US10073118B2 - Method for contacting at least two metal electrodes and arrangement - Google Patents

Method for contacting at least two metal electrodes and arrangement Download PDF

Info

Publication number
US10073118B2
US10073118B2 US14/479,537 US201414479537A US10073118B2 US 10073118 B2 US10073118 B2 US 10073118B2 US 201414479537 A US201414479537 A US 201414479537A US 10073118 B2 US10073118 B2 US 10073118B2
Authority
US
United States
Prior art keywords
basic body
electrodes
hole
cable
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US14/479,537
Other languages
English (en)
Other versions
US20150069999A1 (en
Inventor
Stephan Buschnakowski
Alexander Serfling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Conducta GmbH and Co KG
Original Assignee
Endress and Hauser Conducta GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Conducta GmbH and Co KG filed Critical Endress and Hauser Conducta GmbH and Co KG
Assigned to ENDRESS + HAUSER CONDUCTA GESELLSCHAFT FUR MESS- UND REGELTECHNIK MBH + CO. KG reassignment ENDRESS + HAUSER CONDUCTA GESELLSCHAFT FUR MESS- UND REGELTECHNIK MBH + CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BUSCHNAKOWSKI, STEFAN, SERFLING, ALEXANDER
Publication of US20150069999A1 publication Critical patent/US20150069999A1/en
Assigned to ENDRESS+HAUSER CONDUCTA GMBH+CO. KG reassignment ENDRESS+HAUSER CONDUCTA GMBH+CO. KG CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG
Priority to US16/101,643 priority Critical patent/US10509055B2/en
Application granted granted Critical
Publication of US10073118B2 publication Critical patent/US10073118B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • G01N27/07Construction of measuring vessels; Electrodes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors

Definitions

  • the invention relates to a method for contacting at least two metal electrodes as well as an arrangement comprising a contacting of at least two metal electrodes.
  • the invention relates further to a conductivity sensor comprising such an arrangement.
  • a conductive conductivity sensor This includes at least two electrodes, which when measuring are immersed in the measured medium. For determining the electrolytic conductivity of the measured medium, the resistance or conductance of the electrode measuring path in the measured medium is determined. In the case of known cell constant, the conductivity of the measured medium can then be ascertained therefrom.
  • the electrodes are connected by means of a line or cable with a measurement transmitter, in which the conductivity is ascertained based on the measurement data.
  • the contacting of the electrodes to the line will now be explained based on FIG. 1 .
  • the electrodes 3 contact the measured medium at their ends 8 and extend from there rearwards through the basic body 2 and out the other side.
  • the electrodes are there provided with connections 11 , which are, in turn, connected with the measurement transmitter.
  • connections 11 are either special plug- or screw contacts or in the simplest case cable is soldered to the connections 11 . In both cases it is, however, necessary that the electrodes protrude out from the basic body. Since, most often, platinum is used as electrode material, this is very expensive.
  • An object of the invention is to provide a cost saving solution for contacting electrodes.
  • the object is achieved by a method, an arrangement and a conductivity sensor comprising such an arrangement.
  • the object is achieved in the context of features including that at least two metal electrodes are located in a cavity of a basic body of sintered ceramic and frontal end faces of the metal electrodes are arranged essentially planparallel to an outer surface of the basic body.
  • the method includes steps as follows: introducing a solder means into at least one hole of the basic body, wherein the hole is so embodied that it leads to a rear portion of a metal electrode away from the frontal end face of the metal electrode, wherein the solder means can wet the rear portion of the metal electrode, wherein the metal electrodes are in their longitudinal direction shorter than the basic body, especially have only 1 ⁇ 5 of the length of the basic body; introducing a cable into the hole at least until the cable extends into the solder means; and heating the basic body with solder means and cable above the solidification temperature of the solder means.
  • the solder means is injected by means of air pressure into the hole. It is therewith possible to move the solder means into the hole right up to the rear end face of the metal electrode.
  • a cartridge or cannula with a length, which corresponds at least to the depth of the hole can be used.
  • the hole is half filled with solder means. This has proven to be a sufficient amount for a stable contacting.
  • solder paste is used as solder means and the basic body, with solder means and cable, is heated above the melting temperature of the solder paste.
  • electrically conductive adhesive is used as solder means and the basic body, with solder means and cable, is heated above the curing temperature of the electrically conductive adhesive.
  • the object is achieved by an arrangement comprising: a basic body of sintered ceramic; at least two metal electrodes, wherein the metal electrodes are located in a cavity in the basic body and at least the frontal end faces of the metal electrodes are arranged essentially planparallel to an outer surface of the basic body, wherein the metal electrodes are shorter than the basic body, especially they are only 1 ⁇ 5 of the length of the basic body, wherein the basic body has at least one hole, wherein the hole is so embodied that it leads to a rear portion of a metal electrode away from the frontal end face of the metal electrode; at least one cable, which extends into the hole, wherein a solder means, especially a solder paste, or an electrically conductive adhesive, connects the cable with the metal electrode electrically and mechanically.
  • a solder means especially a solder paste, or an electrically conductive adhesive
  • the end faces of the metal electrodes are planparallel to one another and/or to an outer surface of the basic body, while the end faces can be offset rearwards within the hole or extend frontally beyond the basic body.
  • the end faces of the metal electrodes are arranged flushly with the outer surface of the basic body. This facilitates a hygienic embodiment.
  • the metal electrodes can contact the surrounding medium.
  • the ceramic is zirconium dioxide and the metal electrodes are platinum electrodes.
  • the zirconium dioxide is magnesium-, aluminum- or iridium stabilized.
  • At least one metal electrode is embodied as a cylinder, whose height essentially equals its diameter.
  • at least one metal electrode is embodied as a hollow cylinder, whose height essentially equals its lateral thickness.
  • An embodiment as a cylinder is especially advantageous, although other shapes, such as cuboid or especially cube, provide other options.
  • metal electrodes are provided and the metal electrodes are embodied as cylinders, or the metal electrodes are embodied as hollow cylinders, wherein the hollow cylinders are arranged concentrically.
  • metal electrodes are provided and the metal electrodes are embodied as cylinders, wherein the cylinders are arranged in a row, or at least three metal electrodes are embodied as hollow cylinders, wherein the hollow cylinders are arranged concentrically and one metal electrode is arranged as a cylinder in the center of the hollow cylinders.
  • the cable includes an insulation, especially a polytetrafluoroethylene coating, wherein the insulation is removed in the part of the cable contacting the solder means.
  • the object is further achieved by a conductivity sensor, especially by a conductive conductivity sensor, comprising an arrangement as described above.
  • FIG. 1 the state of the art
  • FIG. 2 is, in cross section, a first embodiment of the arrangement of the invention.
  • FIG. 3 is, in cross section, a second embodiment of the arrangement of the invention.
  • the arrangement of the invention bears in its totality the reference character 1 and is presented in FIG. 1 .
  • the invention will be explained based on a conductivity sensor, especially based on a conductive conductivity sensor.
  • the basic idea is, however, applicable also to other types of sensors that use metal electrodes.
