a fully-closed state where the slide door 4 closes the door opening 3 by moving to the front side of the vehicle (the left side in each of the drawings).
  • the slide door 4 becomes a fully-opened state where an occupant of the vehicle 1 can get in or out of the vehicle 1 through the door opening 3 by moving to the rear side of the vehicle (the right side in FIGS. 1 and 2 ).
  • the guide rail 10 ( 12 ) of the present embodiment includes a curved portion ⁇ , which is curved in a width direction of the vehicle, in a closing operation side end portion (the left end portion in FIG. 2 ) 10 F, which is disposed in the closing operation direction of the slide door 4 .
  • the guide rail 10 is provided with a corner portion 10 c , which deflects the movement path L of the slide door 4 inward in the width direction of the vehicle (upward in FIG. 2 ) toward the closing operation direction of the slide door 4 , at an opening operation side position than a closing operation side terminal 10 a .
  • the vehicle 1 of the present embodiment is configured such that the slide door 4 moves in the longitudinal direction of the vehicle while being displaced in the width direction of the vehicle.
  • the slide door 4 of the present embodiment is disposed such that an outer surface 4 s thereof is substantially with the side surface 2 s of the vehicle body 2 on which the guide rail 10 is provided.
  • the slide door 4 moves to the vehicle rear side while being displaced outward in the width direction of the vehicle (downward in FIG. 2 ) when opened from the fully-closed state.
  • the slide door 4 of the present embodiment is configured not to interfere with the side surface 2 s of the vehicle body 2 even at the time of opening thereof.
  • the slide door 4 of the present embodiment is provided with a lock device 41 having a latch mechanism 40 , which is engaged with a striker (not illustrated) in order to restrain the slide door 4 to the vehicle body 2 .
  • the slide door 4 is provided with a front lock 41 a and a rear lock 41 b , which serve as full-closing locks in order to hold the slide door 4 in the fully-closed state.
  • the slide door 4 is provided with a full-opening lock 41 c for holding the slide door 4 at a fully-opened position.
  • the slide door 4 of the present embodiment is provided with a door handle (an outside door handle and an inside door handle) 43 , which releases the restriction of the latch mechanism 40 constituting each lock device 41 for opening/closing the slide door 4 .
  • an operating force input to the door handle 43 is mechanically transmitted to each lock device 41 via a remote controller (remote control device) 44 , which is connected thereto by a transmission member such as, for example, a wire cable or a link.
  • a transmission member such as, for example, a wire cable or a link.
  • the slide door 4 of the present embodiment is configured to be opened/closed, for example, by the door handle 43 , which serves as a grip element, by releasing the engagement of the latch mechanism 40 with respect to the striker, and consequently, by being released from a state restrained to the vehicle body 2 to the fully-closed state or the fully-opened state.
  • the slide door 4 of the present embodiment is configured such that the engagement state of the latch mechanism 40 constituting the lock device 41 can be released even when a user operates an operation input unit 45 , which is provided in, for example, the door handle 43 , a vehicle room, or a portable device.
  • the slide door 4 of the present embodiment is provided with a door actuator 51 , which uses a motor 50 as a drive source so as to open/close the slide door 4 .
  • the door actuator 51 includes an opening/closing drive unit 52 , which opens/closes the slide door 4 via a drive cable (not illustrated).
  • an electromagnetic clutch 53 is interposed between the opening/closing drive unit 52 and the motor 50 .
  • an operation of the door actuator 51 is controlled by a door ECU 51 .
  • the slide door 4 of the present embodiment is configured as a power slide door apparatus 60 , which is opened/closed based on a drive force of the motor 50 .
  • an operation input signal Scr which indicates that the operation input unit 45 is operated, is input to the door ECU 55 of the present embodiment.
  • the door ECU 55 of the present embodiment controls an operation of the slide door 4 based on an operation request of the user, which is indicated by the operation input signal Scr.
  • the door ECU 55 of the present embodiment controls an operation of the door actuator 51 so as to move the slide door 4 in an opening/closing operation direction indicated by the operation request (door driving control).
  • the door ECU 55 first controls an operation of the lock device 41 by outputting a lock control signal Slk so as to release the latch mechanism 40 , which restrains the slide door 4 to the vehicle body 2 , before starting the door driving control (release control).
  • the door ECU 55 controls the operation of the lock device 41 so as to shift the latch mechanism 40 from a half-latched state to a fully-latched state by the output of the lock control signal Slk (closing control).
  • the door ECU 55 of the present embodiment controls the operation of the electromagnetic clutch 53 provided in the door actuator 51 to connect and disconnect a torque transmission path between the motor 50 and the opening/closing drive unit 52 . That is, during the door driving control, the rotation of the motor 50 is controlled so as to bring the electromagnetic clutch 53 into a state of connecting the transmission path of a drive force to the slide door 4 (ON operation). In addition, during the manual operation by the user, the transmission path of the drive force is disconnected by an operation (OFF operation) of the electromagnetic clutch 53 .
  • the power slide door apparatus 60 of the present embodiment is configured to allow the slide door 4 to be smoothly opened/closed.
  • the door actuator 51 of the present embodiment is configured to apply a braking force to the slide door 4 based on, for example, the cogging torque of the stopped motor 50 or the frictional force of a deceleration mechanism by bringing the electromagnetic clutch 53 into a connection state in a state where the motor 50 stops.
  • the power slide door apparatus 60 of the present embodiment is configured to be able to hold the opening/closing operation position X of the slide door 4 .
  • the door actuator 51 of the present embodiment is provided with a pulse sensor 61 , which outputs a pulse signal Sp synchronized with the rotation of the motor 50 .
  • the door ECU 55 of the present embodiment detects the opening/closing operation position X (and the movement speed) of the slide door 4 by counting the pulse signal Sp.
  • a vehicle speed V and an ignition signal Sig, a shift position signal Ssft, a brake signal Sbk, and a parking brake signal Spbk of the vehicle 1 are input to the door ECU 55 of the present embodiment.
  • the door ECU 55 of the present embodiment controls the operation of the slide door 4 based on the vehicle status quantities thereof and control signals.
  • respective output signals Sw 1 to Sw 3 of a half latch switch 63 , a full latch switch 64 , and a pawl switch 65 provided in the latch mechanism 40 constituting the lock device 41 are input to the door ECU 55 of the present embodiment.
  • the door ECU 55 of the present embodiment is configured to detect the engagement state of the latch mechanism 40 based on the output signals Sw 1 to Sw 3 of the respective sensor switches 63 to 65 .
  • each latch mechanism 40 of the present embodiment includes a latch 72 and a pawl 73 , which are pivotally supported to be rotatable around support shafts 72 x and 73 x thereof, respectively.
  • the latch 72 of the present embodiment has a substantially flat outer shape having an open striker engagement groove 74 in the outer peripheral surface thereof.
  • the latch 72 is compressed to rotate in a counterclockwise direction in each of the drawings by a latch compression spring (not illustrated).
  • the latch 72 is brought into contact with a stopper portion (not illustrated) so that the rotation of the latch 72 based on the compression force of the latch compression spring is restricted at a position where the open end of the striker engagement groove 74 faces a striker 75 provided on the periphery of the door opening 3 .
  • the latch mechanism 40 of the present embodiment is configured such that the striker 75 on the vehicle body 2 side is engaged with the striker engagement groove 74 in the latch 72 according to the closing operation of the slide door 4 .
  • the pawl 73 is compressed to rotate in a clockwise direction in each of the drawings by a pawl compression spring (not illustrated).
