US10668692B2 - Base film for producing a graphic film - Google Patents
Base film for producing a graphic film Download PDFInfo
- Publication number
- US10668692B2 US10668692B2 US14/893,192 US201414893192A US10668692B2 US 10668692 B2 US10668692 B2 US 10668692B2 US 201414893192 A US201414893192 A US 201414893192A US 10668692 B2 US10668692 B2 US 10668692B2
- Authority
- US
- United States
- Prior art keywords
- film
- base film
- layer
- graphic
- adhesive layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000010410 layer Substances 0.000 claims abstract description 148
- 239000012790 adhesive layer Substances 0.000 claims abstract description 87
- 239000000758 substrate Substances 0.000 claims abstract description 57
- 238000000034 method Methods 0.000 claims abstract description 51
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 58
- 239000004800 polyvinyl chloride Substances 0.000 claims description 51
- 229920000728 polyester Polymers 0.000 claims description 45
- 239000000853 adhesive Substances 0.000 claims description 33
- 230000001070 adhesive effect Effects 0.000 claims description 33
- 238000012360 testing method Methods 0.000 claims description 27
- 229920000642 polymer Polymers 0.000 claims description 26
- 229920003180 amino resin Polymers 0.000 claims description 23
- 239000007859 condensation product Substances 0.000 claims description 13
- 239000000049 pigment Substances 0.000 description 44
- 239000000178 monomer Substances 0.000 description 38
- 239000000203 mixture Substances 0.000 description 33
- 229920000058 polyacrylate Polymers 0.000 description 27
- -1 aromatic poly carboxylic acid Chemical class 0.000 description 23
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 21
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 18
- 125000003277 amino group Chemical group 0.000 description 17
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 16
- 239000002313 adhesive film Substances 0.000 description 14
- 230000009477 glass transition Effects 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 12
- 238000002156 mixing Methods 0.000 description 12
- 239000002253 acid Substances 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine powder Natural products NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 10
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 10
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical class OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 238000013461 design Methods 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 229920003270 Cymel® Polymers 0.000 description 7
- 229920000877 Melamine resin Polymers 0.000 description 7
- 229920003265 Resimene® Polymers 0.000 description 7
- 239000004411 aluminium Substances 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 229920002678 cellulose Polymers 0.000 description 6
- 239000003086 colorant Substances 0.000 description 6
- 238000004040 coloring Methods 0.000 description 6
- 230000000873 masking effect Effects 0.000 description 6
- 238000007639 printing Methods 0.000 description 6
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 150000008064 anhydrides Chemical class 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000003475 lamination Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000003973 paint Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 150000001299 aldehydes Chemical class 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000012459 cleaning agent Substances 0.000 description 4
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical group O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- 229920002635 polyurethane Polymers 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 4
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 4
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 3
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 3
- NJYZCEFQAIUHSD-UHFFFAOYSA-N acetoguanamine Chemical compound CC1=NC(N)=NC(N)=N1 NJYZCEFQAIUHSD-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 3
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- VPVSTMAPERLKKM-UHFFFAOYSA-N glycoluril Chemical compound N1C(=O)NC2NC(=O)NC21 VPVSTMAPERLKKM-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 229920002959 polymer blend Polymers 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 3
- 239000004408 titanium dioxide Substances 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 2
- ULQISTXYYBZJSJ-UHFFFAOYSA-N 12-hydroxyoctadecanoic acid Chemical compound CCCCCCC(O)CCCCCCCCCCC(O)=O ULQISTXYYBZJSJ-UHFFFAOYSA-N 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 2
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 2
- WVDRSXGPQWNUBN-UHFFFAOYSA-N 4-(4-carboxyphenoxy)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1OC1=CC=C(C(O)=O)C=C1 WVDRSXGPQWNUBN-UHFFFAOYSA-N 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 2
- 235000013877 carbamide Nutrition 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 235000019241 carbon black Nutrition 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- NZNMSOFKMUBTKW-UHFFFAOYSA-N cyclohexanecarboxylic acid Chemical compound OC(=O)C1CCCCC1 NZNMSOFKMUBTKW-UHFFFAOYSA-N 0.000 description 2
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 125000004985 dialkyl amino alkyl group Chemical group 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 2
- 125000005359 phenoxyalkyl group Chemical group 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- QQOWHRYOXYEMTL-UHFFFAOYSA-N triazin-4-amine Chemical compound N=C1C=CN=NN1 QQOWHRYOXYEMTL-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- DJKGDNKYTKCJKD-BPOCMEKLSA-N (1s,4r,5s,6r)-1,2,3,4,7,7-hexachlorobicyclo[2.2.1]hept-2-ene-5,6-dicarboxylic acid Chemical compound ClC1=C(Cl)[C@]2(Cl)[C@H](C(=O)O)[C@H](C(O)=O)[C@@]1(Cl)C2(Cl)Cl DJKGDNKYTKCJKD-BPOCMEKLSA-N 0.000 description 1
- VZXTWGWHSMCWGA-UHFFFAOYSA-N 1,3,5-triazine-2,4-diamine Chemical compound NC1=NC=NC(N)=N1 VZXTWGWHSMCWGA-UHFFFAOYSA-N 0.000 description 1
- BPXVHIRIPLPOPT-UHFFFAOYSA-N 1,3,5-tris(2-hydroxyethyl)-1,3,5-triazinane-2,4,6-trione Chemical compound OCCN1C(=O)N(CCO)C(=O)N(CCO)C1=O BPXVHIRIPLPOPT-UHFFFAOYSA-N 0.000 description 1
- OZCMOJQQLBXBKI-UHFFFAOYSA-N 1-ethenoxy-2-methylpropane Chemical compound CC(C)COC=C OZCMOJQQLBXBKI-UHFFFAOYSA-N 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- OIKMJSPVIJVKSL-UHFFFAOYSA-N 1-n,4-n,6-n-triethyl-2h-1,3,5-triazine-1,4,6-triamine Chemical compound CCNN1CN=C(NCC)N=C1NCC OIKMJSPVIJVKSL-UHFFFAOYSA-N 0.000 description 1
- 229940114072 12-hydroxystearic acid Drugs 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 description 1
- DSKYSDCYIODJPC-UHFFFAOYSA-N 2-butyl-2-ethylpropane-1,3-diol Chemical compound CCCCC(CC)(CO)CO DSKYSDCYIODJPC-UHFFFAOYSA-N 0.000 description 1
- JNDVNJWCRZQGFQ-UHFFFAOYSA-N 2-methyl-N,N-bis(methylamino)hex-2-enamide Chemical compound CCCC=C(C)C(=O)N(NC)NC JNDVNJWCRZQGFQ-UHFFFAOYSA-N 0.000 description 1
- WZHHYIOUKQNLQM-UHFFFAOYSA-N 3,4,5,6-tetrachlorophthalic acid Chemical compound OC(=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C(O)=O WZHHYIOUKQNLQM-UHFFFAOYSA-N 0.000 description 1
- FLKHCKPUJWBHCW-UHFFFAOYSA-N 3,6-dichlorophthalic acid Chemical compound OC(=O)C1=C(Cl)C=CC(Cl)=C1C(O)=O FLKHCKPUJWBHCW-UHFFFAOYSA-N 0.000 description 1
- LAMUXTNQCICZQX-UHFFFAOYSA-N 3-chloropropan-1-ol Chemical compound OCCCCl LAMUXTNQCICZQX-UHFFFAOYSA-N 0.000 description 1
- RDFQSFOGKVZWKF-UHFFFAOYSA-N 3-hydroxy-2,2-dimethylpropanoic acid Chemical compound OCC(C)(C)C(O)=O RDFQSFOGKVZWKF-UHFFFAOYSA-N 0.000 description 1
- CYUZOYPRAQASLN-UHFFFAOYSA-N 3-prop-2-enoyloxypropanoic acid Chemical compound OC(=O)CCOC(=O)C=C CYUZOYPRAQASLN-UHFFFAOYSA-N 0.000 description 1
- QCAWOHUJKPKOMD-UHFFFAOYSA-N 4,6-diamino-1h-pyrimidine-2-thione Chemical compound NC1=CC(N)=NC(S)=N1 QCAWOHUJKPKOMD-UHFFFAOYSA-N 0.000 description 1
- FVFVNNKYKYZTJU-UHFFFAOYSA-N 6-chloro-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(Cl)=N1 FVFVNNKYKYZTJU-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- UUAGPGQUHZVJBQ-UHFFFAOYSA-N Bisphenol A bis(2-hydroxyethyl)ether Chemical compound C=1C=C(OCCO)C=CC=1C(C)(C)C1=CC=C(OCCO)C=C1 UUAGPGQUHZVJBQ-UHFFFAOYSA-N 0.000 description 1
- 239000004358 Butane-1, 3-diol Substances 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- MGJKQDOBUOMPEZ-UHFFFAOYSA-N N,N'-dimethylurea Chemical compound CNC(=O)NC MGJKQDOBUOMPEZ-UHFFFAOYSA-N 0.000 description 1
- 229920012485 Plasticized Polyvinyl chloride Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004146 Propane-1,2-diol Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- MASBWURJQFFLOO-UHFFFAOYSA-N ammeline Chemical compound NC1=NC(N)=NC(O)=N1 MASBWURJQFFLOO-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- BMRWNKZVCUKKSR-UHFFFAOYSA-N butane-1,2-diol Chemical compound CCC(O)CO BMRWNKZVCUKKSR-UHFFFAOYSA-N 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 description 1
- MLUCVPSAIODCQM-UHFFFAOYSA-N crotonaldehyde Natural products CC=CC=O MLUCVPSAIODCQM-UHFFFAOYSA-N 0.000 description 1
- IFDVQVHZEKPUSC-UHFFFAOYSA-N cyclohex-3-ene-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCC=CC1C(O)=O IFDVQVHZEKPUSC-UHFFFAOYSA-N 0.000 description 1
- ZNQRMJAOWFEDEQ-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylic acid;cyclohexane-1,4-dicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1.OC(=O)C1(C(O)=O)CCCCC1 ZNQRMJAOWFEDEQ-UHFFFAOYSA-N 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000004891 diazines Chemical class 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000003670 easy-to-clean Effects 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- YKVDTFOIHUIQLZ-UHFFFAOYSA-N formaldehyde;2-n-(methoxymethyl)-1,3,5-triazine-2,4,6-triamine Chemical compound O=C.COCNC1=NC(N)=NC(N)=N1 YKVDTFOIHUIQLZ-UHFFFAOYSA-N 0.000 description 1