  • Other options include the most varied of sensors from the field of process automation, such as, for instance, pH-sensors, amperometric sensors, etc.
  • FIGS. 2 and 3 show a conductivity sensor, with a basic body 2 of a ceramic such as, for instance, zirconium dioxide, thus generally of an electrically non-conductive material.
  • the zirconium dioxide is magnesium-, aluminum- or iridium stabilized.
  • metal electrodes 3 Embedded in the basic body 2 , more exactly in a cavity 10 thereof, are metal electrodes 3 , for instance, of platinum.
  • the electrodes 3 and the basic body 2 form a composite material, i.e. are, for instance, sintered together. In this way, no measured medium can penetrate into the interior of the basic body 2 .
  • the frontal end faces of the electrodes 3 lie freely exposed and in the case of a measuring of conductivity contact the measured medium.
  • the end faces of the electrodes 3 and the end faces of the basic body are flush with one another, i.e. lie in the same plane.
  • the electrodes can also protrude out from the basic body 2 or be arranged sunken in the basic body 2 .
  • the arrangement 1 shown in FIGS. 2 and 3 forms the measuring probe of a so-called 4-electrode sensor.
  • the probe is immersible in a measured medium.
  • Two of the electrodes 3 especially two electrodes 3 directly adjoining one another, are operated as so called electrical current electrodes.
  • the two remaining electrodes 3 are operated as so called voltage electrodes.
  • An alternating voltage is applied between the two electrical current electrodes in measurement operation and therewith an alternating electrical current is caused to flow in the measured medium. Measured, especially by a currentless measuring, between the voltage electrodes is the resulting potential difference.
  • the impedance of the conductivity measurement cell formed by immersion of the arrangement 1 in a measured medium is calculated, from which, taking into consideration the cell constant, the specific resistance, respectively the conductivity, of the measured medium can be ascertained.
  • a measurement transmitter (not shown) connected with the arrangement 1 .
  • the connection is accomplished, for instance, via connections 11 .
  • the measuring electronics can be a component of the measurement transmitter or be at least partially accommodated in a separate module, for example, in a plug head connected with the arrangement 1 .
  • the ascertained measured values can either be displayed by the measurement transmitter or output to a superordinated control system. Alternatively to a measurement transmitter, the measured values can also be transmitted directly to a bus; in that way, the arrangement is directly connected with the control system.
  • a 2-electrode sensor provides an option.
  • the construction is, in such case, basically equal.
  • a 2-electrode sensor in measurement operation, an alternating voltage is applied to the two electrodes 3 .
  • the impedance of the conductivity measurement cell formed by the measuring probe immersed in the measured medium is ascertained.
  • the specific resistance, respectively the specific conductivity, of the measured medium can be ascertained therefrom.
  • the ascertained measured values can either be displayed by the measurement transmitter or output to a superordinated control system.
  • a part of the functions of the measurement transmitter can be executed by a measuring electronics accommodated in a separate housing outside of the measurement transmitter. This measuring electronics can at least in part, be accommodated, for example, in a plug head connected with the arrangement 1 .
  • FIG. 2 respectively FIG. 3 , for reasons of perspicuity, only one of the electrodes is provided with reference characters.
  • the electrodes 2 are embodied as cylinders. Compared with the length of the basic body, the electrodes are very much shorter. They are, for instance, only 1 ⁇ 5 of the length of the basic body. As an example, the basic body 2 has a height of 10 mm. The electrodes 2 then have a length of, for instance, 1 mm to 3 mm, for example, 2 mm or less, for instance, 1.5 mm.
  • FIG. 3 shows an alternative embodiment for conductive conductivity measurement, in the case of which the electrodes 3 are hollow cylinders arranged coaxially about a shared rotational symmetry axis A and embedded insulated from one another in the basic body 2 .
  • the central electrode 3 is embodied as a solid cylinder.
  • the electrodes 3 lie on the end face 8 of the basic body 2 with their annular end faces freely exposed.
  • the height of the hollow cylinders essentially equals their wall thickness. Compared with the length of the basic body 2 , thus, also in this embodiment, the electrodes 3 are clearly shorter.
  • Holes 9 lead from the rear-side of the basic body to the electrodes 3 .
  • solder means 6 is introduced into these holes 9 .
  • Used for this procedure is, for instance, a cartridge or cannula with a length equaling at least the depth of the holes 9 .
  • the solder means 6 can wet at least the electrode 3 . It has been found to be advantageous to fill the holes 9 , for instance, half way with solder means 6 .
  • the solder means is a solder paste or a conductive adhesive.
  • the cable has an insulation 5 , for example, of Teflon polymer, which is, however, removed from the part of the cable 4 contacting the solder means.
  • the basic body 2 with the cable 4 and the solder means 6 is heated above the solidification temperature of the solder means 6 .
  • This can be accomplished, for instance, in a furnace, for example, in a high frequency oven. Alternatively, a heated support can be used.
  • the solidification temperature is understood to be the melting temperature of the solder paste.
  • the individual particles of the paste melt and coalesce and, in each case, upon cooling form a mechanically stable connection as well as an electrical connection of electrode 3 to cable 4 .
  • a typical melting temperature is, for instance, 260° C.
  • the solidification temperature is understood to be the curing temperature of the adhesive.
  • the melting of the solder means 6 leads to an electrical (low ohm) and mechanical connection between electrode 2 and cable 4 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
US14/479,537 2013-09-12 2014-09-08 Method for contacting at least two metal electrodes and arrangement Expired - Fee Related US10073118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/101,643 US10509055B2 (en) 2013-09-12 2018-08-13 Method for contacting at least two metal electrodes and arrangement