  • the pawl 73 of the present embodiment is rotated based on the compression force of the pawl compression spring so that a tip end portion 73 a thereof is in sliding contact with the outer peripheral surface of the latch 72 .
  • the pawl 73 is configured such that the tip end portion 73 a thereof is engaged with the outer peripheral surface of the latch 72 in a state where the striker 75 is engaged with the striker engagement groove 74 .
  • the latch mechanism 40 of the present embodiment can hold the state in which the striker 75 is engaged with the striker engagement groove 74 in the latch 72 .
  • the tip end portion 73 a of the pawl 73 is in a state of being pressed on the outer peripheral surface of the latch 72 based on the compression force of the pawl compression spring, and apparently slides on the outer peripheral surface of the latch 72 in contact therewith.
  • the latch mechanism 40 of the present embodiment is configured such that the rotation of the latch 72 is restricted when the tip end portion 73 a of the pawl 73 is engaged with a first engagement portion 72 a of the latch 72 formed on the outer peripheral surface thereof (half-latched position).
  • the first engagement portion 72 a is set to the open end of the striker engagement groove 74 , specifically, a side wall surface to be pressed by the engaged striker 75 .
  • the latch mechanism 40 of the present embodiment is configured to restrict the rotation of the latch 72 in a compression direction by the latch compression spring, consequently, in the counterclockwise direction in each of the drawings in which the striker 75 is discharged from the striker engagement groove 74 , thereby holding the state where the striker 75 is engaged with the latch 72 (half-latched state).
  • the latch 72 can further rotate (in the clockwise direction in each of the drawings) from a rotating position, which corresponds to the half-latched state, against the compression force of the latch compression spring.
  • the latch mechanism 40 of the present embodiment is configured such that the latch 72 rotates in a closing direction beyond the half-latched position based on the operating force of the user input to the slide door 4 or the drive force of a closure device (not illustrated), an operation of which is controlled by the lock control signal Slk output from the door ECU 55 .
  • the pawl 73 is engaged with a second engagement portion 72 b formed on the outer peripheral surface of the latch 72 by the rotation of the latch 72 (fully-latched position).
  • the second engagement portion 72 b is formed at a position at which the tip end portion 73 a of the pawl 73 , which is in sliding contact with the outer peripheral surface of the latch 72 , has passed the striker engagement groove 74 .
  • the latch mechanism 40 of the present embodiment is configured to shift to the fully-latched state where the striker 75 engaged with the striker engagement groove 74 in the latch 72 is restrained so that relative movement thereof is impossible.
  • the latch mechanism 40 of the present embodiment is configured such that the pawl 73 rotates in the counterclockwise direction in each of the drawings against the compression force of the pawl compression spring based on the operating force input to the door handle 43 or the drive force of a release actuator (not illustrated), the operation of which is controlled by the lock control signal Slk output from the door ECU 55 .
  • the latch 72 rotates in a release direction (the counterclockwise direction in each of the drawings) based on the compression force of the latch compression spring as the restriction of rotation thereof due to engagement with the pawl 73 is released.
  • the latch mechanism 40 of the present embodiment is configured to return to the unlocked state illustrated in FIG. 4 by releasing the restriction of the striker 75 and discharging the striker 75 from the striker engagement groove 74 .
  • each lock device 41 of the present embodiment is configured such that the ON and OFF states of the half latch switch 63 , the full latch switch 64 , and the pawl switch 65 , that is, the output signals Sw 1 to Sw 3 of the respective sensor switches vary in conjunction with the engagement operation of the latch mechanism 40 .
  • the pawl switch 65 of the present embodiment is switched from the OFF state to the ON state and from the ON state to the OFF state in conjunction with an operation (reciprocal rotation) of the pawl 73 , which is in sliding contact with the outer peripheral surface of the latch 72 when the pawl 73 is engaged with the first engagement portion 72 a of the latch 72 . That is, the pawl switch 65 of the present embodiment is configured to become the ON state as the pawl 73 rotates in the direction in which it is disengaged from the latch 72 .
  • the half latch switch 63 of the present embodiment is configured to be switched from the ON state to the OFF state at a timing between the ON timing and the OFF timing of the pawl switch 65 .
  • the pawl switch 65 of the present embodiment is also switched from the OFF state to the ON state and from the ON state to the OFF state in conjunction with the operation (reciprocal rotation) of the pawl 73 even when the pawl 73 is engaged with the second engagement portion 72 b of the latch 72 .
  • the full latch switch 64 of the present embodiment is also configured to be switched from the ON state to the OFF state at a timing between the ON timing and the OFF timing of the pawl switch 65 .
  • the door ECU 55 of the present embodiment detects the engagement state of the latch mechanism 40 based on the respective output signals Sw 1 to Sw 3 indicating the ON and OFF states of the half latch switch 63 , the full latch switch 64 , and the pawl switch 65 .
  • the door ECU 55 of the present embodiment operates a closure device 80 at a timing when the half latch switch 63 is switched from the ON state to the OFF state and then the pawl switch 65 is switched from the ON state to the OFF state. Thereafter, the door ECU 55 stops the closure device 80 at a timing when the full latch switch 64 is switched from the ON state to the OFF state and then the pawl switch 65 is switched from the ON state to the OFF state.
  • the door ECU 55 determines whether or not there is a contradiction (logic error) in the ON/OFF pattern of the output signals Sw 1 to Sw 3 of the respective sensor switches 63 to 65 .
  • the door ECU 55 is configured to determine detection of a failure of the latch mechanism 40 .
  • the door ECU 55 of the present embodiment determines whether or not the pawl switch 65 provided in the latch mechanism 40 is in the ON state (ON-fixation) (step 102 ). In addition, in step 101 , the door ECU 55 of the present embodiment determines that the slide door 4 is in the fully-closed state when both the half latch switch 63 and the full latch switch 64 are in the OFF state (see FIG. 8 ).
  • the door ECU 55 determines that an engagement failure has occurred in the latch mechanism 40 so that the latch mechanism 40 cannot hold the slide door 4 in the fully-closed state (latch engagement failure detection, step 103 ).
  • the pawl 73 of the latch mechanism 40 first rotates in the disengagement direction (the counterclockwise direction in each of the drawings) so as to be pushed by the latch 72 , and then rotates again in the engagement direction (the clockwise direction).
  • the pawl switch 65 is switched between the ON state and the OFF state in conjunction with the reciprocal rotation of the pawl 73 . Therefore, when the pawl switch 65 is in the ON-fixation state, the state where the pawl 73 is disengaged from the latch 72 is continued. In conclusion, it is considered that the latch mechanism 40 is in the state where it cannot hold the slide door 4 in the fully-closed state.
  • the door ECU 55 of the present embodiment determines that the engagement failure has occurred in the latch mechanism 40 when the pawl switch 65 is in the ON state for a predetermined time t 1 or longer.
  • the door ECU 55 of the present embodiments executes notification output indicating that the engagement failure has been detected, for example, using a notification device 81 (see FIG. 3 ) such as, for example, a speaker or a warning lamp (step 104 ).
  • a notification device 81 see FIG. 3
  • a speaker or a warning lamp step 104
  • the door ECU 55 of the present embodiment turns on the electromagnetic clutch 53 of the door actuator 51 , which opens or closes the slide door 4 , in the state where the motor 50 of the door actuator 51 stops. That is, the door ECU 55 applies a braking force to the slide door 4 by bringing the transmission path of the drive force to the slide door 4 into a connection state (braking control, step 105 ).