- MSYLJRIXVZCQHW-UHFFFAOYSA-N formaldehyde;6-phenyl-1,3,5-triazine-2,4-diamine Chemical class O=C.NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 MSYLJRIXVZCQHW-UHFFFAOYSA-N 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- TZMQHOJDDMFGQX-UHFFFAOYSA-N hexane-1,1,1-triol Chemical compound CCCCCC(O)(O)O TZMQHOJDDMFGQX-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- OHMBHFSEKCCCBW-UHFFFAOYSA-N hexane-2,5-diol Chemical compound CC(O)CCC(C)O OHMBHFSEKCCCBW-UHFFFAOYSA-N 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000007974 melamines Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- DFENKTCEEGOWLB-UHFFFAOYSA-N n,n-bis(methylamino)-2-methylidenepentanamide Chemical compound CCCC(=C)C(=O)N(NC)NC DFENKTCEEGOWLB-UHFFFAOYSA-N 0.000 description 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 229960004063 propylene glycol Drugs 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- CSNFMBGHUOSBFU-UHFFFAOYSA-N pyrimidine-2,4,5-triamine Chemical compound NC1=NC=C(N)C(N)=N1 CSNFMBGHUOSBFU-UHFFFAOYSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000006254 rheological additive Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- UFDHBDMSHIXOKF-UHFFFAOYSA-N tetrahydrophthalic acid Natural products OC(=O)C1=C(C(O)=O)CCCC1 UFDHBDMSHIXOKF-UHFFFAOYSA-N 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- HUUBMTMJIQHAEN-UHFFFAOYSA-N triazole-1,4-diamine Chemical compound NC1=CN(N)N=N1 HUUBMTMJIQHAEN-UHFFFAOYSA-N 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 1
- 229940124543 ultraviolet light absorber Drugs 0.000 description 1
- 239000000326 ultraviolet stabilizing agent Substances 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/05—Interconnection of layers the layers not being connected over the whole surface, e.g. discontinuous connection or patterned connection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/52—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/304—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/30—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/12—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J133/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
- C09J7/22—Plastics; Metallised plastics
- C09J7/24—Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C09J7/245—Vinyl resins, e.g. polyvinyl chloride [PVC]
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
- C09J7/29—Laminated material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/4805—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
- B29C65/481—Non-reactive adhesives, e.g. physically hardening adhesives
- B29C65/4815—Hot melt adhesives, e.g. thermoplastic adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2627/00—Use of polyvinylhalogenides or derivatives thereof for preformed parts, e.g. for inserts
- B29K2627/06—PVC, i.e. polyvinylchloride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2667/00—Use of polyesters or derivatives thereof for preformed parts, e.g. for inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/722—Decorative or ornamental articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2327/00—Polyvinylhalogenides
- B32B2327/06—PVC, i.e. polyvinylchloride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2367/00—Polyesters, e.g. PET, i.e. polyethylene terephthalate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2405/00—Adhesive articles, e.g. adhesive tapes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2451/00—Decorative or ornamental articles
Definitions
- This invention relates to film articles, their method of production and their use in graphic films.
- Adhesive films have been widely used in producing graphics or decorations on substrates.
- adhesive films are used to provide advertisement, logos or company names and information on vehicles such as vans, busses, trains, trams etc. They may also be used on buildings.
- the adhesive film will have to remain in place for an extended period of time up to several years. Accordingly, the graphics produced with the film are exposed to a large variety of weather conditions. Particularly in so called horizontal applications, where the film is applied over a generally horizontal surface such as on the hood of a car, the weathering conditions may be particularly severe. Accordingly, the adhesive film needs to have excellent weathering stability and excellent adhesion characteristics to the surface.
- the graphic film can be removed without damaging the surface of the substrate which frequently may be a painted surface.
- some of the paints being used today, particularly on vehicles provide a surface with a low surface energy which more easily may lead to adhesion failures.
- the surface of the substrate may be uneven requiring good conformability of the film.
- the film when the film is used in personalization of vehicles or in decorating vehicles, the film may need to be applied over recesses such as where the license plate is located, over curved surfaces such as over bumpers and/or other complex contours of the substrate.
- the adhesive film may lift and pop-up in areas where the surface of the substrate is uneven or has a complex shape.
- This undesired behavior may become apparent shortly after application or after some time, in particular when the film gets exposed to elevated temperature, for example when the graphic film is exposed to the sun.
- the issue of lifting furthermore seems to be dependent on the nature of the surface of the substrate. Indeed, it has been observed that surfaces with low surface energy such as some of the modern paints used are more prone to the problem of lifting than others.
- so called “whitening at stress” may occur leading to a more or less pronounced color change and/or change in gloss of the graphic film.
- PVC films are widely used as graphic producing films because of a wide variety of desirable properties these films posses, they still suffer from lifting or pop-up, particularly in areas of strong curvature.
- these graphics may be of a significant size.
- Application of a large image graphic film to substrates encounters the problem of entrapped air between the film and the substrate.
- the art has provided multiple solutions to this problem by providing air-bleed channels in the adhesive.
- EP 951518 discloses the use of channels in the adhesive to allow air bleed during application of the graphic film. In certain instances it has been found that the presence of air bleed channels may become visible on the graphic and disturb the appeal of the graphic. Such may occur shortly after application of the film or develop over an extended period of time.
- the solution desirably provides good conformability and limited tendency for lifting or popping-up.
- the graphic film has good weathering stability and can be applied in an easy and convenient way without affecting the design or appeal of the graphic film.
- the graphic film should be readily removable after use over an extended period of time without causing damage to the surface of the substrate.
- the appealing look of the film should not substantially change over time and/or effects of gloss or color change induced by stretching of the film during application over complex substrates should be minimized
- the present invention provides a method of reducing lifting of a graphics film from a substrate, the graphic film having a polymeric film layer having on one major side thereof an adhesive layer, wherein lifting is reduced by applying the graphic film to the substrate with the aid of an intermediary base film, the base film comprising a backing layer having opposite first and second major sides, the first major side having an adhesive layer and the graphic film being adhered to the second major side of the base film.
- the present invention provides a laminated film for producing a graphic, the laminated film comprising a base film having a backing layer having on a first major side an adhesive layer and on a second major side a graphics film having a decorative layer and an adhesive layer, whereby the adhesive layer of the graphics film is adhered to the second major side of the base film, wherein the adhesive layer of the base film comprises a series of channels across at least one in-plane direction of the base film and wherein the backing layer of the base film comprises a layer having a polymer other than a vinyl chloride base film such as polyvinyl chloride.
- kits of parts for making a laminated film as defined above comprising (i) a base film as defined above and (ii) a decorative film having a polymeric film layer having on one major side thereof an adhesive layer.
- the present invention provides a method of decorating a substrate, the method comprising adhering a laminated film as defined above on the substrate.
- a base film that is particularly suitable for improving lifting resistance. Accordingly, there is provided a base film for making a graphic film, the base film comprising a backing layer comprising an aminoplast and a polyester and/or a condensation product thereof, the backing layer having on one major side an adhesive layer having a topologically structured surface comprising a series of channels.
- a base film as an intermediary between the decorative film and the substrate. Accordingly, a number of films that are in use today but aren't suitable for applications where lifting presents a challenge, when combined with a base film provide laminates that are suitable for use in applications where a high degree of conformability is needed such as substrates with strong curvatures. Thus, a film not suitable in such demanding applications can be enhanced or made suitable for the demanding application. Further, the base film does not adversely affect the ease of installation of a graphic and additionally, as it enables the use of existing PVC adhesive films, it greatly reduces complexity for a graphics producers while leaving the design flexibility unaffected and in particular the films from which the producer can select remains identical.
- a base film further provides a cost effective solution as the existing films can be used as they are and hence no additional range of films is needed.
- the base film may be laminated with a printable film, or is readily printable itself, thus adding a low cost printing solution to the options from which a graphics producer can choose.