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013110044.9 2013-09-12
DE102013110044 2013-09-12
DE201310110044 DE102013110044A1 (de) 2013-09-12 2013-09-12 Verfahren zur Kontaktierung von zumindest zwei Metallelektroden und Anordnung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/101,643 Division US10509055B2 (en) 2013-09-12 2018-08-13 Method for contacting at least two metal electrodes and arrangement

Publications (2)

Publication Number Publication Date
US20150069999A1 US20150069999A1 (en) 2015-03-12
US10073118B2 true US10073118B2 (en) 2018-09-11

Family

ID=52478384

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/479,537 Expired - Fee Related US10073118B2 (en) 2013-09-12 2014-09-08 Method for contacting at least two metal electrodes and arrangement
US16/101,643 Expired - Fee Related US10509055B2 (en) 2013-09-12 2018-08-13 Method for contacting at least two metal electrodes and arrangement

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/101,643 Expired - Fee Related US10509055B2 (en) 2013-09-12 2018-08-13 Method for contacting at least two metal electrodes and arrangement

Country Status (3)

Country Link
US (2) US10073118B2 (de)
CN (1) CN104459332B (de)
DE (1) DE102013110044A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015212655A1 (de) * 2015-07-07 2017-01-12 Gestra Ag Messsonde zum Erfassen mindestens einer Messgröße eines Fluids
DE102016117984B4 (de) * 2016-09-23 2021-02-18 Kuntze Instruments Gmbh Vergussverfahren zum Anbringen von mindestens zwei Elektroden an einer elektrochemischen Messzelle mit einem ablösbaren Montagehilfsträger
CN106645306A (zh) * 2017-02-09 2017-05-10 中国科学院计算技术研究所 电导率传感器的电极装置
CN108318536B (zh) * 2018-02-02 2020-03-31 张立红 智能在线分析仪探头
CN109142462B (zh) * 2018-06-22 2021-05-04 思贝科斯(北京)科技有限公司 电导探针及其制造方法
EP3599471A1 (de) * 2018-07-26 2020-01-29 IMEC vzw Vorrichtung zur messung von oberflächeneigenschaften eines materials
JP2021503591A (ja) * 2018-11-02 2021-02-12 ハンズ レーザー テクノロジー インダストリー グループ カンパニー リミテッド 品質検査装置、方法、システム及び一体型プローブ組立体
CN109596677A (zh) * 2018-11-02 2019-04-09 大族激光科技产业集团股份有限公司 一种质量检测装置、方法、系统及一体式探针组件
DE102019110920A1 (de) * 2019-04-26 2020-10-29 Jumo Gmbh & Co. Kg Messelektrode für elektrochemische Messungen und Verfahren zur Herstellung einer Messelektrode