  • the power slide door apparatus 60 of the present embodiment is configured to prevent the slide door 4 from being opened in the fully-closed state due to, for example, acceleration or deceleration of the vehicle 1 even when the vehicle 1 travels in the state where the engagement failure has occurred in the latch mechanism 40 , that is, even when full-closing abnormality occurs in which the slide door 4 is not held in the fully-closed state during the traveling of the vehicle 1 .
  • the door ECU 55 of the present embodiment turns off the electromagnetic clutch 53 of the door actuator 51 when there is an operation input of the user who intends to open/close the slide door 4 (YES in step 202 ). That is, the door ECU 55 terminates the braking control of the slide door 4 by disconnecting the transmission path of the drive force to the slide door 4 (step 203 ).
  • the power slide door apparatus 60 of the present embodiment is configured not to prevent the opening/closing operation of the slide door 4 by the intention of the user.
  • the door ECU 55 of the present embodiment terminates the braking control of the slide door 4 when the vehicle 1 shifts to a non-activation state (IG OFF, YES in step 204 ) and when the braking control of the slide door 4 continues for a certain time (YES in step 205 ).
  • the door ECU 55 is configured to prevent consumption of an in-vehicle power supply (battery) (not illustrated).
  • the door ECU 55 of the present embodiment determines that full-closing abnormality occurs in the slide door 4 (full-closing abnormality detection, step 303 ). In addition, the door ECU 55 executes notification output indicating that the full-closing abnormality has been detected (step 304 ).
  • the door ECU 55 of the present embodiment determines the full-closing abnormality in which the slide door 4 of the vehicle 1 does not satisfy the aforementioned operation requirement when the latch mechanism 40 is in the unlatched state, that is, when the slide door 4 is in the opening operation state during the traveling of the vehicle 1 .
  • the door ECU 55 is configured to notify an occupant of the vehicle 1 of the detection of the full-closing abnormality through the execution of the notification output using the notification device 81 .
  • the door ECU 55 of the present embodiment determines whether or not the opening/closing operation position X of the slide door 4 is within a specific range ⁇ set in the movement path L of the slide door 4 at this time (step 305 ).
  • the door ECU 55 is configured to apply a braking force to the slide door 4 by turning on the electromagnetic clutch 53 of the door actuator 51 through the execution of the braking control, thereby holding the opening/closing operation position X (step 306 ).
  • the door ECU 55 of the present embodiment sets the specific range ⁇ , within which the braking control of the slide door 4 is executed, to correspond to the curved portion ⁇ of the guide rail 10 , which is curved in the width direction of the vehicle, in the closing operation side end portion 10 F as described above.
  • the corner portion 10 c provided in the closing operation side end portion 10 F takes the form of an arc, which is curved at a substantially constant radius of curvature from a first end P 1 on the opening operation side to a second end P 2 on the closing operation side. That is, the corner portion 10 c deflects the sliding direction of the guide roller 30 engaged with the guide rail 10 , that is, the movement path L of the slide door 4 inward of the width direction of the vehicle toward the closing operation direction of the slide door 4 .
  • the range from the second end P 2 of the corner portion 10 c to the closing operation side terminal 10 a extends at a substantially constant deflection angle ⁇ on the basis of the longitudinal direction of the vehicle (the transverse direction in FIG. 12 ).
  • the door ECU 55 of the present embodiment is configured to set a specific range ⁇ , within which the guide rail 10 and the guide roller 30 , more specifically, a closing operation side guide roller 30 a , are engaged with each other, on the closing operation side with respect to an intermediate position Pc of the corner portion 10 c in the curved portion ⁇ of the guide rail 10 formed in the closing operation side end portion 10 F.
  • a force to open/close the slide door 4 such as, for example, an inertial force acting when the vehicle 1 accelerates or decelerates, acts in the longitudinal direction of the vehicle.
  • load F in the longitudinal direction of the vehicle (the rear side in an example of FIG. 13 ) also acts on the guide rail 10 and the guide roller 30 , which form the movement path L of the slide door 4 .
  • the load F acting on the guide roller 30 is decomposed into a first component F 1 in a sliding direction of the guide roller 30 engaged with the guide rail 10 and a second component F 2 in a rail width direction orthogonal to the first component F 1 . That is, the magnitude of braking load generated by applying the braking force to the moving slide door 4 during the traveling of the vehicle 1 has a value depending on the first component F 1 of the load F acting on the guide roller 30 .
  • the door ECU 55 of the present embodiment sets the specific range ⁇ on the closing operation side with respect to the intermediate position Pc of the corner portion 10 c which forms the curved portion ⁇ in the closing operation side end portion 10 F of the guide rail 10 , that is, in a range within which the deflection angle ⁇ of the movement path L is larger.
  • the specific range ⁇ also includes the opening/closing operation position X at which the slide door 4 becomes a closed state.
  • the door ECU 55 is configured to execute the braking control during the traveling of the vehicle only when the slide door 4 is in the specific range ⁇ , so that the braking load when braking force is applied to the moving slide door 4 is constrained to be small.
  • the door ECU 55 of the present embodiment sets an abnormality flag indicating that the full-closing abnormality is detected (step 402 ).
  • the detection of the full-closing abnormality in step 401 includes detection of the engagement failure occurring in the latch mechanism 40 (see steps 101 to 103 in FIG. 9 ) and detection of the latch mechanism 40 being in the unlatched state during the traveling of the vehicle 1 (see steps 301 to 303 in FIG. 11 ).
  • the door ECU 55 of the present embodiment holds a detection record Mfd of the full-closing abnormality, which corresponds to the abnormality flag, in a storage area 82 .
  • the door ECU 55 of the present embodiment applies the braking force to the slide door 4 by executing the braking control before the vehicle 1 travels, thereby holding the opening/closing operation position X.
  • the door ECU 55 of the present embodiment when detecting that the vehicle 1 has shifted from the non-activation state to an activation state based on the ignition signal Sig (IG OFF ⁇ IG ON, YES in step 501 ), the door ECU 55 of the present embodiment first determines whether or not the abnormality flag is set (step 502 ). In addition, when the abnormality flag is set (YES in step 502 ), the door ECU 15 reexamines the full-closing abnormality occurring in the slide door 4 (step 503 ).
  • the door ECU 55 of the present embodiment determines that the full-closing abnormality has been eliminated when the slide door 4 is at the opening/closing operation position X corresponding to the fully-closed state and the latch mechanism 40 is normally in the fully-latched state.
  • the door ECU 55 clears the abnormality flag, that is, erases the detection record Mfd of the full-closing abnormality held in the storage area 82 (step 505 ).
  • the door ECU 55 first again executes notification output indicating that the full-closing abnormality has been detected (step 506 ). Subsequently, the door ECU 55 applies the braking force to the slide door 4 by turning on the electromagnetic clutch 53 of the door actuator 51 through the execution of the braking control, thereby holding the opening/closing operation position X (step 507 ).
  • the door ECU 55 of the present embodiment frequently determines whether or not the vehicle 1 is in the stop state even when the vehicle 1 is in the activation state (at the time of IG ON) (step 601 ).
  • the determination of the stop state in step 601 includes determining whether or not the occupant of the vehicle 1 can get in or out of the vehicle, for example, whether or not a parking brake is turned on.
  • the door ECU 55 determines whether or not the abnormality flag is set (step 602 ).
  • step 602 when it is determined in step 602 that the abnormality flag is set (YES in step 602 ), the door ECU 55 of the present embodiment subsequently determines whether or not an operation input for causing the vehicle 1 to travel has been generated (step 603 to step 605 ).