- FIGS. 1 and 2 are schematic drawings of embodiments of an interconnected network of ridges on a surface of a release liner that may be used in connection with certain embodiments;
- FIGS. 3 and 3A are schematic drawings of a test panel used in connection with a lifting test as set out in the examples.
- the base film used in connection with the present invention comprises a backing layer having on one major side thereof an adhesive layer.
- the base film is laminated to the decorative film and applied to the substrate. Accordingly, the base film is provided between the substrate and the decorative film to improve lifting resistance or to substantially prevent lifting.
- the base film typically includes a backing layer that has a layer that comprises a polymer other than a vinylchloride based polymer such as polyvinyl chloride.
- the backing layer comprises one or more layers that are free of or substantially free of a vinylchloride based polymer.
- the base film has an elongation at break of at least 50% tested at 25° C. ⁇ 2° C.
- the base film should typically have a retraction speed after elongation that is lower than that of the decorative film, ie it takes longer for the base film to restore to its original length after elongation compared to the decorative film.
- the retraction speed is typically measured at 23° C. by elongating the test film by 30%, holding the film in this elongated state for 10 min. and then allowing the film to retract to its original length before elongation. The time it takes for the film to retract by 90% (100% retraction being a full retraction to the original length before elongation) is then recorded.
- the time it takes for the base film to retract by 90% under the above test conditions is at least 1.5 longer than for the decorative film, for example at least 1.7 times, for example at least twice.
- the base film will retract 3 or 4 times slower than the decorative film.
- the retraction time of the base film and decorative films are typically dependent on the composition of the backing layer and decorative film of respectively the base film and decorative film.
- the decorative film is a PVC film, which without the use of a base film would be prone to lifting at least to some degree or in a particular set of circumstances such as in demanding applications.
- the base film may provide improved lifting resistance to the decorative film by selecting a polymer or combination of polymers for the backing layer that provide a longer retraction time compared to the decorative film.
- the backing layer of the base film may be comprised of multiple layers.
- the backing layer comprises at least one layer that comprises a polymer other than a vinylchloride based polymer.
- the backing layer comprises a polyester and an aminoplast.
- the backing layer may include a condensation product of the polyester and aminoplast. Suitable polyesters may be based for example on a condensation reaction between a linear aliphatic, branched aliphatic and/or cyclo-aliphatic polyol and an aliphatic, cyclo-aliphatic and/or aromatic poly carboxylic acid or its anhydride. The ratio of polyol and acids or anhydrides is typically selected such that there is an excess of acid or anhydride over alcohol (so as) to form a polyester which has free carboxylic groups or anhydride groups.
- the polyester may comprise units of for example isophthalic acid, terephthalic acid, 2,6-naphthalene dicarboxylic acid, 4,4′-oxybisbenzoic acid, 3,6-dichloro phthalic acid, tetrachloro phthalic acid, tetrahydro phthalic acid, trimellitic acid, pyromellitic acid, hexahydro terephthalic acid (cyclohexane dicarboxylic acid), hexachloro endomethylene tetrahydro phthalic acid, phthalic acid, azelaic acid, sebacic acid, decane dicarboxylic acid, adipic acid, succinic acid, maleic acid and/or fumaric acid.
- isophthalic acid terephthalic acid, 2,6-naphthalene dicarboxylic acid, 4,4′-oxybisbenzoic acid, 3,6-dichloro phthalic acid, tetrachloro phthalic acid
- the polyester comprises at least isophthalic acid units and/or terephthalic acid units. In another embodiment, the polyester comprises at least isophthalic acid units and adipic acid units.
- the polyester may also comprise other carboxylic acid units in amounts of up to for example 25 mol % of the total amount of carboxylic acids.
- trifunctional or higher functional acid units may be present, such as for example trimellitic acid or pyromellitic acid. These tri or higher functional acids may be used to obtain branched polyesters or used as end groups of the polyester.
- Hydroxy carboxylic acids and/or optionally lactones may also be used, for example, 12-hydroxy stearic acid, hydroxy pivalic acid and/or .epsilon.-caprolactone.
- monocarboxylic acids such as for example benzoic acid, tert.-butyl benzoic acid, hexahydro benzoic acid and/or saturated aliphatic monocarboxylic acids may be applied.
- Tri- or higher functional alcohols may be used in small amounts in order to obtain branched polyesters.
- suitable polyols include glycerol, hexanetriol, trimethylol ethane, trimethylol propane tris-(2-hydroxyethyl)-isocyanurate, pentaerythritol and/or sorbitol.
- the polyester may be prepared according to conventional procedures by esterification or transesterification, optionally in the presence of customary esterification catalysts for example dibutyltin oxide or tetrabutyl titanate.
- the preparation conditions and the COOH/OH ratio may be selected so as to obtain end products that have an acid number and/or a hydroxyl number as may be desired.
- the polyester may have a hydroxyl number of at least 5, for example between 5 and 50 mg KOH/gram polyester.
- the number average molecular weight (Mn) of the polymer (a) may be for example between about 1,000 and about 8,000. Preferably the number average molecular weight (Mn) of the polymer (a) ranges between about 1,400 and 7,500.
- the polyester may be a crystalline, semi-crystalline or amorphous solid at room temperature.
- the polymer In case the polymer is crystalline, it has a melting temperature Tm, in case it is semi-crystalline it has a melting temperature Tm and a glass transition temperature Tg, in case it is amorphous, it has a glass transition temperature Tg.
- the polyester may be modified to include further functionality.
- the polyester may be modified or include groups capable of reacting with the aminoplast such as for example epoxy groups.
- the polyester may be modified with a urethane group such as a urethane extended polyester.
- Suitable polyesters include in particular those that are typically used in the paint industry for example in powder coatings and include in particular the polyesters available under the URALAC brand from DSM in the Netherlands.
- the aminoplasts for use in the backing layer are conveniently based on the condensation product of an aldehyde with an amino- or amido-group containing compound. While the aldehyde employed is most often formaldehyde, other aldehydes such as acetaldehyde, crotonaldehyde, acrolein, benzaldehyde, furfural, and glyoxal can also be used.
- Amine/amide containing compounds include those derived from at least one of glycoluril, aminotriazine, or benzoguanamine.
- Such compounds include, for example, alkoxyalkyl derivatives of melamine, glycoluril, benzoguanamine, acetoguanamine, formoguanamine, spiroguanamine, and the like. Condensation products obtained from the reaction of alcohols and formaldehyde with melamine, urea or benzoguanamine are most common and most suitable for use in the present invention.
- Condensation products of other amines and amides can also be employed, for example, aldehyde condensates of triazines, diazines, triazoles, guanadines, guanamines, and alkyl- and aryl-substituted derivatives of such compounds, including alkyl- and aryl-substituted ureas and alkyl- and aryl-substituted melamines.
- Some examples of such compounds are N,N′-dimethyl urea, benzourea, dicyandiamide, formaguanamine, acetoguanamine, glycoluril, ammeline, 2-chloro-4,6-diamino-1,3,5-triazine, 6-methyl-2,4-diamino-1,3,5-triazine, 3,5-diaminotriazole, triaminopyrimidine, 2-mercapto-4,6-diaminopyrimidine, and 3,4,6-tris(ethylamino)-1,3,5 triazine.
- Aminoplast resins typically contain methylol or other alkylol groups and, in most instances, at least a portion of these alkylol groups are etherified by a reaction with an alcohol.
- Any monohydric alcohol can be employed for this purpose, including such alcohols as methanol, ethanol, propanol, butanol, pentanol, hexanol, cyclohexanol, heptanol, and others, as well as benzyl alcohol, and other aromatic alcohols, cyclic alcohols such as cyclohexanol, monoethers of glycols, and halogen-substituted or other substituted alcohols, such as 3-chloropropanol and butoxyethanol Aminoplast resins that are substantially alkylated with methanol or butanol are particularly suitable for use herein.
- Nonlimiting examples of suitable aminotriazine compounds suitable for use in the present invention include alkoxyalkyl aminotriazines, such as (methoxymethyl)melamine-formaldehyde resin, for example CYMEL 300, CYMEL 303, RESIMENE 745, RESIMENE 881, and RESIMENE 757; ethylated-methylated benzoguanamine-formaldehyde resin, for example CYMEL 1123; and methylated-butylated melamine-formaldehyde resin, for example CYMEL 1135, CYMEL 1133, and CYMEL 1168. These products are commercially available from either Cytec Industries, Inc. (CYMEL) or Solutia, Inc. (RESIMENE).
- CYMEL Cytec Industries, Inc.
- RESIMENE Solutia, Inc.
- the weight ratio of polyester to aminoplast as used in the composition for preparing the backing layer is typically at least 2, for example at least 3. In a particular embodiment, the weight ratio of polyester to aminoplast is between 70 and 2, for example between 10 and 4 or between 3 and 16. Where the aminoplast and polyester react with one another and form a condensation product, such reaction may be complete (i.e. there is substantially no starting material left) or may be a partial reaction leading to the backing layer comprising the reactants as well as condensation product.
- the backing layer may comprise a polyvinylchloride layer and a layer of polyester and aminoplast as described above.