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118663A (en) 1977-10-11 1978-10-03 Thomas-Barben Instruments Four electrode conductivity sensor
US4227151A (en) 1977-08-27 1980-10-07 Malcom-Ellis (Liverpool) Limited Measurement and monitoring of the electrical conductivity of liquor samples
DE3010470A1 (de) 1980-03-19 1981-10-01 Dr. Eduard Fresenius, Chemisch-pharmazeutische Industrie KG, 6380 Bad Homburg Verfahren zur herstellung eines elektrochemischen messfuehlers
US5025219A (en) * 1988-09-20 1991-06-18 Pechiney Recherche Apparatus and method continuous measurement of the electrical conductivity of liquid media in a dynamic cell
US5489849A (en) * 1994-03-14 1996-02-06 Massachusetts Institute Of Technology High accuracy calibration-free electrical parameter measurements using differential measurement with respect to immersion depth
EP1089072A2 (de) 1999-09-28 2001-04-04 PharmaSerV Marburg GmbH & Co. KG Leitfähigkeitssensor
JP2002296312A (ja) 2001-04-02 2002-10-09 Samson Co Ltd 電気伝導率センサ
US20040071945A1 (en) * 2001-08-10 2004-04-15 Yasutaka Ito Ceramic joint body
US20050045618A1 (en) * 2001-07-09 2005-03-03 Ibiden Co., Ltd. Ceramic heater and ceramic joined article
DE102005016798A1 (de) 2005-04-12 2006-10-19 Robert Bosch Gmbh Brennstoffeinspritzventil
CN101147056A (zh) 2005-04-01 2008-03-19 罗斯蒙德分析公司 电导率传感器及其制造方法
CN102539932A (zh) 2010-10-19 2012-07-04 恩德莱斯和豪瑟尔测量及调节技术分析仪表两合公司 电导率传感器
DE202012000569U1 (de) 2012-01-20 2013-04-23 Seuffer Gmbh & Co.Kg Sensorvorrichtung zur Erfassung von Flüssigkeitseigenschaften
US20130098976A1 (en) * 2011-10-19 2013-04-25 Lotes Co., Ltd. Method for forming electrical connector
DE102011117115A1 (de) 2011-10-27 2013-05-02 Kurt-Schwabe-Institut für Mess- und Sensortechnik e.V. Meinsberg Elektrochemischer Multisensor
US20140224860A1 (en) * 2013-02-11 2014-08-14 International Business Machines Corporation Fill head interface with combination vacuum pressure chamber

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013688A2 (en) * 2000-08-16 2002-02-21 Cook Vascular Incorporated Doppler probe with shapeable portion
US6720773B2 (en) * 2002-08-26 2004-04-13 Neil L. Brown 4-electrode conductivity sensor with zero external field
DE102008054659A1 (de) * 2008-12-15 2010-06-17 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Konduktiver Leitfähigkeitssensor

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4227151A (en) 1977-08-27 1980-10-07 Malcom-Ellis (Liverpool) Limited Measurement and monitoring of the electrical conductivity of liquor samples
US4118663A (en) 1977-10-11 1978-10-03 Thomas-Barben Instruments Four electrode conductivity sensor
DE3010470A1 (de) 1980-03-19 1981-10-01 Dr. Eduard Fresenius, Chemisch-pharmazeutische Industrie KG, 6380 Bad Homburg Verfahren zur herstellung eines elektrochemischen messfuehlers
US5025219A (en) * 1988-09-20 1991-06-18 Pechiney Recherche Apparatus and method continuous measurement of the electrical conductivity of liquid media in a dynamic cell
US5489849A (en) * 1994-03-14 1996-02-06 Massachusetts Institute Of Technology High accuracy calibration-free electrical parameter measurements using differential measurement with respect to immersion depth
EP1089072A2 (de) 1999-09-28 2001-04-04 PharmaSerV Marburg GmbH & Co. KG Leitfähigkeitssensor
JP2002296312A (ja) 2001-04-02 2002-10-09 Samson Co Ltd 電気伝導率センサ
US20050045618A1 (en) * 2001-07-09 2005-03-03 Ibiden Co., Ltd. Ceramic heater and ceramic joined article
US20040071945A1 (en) * 2001-08-10 2004-04-15 Yasutaka Ito Ceramic joint body
CN101147056A (zh) 2005-04-01 2008-03-19 罗斯蒙德分析公司 电导率传感器及其制造方法
DE102005016798A1 (de) 2005-04-12 2006-10-19 Robert Bosch Gmbh Brennstoffeinspritzventil
WO2006108739A1 (de) 2005-04-12 2006-10-19 Robert Bosch Gmbh Brennstoffeinspritzventil
CN102539932A (zh) 2010-10-19 2012-07-04 恩德莱斯和豪瑟尔测量及调节技术分析仪表两合公司 电导率传感器
US20130098976A1 (en) * 2011-10-19 2013-04-25 Lotes Co., Ltd. Method for forming electrical connector
DE102011117115A1 (de) 2011-10-27 2013-05-02 Kurt-Schwabe-Institut für Mess- und Sensortechnik e.V. Meinsberg Elektrochemischer Multisensor
DE202012000569U1 (de) 2012-01-20 2013-04-23 Seuffer Gmbh & Co.Kg Sensorvorrichtung zur Erfassung von Flüssigkeitseigenschaften
US20130214797A1 (en) 2012-01-20 2013-08-22 Seuffer gmbH & Co. KG Sensor apparatus for detecting properties of liquid
US20140224860A1 (en) * 2013-02-11 2014-08-14 International Business Machines Corporation Fill head interface with combination vacuum pressure chamber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
German Search Report, German PTO, Munich, dated Sep. 25, 2013.