  • the door ECU 55 of the present embodiment determines whether or not the parking brake of the vehicle 1 is released based on the parking brake signal Spbk (step 603 ). In addition, the door ECU 55 determines whether or not a shift lever (not illustrated) of the vehicle 1 is at a traveling position, consequently, at a position other than a parking position (P range) based on the shift position signal Ssft (step 604 ). Moreover, the door ECU 55 determines whether or not a foot brake (not illustrated) of the vehicle 1 is turned off based on the brake signal Sbk (step 605 ).
  • the door ECU 55 of the present embodiment determines that the operation input for causing the vehicle 1 to travel has been generated.
  • the door ECU 55 of the present embodiment executes reexamination of the full-closing abnormality occurring in the slide door 4 even when, in the determination of the vehicle traveling operation input, it is determined that the operation input for causing the vehicle 1 to travel has been generated (step 606 ).
  • the door ECU 55 clears the abnormality flag (step 608 ).
  • the door ECU 55 executes notification output indicating that the full-closing abnormality has not been eliminated (step 609 ), and executes the braking control of the slide door 4 (step 610 ).
  • the door ECU 55 of the present embodiment terminates the braking control of the slide door 4 when the operation input of the user who intends to open/close the slide door 4 is generated after the vehicle 1 stops. In addition, even when the vehicle 1 shifts to the non-activation state (IG OFF) or when the braking control of the slide door 4 continues for a certain time, the door ECU 55 terminates the braking control of the slide door 4 (see FIG. 10 ).
  • the door ECU 55 of the present embodiment again executes the braking control of the slide door 4 before the vehicle 1 travels based on the detection record Mfd (abnormality flag) of the full-closing abnormality.
  • the power slide door apparatus 60 of the present embodiment is configured to apply the braking force to the slide door 4 in advance so as to prevent the slide door 4 from being opened/closed when the stop vehicle 1 again travels.
  • the full-closing abnormality detected before the vehicle stops is merely that the slide door 4 is in the opening operation state during the traveling of the vehicle 1 .
  • the full-closing abnormality can be often eliminated (when the occupant performs a closing operation) by the stop of the vehicle 1 .
  • the door ECU 55 of the present embodiment reexamines the full-closing abnormality of the slide door 4 before the vehicle 1 again travels after the vehicle has stopped.
  • the door ECU 55 which serves as a failure detection unit 91 a , detects the occurrence of the engagement failure, in which the latch mechanism 40 cannot hold the slide door 4 , which is an opening/closing body, in the fully-closed state, based on the ON and OFF states of the pawl switch 65 provided in the latch mechanism 40 of the slide door 4 . Then, when the engagement failure of the latch mechanism 40 is detected in the case where the slide door 4 is in the fully-closed state, the door ECU 55 , which serves as a full-closing detection unit 91 b and a braking controller 91 c , executes braking control so as to apply the braking force to the slide door 4 .
  • the opening/closing direction thereof coincides with the vehicle traveling direction. That is, the slide door 4 is characterized by being easily opened/closed by inertia thereof when the vehicle 1 accelerates or decelerates. Therefore, a more remarkable effect can be obtained by adopting the above configuration.
  • the door ECU 55 determines whether or not a state where the pawl 73 of the latch mechanism 40 is disengaged from the latch 72 is continued (in ON-fixation) based on the ON and OFF states of the pawl switch 65 (step 102 ). In addition, when it is determined that the pawl 73 is in ON-fixation (YES in step 102 ), the door ECU 55 determines that the engagement failure has occurred in the latch mechanism 40 (step 103 ).
  • the pawl 73 of the latch mechanism 40 first rotates in the disengagement direction so as to be pushed by the latch 72 , and then again rotates in the engagement direction.
  • the pawl switch 65 is switched between the ON state and the OFF state in conjunction with the reciprocal rotation of the pawl 73 . That is, when the pawl switch 65 is in ON-fixation, it is considered that the pawl 73 is disengaged from the latch 72 , and consequently, that the latch mechanism 40 cannot hold the slide door 4 in the fully-closed state. Therefore, according to the above configuration, it is possible to accurately detect the full-closing abnormality occurring in the slide door 4 .
  • the door ECU 55 which serves as the failure detection unit 91 a , executes determination of detection of the engagement failure.
  • the full latch switch 64 is typically configured to be switched between the ON state and the OFF state at the timing when the latch mechanism 40 restrains the slide door 4 to the vehicle body 2 , that is, when the slide door 4 becomes the fully-closed state. Therefore, according to the above configuration, when the slide door 4 becomes the fully-closed state, it is possible to promptly detect the engagement failure of the latch mechanism 40 and execute the braking control. Thus, it is possible to more reliably prevent the slide door 4 from being opened from the fully-closed state during the traveling of the vehicle 1 .
  • the door ECU 55 which serves as a notification output unit 94 , executes notification output using the notification device 81 such as, for example, a speaker or a warning lamp when detecting the engagement failure of the latch mechanism 40 .
  • the notification device 81 such as, for example, a speaker or a warning lamp when detecting the engagement failure of the latch mechanism 40 .
  • the slide door 4 is opened/closed when driven by the door actuator 51 , which uses the motor 50 as a drive source. Moreover, the electromagnetic clutch 53 , which serves as a clutch mechanism, is provided in the transmission path of the drive force to the slide door 4 . Then, the door ECU 55 , which serves as the braking controller 91 c , executes the braking control by bringing the electromagnetic clutch 53 into a connection state in the state where the motor 50 of the door actuator 51 stops.
  • the slide door 4 is opened/closed along the movement path L formed by the guide rail 10 , which extends in the longitudinal direction of the vehicle, and the guide roller 30 , which is engaged with the guide rail 10 .
  • the guide rail 10 has the curved portion ⁇ , which is curved in the width direction of the vehicle, in the closing operation side end portion 10 F, which is disposed in the closing operation direction of the slide door 4 .
  • the door ECU 55 which serves as a position detection unit 92 a , a traveling state determination unit 92 b , and a braking controller 92 c , executes the braking control for applying the braking force to the slide door 4 when the opening/closing operation position X of the slide door is within the specific range ⁇ , which is set in the movement path L of the slide door 4 to correspond to the curved portion ⁇ of the guide rail 10 during the traveling of the vehicle 1 .
  • the load F which acts on the guide roller 30 based on a force to open/close the slide door 4 such as, for example, an inertial force acting when the vehicle 1 is accelerated or decelerated, is decomposed into the first component F 1 in the sliding direction of the guide roller 30 and the second component F 2 in the rail width direction.
  • the magnitude of braking load generated by applying the braking force to the moving slide door 4 during the traveling of the vehicle 1 has a value depending on the first component F 1 of the load F acting on the guide roller 30 .
  • the guide rail 10 receives the second component F 2 of the load F acting on the guide roller 30 based on the force to open/close the slide door 4 , the guide roller 30 is hardly swung in the rail width direction when the braking force is applied to the slide door 4 .
  • the guide roller 30 is hardly swung in the rail width direction when the braking force is applied to the slide door 4 .
  • the curved portion ⁇ of the guide rail 10 includes the corner portion 10 c , which deflects the movement path L of the slide door 4 inward in the width direction of the vehicle toward the closing operation direction of the slide door 4 .
  • the door ECU 55 which serves as the braking controller 92 c , sets a specific range ⁇ , within which the guide rail 10 and the guide roller 30 are engaged with each other on the closing operation side with respect to the intermediate position of the corner portion 10 c , and executes the braking control of the slide door 4 within the specific range ⁇ .