- the polyester/aminoplast containing layer should typically be provided between the PVC layer and the adhesive layer.
- the backing layer may comprise a (meth)acrylic film layer and in particular a (meth)acrylic film layer as disclosed in U.S. Pat. No. 7,691,948. Accordingly, in this embodiment, the backing layer comprises a a carboxyl group-containing (meth)acrylic polymer and an amino group-containing (meth)acrylic polymer.
- (meth)acryl as used herein means an acryl or methacryl.
- the backing layer is a (meth)acrylic film formed of:
- the monoethylenically unsaturated monomer used in the aforementioned (meth)acrylic polymers as a main component of the polymer includes, for example, those represented by the general formula: CH 2 ⁇ CR 1 COOR 2 (wherein R 1 represents hydrogen or a methyl group, and R 2 represents a straight-chain or branched alkyl or phenyl group, an alkoxyalkyl group or a phenoxyalkyl group); aromatic vinyl monomers such as styrene, ⁇ -methylstyrene, and vinyltoluene; and vinyl esters such as vinyl acetate.
- the monomer examples include phenoxyalkyl(meth)acrylates such as methyl(meth)acrylate, ethyl(meth)acrylate, n-butyl(meth)acrylate, isoamyl(meth)acrylate, n-hexyl(meth)acrylate, 2-ethylhexyl(meth)acrylate, isooctyl(meth)acrylate, isononyl(meth)acrylate, decyl(meth)acrylate, dodecyl(meth)acrylate, and phenoxyethyl(meth)acrylate; and alkoxyalkyl(meth)acrylates such as methoxypropyl (meth)acrylate and 2-methoxybutyl(meth)acrylate.
- phenoxyalkyl(meth)acrylates such as methyl(meth)acrylate, ethyl(meth)acrylate, n-butyl(meth)acrylate, isoa
- a (meth)acrylic polymer having Tg of 0° C. or higher can be obtained easily by copolymerizing a (meth)acrylic monomer having Tg of 0° C. or higher, for example, methyl methacrylate (MMA), n-butyl methacrylate (BMA) or the like as a main component.
- MMA methyl methacrylate
- BMA n-butyl methacrylate
- a (meth)acrylic polymer having Tg of 0° C. or lower can be obtained easily by copolymerizing a component, a homopolymer obtained therefrom by homopolymerization having Tg of 0° C. or lower, for example, ethyl acrylate (EA), n-butyl acrylate (BA), 2-ethylhexyl acrylate (2EHA) or the like as a main component.
- EA ethyl acrylate
- BA n-butyl acrylate
- 2EHA 2-ethylhexyl acrylate
- Tg 1 denotes a glass transition point of a homopolymer as a component 1 ,
- Tg 2 denotes a glass transition point of a homopolymer as a component 2 ,
- X 1 denotes a weight fraction of a monomer as a component 1 added during the polymerization
- X 2 denotes a weight fraction of a monomer as a component 2 added during the polymerization
- Examples of the unsaturated monomer having a carboxyl group, which is copolymerized with the monoethylenically unsaturated monomer to form a carboxyl group-containing (meth)acrylic polymer include acrylic acid, methacrylic acid, maleic acid, itaconic acid, ⁇ -carboxypolycaprolactone monoacrylate, monohydroxyethyl phthalate(meth)acrylate, ⁇ -carboxyethyl acrylate, 2-(meth)acryloyloxyethylsuccinic acid, and 2-(meth)acryloyloxyethylhexahydrophthalic acid.
- the carboxyl group-containing (meth)acrylic polymer is preferably obtained by copolymerizing 80 to 95.5 parts by weight of the monoethylenically unsaturated monomer as a main component with 0.5 to 20 parts by weight of the unsaturated monomer having a carboxyl group.
- Examples of the unsaturated monomer having an amino group, which is copolymerized with the monoethylenically unsaturated monomer to form an amino group-containing (meth)acrylic polymer include dialkylaminoalkyl (meth)acrylates such as N,N-dimethylaminoethyl acrylate (DMAEA) and N,N-dimethylaminoethyl methacrylate (DMAEMA); dialkylaminoalkyl(meth)acrylamides such as N,N-dimethylaminopropylacrylamide (DMAPAA) and N,N-dimethylaminopropylmethacrylamide; and monomers having a tertiary amino group represented by vinyl monomer having a nitrogen-containing heterocycle such as vinylimidazole.
- dialkylaminoalkyl (meth)acrylates such as N,N-dimethylaminoethyl acrylate (DMAEA) and N,N-dimethylaminoe
- the amino group-containing (meth)acrylic polymer is preferably obtained by copolymerizing 80 to 95.5 parts by weight of the monoethylenically unsaturated monomer as a main component with 0.5 to 20 parts by weight of the unsaturated monomer having an amino group.
- the backing layer of the base film comprises a polymer blend, comprising thermoplastic polyurethane and a cellulose ester.
- the cellulose ester may be, for example, cellulose acetate butyrate or a cellulose acetate propionate.
- Other materials may additionally be blended into the polymer blend.
- a poly(meth)acrylate may be added to the polymer blend.
- the thermoplastic polyurethane may be aliphatic or aromatic.
- thermoplastic polyurethanes include, for example, those sold under the tradename ESTANE, for example ESTANE 58213, ESTANE 58277, ESTANE ALR CL87A TPU, and ESTANE ALR E6OD TPU, from Lubrizol Advanced Materials, Inc., Cleveland, Ohio; KRYSTALGRAN PN3429-218 and KRYSTALGRAN PNO3-217 from Huntsman Polyurethanes (an international business unit of Huntsman International LLC), The Woodlands, Texas; and TEXIN 3044 and TEXIN 3075 from Bayer Corporation, Pittsburgh, Pa.
- ESTANE for example ESTANE 58213, ESTANE 58277, ESTANE ALR CL87A TPU, and ESTANE ALR E6OD TPU
- Lubrizol Advanced Materials, Inc. Cleveland, Ohio
- KRYSTALGRAN PN3429-218 and KRYSTALGRAN PNO3-217 from Huntsman Polyurethanes (an international business unit of
- Blending of the polyurethane and cellulose ester materials is conveniently done by any method that results in a suitable mixture of the polymers.
- the mixture is a multi-phase system.
- the polymers can be blended using several methods.
- the polymers can be blended by melt blending or solvent blending. Examples of melt blending include single screw extruding, twin screw extruding or an internal mixer (e.g. those sold under the tradename BANBURY.) In solvent blending, the polymers in the blend should be substantially soluble in the solvent used.
- thermoplastic polyurethane may be present in the blend in amounts greater than 10% by weight and in some embodiments greater than 40% by weight. In some embodiments, the thermoplastic urethane is present up to 60% by weight, and in some embodiments up to 90% by weight. The weight percentage of the thermoplastic polyurethane is based on total weight of the polyurethane and the cellulose ester. Additives may be included in the blend to adjust properties of the resulting film comprising the blend. Specific examples of additives include other polymers (e.g.
- polyesters such as styrene-acrylonitrile copolymers, poly(meth)acrylates, polyvinylchloride), monomeric or polymeric plasticizers, pigments, dyes, optical brighteners, fillers, ultraviolet light absorbers, ultraviolet stabilizers, antioxidants, flame retardants and the like.
- styrene copolymers such as styrene-acrylonitrile copolymers
- poly(meth)acrylates such as poly(meth)acrylates, polyvinylchloride)
- monomeric or polymeric plasticizers such as pigments, dyes, optical brighteners, fillers, ultraviolet light absorbers, ultraviolet stabilizers, antioxidants, flame retardants and the like.
- additives is used in an amount to produce the desired result.
- the thickness of the backing layer may vary widely but is typically at least 5 micrometer or is more than 10 micrometer. In a particular embodiment the thickness of the backing is between 5 and 50 micrometer. In a particular embodiment, the thickness of the backing layer is from 11 to 60 micrometer or from 15 to 50 micrometer.
- the backing layer may be clear transparent.
- the backing layer is colored.
- the base film may be white.
- the base film may be black and in yet a further embodiment, the base film may have a metallic look or may be colored in a color other than white of black.
- the base film will be transparent or white as this will allow combination with a wide variety of existing PVC adhesive films already used in the graphics field. Nevertheless, by providing the base film with other colors such a black non-white or black colors or metallic looks, the base film when combined with appropriate PVC adhesive films can enhance the design palette from which a graphic designer can choose.
- Desired coloring of the base film may be achieved by including in the backing layer, color pigments such as white pigments, black pigments and/or color pigments other than black and white. Additionally, where special effects are desired, the backing layer may include metallic pigments or other special effect (for example: pearlescent) pigments. White pigments that may be used include titanium dioxide or zinc oxide. Suitable pigments for coloring the backing layer black include carbon blacks.
- a metallic look base film may be provided by a backing layer comprising metal particles such as aluminum flakes. Typically, the amount of pigments that may be included in the backing layer is at least 1 part by weight per 100 parts by weight of polymers used in the backing layer. Generally, the total amount of pigments should not be more than 300 parts by weight of polymer. A typical amount of pigment is from 8 to 100 per 100 parts by weight of polymer.
- the backing layer may include further optional components such as plasticizers and surfactant agents.