Also Published As

Publication number Publication date
US20180348258A1 (en) 2018-12-06
DE102013110044A1 (de) 2015-03-12
CN104459332B (zh) 2018-03-13
US10509055B2 (en) 2019-12-17
CN104459332A (zh) 2015-03-25
US20150069999A1 (en) 2015-03-12

Similar Documents

Publication Publication Date Title
US10509055B2 (en) Method for contacting at least two metal electrodes and arrangement
JP6804367B2 (ja) センサ素子及びガスセンサ
US3468780A (en) Apparatus for determining the oxygen content of molten metal
JP6761774B2 (ja) センサ素子及びガスセンサ
JP2018173320A (ja) ガスセンサ
JP2018173318A (ja) ガスセンサ
JP5996981B2 (ja) ガスセンサ素子、及びガスセンサ
JP2020094899A (ja) ガスセンサ
JP7339913B2 (ja) センサ素子及びガスセンサ
EP0056585A2 (de) Gassensor mit Leitern in einem isolierenden und hermetisch dichten Träger
JP6934511B2 (ja) センサ素子及びガスセンサ
CN110031532A (zh) 电化学传感器
CA2709206C (en) Assembly for measurement of a metal level in a reduction cell
CN219108736U (zh) 用于气雾生成装置的电阻加热器及气雾生成装置
CN104101636A (zh) A/f传感器元件及其制造方法
JP2018021821A (ja) ガスセンサ素子およびガスセンサ素子の製造方法
CN112083052B (zh) 电位计探针
JP2016125890A (ja) ガスセンサ素子およびガスセンサ
US20210055253A1 (en) Method of manufacturing a sensor element and ion-selective electrode
CN212207194U (zh) 一种去应力弧形空气腔道氧传感器
CN112505124A (zh) 一种提高燃气热水器燃烧效率和排放标准的氧传感器
CN112415064B (zh) 制造用于电位传感器的传感器元件的方法
JP2020165965A (ja) センサ素子及びガスセンサ
CN112567237A (zh) 电位计式测量链和测定pH值的方法
JP3706856B2 (ja) 液面センサ

Legal Events

Date Code Title Description
AS Assignment

Owner name: ENDRESS + HAUSER CONDUCTA GESELLSCHAFT FUR MESS- U

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BUSCHNAKOWSKI, STEFAN;SERFLING, ALEXANDER;REEL/FRAME:033687/0714

Effective date: 20140701

AS Assignment

Owner name: ENDRESS+HAUSER CONDUCTA GMBH+CO. KG, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:ENDRESS + HAUSER CONDUCTA GESELLSCHAFT FUER MESS- UND REGELTECHNIK MBH + CO. KG;REEL/FRAME:046745/0039

Effective date: 20150826

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20220911