  • the first component F 1 of the load F which acts on the guide roller 30 based on the force to open/close the slide door 4 , decreases as the deflection angle ⁇ of the generation direction thereof in which the guide roller 30 slides on the guide rail 10 , that is, the deflection angle ⁇ of the movement path L increases.
  • the deflection angle ⁇ is set to a larger value on the closing operation side with respect to the intermediate position Pc of the corner portion 10 c , which forms the curved portion ⁇ in the closing operation side end portion 10 F of the guide rail 10 . Therefore, according to the above configuration, it is possible to more effectively reduce the braking load when the braking force is applied to the slide door 4 during the traveling of the vehicle.
  • the door ECU 55 which serves as a traveling state determination unit 93 a and an abnormality detection unit 93 b , detects the occurrence of the full-closing abnormality in which the slide door 4 is not held in the fully-closed state by the latch mechanism 40 provided on the slide door 4 during the traveling of the vehicle 1 (see step 401 in FIG. 14 ). In addition, when the full-closing abnormality is detected, the door ECU 55 , which serves as a braking controller 93 c , executes braking control for applying the braking force to the slide door 4 (see FIGS. 9 and 11 ).
  • the door ECU 55 which serves as a record holding unit 93 d , holds the detection record Mfd (abnormality flag) of the full-closing abnormality occurring in the slide door 4 in the storage area 82 (see step 402 in FIG. 14 ). Then, when the detection record Mfd of the full-closing abnormality is held (when the abnormality flag is set) after the vehicle 1 stops, the door ECU 55 , which serves as the braking controller 93 c , executes the braking control for applying the braking force to the slide door 4 based on the detection record Mfd of the full-closing abnormality before the vehicle 1 travels (see FIGS. 15 and 16 ).
  • the braking control of the slide door 4 is executed based on the detection record Mfd of the full-closing abnormality, which has been held before the vehicle 1 stops, before the vehicle 1 again travels.
  • the detection record Mfd of the full-closing abnormality which has been held before the vehicle 1 stops, before the vehicle 1 again travels.
  • the door ECU 55 which serves as a reexamination unit 93 e , reexamines the full-closing abnormality of the slide door 4 before the vehicle 1 travels (step 503 and step 606 ).
  • the door ECU 55 which serves as a record erasing unit 93 f , erases the detection record Mfd of the full-closing abnormality (clear abnormality flag, step 505 and step 608 ).
  • the full-closing abnormality of the slide door 4 may be eliminated after the vehicle 1 stops, as, for example, in the case where the slide door 4 is simply in the opening operation state during the traveling of the vehicle 1 .
  • the braking control of the slide door 4 based on the detection record Mfd of the full-closing abnormality to be not performed.
  • the door ECU 55 which serves as the braking controller 93 c , executes the braking control of the slide door 4 based on the detection record Mfd of the full-closing abnormality (step 507 ).
  • the braking control of the slide door 4 is executed when the occupant starts the vehicle 1 (IG ON).
  • IG ON the vehicle 1
  • the door ECU 55 which serves as the braking controller 93 c , executes the braking control of the slide door 4 (step 610 ).
  • the braking control of the slide door 4 is executed as the occupant performs the operation input for causing the vehicle 1 to travel.
  • the braking control of the slide door 4 is executed as the occupant performs the operation input for causing the vehicle 1 to travel.
  • the door ECU 55 which serves as the abnormality detection unit 93 b , determines that the full-closing abnormality of the slide door 4 is detected (see step 101 to step 103 in FIG. 9 ).
  • the door ECU 55 which serves as the abnormality detection unit 93 b , determines that the full-closing abnormality of the slide door is detected (see steps 301 to 303 in FIG. 11 ).
  • the slide door 4 is held in the fully-closed state on the vehicle body 2 during the traveling of the vehicle 1 . Therefore, according to the above configuration, it is possible to appropriately detect the full-closing abnormality of the slide door 4 and execute the braking control thereof.
  • this disclosure is embodied in the power slide door apparatus 60 that opens/closes the slide door 4 as an opening/closing body provided on the side surface 2 s of the vehicle 1 by motor driving.
  • this disclosure is not limited thereto, and may be applied to a vehicular opening/closing body control device targeting an opening/closing body other than the slide door, as long as the opening/closing body is configured to be restrained to the vehicle body 2 in the fully-closed state by the latch mechanism 40 during the traveling of the vehicle 1 .
  • the mode of holding the detection record Mfd of the full-closing abnormality corresponding to the abnormality flag in the storage area 82 may be a bit ON/OFF or a detailed information record.
  • the determination conditions for the traveling state and the stop state of the vehicle 1 may be arbitrarily set.
  • the slide door 4 is driven by the door actuator 51 , which uses the motor 50 as a drive source.
  • the electromagnetic clutch 53 capable of connecting/disconnecting the transmission path of the drive force to/from the slide door 4 is provided in the door actuator 51 .
  • the braking control of the slide door 4 is performed by turning on the electromagnetic clutch 53 in the state where the motor 50 of the door actuator 51 stops.
  • this disclosure is not limited thereto, and there may be a configuration using a clutch mechanism other than the electromagnetic clutch 53 , for example, a mechanical or hydraulic clutch mechanism, as long as the braking force to the slide door 4 can be applied by bringing the transmission path of the drive force into a connection state.
  • a clutch mechanism other than the electromagnetic clutch 53 , for example, a mechanical or hydraulic clutch mechanism, as long as the braking force to the slide door 4 can be applied by bringing the transmission path of the drive force into a connection state.
  • the motor control method for generating the braking force may be regenerative brake control, or may be phase-fixed energization (one-phase energization) in which an energization phase is fixed.
  • a configuration in which a brake device for executing the braking control is provided in the slide door 4 is also not excluded.
  • the range, within which the guide rail 10 and the guide roller 30 , more specifically, the closing operation side guide roller 30 a are engaged with each other, on the closing operation side with respect to the intermediate position Pc of the corner portion 10 c constituting the curved portion ⁇ of the guide rail 10 is set as the specific range ⁇ within which the braking control of the slide door 4 is executed during the traveling of the vehicle.
  • this disclosure is not limited thereto, and the specific range ⁇ may be arbitrarily set as long as it is a range within which at least one guide roller 30 is engaged with the curved portion ⁇ of the guide rail 10 .
  • step 606 the reexamination of the full-closing abnormality
  • step 610 the braking control of the slide door 4
  • this disclosure is not limited thereto, and the conditions for determining the operation input for causing the vehicle 1 to travel may be arbitrarily set, for example, by combining one or more of the conditions or other conditions.
  • the timing of reexamining the full-closing abnormality may be arbitrarily set regardless of the operation input for causing the vehicle 1 to travel.
  • the full-closing abnormality of the slide door 4 includes the engagement failure of the latch mechanism 40 detected based on the ON-fixation of the pawl switch 65 , but there may be a configuration in which the full-closing abnormality includes a failure of the latch mechanism 40 detected based on the ON and OFF states of the half latch switch 63 and the full latch switch 64 . In addition, for example, there may be a configuration in which the full-closing abnormality of the slide door 4 does not include a case where the slide door 4 is merely in the opening operation state (the latch mechanism 40 is in the unlatched state) during the traveling of the vehicle 1 .
  • the braking control of the slide door 4 is terminated.
  • this disclosure is not limited thereto, and a condition of terminating the braking control may be arbitrarily set.