- the adhesive used in the adhesive layer of the base film is not particularly restricted.
- the thickness of the adhesive layer may vary widely.
- the adhesive layer will have a thickness of at least 10 micrometer, for example at least 15 micrometer or at least 20 micrometer. In a typical embodiment the thickness of the adhesive layer is from 15 micrometer to 50 micrometer.
- the adhesive layer comprises a pressure sensitive adhesive (PSA).
- PSA pressure sensitive adhesive
- Pressure sensitive adhesives useful in the present invention can be self-tacky or require the addition of a tackifier.
- Particularly suitable adhesives for use in the present invention include pressure sensitive adhesives based on an acrylic polymer. Examples of adhesives include PSA's, hot melt or heat activated adhesives that are pressure sensitive at the time of application such as pressure sensitive adhesives disclosed in U.S.
- PSA's are, described in U.S. Pat. Nos. Re 24,906 (Ulrich), U.S. Pat. No. 4,833,179 (Young et al), U.S. Pat. No. 5,209,971 (Babu et al), U.S. Pat. No. 2,736,721 (Dester) and U.S. Pat. No. 5,461,134 (Leir et al) and in the Encyclopedia of Polymer Science and Engineering vol. 13, Wiley-Interscience Publishers, New York, 1988, and Encyclopedia of Polymer Scieinced and Engineering, vol. 13, Wiley-Interscience Publishers, New York, 1964. Acrylate-based PSA's which include those described in U.S. Pat. Nos.
- Particularly useful PSAs include acrylic polymers comprising repeating units of one or more alkyl (meth)acrylates of which the alkyl group has from 1 to 20 carbon atoms, for example 4 to 12 carbon atoms.
- alkyl (meth)acrylate monomers that may be used include isobornyl (meth)acrylate, ethyl(meth)acrylate, butyl(meth)acrylate, iso-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate and the like.
- the acrylic polymer may contain co-monomers including polar co-monomers suchas ethylenically unsaturated acid monomers including for example (meth)acrylic acid and itaconic acid.
- the adhesive layer should be removable i.e. allow removal of the graphic film after use.
- an adhesive is considered to be “removable”, if after final application to an intended substrate the sheet material can be removed without damage to the substrate at the end of the intended life of the sheet material at a rate in excess of 25 feet/hour (7.62 meters/hour) by hand with the optional use of heat.
- the adhesive layer is a repositionable adhesive layer.
- “repositionable” refers to the ability to be, at least initially, repeatedly adhered to and removed from a substrate without substantial loss of adhesion capability.
- a repositionable adhesive usually has a peel strength, at least initially, to the substrate surface lower than that for a conventional aggressively tacky PSA.
- Suitable repositionable adhesives include the adhesive types used on CONTROLTAC Plus Film brand and on SCOTCHLITE Plus Sheeting brand, both made by 3M Company, St., Paul, Minn., USA.
- the adhesive layer in connection with the present invention is typically a topologically structured adhesive layer or an adhesive layer having at least one microstructured surface.
- the adhesive layer has a network of channels between the substrate surface on which the adhesive film is being applied and the adhesive layer. The presence of such channels allows air to pass laterally through the adhesive layer and thus allows air to escape from beneath the multi-layer sheet material and the surface substrate during application.
- the channels are typically produced in the adhesive layer through corresponding ridges of the release liner protecting the adhesive layer prior to application of the adhesive film. Accordingly, reference is made to the detailed description below regarding the release liner.
- the adhesive layer comprises at least one series of channels along an in-plane axes of the base film.
- the adhesive layer has at least two series of channels along intersecting in-plane axis such that the channels are interconnected and define a series of adhesive plateaus.
- at least some of these adhesive plateaus comprise pegs that represent peaks rising above the plateau. These pegs may include adhesive material or they may include non-adhesive material. Such pegs can be particular suitable to provide the base film with repositionability properties.
- the channels in the adhesive layer may have any shape including convex, V-shaped and or trapezoidal. The depth of the channels is typically not more that 30 ⁇ m, for example between 5 ⁇ m and 25 ⁇ m.
- the adhesive layer is protected with a release liner.
- the release liner is preferably adhesive-repellant and more specifically comprises paper or film, which has been coated or modified with compounds of low surface energy relative to the adhesive applied. Organo silicone compounds, fluoropolymers, polyurethanes and polyolefins can serve this purpose.
- the release liner can also be a polymeric sheet produced from polyethylene, polypropylene, PVC, polyesters with or without the addition of adhesive-repellant compounds.
- the release liner has a microstructured or micro-embossed pattern.
- the microstructure of the release liner (on its release side facing the adhesive layer) has a series of ridges along at least two in-plane directions whereby the ridges are interconnected thereby defining a number of recesses enclosed by ridges.
- the ridges will typically have an average height of not more than 30 micrometer. Typically, the average height may be between 5 and 20 micrometer.
- the average distance between ridges along an in plane direction of the release liner may be between 50 and 400 micrometer when measured at the top.
- the geometry or shape of the ridges is not particularly critical and includes, in cross-section, curved, rectangular, trapezoidal, triangular, bimodal, and the like.
- the release liner comprises ridges along two in-plane directions.
- FIG. 1 is a schematic drawing of an interconnected network of ridges on a surface of a release liner 10 .
- a first series of ridges is formed by repeating ridges 11 along in-plane direction A and a second series of ridges formed by repeating ridges 12 along direction B.
- the ridges connect to each other at intersections 16 thereby defining a pattern of enclosed recesses 15 .
- the enclosed recesses have the shape of a rectangular or square. Alternative shapes of the recesses are contemplated as well and may be formed by additional series of ridges.
- FIG. 2 shows a schematic drawing of an interconnected network of ridges on a surface of a release liner 20 .
- a series of ridges 21 , 22 and 23 along respectively in-plane directions A, B and C result in ridges interconnecting at intersections 26 thereby defining a pattern of hexagonal shaped recesses 25 .
- the microstructure formed by the ridges on the surface of the release liner may be superimposed with a further pattern defined by discrete small depressions within the recesses defined by the interconnecting ridges. This is illustrated in FIG. 2 by numerals 29 within the recesses 25 .
- the microstructure of the release liner may be formed by any suitable means including in particular by embossing the liner with an appropriate tool. Methods for producing release liners with a desired microstructure as described herein can be found in for example EP 951 518 and US 2008/0299346.
- the base film may be made by any of a number of film forming methods.
- the base film may be obtained by extruding the film layer composition followed by application of the adhesive layer by either coating or lamination.
- the base film may be manufactured by coating the film layer composition onto a temporary carrier followed by application of the adhesive layer and then removal of the temporary carrier.
- the latter method is illustrated for a base film that comprises a blend of an aminoplast and polyester as disclosed above.
- Such a base film is conveniently produced by applying on a temporary carrier a composition comprising the aminoplast and polyester as well as optional further components such as pigments in an organic solvent.
- the components of the backing layer may be dispersed or dissolved in organic solvents such as butylglycol. The applied backing layer is typically heated.
- the backing layer may be heated to a temperature of at least 140° C. or between 160° C. and 215° C. Typically, the layer will be heated for a time between 30 seconds and 120 seconds.
- the adhesive layer and release liner may be applied to the backing layer in a number of different ways. In one particular embodiment, the adhesive layer may be coated on the backing layer and the release liner with the desired structure as described above may be laminated thereto. In another embodiment, the adhesive layer may be coated on the release liner with the desired topological structure and then this laminate may be laminated onto the backing layer. To obtain the final base film, the temporary carrier is removed.
- Suitable temporary carriers include papers or polyester films, in particular polyethyleneterephthalate films.
- the paper or polyester film is coated with a coating allow release of the temporary carrier from the base film once the base film has been formed on the temporary carrier as described above.
- a base film with a desired level of glossiness can be achieved.
- the base film will have a gloss level of at least 80 measured at an illumination angle of 60° according to DIN 67530.
- Such based film may be particularly suitable for use in combination with an adhesive film as disclosed further to obtain a graphic film.
- the glossiness of the base film should be not more than 30.
- Such base films are particularly suitable for printing, in particular with inks such as in piezo inkjet printing.
- the base film is printed with a desired image or design.
- Suitable printing techniques include in particular ink jet printing.
- the base film is adhered to a decorative film.
- the decorative film can be any film typically used and known in the art to produce graphics and that are typically used to adhere directly to a substrate to be decorated.
- the decorative film comprises a decorative layer and an adhesive layer.
- the adhesive layer of the decorative film will be adhered to the major side of the base film that is opposite to the major side having the adhesive layer.
- Suitable adhesive layers of the decorative film include any of the adhesive layers described above in connection with the base film.
- the adhesive layer of the decorative film may comprise a topologic structure similar as described for the base film but such is not a requirement. However, as typically the base film will be combined with decorative films that are otherwise directly applied to the substrate to be decorated, the adhesive layer of these decorative films will typically be structured so that also without the base film, they can be easily applied.
- the decorative layer of the decorative film comprises at least one polymeric film layer, in particular at least one polyvinyl chloride film layer.
- the polymer film may comprise a single layer but multi-layer films are included within the scope of this invention.
- the polyvinyl chloride film layer is typically a plasticized PVC.
- the PVC film layer may be clear transparent or may be colored.