  • the braking control of the slide door 4 is not executed in a case where the quantity of vehicle state such as, for example, the vehicle speed V, or the control signals (e.g., Sig, Spbk, Ssft and Sbk) of the vehicle 1 cannot be obtained (e.g., bus OFF).
  • the quantity of vehicle state such as, for example, the vehicle speed V, or the control signals (e.g., Sig, Spbk, Ssft and Sbk) of the vehicle 1 cannot be obtained (e.g., bus OFF).
  • the notification output using the notification device 81 such as, for example, a speaker or a warning lamp is executed in accordance with the braking control of the slide door 4 , but there may be a configuration in which such a notification output is not performed.
  • the activation state/non-activation state of the vehicle 1 is determined based on the ignition signal Sig (IG ON/IG OFF), but, for example, there may be a configuration in which the activation state/non-activation state of the vehicle 1 is determined using other signals in a case of, for example, an electric vehicle.
  • the slide door 4 is closed by movement toward the vehicle front side thereof and is opened by movement toward the vehicle rear side thereof.
  • this disclosure is not limited to such a so-called rear-opening-type opening/closing body, and may be embodied in a so-called front-opening-type opening/closing body that is opened by movement toward the vehicle front side thereof and is closed by movement toward the vehicle rear side thereof.
  • there may be a configuration in which the guide rail 10 is provided on the slide door 4 side.
  • the opening/closing body is a slide door that is opened/closed in the longitudinal direction of the vehicle. That is, in the case of the slide door that is opened/closed in the longitudinal direction of the vehicle, the opening/closing operation direction thereof coincides with the traveling direction of the vehicle. That is, the slide door has a characteristic of being easily opened/closed by inertia thereof when a vehicle accelerates or decelerates. Therefore, a more remarkable effect can be obtained by adopting the above configuration.
  • the vehicular opening/closing body control device includes a position detection unit, which detects an opening/closing operation position of the opening/closing body, and a traveling state determination unit, which determines the traveling state of the vehicle.
  • the opening/closing body is opened/closed along a movement path, formed by a guide rail, which extends in the longitudinal direction of the vehicle, and a guide roller, which is engaged with the guide rail, and the guide rail has a curved portion, which is curved in the width direction of the vehicle, in the closing operation side end portion, which is disposed in the closing operation direction of the opening/closing body.
  • the braking controller executes braking control for applying a braking force to the opening/closing body in a case where the opening/closing operation position of the opening/closing body is within a specific range, which is set in the movement path of the opening/closing body to correspond to the curved portion of the guide rail during the traveling of the vehicle.
  • a load acting on the guide roller based on a force to open/close the opening/closing body such as, for example, an inertial force acting when the vehicle accelerates or decelerates is decomposed into a first component in a sliding direction of the guide roller and a second component in a rail width direction.
  • the magnitude of the braking load generated by applying the braking force to the moving opening/closing body during the traveling of the vehicle has a value obtained according to the first component of the load acting on the guide roller based on the force to open/close the opening/closing body.
  • the guide rail receives the second component of the load acting on the guide roller based on the force to open/close the opening/closing body, the guide roller is hardly swung in the rail width direction when the braking force is applied to the opening/closing body. Further, it is possible to prevent the guide roller from colliding with the guide rail. As a result, it is possible to realize high reliability and excellent durability.
  • the curved portion includes a corner portion, which deflects the movement path of the opening/closing body inward in the width direction of the vehicle toward the closing operation direction of the opening/closing body, and the braking controller sets a specific range, within which the guide rail and the guide roller are engaged with each other on the closing operation side with respect to the intermediate position of the corner portion, and executes the braking control within the specific range.
  • the first component of the load acting on the guide roller based on the force to open/close the opening/closing body decreases as the deflection angle of the generation direction of the first component in which the guide roller slides on the guide rail, consequently, the deflection angle of the movement path increases.
  • the deflection angle is set to a larger value on the closing operation side with respect to the intermediate position of the corner portion, which forms the curved portion in the closing operation side end portion of the guide rail. Therefore, according to the above configuration, it is possible to more effectively reduce the braking load when the braking force is applied to the opening/closing body during the traveling of the vehicle.
  • the vehicular opening/closing body control device includes a traveling state determination unit, which determines a traveling state of the vehicle, an abnormality detection unit, which detects occurrence of a full closing abnormality in which the opening/closing body is not held in a fully-closed state by the latch mechanism provided on the opening/closing body during the traveling of the vehicle, and a record holding unit, which holds a detection record of the full-closing abnormality.
  • the braking controller executes the braking control for applying the braking force to the opening/closing body by detecting the full-closing abnormality of the opening/closing body, and executes the braking control of the opening/closing body based on the detection record of the full-closing abnormality before the vehicle travels in the case where the detection record of the full-closing abnormality is held after the vehicle stops.
  • the braking control of the opening/closing body is executed based on the detection record of the full-closing abnormality, which has been held before the vehicle stops, before the vehicle travels again.
  • the vehicular opening/closing body control device includes a reexamination unit, which reexamines the full-closing abnormality of the opening/closing body before the vehicle travels in a case where the detection record of the full-closing abnormality is held after the vehicle stops, and a record erasing unit, which erases the detection record of the full-closing abnormality when it is determined that the full-closing abnormality of the opening/closing body has been eliminated.
  • the full-closing abnormality of the opening/closing body, detected before the stop of the vehicle may be eliminated after the vehicle stops, as, for example, in the case where the opening/closing body is simply in the opening operation state during the traveling of the vehicle.
  • the braking control of the opening/closing body based on the detection record of the full-closing abnormality it is possible to cause the braking control of the opening/closing body based on the detection record of the full-closing abnormality to be not performed.
  • the braking controller executes the braking control of the opening/closing body based on the detection record of the full-closing abnormality in a case where the vehicle shifts from the non-activation state to the activation state.
  • the braking control of the opening/closing body is executed as the occupant starts the vehicle (IG ON).
  • the braking controller executes the braking control of the opening/closing body based on the detection record of the full-closing abnormality in a case where an operation input for causing the vehicle to travel is generated after the vehicle stops.
  • the braking control of the opening/closing body is executed as the occupant performs the operation input for causing the vehicle to travel.
  • the opening/closing body is executed as the occupant performs the operation input for causing the vehicle to travel.
  • the abnormality detection unit determines that the full-closing abnormality of the opening/closing body is detected in a case where a failure occurs in the latch mechanism provided on the opening/closing body.
  • the abnormality detection unit determines that the full-closing abnormality of the opening/closing body is detected in a case where the opening/closing body is in the opening operation state during the traveling of the vehicle.
  • the opening/closing body is held on the vehicle body in the fully-closed state during the traveling of the vehicle. Therefore, according to the above configuration, it is possible to appropriately detect the full-closing abnormality of the opening/closing body and execute the braking control thereof.
  • a vehicular opening/closing body control device includes a braking controller configured to apply a braking force to an opening/closing body provided in an opening in a vehicle, a full-closing detection unit configured to detect that the opening/closing body is in a fully-closed state, and a failure detection unit configured to detect a failure of a latch mechanism provided on the opening/closing body, wherein the latch mechanism is provided with a pawl switch, which is switched between ON and OFF states in conjunction with an operation of a pawl, which is engaged with a latch so as to hold a state where the latch is engaged with a striker, the failure detection unit detects, based on the ON and OFF states of the pawl switch, occurrence of an engagement failure in which the latch mechanism fails to hold the opening/closing body in the fully-closed state, and, in a case where the opening/closing body is in the fully-closed state, the braking controller executes braking control for applying the
  • the braking control is executed before the opening/closing body is opened.