- the decorative film is white and at least the polyvinyl chloride film is colored white.
- White pigments that may be used include titanium dioxide or zinc oxide.
- the decorative film is black and at least the PVC film is colored black. Suitable pigments for coloring the PVC film black include carbon blacks.
- a decorative film having a metallic look, including a colored metallic look is provided.
- the thickness of the PVC film layer may vary widely but typically is at least 20 micrometer. In a particular embodiment, the PVC film layer may have a thickness of 25 to 100 micrometer.
- the thickness may be from 30 micrometer to 80 micrometer or from 30 micrometer to 60 micrometer.
- the PVC film may include color pigments such as white pigments, black pigments and/or color pigments other than black and white. Where the PVC film includes color pigments, they can be comprised in the PVC film in an amount of 1 to 100 parts per 100 parts by weight of PVC.
- the PVC film may include further optional components such as plasticizers, UV stabilizers, heat stabilizers, acrylic resins, polyesters, surfactants and rheology modifiers.
- the decorative film may have matte surface.
- Such decorative films might find use in a number of applications including for example in the wrapping of vehicles.
- glossy films are relatively easy to clean with common cleaning agents
- cleaning of matte decorative films and particularly PVC based matte decorative films with such commonly used cleaning agents has not been satisfactory.
- either the cleaning agent is ineffective in removing stain and dirt from the decorative film or the cleaning agent damages the matte look of the film in making it glossy.
- matte decorative films can effectively be cleaned with a detergent solution based on a glycol, such as a butylglycol based detergent solution.
- the amount of detergent liquid or solid
- the graphic films that can be obtained by laminating the base film with an adhesive film or directly printing the base film, are typically used to produce a graphic on a substrate.
- the graphic may be an image graphic or a text message or a combination thereof.
- the graphic may have any size but the graphic films in connection with this invention are particularly suitable for producing large size graphics for example extending over an area of at least 1 m 2 or at least 2 m 2 .
- the graphic film is particularly suitable for application on a substrate with an uneven surface. Generally, the graphic film will then be conforming to the uneven surface of the substrate. Examples of uneven surfaces include substrates that have recesses, rivets, or areas of curvature.
- the graphic film may be applied to a large variety of substrates. Typical applications include applying the film onto walls (including floors and ceilings) (exterior or interior) of buildings as well as on transportation vehicles including in particular motor vehicles such as trains, busses, trams, cars, vans, trucks as well as airplanes.
- a film remover may be used that is applied to the graphic to be removed.
- a film remover will include a solvent capable of swelling the film.
- a suitable solvent for PVC based films includes a ketone such as for example methylethyl ketone.
- a paste may be obtained by blending the solvent, for example a ketone, with a polymeric binder and a thickening agent.
- a suitable binder includes for example a copolymer of vinylchloride and vinyl isobutyl ether such as LAROFLEXTM MP 45 available from BASF AG.
- Suitable thickening agents include those available from BYK Chemie GmbH such as for example BYKTM 410.
- FIG. 3 represents a schematic drawing of a test panel ( 200 ), however not representing real measurements. The dimensions are given below.
- the test panel ( 200 ) is formed from an aluminum sheet ( 210 ) having a thickness of 1 mm that was bent to have a pattern of four successively deeper V-shaped grooves ( 215 to 218 ), each having different angles forming the V-shape and having different depths and length extensions.
- test panel After bending, the test panel has a dimension of 28 cm ⁇ 8.5 cm.
- the test panels From the left to the right, the test panels have four grooves ( 215 to 218 ).
- Groove ( 215 ) has a depth (h 1 ) of 0.5 cm and a length extension (l 1 ) of 1.0 cm.
- Groove ( 216 ) has a depth (h 2 ) of 1.0 cm and a length extension (l 2 ) of 2.0 cm.
- Groove ( 217 ) has a depth (h 3 ) of 1.5 cm and a length extension (l 3 ) of 3.0 cm.
- Groove ( 218 ) has a depth (h 4 ) of 2.0 cm deep and a length extension (l 4 ) of 4.0 cm.
- the length extensions d 1 , d 2 , d 3 and d 5 are 3.5 cm.
- the length extension d 4 is 4.0 cm.
- the grooves have been designed to differentiate films on their capability to resist lifting as the likelihood of lifting increases from groove 215 towards groove 218 .
- the grooves at which failure or lifting is noticed is noted as 1 to 4 corresponding to grooves 215 to 218 respectively.
- Untreated aluminum test panels were used and referred to in the examples as “Alu substrate”. Some of the Al test panels were painted with a standard automotive paint used in the automotive industry and finally painted with a two-component Cerami Clear (CC) paint available from PPG, Pittsburgh, Pa., USA. After painting, the test panels were left at RT during 24 hours. The painted test panels are referred to in the examples as “CC substrate”.
- a strip of laminated film (4 cm ⁇ 30 cm) was applied on the test panel, using a squeegee, so the film was bridging the V-shaped grooves.
- a second strip of laminated film (4 cm ⁇ 30 cm) was applied on the test panel, in the same way and providing an overlap of minimum 3 mm with the first laminated film strip.
- the strips were heated at 50° C. with a hot air gun and pressed in the grooves by means of a roll.
- the laminated film strips were then heated with the hot air gun until the substrate temperature reached 80° C. to 100° C. (measured with an infra red thermometer). After heating, the laminated film strips were pressed into the grooves again using a small roll.
- the coated test panels were left at room temperature during 24 hours before heat treatment.
- the coated test panels were first visually evaluated (after having them left at room temperature for 24 hours). Then the test panels were heated in an oven at 70° C. during 7 days after which the panels were cooled to room temperature and visually evaluated again. Visual evaluation was done noting the grooves at which lifting of the film tested was noticed. When the film failed the test the groove at which failure was observed is indicated in brackets (a failure at groove 1 corresponding to 215 in FIG. 3 ).
- test panels were cooled to room temperature and the adhesive film was manually removed at an angle of 45°.
- the substrate was heated to 40 or 60° C., until the film could be removed. The temperature needed to remove the film is indicated in the examples.
- a white paper having printed thereon a ruler with divides of 1 mm.
- the paper was of equal width as the aluminium panel but shorter and was provided in the middle of the panel leaving a margin at the top and bottom of a suitable length allowing a tape (see below) to be attached directly on the panel.
- a sample of the film to be tested having a size of 160 mm by 25 mm was placed over the white paper with the film side facing the paper and the adhesive layer of the film facing upwards. The sample was placed approximately such that an equal margin was left on the left and right side of the film sample.
- a green scaled paper 120-140 g/m 2 ) of 30 by 25 mm was adhered to the adhesive layer of the film to be tested at each of the opposite ends of the film at approximately 1 cm of the ends of the film.
- the film On one end, the film is positioned such that the end of the green scaled paper that is furthest removed from the end of the film is aligned with the 0 marker of the ruler printed on the white paper.
- a paper masking tape (masking tape 220 available from 3M Co.) was adhered to the green scaled paper and to the aluminium panel in the length direction of the sample and covering the full margin of the aluminium panel.
- a further paper masking tape was then adhered crossing the green scaled paper and covering the full width of the aluminium panel, thereby firmly securing the sample to the aluminium test panel on one end and assuring the green scaled paper was aligned with the zero marker.
- a stripe of paper masking tape was then adhered to the green scaled paper at the opposite end of the film sample.
- the film sample was then stretched by hand to elongate it by 30% and the sample was held at this elongation by adhering the paper masking tape to the aluminium panel. After 10 min. the paper masking tape was cut so as to allow the film sample to retract. The amount of retraction was recorded after 1, 5, 10, 60, 120, 240 and 480 min and thereafter at intervals of increasing time.
- RT 90 e 90-b/a wherein RT 90 is the time to retract by 90% and a and b are constants obtained from the logarithmic fit.
- the test was carried out at about 23° C.
- the mixtures were prepared by blending the ingredients in amounts as given in the tables below.
- the amounts refer to the actual final composition, not to solids.
- White backing layer compositions were made by first blending URALAC with TiO 2 , then adding butylglycol and finally adding RESIMENE. In between the additions, the mixtures were stirred during 5-10 min at 300-800 rpm.
- a temporary carrier layer of coated paper was coated with the white backing layer coating composition set out above in table 1.
- the coating was dried in a forced air oven at 190° C. for 60 seconds.
- the coating thickness of the dried backing layer was approximately 30 ⁇ m.
- an acrylic pressure sensitive adhesive as used on commercial graphics film SCOTCHCAL 100, available from 3M company, coated on a microstructured release liner (as used in Scotchcal 100MC, available from 3M company) was laminated against the backing layer, using a lab laminator.
- the coating thickness of the adhesive was 35 ⁇ m.
- the temporary carrier layer was removed (stripped).
- a final graphic film (laminate of a decorative film and base film) was made by a common lamination process with commercially available laminators (for example: Crest Laminator).
- the base film was used as carrier whereby the colored or clear film was used as “overlaminate film”.
- the lamination speed was between 1 to 20 m/min or even higher.
- the lamination pressure was adjusted to prevent air entrapment and wrinkles formation.
- the lamination process was carried out at ambient room temperature.