  • the opening/closing body is opened from the fully-closed state during the traveling of the vehicle.
  • the failure detection unit determines that the engagement failure has occurred in the latch mechanism when it is determined that a state where the pawl is disengaged from the latch is continued based on the ON and OFF states of the pawl switch after it is detected that the opening/closing body is in the fully-closed state.
  • the pawl of the latch mechanism first rotates in a disengagement direction so as to be pressed by the latch, and then rotates again in an engagement direction. Then, the pawl switch is switched between the ON and OFF states in conjunction with reciprocal rotation of the pawl. That is, based on the ON and OFF states (e.g., ON-fixation) of the pawl switch, it is possible to detect a state where the pawl is disengaged from the latch, and consequently, a state where the latch mechanism cannot hold the opening/closing body in the fully-closed state. Therefore, according to the above configuration, it is possible to accurately detect full-closing abnormality occurring in the opening/closing body.
  • ON and OFF states e.g., ON-fixation
  • the latch mechanism is provided with a full latch switch, which is switched between ON and OFF states as the latch rotates to a position corresponding to the fully-latched state, and the failure detection unit executes determination of detection of the engagement failure for the latch mechanism when the ON and OFF states of the full latch switch are switched.
  • the full latch switch is generally configured to be switched between the ON and OFF states at a timing when the latch mechanism is in a state capable of restraining the opening/closing body to a vehicle body, that is, when the opening/closing body becomes the fully-closed state. Therefore, according to the above configuration, it is possible to promptly detect the engagement failure of the latch mechanism and execute the braking control when the opening/closing body becomes the fully-closed state. Thus, it is possible to more reliably prevent the opening/closing body from being opened from the fully-closed state during the traveling of the vehicle.
  • the vehicular opening/closing body control device further includes a notification output unit configured to execute notification output when the engagement failure of the latch mechanism is detected. According to the above configuration, it is possible to notify an occupant of the vehicle of the occurrence of the engagement failure in the latch mechanism of the opening/closing body.
  • the opening/closing body is opened/closed when driven by an actuator, which uses a motor as a drive source, a clutch mechanism is provided on a transmission path of a drive force to the opening/closing body, and the braking controller executes the braking control by bringing the clutch mechanism into a connection state in a state where the motor stops.
  • the opening/closing body is a slide door that is opened/closed in a longitudinal direction of the vehicle. That is, in a case of the slide door that is opened/closed in the longitudinal direction of the vehicle, an opening/closing operation direction thereof coincides with a vehicle traveling direction. That is, the slide door has a feature of being easily opened/closed by inertia thereof when a vehicle accelerates or decelerates.
  • the vehicular opening/closing body control device includes a position detection unit, which detects an opening/closing operation position of the opening/closing body, and a traveling state determination unit, which determines the traveling state of the vehicle. It is preferable that the opening/closing body is opened/closed along a movement path, formed by a guide rail, which extends in a longitudinal direction of the vehicle, and a guide roller, which is engaged with the guide rail, and the guide rail has the curved portion, which is curved in the width direction of the vehicle, in a closing operation side end portion, which is disposed in a closing operation direction of the opening/closing body.
  • the braking controller executes braking control for applying a braking force to the opening/closing body in a case where the opening/closing operation position of the opening/closing body is within a specific range, which is set in the movement path of the opening/closing body so as to correspond to the curved portion of the guide rail, during the traveling of the vehicle.
  • the guide roller in a case where the guide roller is engaged with the curved portion of the guide rail, for example, load acting on the guide roller based on a force to open/close the opening/closing body such as, for example, an inertial force acting when the vehicle accelerates or decelerates is decomposed into a first component in a sliding direction of the guide roller and a second component in a rail width direction.
  • the magnitude of braking load generated by applying the braking force to the moving opening/closing body during the traveling of the vehicle has a value depending on the first component of the load acting on the guide roller based on the force to open/close the opening/closing body.
  • the guide rail receives the second component of the load acting on the guide roller based on the force to open/close the opening/closing body, the guide roller is hardly swung in the rail width direction when the braking force is applied to the opening/closing body.
  • the guide roller is hardly swung in the rail width direction when the braking force is applied to the opening/closing body.
  • the curved portion includes a corner portion, which deflects the movement path of the opening/closing body inward of the width direction of the vehicle toward the closing operation direction of the opening/closing body, and the braking controller executes the braking control within a specific range, within which the guide rail and the guide roller are engaged with each other on a closing operation side with respect to an intermediate position of the corner portion. That is, the first component of the load acting on the guide roller based on the force to open/close the opening/closing body decreases as the deflection angle of the generation direction of the first component in which the guide roller slides on the guide rail, consequently, the deflection angle of the movement path increases.
  • the deflection angle is set to a larger value on the closing operation side with respect to the intermediate position of the corner portion, which forms the curved portion in the closing operation side end portion of the guide rail.
  • the vehicular opening/closing body control device includes a traveling state determination unit, which determines a traveling state of the vehicle, an abnormality detection unit, which detects occurrence of a full-closing abnormality in which the opening/closing body is not held in a fully-closed state by the latch mechanism provided on the opening/closing body during the traveling of the vehicle, and a record holding unit, which holds a detection record of the full-closing abnormality.
  • the braking controller executes the braking control for applying the braking force to the opening/closing body by detecting the full-closing abnormality of the opening/closing body, and executes the braking control of the opening/closing body based on the detection record of the full-closing abnormality before the vehicle travels in a case where the detection record of the full-closing abnormality is held after the vehicle stops.
  • the braking control of the opening/closing body is executed based on the detection record of the full-closing abnormality, which has been held before the vehicle again travels.
  • the vehicular opening/closing body control device includes a reexamination unit, which reexamines the full-closing abnormality of the opening/closing body before the vehicle travels in a case where the detection record of the full-closing abnormality is held after the vehicle stops, and a record erasing unit, which erases the detection record of the full-closing abnormality when it is determined that the full-closing abnormality of the opening/closing body has been eliminated.
  • the full-closing abnormality of the opening/closing body, detected before the stop of the vehicle may be eliminated after the vehicle stops, as, for example, in a case where the opening/closing body is simply in the opening operation state during the traveling of the vehicle.
  • the braking controller executes the braking control of the opening/closing body based on the detection record of the full-closing abnormality in a case where the vehicle shifts from the non-activation state to the activation state.
  • the braking control of the opening/closing body is executed as the occupant starts the vehicle (IG ON).
  • the braking controller executes the braking control of the opening/closing body based on the detection record of the full-closing abnormality in a case where an operation input for causing the vehicle to travel is generated after the vehicle stops.
  • the braking control of the opening/closing body is executed as the occupant performs the operation input for causing the vehicle to travel.
  • the opening/closing body is executed as the occupant performs the operation input for causing the vehicle to travel.
  • the abnormality detection unit determines that the full-closing abnormality of the opening/closing body is detected in a case where a failure occurs in the latch mechanism provided on the opening/closing body. That is, there is a possibility that the opening/closing body cannot be held in the fully-closed state in a state where the latch mechanism has failed.
  • the abnormality detection unit determines that the full-closing abnormality of the opening/closing body is detected in a case where the opening/closing body is in the opening operation state during the traveling of the vehicle. That is, it is preferable that the opening/closing body is held on the vehicle body in the fully-closed state during the traveling of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power-Operated Mechanisms For Wings (AREA)
  • Lock And Its Accessories (AREA)
US15/923,544 2017-03-17 2018-03-16 Vehicular opening/closing body control device Active 2038-06-24 US10683690B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-053680 2017-03-17
JP2017053680A JP6992263B2 (ja) 2017-03-17 2017-03-17 車両用開閉体制御装置

Publications (2)

Publication Number Publication Date
US20180266159A1 US20180266159A1 (en) 2018-09-20
US10683690B2 true US10683690B2 (en) 2020-06-16

Family

ID=63519041

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/923,544 Active 2038-06-24 US10683690B2 (en) 2017-03-17 2018-03-16 Vehicular opening/closing body control device

Country Status (3)

Country Link
US (1) US10683690B2 (ja)
JP (1) JP6992263B2 (ja)
CN (1) CN108625715B (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6915329B2 (ja) * 2017-03-17 2021-08-04 株式会社アイシン 車両用開閉体制御装置
CN109073504B (zh) * 2017-12-18 2021-02-02 深圳市大疆创新科技有限公司 舱门检测方法、系统、移动平台及植保机
JP7220056B2 (ja) * 2018-11-08 2023-02-09 ナブテスコ株式会社 通知装置及びドア開閉装置
JP6940038B2 (ja) * 2018-12-28 2021-09-22 三井金属アクト株式会社 ドアラッチシステム
KR20210044010A (ko) * 2019-10-14 2021-04-22 현대자동차주식회사 대향형 슬라이딩 도어의 이중 로워 레일 구조
KR20210070793A (ko) * 2019-12-05 2021-06-15 현대자동차주식회사 차량도어 개폐장치
US11180006B2 (en) * 2020-03-27 2021-11-23 Honda Motor Co., Ltd. Vehicle door apparatus
KR20210142273A (ko) * 2020-05-18 2021-11-25 현대자동차주식회사 대향형 슬라이딩 도어에 적용되는 듀얼 액츄에이터의 연동 제어를 위한 프로파일 학습 시스템 및 그 방법
KR20220008509A (ko) * 2020-07-14 2022-01-21 현대자동차주식회사 차량 및 차량의 테일게이트 잠금 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4720065A (en) * 1985-01-24 1988-01-19 The Boeing Company Translatable outward opening plug-type aircraft door and actuating mechanisms therefor
US6405485B1 (en) * 1998-11-30 2002-06-18 Aisin Seiki Kabushiki Kaisha Door control equipment
JP2009127301A (ja) 2007-11-23 2009-06-11 Hi-Lex Corporation 車両用の開閉体の開放防止方法及び開閉体の開放防止装置
JP2014194151A (ja) 2013-02-28 2014-10-09 Mitsuba Corp モータ制御装置
US20160010379A1 (en) * 2013-10-01 2016-01-14 Warren Industries Ltd. Vehicle door control system
US20180174452A1 (en) * 2016-12-19 2018-06-21 Peiker Acustic GmbH & Co. KG, Valeo Peiker Telematics Product Line Method of operating an ad hoc network to protect a passenger-as-a-pedestrian and system to protect a passenger-as-a-pedestrian
US20180291666A1 (en) * 2017-04-11 2018-10-11 Ford Global Technologies, Llc Vehicle power door system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3394420B2 (ja) * 1997-05-18 2003-04-07 日産車体株式会社 オートスライドドアの駆動制御装置
GB0207526D0 (en) 2002-04-02 2002-05-08 Meritor Light Vehicle Sys Ltd Control system for a vehicle door latch
CN2677215Y (zh) * 2004-01-14 2005-02-09 陈义忠 客车外摆平移式车门驱动装置的气路系统
KR100577315B1 (ko) * 2004-08-23 2006-05-10 주식회사 두성하이텍 부속장치를 일체화한 자동문 작동기
DE202005017541U1 (de) 2005-11-08 2007-03-22 BROSE SCHLIEßSYSTEME GMBH & CO. KG Kraftfahrzeugschloßanordnung
JP4706937B2 (ja) 2008-11-18 2011-06-22 アイシン精機株式会社 開閉体制御装置
BE1018942A5 (nl) * 2009-09-29 2011-11-08 Kone Deursystemen B V Automatische schuif- en draaideurinrichting met uitbreekvoorziening.
JP6069763B2 (ja) 2013-04-25 2017-02-01 株式会社ホンダロック 車両用ドアのラッチ制御装置
JP6318423B2 (ja) 2014-07-10 2018-05-09 三井金属アクト株式会社 車両用ドア開閉装置
CN105507679B (zh) * 2016-01-22 2017-06-16 南京康尼机电股份有限公司 螺旋驱动控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4720065A (en) * 1985-01-24 1988-01-19 The Boeing Company Translatable outward opening plug-type aircraft door and actuating mechanisms therefor
US6405485B1 (en) * 1998-11-30 2002-06-18 Aisin Seiki Kabushiki Kaisha Door control equipment
JP2009127301A (ja) 2007-11-23 2009-06-11 Hi-Lex Corporation 車両用の開閉体の開放防止方法及び開閉体の開放防止装置
JP2014194151A (ja) 2013-02-28 2014-10-09 Mitsuba Corp モータ制御装置
US20160010379A1 (en) * 2013-10-01 2016-01-14 Warren Industries Ltd. Vehicle door control system
US20180174452A1 (en) * 2016-12-19 2018-06-21 Peiker Acustic GmbH & Co. KG, Valeo Peiker Telematics Product Line Method of operating an ad hoc network to protect a passenger-as-a-pedestrian and system to protect a passenger-as-a-pedestrian
US20180291666A1 (en) * 2017-04-11 2018-10-11 Ford Global Technologies, Llc Vehicle power door system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Kim et al., Solenoid-based and latch-typed brake system for in-wheel module, 2013, IEEE, p. 545-547 (Year: 2013). *
Yu et al., Improvement of reliability of closing latch in spring type operating mechanism of high voltage circuit breakers, 2012, IEEE, p. 1-4 (Year: 2012). *

Also Published As

Publication number Publication date
JP2018155042A (ja) 2018-10-04
JP6992263B2 (ja) 2022-01-13
CN108625715B (zh) 2021-06-29
US20180266159A1 (en) 2018-09-20
CN108625715A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
US10683690B2 (en) Vehicular opening/closing body control device
US10794105B2 (en) Vehicular opening/closing body control device
US10934759B2 (en) Vehicular opening/closing body control device
US11808064B2 (en) Latching systems for latching movable panels
KR101205429B1 (ko) 개폐체 제어장치
JP6716827B2 (ja) 自動車ドアラッチ
US10472866B2 (en) Opening and closing body control apparatus for vehicle
WO2018186110A1 (ja) 車両用開閉体制御装置
WO2018186113A1 (ja) 車両用開閉体制御装置
US10689888B2 (en) Opening and closing body control apparatus for vehicle
US10344505B2 (en) Opening prevention device for sliding door of vehicle
JPWO2007000797A1 (ja) 車両用開閉体制御装置
KR101308494B1 (ko) 차량용 도어 잠금장치
WO2018186111A1 (ja) 車両用開閉体制御装置
JP3726956B2 (ja) 車両スライド扉用動力スライド装置の制御方法
JP2005248485A (ja) ドア閉鎖装置およびその制御装置
JP6710550B2 (ja) 電動スライドドアシステム

Legal Events

Date Code Title Description
AS Assignment

Owner name: AISIN SEIKI KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BITO, YOSHIKI;IZUMI, KENTA;NISHIKIBE, TAKESHI;REEL/FRAME:045255/0804

Effective date: 20180314

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: EX PARTE QUAYLE ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO EX PARTE QUAYLE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4