- the base film was laminated with the following decorative PVC based films: Scotchcal 3630 (commercially available from 3M) designated film A and Scotchcal MKGO 1380 designated film B.
- the decorative PVC based films were tested without the base film as well.
- the base film I had a RT 90 that was about 2.4 times the RT 90 of the decorative PVC film.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Laminated Bodies (AREA)
- Adhesive Tapes (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13169841 | 2013-05-30 | ||
EP13169841.7A EP2808369B1 (en) | 2013-05-30 | 2013-05-30 | Base Film for Producing a Graphic Film |
EP13169841.7 | 2013-05-30 | ||
PCT/US2014/039653 WO2014193877A1 (en) | 2013-05-30 | 2014-05-28 | Base film for producing a graphic film |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160089857A1 US20160089857A1 (en) | 2016-03-31 |
US10668692B2 true US10668692B2 (en) | 2020-06-02 |
Family
ID=48520796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/893,192 Active 2034-09-14 US10668692B2 (en) | 2013-05-30 | 2014-05-28 | Base film for producing a graphic film |
Country Status (5)
Country | Link |
---|---|
US (1) | US10668692B2 (zh) |
EP (1) | EP2808369B1 (zh) |
JP (1) | JP2016525964A (zh) |
CN (1) | CN105264032B (zh) |
WO (1) | WO2014193877A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10647099B2 (en) * | 2016-05-12 | 2020-05-12 | The Boeing Company | Methods and apparatus to form venting channels on a panel for a decorative layer |
Citations (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2736721A (en) | 1952-10-08 | 1956-02-28 | Optionally | |
USRE24906E (en) | 1955-11-18 | 1960-12-13 | Pressure-sensitive adhesive sheet material | |
US4181752A (en) | 1974-09-03 | 1980-01-01 | Minnesota Mining And Manufacturing Company | Acrylic-type pressure sensitive adhesives by means of ultraviolet radiation curing |
US4418120A (en) | 1982-07-19 | 1983-11-29 | Minnesota Mining And Manufacturing Co. | Tackified crosslinked acrylic adhesives |
US4536441A (en) * | 1983-06-25 | 1985-08-20 | Beiersdorf Aktiengesellschaft | Adhesive tape |
US4833179A (en) | 1987-07-27 | 1989-05-23 | Minnesota Mining And Manufacturing Company | Suspension polymerization |
US4968562A (en) | 1990-02-27 | 1990-11-06 | Minnesota Mining And Manufacturing Company | Hollow acid-free acrylate polymeric microspheres having multiple small voids |
US4994322A (en) | 1989-09-18 | 1991-02-19 | Minnesota Mining And Manufacturing | Pressure-sensitive adhesive comprising hollow tacky microspheres and macromonomer-containing binder copolymer |
US5141790A (en) | 1989-11-20 | 1992-08-25 | Minnesota Mining And Manufacturing Company | Repositionable pressure-sensitive adhesive tape |
US5209971A (en) | 1989-09-06 | 1993-05-11 | Minnesota Mining And Manufacturing Company | Radiation curable polyolefin pressure sensitive adhesive |
EP0570515A1 (en) | 1991-02-06 | 1993-11-24 | Minnesota Mining & Mfg | HIGH SHEAR-STRENGTH REMOVABLE ADHESIVE SYSTEM. |
WO1994000525A1 (en) | 1992-06-26 | 1994-01-06 | Minnesota Mining And Manufacturing Company | Positionable and repositionable adhesive articles |
EP0617708A1 (en) | 1991-12-17 | 1994-10-05 | Minnesota Mining & Mfg | NON-ADHESIVE ACRYLATE ELASTOMER MICROSPHERES. |
WO1995013331A1 (en) | 1993-11-10 | 1995-05-18 | Minnesota Mining And Manufacturing Company | Pressure sensitive adhesives |
US5461134A (en) | 1986-06-20 | 1995-10-24 | Minnesota Mining And Manufacturing Company | Block copolymer, method of making the same, diamine precursors of the same, method of making such diamines and end products comprising the block copolymer |
WO1996001687A1 (en) | 1994-07-08 | 1996-01-25 | Exxon Research & Engineering Company | Zeolite layers with controlled crystal width and preferred orientation grown on a growth enhancing layer |
WO1998029516A1 (en) | 1996-12-31 | 1998-07-09 | Minnesota Mining And Manufacturing Company | Adhesives having a microreplicated topography and methods of making and using same |
WO1999045079A1 (en) | 1998-03-05 | 1999-09-10 | Omnova Solutions Inc. | Easily cleanable polymer laminates |
US6033737A (en) | 1998-02-13 | 2000-03-07 | Omnova Solutions Inc. | Embossable water based vinyl chloride polymer laminate |
US6086995A (en) * | 1994-05-13 | 2000-07-11 | Decora North America | Self-wound self-adhesive surface covering material |
EP1148116A1 (en) | 2000-04-14 | 2001-10-24 | Alticor Inc. | Hard surface cleaner |
EP1199251A1 (de) * | 2000-10-18 | 2002-04-24 | Chemetall GmbH | Verfahren zum automatisierten Überziehen eines Formkörpers mit einer Folie und Verwendung derartiger Formkörper |
JP2002219785A (ja) | 2001-01-25 | 2002-08-06 | Dainippon Ink & Chem Inc | 積層フィルムおよび化粧鋼板 |
US20030049415A1 (en) * | 2001-03-12 | 2003-03-13 | Pedginski James J. | Film constructions and methods |
US20030121600A1 (en) * | 2000-03-17 | 2003-07-03 | 3M Innovative Properties Company | Image graphic adhesive system using a non-tacky adhesive |
US20030178124A1 (en) | 1999-05-13 | 2003-09-25 | 3M Innovative Properties Company | Adhesive-backed articles |
US20040046151A1 (en) * | 2000-11-21 | 2004-03-11 | Saija Leo Mario | Formol-free crosslinked core-shell latex for textile |
US20050170126A1 (en) * | 2003-02-27 | 2005-08-04 | Shigeo Kawabata | Decorative film |
US20050175818A1 (en) * | 2002-03-01 | 2005-08-11 | Shigeo Kawabata | Decorative sheet and process for producing the same |
WO2005075591A1 (en) | 2004-02-02 | 2005-08-18 | 3M Innovative Properties Company | Method of producing colored graphic marking films |
JP2005288876A (ja) | 2004-03-31 | 2005-10-20 | Three M Innovative Properties Co | レセプターフィルム及びマーキングフィルム |
JP2006231778A (ja) | 2005-02-25 | 2006-09-07 | Three M Innovative Properties Co | グラフィックスフィルム及びグラフィックス製品 |
US20080299346A1 (en) * | 2007-06-04 | 2008-12-04 | Michael Richard Onderisin | Adhesive articles having repositionability or slidability characteristics |
US7691948B2 (en) | 2003-09-09 | 2010-04-06 | 3M Innovative Properties Company | (Meth)acrylic film, and making film and receptor sheet using the same |
US20100155288A1 (en) * | 2008-12-15 | 2010-06-24 | Alcan Technology & Management Ltd | Multi-layer laminate material |
US20100167038A1 (en) * | 2004-01-05 | 2010-07-01 | Sika Technology Ag | Protective film consisting of a hot-melt adhesive and method and device for applying said film |
US20100313455A1 (en) * | 2009-06-11 | 2010-12-16 | Se-Kwon Kim | Advertising sheet laminate |
US20110236648A1 (en) | 2010-03-26 | 2011-09-29 | 3M Innovative Properties Company | Overlaminate films and graphic articles containing them |
FR2959747A1 (fr) | 2010-05-05 | 2011-11-11 | Hexis | Film mince autoadhesif imprimable, apte a etre applique sur une surface tridimensionnelle d'un vehicule roulant |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19845235C2 (de) * | 1998-10-02 | 2002-05-16 | Ticona Gmbh | Verbundkörper aus Polyacetal und Styrol-Olefin-Elastomeren und Verfahren zu dessen Herstellung |
GB0122281D0 (en) * | 2001-09-14 | 2001-11-07 | Ici Plc | A container for roller-applied paint and its use in coating procedures for rough surfaces |
US6841895B1 (en) * | 2003-07-23 | 2005-01-11 | International Truck Intellectual Property Company, Llc | Configurable switch array |
US7662509B2 (en) * | 2004-10-29 | 2010-02-16 | Medtronic, Inc. | Lithium-ion battery |
US20080003406A1 (en) * | 2006-06-29 | 2008-01-03 | 3M Innovative Properties Company | Displaying Printed Images on Irregular Substrates |
CA2657698A1 (en) * | 2006-07-13 | 2008-01-17 | Cardiac Bio-Systems Inc. | Bio-electrode possessing a hydrophilic skin-contacting layer and an electrolyte substance |
US8370923B2 (en) * | 2008-07-29 | 2013-02-05 | Ncr Corporation | Access to a processing device |
-
2013
- 2013-05-30 EP EP13169841.7A patent/EP2808369B1/en active Active
-
2014
- 2014-05-28 CN CN201480031076.9A patent/CN105264032B/zh not_active Expired - Fee Related
- 2014-05-28 US US14/893,192 patent/US10668692B2/en active Active
- 2014-05-28 WO PCT/US2014/039653 patent/WO2014193877A1/en active Application Filing
- 2014-05-28 JP JP2016516748A patent/JP2016525964A/ja active Pending
Patent Citations (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2736721A (en) | 1952-10-08 | 1956-02-28 | Optionally | |
USRE24906E (en) | 1955-11-18 | 1960-12-13 | Pressure-sensitive adhesive sheet material | |
US4181752A (en) | 1974-09-03 | 1980-01-01 | Minnesota Mining And Manufacturing Company | Acrylic-type pressure sensitive adhesives by means of ultraviolet radiation curing |
US4418120A (en) | 1982-07-19 | 1983-11-29 | Minnesota Mining And Manufacturing Co. | Tackified crosslinked acrylic adhesives |
US4536441A (en) * | 1983-06-25 | 1985-08-20 | Beiersdorf Aktiengesellschaft | Adhesive tape |
US5461134A (en) | 1986-06-20 | 1995-10-24 | Minnesota Mining And Manufacturing Company | Block copolymer, method of making the same, diamine precursors of the same, method of making such diamines and end products comprising the block copolymer |
US4833179A (en) | 1987-07-27 | 1989-05-23 | Minnesota Mining And Manufacturing Company | Suspension polymerization |
US5209971A (en) | 1989-09-06 | 1993-05-11 | Minnesota Mining And Manufacturing Company | Radiation curable polyolefin pressure sensitive adhesive |
US4994322A (en) | 1989-09-18 | 1991-02-19 | Minnesota Mining And Manufacturing | Pressure-sensitive adhesive comprising hollow tacky microspheres and macromonomer-containing binder copolymer |
US5141790A (en) | 1989-11-20 | 1992-08-25 | Minnesota Mining And Manufacturing Company | Repositionable pressure-sensitive adhesive tape |
US4968562A (en) | 1990-02-27 | 1990-11-06 | Minnesota Mining And Manufacturing Company | Hollow acid-free acrylate polymeric microspheres having multiple small voids |
EP0570515A1 (en) | 1991-02-06 | 1993-11-24 | Minnesota Mining & Mfg | HIGH SHEAR-STRENGTH REMOVABLE ADHESIVE SYSTEM. |
EP0617708A1 (en) | 1991-12-17 | 1994-10-05 | Minnesota Mining & Mfg | NON-ADHESIVE ACRYLATE ELASTOMER MICROSPHERES. |
WO1994000525A1 (en) | 1992-06-26 | 1994-01-06 | Minnesota Mining And Manufacturing Company | Positionable and repositionable adhesive articles |
US5296277A (en) | 1992-06-26 | 1994-03-22 | Minnesota Mining And Manufacturing Company | Positionable and repositionable adhesive articles |
US5362516A (en) | 1992-06-26 | 1994-11-08 | Minnesota Mining And Manufacturing Company | Method of preparing an adhesive article |
WO1995013331A1 (en) | 1993-11-10 | 1995-05-18 | Minnesota Mining And Manufacturing Company | Pressure sensitive adhesives |
US6086995A (en) * | 1994-05-13 | 2000-07-11 | Decora North America | Self-wound self-adhesive surface covering material |
WO1996001687A1 (en) | 1994-07-08 | 1996-01-25 | Exxon Research & Engineering Company | Zeolite layers with controlled crystal width and preferred orientation grown on a growth enhancing layer |
EP0951518A1 (en) | 1996-12-31 | 1999-10-27 | Minnesota Mining And Manufacturing Company | Adhesives having a microreplicated topography and methods of making and using same |
WO1998029516A1 (en) | 1996-12-31 | 1998-07-09 | Minnesota Mining And Manufacturing Company | Adhesives having a microreplicated topography and methods of making and using same |
US6033737A (en) | 1998-02-13 | 2000-03-07 | Omnova Solutions Inc. | Embossable water based vinyl chloride polymer laminate |
WO1999045079A1 (en) | 1998-03-05 | 1999-09-10 | Omnova Solutions Inc. | Easily cleanable polymer laminates |
US20030178124A1 (en) | 1999-05-13 | 2003-09-25 | 3M Innovative Properties Company | Adhesive-backed articles |
US20030121600A1 (en) * | 2000-03-17 | 2003-07-03 | 3M Innovative Properties Company | Image graphic adhesive system using a non-tacky adhesive |
EP1148116A1 (en) | 2000-04-14 | 2001-10-24 | Alticor Inc. | Hard surface cleaner |
EP1199251A1 (de) * | 2000-10-18 | 2002-04-24 | Chemetall GmbH | Verfahren zum automatisierten Überziehen eines Formkörpers mit einer Folie und Verwendung derartiger Formkörper |
US20040046151A1 (en) * | 2000-11-21 | 2004-03-11 | Saija Leo Mario | Formol-free crosslinked core-shell latex for textile |
JP2002219785A (ja) | 2001-01-25 | 2002-08-06 | Dainippon Ink & Chem Inc | 積層フィルムおよび化粧鋼板 |
US20030049415A1 (en) * | 2001-03-12 | 2003-03-13 | Pedginski James J. | Film constructions and methods |
US20050175818A1 (en) * | 2002-03-01 | 2005-08-11 | Shigeo Kawabata | Decorative sheet and process for producing the same |
US20050170126A1 (en) * | 2003-02-27 | 2005-08-04 | Shigeo Kawabata | Decorative film |
US7691948B2 (en) | 2003-09-09 | 2010-04-06 | 3M Innovative Properties Company | (Meth)acrylic film, and making film and receptor sheet using the same |
US20100167038A1 (en) * | 2004-01-05 | 2010-07-01 | Sika Technology Ag | Protective film consisting of a hot-melt adhesive and method and device for applying said film |
WO2005075591A1 (en) | 2004-02-02 | 2005-08-18 | 3M Innovative Properties Company | Method of producing colored graphic marking films |
JP2005288876A (ja) | 2004-03-31 | 2005-10-20 | Three M Innovative Properties Co | レセプターフィルム及びマーキングフィルム |
JP2006231778A (ja) | 2005-02-25 | 2006-09-07 | Three M Innovative Properties Co | グラフィックスフィルム及びグラフィックス製品 |
US20080299346A1 (en) * | 2007-06-04 | 2008-12-04 | Michael Richard Onderisin | Adhesive articles having repositionability or slidability characteristics |
US20110111157A1 (en) | 2007-06-04 | 2011-05-12 | Avery Dennison Corporation | Adhesive articles having repositionability or slidability characteristics |
US20100155288A1 (en) * | 2008-12-15 | 2010-06-24 | Alcan Technology & Management Ltd | Multi-layer laminate material |
US20100313455A1 (en) * | 2009-06-11 | 2010-12-16 | Se-Kwon Kim | Advertising sheet laminate |
US20110236648A1 (en) | 2010-03-26 | 2011-09-29 | 3M Innovative Properties Company | Overlaminate films and graphic articles containing them |
FR2959747A1 (fr) | 2010-05-05 | 2011-11-11 | Hexis | Film mince autoadhesif imprimable, apte a etre applique sur une surface tridimensionnelle d'un vehicule roulant |
Non-Patent Citations (4)
Title |
---|
1507 Extended EP Search Report for EP13169841.7, PCT/US2014/039653, dated Nov. 22, 2013, 6 pgs. |
Encyclopedia of Polymer Science and Engineering, 1988, pp. 1-3. |
International Search Report for PCT International Application No. PCT/US2014/039653, dated Jul. 29, 2014, 3pgs. |
Satas, "Handbook of Pressure-Sensitive Adhesives", 1989, pp. 1-9. |
Also Published As
Publication number | Publication date |
---|---|
EP2808369B1 (en) | 2018-10-24 |
JP2016525964A (ja) | 2016-09-01 |
WO2014193877A1 (en) | 2014-12-04 |
EP2808369A1 (en) | 2014-12-03 |
US20160089857A1 (en) | 2016-03-31 |
CN105264032B (zh) | 2018-12-21 |
CN105264032A (zh) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2604664B1 (en) | Polyvinyl chloride adhesive film | |
AU2016273862B2 (en) | Laminate composition, film and related methods | |
US10259258B2 (en) | Adhesive film and method of making a graphic | |
US20180050522A1 (en) | Laminate composition, film and related methods | |
US9573164B2 (en) | Dry primer film composite and use thereof | |
KR102178351B1 (ko) | 점착 시트 | |
JP6717650B2 (ja) | 装飾部材の凹凸面に適用するための追従性粘着フィルム及びその製造方法 | |
EP2604444B1 (en) | Method of decorating a surface with discrete units of colored adhesive film | |
JP4364993B2 (ja) | マーキングフィルム | |
JP6092895B2 (ja) | 有色ポリ塩化ビニル接着フィルム | |
US10668692B2 (en) | Base film for producing a graphic film | |
JP2004255575A (ja) | 意匠性金属缶 | |
JP4839009B2 (ja) | 防汚性保護フィルム、防汚性粘着保護フィルム及び屋外用マーキングフィルム | |
KR20010086650A (ko) | 무상도(논클리어) 그라비아전사 프린트 강판의제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DANNEWITZ, VIKTOR;REEL/FRAME:037116/0647 Effective date: 20151106 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |