UA118867C2 - Індукційний нагрівальний пристрій, система подачі аерозолю, яка містить індукційний нагрівальний пристрій, та спосіб її експлуатації - Google Patents
Індукційний нагрівальний пристрій, система подачі аерозолю, яка містить індукційний нагрівальний пристрій, та спосіб її експлуатації Download PDFInfo
- Publication number
- UA118867C2 UA118867C2 UAA201609383A UAA201609383A UA118867C2 UA 118867 C2 UA118867 C2 UA 118867C2 UA A201609383 A UAA201609383 A UA A201609383A UA A201609383 A UAA201609383 A UA A201609383A UA 118867 C2 UA118867 C2 UA 118867C2
- Authority
- UA
- Ukraine
- Prior art keywords
- aerosol
- current
- forming substrate
- heating device
- temperature
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 106
- 238000000034 method Methods 0.000 title claims description 22
- 230000001939 inductive effect Effects 0.000 title abstract description 7
- 239000000758 substrate Substances 0.000 claims abstract description 131
- 230000007423 decrease Effects 0.000 claims abstract description 32
- 239000003990 capacitor Substances 0.000 claims abstract description 15
- 230000006698 induction Effects 0.000 claims description 87
- 239000000443 aerosol Substances 0.000 claims description 62
- 230000000391 smoking effect Effects 0.000 claims description 24
- 241000208125 Nicotiana Species 0.000 claims description 17
- 235000002637 Nicotiana tabacum Nutrition 0.000 claims description 17
- 239000007787 solid Substances 0.000 claims description 10
- 229910001220 stainless steel Inorganic materials 0.000 claims description 10
- 239000010935 stainless steel Substances 0.000 claims description 10
- 238000004804 winding Methods 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 8
- 230000002045 lasting effect Effects 0.000 claims 2
- 101100314454 Caenorhabditis elegans tra-1 gene Proteins 0.000 claims 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims 1
- 206010010071 Coma Diseases 0.000 claims 1
- 241000087799 Koma Species 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 239000000463 material Substances 0.000 description 16
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 10
- 230000005669 field effect Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 229910000984 420 stainless steel Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 4
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 238000003032 molecular docking Methods 0.000 description 3
- 229960002715 nicotine Drugs 0.000 description 3
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 150000005846 sugar alcohols Polymers 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 239000010965 430 stainless steel Substances 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- ZDJFDFNNEAPGOP-UHFFFAOYSA-N dimethyl tetradecanedioate Chemical compound COC(=O)CCCCCCCCCCCCC(=O)OC ZDJFDFNNEAPGOP-UHFFFAOYSA-N 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 2
- 229910000825 440 stainless steel Inorganic materials 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 238000012550 audit Methods 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- IZMOTZDBVPMOFE-UHFFFAOYSA-N dimethyl dodecanedioate Chemical compound COC(=O)CCCCCCCCCCC(=O)OC IZMOTZDBVPMOFE-UHFFFAOYSA-N 0.000 description 1
- 230000003670 easy-to-clean Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/46—Shape or structure of electric heating means
- A24F40/465—Shape or structure of electric heating means specially adapted for induction heating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/06—Inhaling appliances shaped like cigars, cigarettes or pipes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/06—Control, e.g. of temperature, of power
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/10—Chemical features of tobacco products or tobacco substitutes
- A24B15/16—Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
- A24B15/167—Chemical features of tobacco products or tobacco substitutes of tobacco substitutes in liquid or vaporisable form, e.g. liquid compositions for electronic cigarettes
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/46—Shape or structure of electric heating means
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/50—Control or monitoring
- A24F40/51—Arrangement of sensors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/50—Control or monitoring
- A24F40/53—Monitoring, e.g. fault detection
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/50—Control or monitoring
- A24F40/57—Temperature control
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/90—Arrangements or methods specially adapted for charging batteries thereof
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/217—Class D power amplifiers; Switching amplifiers
- H03F3/2176—Class E amplifiers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B1/00—Details of electric heating devices
- H05B1/02—Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
- H05B1/0227—Applications
- H05B1/023—Industrial applications
- H05B1/0244—Heating of fluids
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B1/00—Details of electric heating devices
- H05B1/02—Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
- H05B1/0227—Applications
- H05B1/0252—Domestic applications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/04—Sources of current
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/105—Induction heating apparatus, other than furnaces, for specific applications using a susceptor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/105—Induction heating apparatus, other than furnaces, for specific applications using a susceptor
- H05B6/108—Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/36—Coil arrangements
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/20—Devices using solid inhalable precursors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/021—Heaters specially adapted for heating liquids
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2206/00—Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
- H05B2206/02—Induction heating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2206/00—Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
- H05B2206/02—Induction heating
- H05B2206/023—Induction heating using the curie point of the material in which heating current is being generated to control the heating temperature
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Anesthesiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pulmonology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Power Engineering (AREA)
- General Induction Heating (AREA)
- Air-Conditioning For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Індукційний нагрівальний пристрій (1) для нагрівання субстрату (20), що утворює аерозоль, який містить струмоприймач (21), містить: - корпус (10) пристрою, - джерело (11) живлення постійного струму для забезпечення напруги постійного струму(VDC) і сили постійного струму (IDC), - електронні схеми (13) подачі живлення, що містять перетворювач (132) постійного струму на змінний, що містить ланцюг (1323) індуктивно-ємнісного навантаження, який містить послідовне з'єднання конденсатора (С2) і індуктора (L2), що має омічний опір (Rкотушки), - порожнину (14) у корпусі (10) пристрою для розміщення частини субстрату (20), що утворює аерозоль, для індуктивного приєднання індуктора (L2) до струмоприймача (21). Електронні схеми (13) подачі живлення додатково містять мікроконтролер (131), запрограмований визначати за напругою постійного струму (VDC) і за силою постійного струму (IDC) уявний омічний опір (Ra), і за уявним омічним опором (Ra) температуру (Т) струмоприймача (21). Він також запрограмований відстежувати зміни уявного омічного опору (Ra) і виявляти затяжку при визначенні зменшення уявного омічного опору (Ra), яке є характерним для зниження температури струмоприймача (21) при вдиханні користувачем.
Description
Даний винахід відноситься до індукційного нагрівального пристрою для нагрівання субстрату, що утворює аерозоль. Даний винахід також відноситься до системи подачі аерозолю, яка містить такий індукційний нагрівальний пристрій. Даний винахід додатково відноситься до способу експлуатації такої системи подачі аерозолю.
У відомому рівні техніки існують системи подачі аерозолю, які містять субстрат, що утворює аерозоль, зазвичай тютюновмісний штранг. Для нагрівання тютюнового штранга до температури, при якій він здатний вивільняти леткі компоненти, здатні утворювати аерозоль, нагрівальний елемент, такий як нагрівальна пластина (зазвичай виготовлена з металу), вставлений у тютюновий штранг. Температура нагрівальної пластини, що безпосередньо контактує із субстратом, що утворює аерозоль (тютюновим штрангом), визначена як така, що представляє собою температуру субстрату, що утворює аерозоль. Температура нагрівальної пластини розраховується за допомогою відомої залежності між омічним опором нагрівальної пластини та температурою нагрівальної пластини. Отже, при нагріванні температуру нагрівальної пластини можна визначити в будь-який час у ході сеансу паління за допомогою відстеження омічного опору нагрівальної пластини (наприклад, за допомогою вимірювання напруги та сили струму). Завдяки можливості визначення температури в будь-який час у ході сеансу паління, також можливо визначати, коли користувач робить затяжки в ході сеансу паління, оскільки під час затяжки холодне повітря тече поверх пластини, що резистивно нагрівається, що приводить до тимчасового зниження температури пластини, яке може бути виявлене.
Інші системи подачі аерозолю містять індукційний нагрівальний пристрій замість нагрівальної пластини. Індукційний нагрівальний пристрій містить індуктор, розташований у тепловій близькості від субстрату, що утворює аерозоль, і субстрат, що утворює аерозоль, містить струмоприймач. Змінне магнітне поле індуктора створює вихрові струми та втрати на гістерезис у струмоприймачі, змушуючи струмоприймач нагрівати субстрат, що утворює аерозоль, до температури, при якій він здатний вивільняти леткі компоненти, здатні утворювати аерозоль. Оскільки нагрівання струмоприймача здійснюється безконтактним чином, не існує прямого способу вимірювання температури субстрату, що утворює аерозоль. Із цієї причини також складно визначити, коли користувач робить затяжки в ході сеансу паління.
Зо Проте, також було б бажано мати можливість визначення виконання затяжки в ході сеансу паління, коли субстрат, що утворює аерозоль, індуктивно нагрівається. Таким чином, існує потреба в індукційному нагрівальному пристрої для нагрівання субстрату, що утворює аерозоль, що дозволяє визначати виконання затяжки. Також існує потреба в системі подачі аерозолю, яка передбачає вимірювання температури субстрату, що утворює аерозоль.
У даному винаході пропонується індукційний нагрівальний пристрій для нагрівання субстрату, що утворює аерозоль, який містить струмоприймач. Індукційний нагрівальний пристрій згідно з винаходом містить: - корпус пристрою - джерело живлення постійного струму, яке при експлуатації забезпечує напругу постійного струму та силу постійного струму, - електронні схеми подачі живлення, виконані з можливістю роботи на високій частоті, при цьому електронні схеми подачі живлення містять перетворювач постійного струму на змінний, підключений до джерела живлення постійного струму, при цьому перетворювач постійного струму на змінний містить ланцюг індуктивно-ємнісного навантаження, виконаний з можливістю роботи з низьким омічним навантаженням, при цьому ланцюг індуктивно-ємнісного навантаження містить послідовне з'єднання конденсатора й індуктора, що має омічний опір, - порожнину, розташовану в корпусі пристрою, при цьому порожнина має внутрішню поверхню, форма якої дозволяє розміщати щонайменше частину субстрату, що утворює аерозоль, при цьому порожнина розташована таким чином, щоб при розміщенні частини субстрату, що утворює аерозоль, у порожнини, індуктор ланцюга індуктивно-ємнісного навантаження індуктивно з'єднувався зі струмоприймачем субстрату, що утворює аерозоль, при експлуатації.
Електронні схеми подачі живлення додатково містять мікроконтролер, запрограмований на те, щоб при експлуатації визначати за напругою постійного струму джерела живлення постійного струму та за силою постійного струму, одержуваного із джерела живлення постійного струму, уявний омічний опір, і додатково запрограмований на те, щоб при експлуатації визначати за уявним омічним опором температуру струмоприймача субстрату, що утворює аерозоль. Мікроконтролер додатково запрограмований на відстеження змін уявного омічного опору та на виявлення затяжки при визначенні зменшення уявного омічного опору, яке є характерним для зниження температури струмоприймача при вдиханні користувачем.
Субстрат, що утворює аерозоль, переважно є субстратом, здатним вивільняти леткі сполуки, які можуть утворювати аерозоль. Леткі сполуки вивільняються шляхом нагрівання субстрату, що утворює аерозоль. Субстрат, що утворює аерозоль, може бути твердим або рідким або містити як тверді, так і рідкі компоненти. У переважному варіанті здійснення субстрат, що утворює аерозоль, є твердим.
Субстрат, що утворює аерозоль, може містити нікотин. Нікотиновмісний субстрат, що утворює аерозоль, може бути матрицею із солі нікотину. Субстрат, що утворює аерозоль, може містити матеріал рослинного походження. Субстрат, що утворює аерозоль, може містити тютюн і, переважно, тютюновмісний матеріал містить леткі сполуки зі смаком і ароматом тютюну, які вивільняються із субстрату, що утворює аерозоль, при нагріванні.
Субстрат, що утворює аерозоль, може містити гомогенізований тютюновий матеріал.
Гомогенізований тютюновий матеріал може бути утворений за допомогою агломерації частинок тютюну. При наявності, гомогенізований тютюновий матеріал може мати такий вміст речовини для утворення аерозолю, який є рівним або перевищує 5 95 за сухою вагою, і переважно від більш ніж 5 95 до 30 ваг. 95 за сухою вагою.
Субстрат, що утворює аерозоль, у якості альтернативи може містити матеріал, що не містить тютюну. Субстрат, що утворює аерозоль, може містити гомогенізований матеріал рослинного походження.
Субстрат, що утворює аерозоль, може містити щонайменше одну речовину для утворення аерозолю. Речовина для утворення аерозолю може бути будь-якою придатною відомою сполукою або сумішшю сполук, які при використанні сприяють утворенню щільного та стійкого аерозолю і які при робочій температурі пристрою, що генерує аерозоль, по суті мають стійкість до термічної деградації. Придатні речовини для утворення аерозолю добре відомі з рівня техніки та включають без обмеження: багатоатомні спирти, такі як триетиленгліколь, 1,3- бутандіол і гліцерин; естери багатоатомних спиртів, такі як гліцерол моно-, ді- або триацетат; і аліфатичні естери моно-, ді- або полікарбонових кислот, такі як диметилдодекандісат і диметилтетрадекандіоат. Особливо переважними речовинами для утворення аерозолю є багатоатомні спирти або їх суміші, такі як триетиленгліколь, 1,3-бутандіол і, найбільш переважно, гліцерин. Субстрат, що утворює аерозоль, може містити інші добавки та інгредієнти,
Зо такі як ароматизатори. Субстрат, що утворює аерозоль, переважно містить нікотин і щонайменше одну речовину для утворення аерозолю. В особливо переважному варіанті здійснення речовина для утворення аерозолю є гліцерином.
Джерело живлення постійного струму зазвичай може містити будь-яке придатне джерело живлення постійного струму, що містить, зокрема, блок живлення, що підключається до електромережі, одну або кілька одноразових батарей, акумуляторних батарей, або будь-яке інше придатне джерело живлення постійного струму, здатне забезпечити необхідну напругу постійного струму та необхідну силу постійного струму. В одному варіанті здійснення напруга постійного струму джерела живлення постійного струму перебуває в діапазоні від приблизно 2,5 вольт до приблизно 4,5 вольт і сила постійного струму перебуває в діапазоні від приблизно 2,5 до приблизно 5 ампер (що відповідає потужності джерела постійного струму в діапазоні від приблизно 6,25 ват до приблизно 22,5 ват). Переважно, джерело живлення постійного струму містить акумуляторні батареї. Такі батареї є загальнодоступними та мають припустимий загальний об'єм, що становить приблизно 1,2-3,5 кубічних сантиметрів. Такі батареї можуть мати по суті циліндричну або прямокутну тверду форму. Крім цього, джерело живлення постійного струму може містити живильний дросель постійного струму.
Як загальне правило, коли термін "приблизно" застосовують у поєднанні з конкретною величиною в даній заявці, слід розуміти, що величина, наступна за терміном "приблизно", не обов'язково повинна точно дорівнювати конкретній величині з технічних міркувань. Проте, термін "приблизно", який використовується в поєднанні з конкретною величиною, завжди слід розуміти як такий, що включає в себе й явним чином виражає конкретну величину, наступну за терміном "приблизно".
Електронні схеми подачі живлення виконані з можливістю роботи на високій частоті. Для цілей даної заявки термін "висока частота" слід розуміти як такий, що позначає частоту в діапазоні від приблизно 1 мегагерц (МГц) до приблизно 30 мегагерц (МГц), зокрема від приблизно 1 мегагерц (МГц) до приблизно 10 МГц (включаючи діапазон від 1 МГц до 10 МГЦ), і ще точніше від приблизно 5 мегагерц (МГц) до приблизно 7 мегагерц (МГц) (включаючи діапазон від 5 МГц до 7 МГЦ).
Електронні схеми подачі живлення містять перетворювач постійного струму на змінний (який може бути виконаний у вигляді інверторного перетворювача постійного струму на змінний), бо підключений до джерела живлення постійного струму.
Ланцюг індуктивно-ємнісного навантаження перетворювача постійного струму на змінний виконаний з можливістю роботи з низьким омічним навантаженням. Термін "низьке омічне навантаження" слід розуміти як таке, що позначає омічне навантаження, яке менше приблизно 2 Ом. Ланцюг індуктивно-ємнісного навантаження містить шунтувальний конденсатор і послідовне з'єднання конденсатора й індуктора, що має омічний опір. Цей омічний опір індуктора зазвичай становить декілька десятих Ома. При експлуатації омічний опір струмоприймача підсумовується з омічним опором індуктора та повинен перевищувати омічний опір індуктора, оскільки електрична енергія, що подається, повинна перетворюватися в теплоту в струмоприймачі до максимально можливої величини для того, щоб підвищити ефективність підсилювача потужності та дозволити передавати максимально можливу кількість теплоти від струмоприймача до іншої частини субстрату, що утворює аерозоль, для ефективного утворення аерозолю.
Струмоприймач являє собою провідник, здатний індуктивно нагріватися. "Теплова близькість" означає, що струмоприймач розташований відносно іншої частини субстрату, що утворює аерозоль, таким чином, щоб достатня кількість теплоти передавалася від струмоприймача до іншої частини субстрату, що утворює аерозоль, для утворення аерозолю.
Оскільки струмоприймач не тільки є проникним для магнітного поля, але також є електропровідним (він є провідником, як зазначено вище), струм, відомий як вихровий струм, утворюється в струмоприймачі й тече в струмоприймач згідно із законом Ома. Струмоприймач повинен мати низький питомий електричний опір р для збільшення розсіювання джоулевої теплоти. Крім цього, необхідно враховувати частоту змінного вихрового струму через поверхневий ефект (більше 98 95 електричного струму тече в шарі на глибині, що в чотири рази перевищує глибину поверхневого шару б ; Від ЗОВнішньої поверхні провідника). Враховуючи це, оміся ее пі стлумоприймача розраховується за рівнянням
Ве - угліюн, де 7 п3значає частоту змінного вихрового струму
Но позначає магнітну проникність вільного простору
ИН; позначає відносну магнітну проникність матеріалу струмоприймача, і
Зо Р. позначає питомий електричний опір матеріалу струмоприймача.
Втоата потужності Ре ; утворена вихровим струмом, розраховується за формулою
Ре - Е.В де д'значає силу струму (середньоквадратичне значення) вихрового струму, і з позначає електричний (омічний) опір струмоприймача (див. вище)
Із цього рівняння для розрахунків Ге і з обчислення Не видно, що для матеріалу, який має відому відносну магнітнм проникність Не та заданий питомий електричний опір Р. очевидно, що втрата потужності Ре з утворена вихровим струмом (через перетворення в теплоту) збільшується при збільшенні частоти та збільшенні сили струму (середньоквадратичного значення). З іншого боку, частота змінного вихрового струму (і, відповідно, змінного магнітного поля, яке індукує вихровий струм у струмоприймачі) не може бути довільно збільшена, оскільки глибина поверхневого шару 9 зменшується в міру збільшення частоти вихрового струму (або змінного магнітного поля, що індукує вихровий струм у струмоприймачі), внаслідок чого вище певної частоти відсічення вихрові струми більше не можуть утворюватися в струмоприймачі, оскільки глибина поверхневого шару занадто мала для того, щоб дозволити утворення вихрових струмів. Збільшення сили струму (середньоквадратичного значення) вимагає змінного магнітного поля, яке має високу щільність магнітного потоку, і таким чином вимагає об'ємних джерел індукції (індукторів).
Крім цього, теплота виробляється в струмоприймачі за допомогою механізму нагрівання, пов'язаного з гістерезисом. Втрата потужності, утворена гістерезисом, розраховується за
Внопнтаткя рве гум де уд значає об'єм струмоприймача
Н позначає роботу, необхідну для намагнічування струмоприймача уздовж замкненої петлі гістерезису на схемі в координатах В-Н, і
Її познача- "астоту змінного магнітного поля.
Робота Мн, необхідна для намагнічування струмоприймача уздовж замкненої петлі сту й ін-ав ж може бути виражена у вигляді
Максимальна можлива кількість роботи Мн залежить від властивостей матеріалу струмоприймача (залишкова магнітна індукція в стані насичення Ва. коерцитивність Не), і фактична кількість роботи Мн залежить від фактичної петлі намагнічування в координатах В-Н, індукованої в струмоприймачі змінним магнітним полем, і ця фактична петля намагнічування в координатах В-Н залежить від величини магнітного збудження.
У струмоприймачі є третій механізм вироблення теплоти (втрата потужності). Це вироблення теплоти викликане динамічними втратами магнітних доменів у матеріалі струмоприймача, що має магнітну проникність, коли струмоприймач зазнає зовнішнього впливу змінного магнітного поля, і ці динамічні втрати зазвичай також збільшуються в міру збільшення частоти змінного магнітного поля.
Для забезпечення можливості вироблення теплоти в струмоприймачі згідно з вищеописаними механізмами (в основному через втрати на вихрові струми та втрати на гістерезис), в корпусі пристрою розташована порожнина. Порожнина містить внутрішню поверхню, форма якої дозволяє розміщати щонайменше частину субстрату, що утворює аерозоль. Порожнина розташована таким чином, щоб при розміщенні у порожнині частини субстрату, що утворює аерозоль, індуктор ланцюга індуктивно-ємнісного навантаження був індуктивно з'єднаний зі струмоприймачем субстрату, що утворює аерозоль, при експлуатації. Це означає, що індуктор ланцюга індуктивно-ємнісного навантаження використовується для нагрівання струмоприймача за допомогою магнітної індукції. Це усуває потребу в додаткових компонентах, таких, як узгоджувальні ланцюги для узгодження вихідного імпедансу підсилювача потужності класу Е з навантаженням, таким чином дозволяючи додатково зводити до мінімуму розмір електронних схем подачі живлення.
Загалом, індукційний нагрівальний пристрій згідно з винаходом надає невеликий, легкий в застосуванні, ефективний, чистий та надійний нагрівальний пристрій завдяки безконтактному нагріванню субстрату. Для струмоприймачів, що формують низькі омічні навантаження, як
Зо зазначено вище, що одночасно мають омічний опір, який значно перевищує омічний опір індуктора ланцюга індуктивно-ємнісного навантаження, таким чином, можливе досягнення температур струмоприймача в діапазоні 300-400 градусів Цельсія всього за п'ять секунд або за період часу, який навіть менше п'яти секунд, одночасно із цим температура індуктора залишається низькою (завдяки тому, що переважна більшість енергії перетвориться в теплоту в струмоприймачі).
Як уже згадувалося, відповідно до одного аспекту індукційного нагрівального пристрою згідно з винаходом пристрій виконаний з можливістю нагрівання субстрату, що утворює аерозоль, курильного виробу. Зокрема, це включає подачу енергії в струмоприймач, розташований усередині субстрату, що утворює аерозоль, таким чином, щоб субстрат, що утворює аерозоль, нагрівався до середньої температури, що становить 200-240 градусів
Цельсія. Ще переважніше, пристрій виконаний з можливістю нагрівання тютюновмісного твердого субстрату, що утворює аерозоль, курильного виробу.
У міру нагрівання субстрату, що утворює аерозоль, бажано регулювати його температуру.
Цього важко досягти, оскільки нагрівання субстрату, що утворює аерозоль, здійснюється безконтактним (індуктивним) нагріванням струмоприймача (головним чином за рахунок втрат на гістерезис і втрат на вихрові струми, як описано вище), у той час, як у резистивних нагрівальних пристроях відомого рівня техніки регулювання температури досягалося шляхом вимірювання напруги та сили струму на резистивному нагрівальному елементі завдяки лінійній залежності температури резистивного нагрівального елемента від омічного опору нагрівального елемента.
Несподівано було виявлено, що в індукційному нагрівальному пристрої згідно з винаходом існує строго одноманітне відношення між температурою струмоприймача та уявним омічним опором, визначеним з напруги постійного струму джерела живлення постійного струму та із сили постійного струму, одержуваного із джерела живлення постійного струму. Це строго одноманітне відношення дозволяє однозначно визначати відповідну температуру струмоприймача з відповідного уявного омічного опору в (безконтактному) індукційному нагрівальному пристрої згідно з винаходом, оскільки кожна окрема величина уявного омічного опору є характерною лише для однієї окремої величини температури, тому у відношенні немає неоднозначності. Це не означає, що відношення температури струмоприймача та уявного омічного опору обов'язково є лінійним, проте, відношення повинне бути строго одноманітним,
щоб уникнути будь-якого неоднозначного співвіднесення одного уявного омічного опору з більше, ніж однією температурою. Строго одноманітне відношення температури струмоприймача й уявного омічного опору таким чином дозволяє визначати та регулювати температуру струмоприймача й, таким чином, субстрату, що утворює аерозоль. Як буде докладніше описане нижче, у випадку якщо перетворювач постійного струму на змінний містить підсилювач класу Е, відношення між температурою струмоприймача та уявним омічним опором є лінійним щонайменше для розглянутого температурного діапазону.
Визначення затяжки може бути виконане без потреби в додатковому датчику затяжок.
Причина цього полягає в тому, що коли користувач робить затяжки, тим самим втягуючи повітря через субстрат, що утворює аерозоль, це приводить до зниження температури струмоприймача. Це зниження температури струмоприймача приводить до відповідного до зменшення уявного омічного опору, і величина цього зниження температури (що приводить до відповідного зменшення уявного омічного опору) указує на здійснення затяжки користувачем.
Відповідно до одного аспекту індукційного нагрівального пристрою згідно з винаходом мікроконтролер запрограмований на виявлення затяжки, коли зменшення уявного омічного опору відповідає зниженню температури струмоприймача (21) у діапазоні від 10 "С до 100 "С, точніше в діапазоні від 20 "С до 70 С.
Відповідно до іншого аспекту індукційного нагрівального пристрою згідно з винаходом мікроконтролер додатково запрограмований на забезпечення виявлення затяжок тривалістю в діапазоні від 0,5 секунд до 4 секунд, точніше в діапазоні від 1 секунди до З секунд, і ще точніше тривалістю приблизно 2 секунди. Це обмежує тривалість затяжки, що виявляється. Одні користувачі віддають перевагу затяжкам лише з невеликою тривалістю, у той час як інші користувачі віддають перевагу затяжкам з великою тривалістю. Після закінчення затяжки температура знову підвищується доти, доки користувач не зробить наступну затяжку або доки температура не досягне бажаної робочої температури.
У відповідності з ще одним аспектом індукційного нагрівального пристрою згідно з винаходом пристрій додатково містить лічильник для підрахунку затяжок, здійснених з того самого субстрату, що утворює аерозоль, і (необов'язково) індикатор для демонстрації користувачеві кількості затяжок, здійснених з того самого субстрату, що утворює аерозоль, або
Зо кількості затяжок, які залишилося здійснити з того самого субстрату, що утворює аерозоль, або як кількості уже здійснених затяжок, так і кількості затяжок, які залишилося здійснити з того самого субстрату, що утворює аерозоль. Користувачеві корисно знати кількість уже здійснених затяжок або кількість затяжок, які залишилося здійснити з того самого субстрату, що утворює аерозоль, або обидві ці кількості, оскільки це може допомогти впевнитися, що користувач завжди буде насолоджуватися повноцінним смаком і ароматом при здійсненні затяжки, оскільки кількість затяжок, які можна здійснити з того самого субстрату, що утворює аерозоль, і які мають повноцінний смак і аромат, є обмеженою.
У відповідності з іншим аспектом індукційного нагрівального пристрою згідно з винаходом мікроконтролер додатково запрограмований на те, щоб дозволяти здійснювати максимальну кількість затяжок із того самого субстрату, що утворює аерозоль. Мікроконтролер запрограмований таким чином, щоб припиняти подачу постійного струму із джерела живлення постійного струму в перетворювач постійного струму на змінний, коли лічильник відрахував максимальну кількість затяжок, здійснених з того самого субстрату, що утворює аерозоль. Цей конструкційний захід забезпечує умови для того, щоб користувач завжди насолоджувався повноцінним смаком і ароматом при здійсненні затяжки, оскільки кількість затяжок, які може здійснити користувач із того самого субстрату, що утворює аерозоль, обмежена пристроєм, тому користувач не може здійснити більше максимально можливої кількості затяжок із того самого субстрату, що утворює аерозоль.
Вертаючись до визначення уявного омічного опору, визначення уявного омічного опору з напруги постійного струму джерела живлення постійного струму та сили постійного струму, одержуваного із джерела живлення постійного струму, включає вимірювання як напруги джерела постійного струму, так і сили постійного струму. Проте, відповідно до одного аспекту індукційного нагрівального пристрою згідно з винаходом джерело живлення постійного струму може являти собою батарею постійного струму, зокрема, акумуляторну батарею постійного струму, для забезпечення напруги постійного струму незмінної величини. Це дозволяє перезаряджати батареї, переважно за допомогою з'єднання з електромережею через зарядний пристрій, що містить перетворювач змінного струму в постійний. У випадку подачі напруги постійного струму незмінної величини, як і раніше можливо й може бути бажаним вимірювати напругу постійного струму, проте, у такому випадку це вимірювання напруги постійного струму бо не є обов'язковим (оскільки напруга постійного струму має незмінну величину). Проте,
електронні схеми подачі живлення містять датчик постійного струму для вимірювання сили постійного струму, одержуваного з батареї постійного струму, таким чином щоб уявний омічний опір (який є характерним для температури струмоприймача) можна було визначити з напруги постійного струму незмінної величини (незалежно від того, має напруга постійного струму незмінну величину внаслідок вимірювання чи визначення) і виміряної сили постійного струму.
Загалом, цей аспект дозволяє вимірювати тільки силу постійного струму без потреби в додатковому вимірюванні напруги постійного струму.
Як згадувалося вище, у певних випадках можна втриматися від вимірювання напруги постійного струму, проте, відповідно до одного аспекту індукційного нагрівального пристрою згідно з винаходом електронні схеми подачі живлення містять датчик напруги постійного струму для вимірювання напруги постійного струму таким чином, щоб визначення фактичної величини напруги постійного струму можна було виконувати в будь-якому випадку.
Як було описано вище, індукційний нагрівальний пристрій згідно з винаходом дозволяє регулювати температуру. Для досягнення цього особливо переважним чином, відповідно до іншого аспекту індукційного нагрівального пристрою згідно з винаходом мікроконтролер додатково запрограмований переривати вироблення змінного струму перетворювачем постійного струму на змінний, коли визначена температура струмоприймача субстрату, що утворює аерозоль, рівна або перевищує задану граничну температуру, і згідно із цим аспектом мікроконтролер запрограмований продовжувати вироблення змінного струму, коли визначена температура струмоприймача субстрату, що утворює аерозоль, знову опускається нижче заданої граничної температури. Передбачається, що термін "переривати вироблення змінного струму" охоплює випадки, у яких практично не виробляється змінний струм, а також випадки, у яких вироблення змінного струму лише зменшується для підтримки граничної температури.
Переважно, ця гранична температура є цільовою робочою температурою, яка може являти собою, зокрема, температуру в діапазоні від 300 "С до 400 "С, наприклад 350 "С. Індукційний нагрівальний пристрій згідно з винаходом нагріває струмоприймач субстрату, що утворює аерозоль, доти, доки струмоприймач не досягне заданої граничної температури, що відповідає пов'язаному з нею уявному омічному опору. У цей час подальша подача змінного струму перетворювачем постійного струму на змінний переривається для того, щоб зупинити подальше
Зо нагрівання струмоприймача й дозволити струмоприймачу охолонути. Коли температура струмоприймача знову опуститься нижче заданої граничної температури, це виявляється визначенням відповідного уявного омічного опору. У цей час відновлюється вироблення змінного струму для того, щоб підтримувати температуру максимально близькою до цільової робочої температури. Цього можна досягти, наприклад, шляхом регулювання коефіцієнта заповнення змінного струму, що подається на ланцюг індуктивно-ємнісного навантаження. Це описане, у принципі, в документі УМО 2014/040988.
Як уже згадувалося вище, відповідно до одного аспекту індукційного нагрівального пристрою згідно з винаходом перетворювач постійного струму на змінний містить підсилювач потужності класу Е, що містить транзисторний перемикач, задавальну схему транзисторного перемикача та ланцюг індуктивно-ємнісного навантаження, виконаний з можливістю роботи з низьким омічним навантаженням, і ланцюг індуктивно-ємнісного навантаження додатково містить шунтувальний конденсатор.
Підсилювачі потужності класу Е є загальновідомими та докладно описані, наприклад, у статті "Сіа55-Е КЕ Роугег Атрійегв", Маїтап 0. зокКаї, опублікованій в журналі ОЕХ, що виходить раз у два місяці, випуск Січень/Лютий 2001 р., сторінки 9-20, Американської ліги радіоаматорів (АККІ), м. Ньюінгтон, Коннектикут, США. Підсилювачі потужності класу Е є переважними відносно їхньої роботи на високих частотах і одночасно вони мають просту конструкцію схем, що містить мінімальну кількість компонентів (наприклад, необхідний лише один транзисторний перемикач, що є переважним у порівнянні з підсилювачами потужності класу 0, що містять два транзисторні перемикачі, якими необхідно управляти при високій частоті таким чином, щоб забезпечити виключений стан одного із двох транзисторів у той час, коли другий із двох транзисторів перебуває у включеному стані). Крім цього, підсилювачі потужності класу Е відомі завдяки мінімальному розсіюванню потужності в перемикальному транзисторі під час переходів при перемиканнях. Переважно підсилювач потужності класу Е являє собою однотактний підсилювач потужності класу Е першого порядку, що містить лише один транзисторний перемикач.
Транзисторний перемикач підсилювача потужності класу Е може являти собою будь-який тип транзистора й може бути виконаний у вигляді біполярного площинного транзистора (ВТ).
Проте, переважніше, транзисторний перемикач виконаний у вигляді польового транзистора бо (ЕЕТ), такого як польовий транзистор зі структурою метал-оксид-напівпровідник (МО5ЕЕТ) або (с;
польовий транзистор зі структурою метал-напівпровідник (МЕЗЕЕТ).
Відповідно до ще одного аспекту індукційного нагрівального пристрою згідно з винаходом індуктор ланцюга індуктивно-ємнісного навантаження містить циліндричну індукційну котушку зі спіральним намотуванням, розташовану на внутрішній поверхні порожнини або поруч із нею.
Відповідно до іншого аспекту індукційного нагрівального пристрою згідно з винаходом підсилювач потужності класу Е має вихідний імпеданс, і електронні схеми подачі живлення додатково містять узгоджувальний ланцюг для узгодження вихідного імпедансу підсилювача потужності класу Е з низьким омічним навантаженням. Цей захід може сприяти додатковому збільшенню втрат потужності в низькому омічному навантаженні, що приводить до збільшеного вироблення теплоти в низьке омічне навантаження. Наприклад узгоджувальний ланцюг може містити невеликий узгоджувальний трансформатор.
Відповідно до іншого аспекту індукційного нагрівального пристрою згідно з винаходом загальний об'єм електронних схем подачі живлення рівний 2 см? або менше. Це дозволяє розміщати батареї, електронні схеми подачі живлення та порожнину в корпусі пристрою, який має загальний невеликий розмір, що є зручним і легким в застосуванні.
Відповідно до ще одного аспекту індукційного нагрівального пристрою згідно з винаходом індуктор ланцюга індуктивно-ємнісного навантаження містить циліндричну індукційну котушку зі спіральним намотуванням, розташовану на внутрішній поверхні порожнини або поруч із нею.
Переважно, індукційна котушка має довгасту форму й обмежує внутрішній об'єм у діапазоні від приблизно 0,15 см" до приблизно 1,10 см3. Наприклад, внутрішній діаметр циліндричної індукційної котушки зі спіральним намотуванням може становити від приблизно 5 мм до приблизно 10 мм, і переважно може становити приблизно 7 мм, і довжина циліндричної індукційної котушки зі спіральним намотуванням може становити від приблизно 8 мм до приблизно 14 мм. Діаметр або товщина дроту котушки може становити від приблизно 0,5 мм до приблизно 1 мм, залежно від того, чи використовується дріт котушки із круглим поперечним перерізом або дріт котушки із плоским прямокутним поперечним перерізом. Індукційна котушка зі спіральним намотуванням розташована на внутрішній поверхні порожнини або поруч із нею.
Циліндрична індукційна котушка зі спіральним намотуванням, розташована на внутрішній поверхні порожнини або поруч із нею, дозволяє додатково мінімізувати розмір пристрою.
Ще один аспект винаходу відноситься до системи подачі аерозолю, що містить індукційний нагрівальний пристрій, як описано вище, субстрат, що утворює аерозоль, який містить струмоприймач. Щонайменше частина субстрату, що утворює аерозоль, повинна розміщатися в порожнині індукційного нагрівального пристрою таким чином, щоб індуктор ланцюга індуктивно- ємнісного навантаження перетворювача постійного струму на змінний струм індукційного нагрівального пристрою був індуктивно з'єднаний зі струмоприймачем субстрату, що утворює аерозоль, при експлуатації.
Як приклад, субстрат, що утворює аерозоль, може являти собою субстрат, що утворює аерозоль, курильного виробу. Зокрема, субстрат, що утворює аерозоль, може являти собою тютюновмісний твердий субстрат, що утворює аерозоль, який може використовуватися в курильних виробах (наприклад, таких як сигарети).
Відповідно до одного аспекту системи подачі аерозолю згідно з винаходом струмоприймач виготовлений з нержавіючої сталі. Наприклад, може використовуватися нержавіюча сталь різних марок, така як нержавіюча сталь марки 430 (55430) або нержавіюча сталь марки 410 (55410), нержавіюча сталь марки 420 (55420) або нержавіюча сталь марки 440 (55440). Також може використовуватися нержавіюча сталь інших марок. Наприклад, струмоприймач являє собою одинарний струмоприймальний елемент, який може бути виконаний у вигляді смуги, листа, дроту або фольги, і ці струмоприймальні елементи можуть мати різні геометричні форми поперечного перерізу, такі як прямокутну, круглу, овальну або інші геометричні форми.
Відповідно до конкретного аспекту системи подачі аерозолю згідно з винаходом струмоприймач може містити плоску смугу нержавіючої сталі, при цьому плоска смуга нержавіючої сталі має довжину в діапазоні від приблизно 8 міліметрів до приблизно 15 міліметрів, переважно довжину, рівну приблизно 12 міліметрам. Крім того, плоска смуга може мати ширину в діапазоні від приблизно З міліметрів до приблизно 6 міліметрів, переважно ширину, рівну приблизно 4 міліметри або приблизно 5 міліметрів. Плоска смуга додатково може мати товщину в діапазоні від приблизно 20 мікрометрів до приблизно 50 мікрометрів, переважно товщину в діапазоні від приблизно 20 мікрометрів до приблизно 40 мікрометрів, наприклад товщину, рівну приблизно 25 мікрометрів або приблизно 35 мікрометрів. Один дуже специфічний варіант здійснення струмоприймача може мати довжину, рівну приблизно 12 міліметрам, ширину, рівну приблизно 4 міліметрам, і товщину, рівну приблизно 50 мікрометрам, бо і може бути виготовлений з нержавіючої сталі марки 430 (55430). Інший дуже специфічний варіант здійснення струмоприймача може мати довжину, рівну приблизно 12 міліметрам, ширину, рівну приблизно 5 міліметрам, і товщину, рівну приблизно 50 мікрометрам, і може бути виготовлений з нержавіючої сталі марки 420 (55430). У якості альтернативи, ці дуже специфічні варіанти здійснення також можуть бути виготовлені з нержавіючої сталі марки 420 (55420).
Ще один аспект винаходу відноситься до способу експлуатації системи подачі аерозолю, як описано вище, і цей спосіб включає наступні етапи: - визначення за напругою постійного струму джерела живлення постійного струму та за силою постійного струму, одержуваного із джерела живлення постійного струму, уявного омічного опору, - визначення за уявним омічним опором температури струмоприймача субстрату, що утворює аерозоль, - відстеження змін уявного омічного опору, і - виявлення затяжки при визначенні зменшення уявного омічного опору, характерного для зниження температури струмоприймача при вдиханні користувачем.
Відповідно до одного аспекту способу згідно з винаходом етап виявлення затяжки включає виявлення затяжки, коли зменшення уявного омічного опору відповідає зниженню температури струмоприймача в діапазоні від 10 "С до 100 "С, точніше в діапазоні від 20 "С до 70 "С.
Відповідно до іншого аспекту способу згідно з винаходом етап виявлення затяжки додатково включає забезпечення виявлення затяжок тривалістю в діапазоні від 0,5 секунди до 4 секунд, точніше в діапазоні від 1 секунди до З секунд, і ще точніше тривалістю приблизно 2 секунди.
Відповідно до ще одного аспекту способу згідно з винаходом спосіб включає етапи підрахунку затяжок, здійснених з того самого субстрату, що утворює аерозоль, і (необов'язково) демонстрації користувачеві кількості затяжок, здійснених з того самого субстрату, що утворює аерозоль, або кількості затяжок, які залишилося здійснити з того самого субстрату, що утворює аерозоль, або як кількості уже здійснених затяжок, так і кількості затяжок, які залишилося здійснити з того самого субстрату, що утворює аерозоль.
Відповідно до іншого аспекту способу згідно з винаходом спосіб включає етап забезпечення здійснення максимальної кількості затяжок із того самого субстрату, що утворює аерозоль, і припинення подачі постійного струму із джерела живлення постійного струму на перетворювач
Зо постійного струму на змінний, коли лічильник відрахував максимальну кількість затяжок, здійснених з того самого субстрату, що утворює аерозоль.
Відповідно до одного аспекту способу згідно з винаходом джерело живлення постійного струму являє собою батарею постійного струму, зокрема, акумуляторну батарею постійного струму, і забезпечує напругу постійного струму незмінної величини. Постійний струм, одержуваний з батареї постійного струму, виміряється для визначення уявного омічного опору за напругою постійного струму незмінної величини та за вимірюваним постійним струмом.
Відповідно до ще одного аспекту способу згідно з винаходом, спосіб додатково включає наступні етапи: - переривання вироблення змінного струму перетворювачем постійного струму на змінний, коли визначено, що температура струмоприймача субстрату, що утворює аерозоль, рівна або перевищує задану граничну температуру, і - відновлення вироблення змінного струму, коли визначено, що температура струмоприймача субстрату, що утворює аерозоль, знову опустилася нижче заданої граничної температури.
Оскільки переваги способу згідно з винаходом і його конкретні аспекти вже були описані вище, вони не будуть повторно описані тут.
Додаткові переважні аспекти винаходу стануть очевидні з наступного опису варіантів здійснення в комбінації із графічними матеріалами, на яких: на фіг. 1 зображений загальний принцип нагрівання, що лежить в основі індукційного нагрівального пристрою згідно з винаходом, на фіг. 2 зображена блок-схема варіанта здійснення індукційного нагрівального пристрою та системи подачі аерозолю згідно з винаходом, на фіг. З зображений варіант здійснення системи подачі аерозолю згідно з винаходом, що містить індукційний нагрівальний пристрій із основними компонентами, розташованими в корпусі пристрою, на фіг. 4 зображений варіант здійснення основних компонентів електронних схем живлення індукційного нагрівального пристрою згідно з винаходом (без узгоджувального ланцюга), на фіг 5 зображений варіант здійснення індуктора ланцюга |індуктивно-ємнісного навантаження у формі циліндричної індукційної котушки зі спіральним намотуванням, що має довгасту форму, на фіг. б зображений фрагмент ланцюга індуктивно-ємнісного навантаження, що має бо індуктивність й омічний опір котушки, і, крім цього, зображений омічний опір навантаження,
на фіг. 7 зображено два сигнали, що представляють силу постійного струму, одержуваного із джерела живлення постійного струму, відносно температури струмоприймача, за якою видно, коли здійснюється затяжка, на фіг. 8 зображена температура двох струмоприймачів відносно напруги постійного струму джерела живлення постійного струму та сили постійного струму, одержуваного із джерела живлення постійного струму, і на фіг. 9 зображений еквівалентний ланцюг електронних схем живлення індукційного нагрівального пристрою.
На фіг. 1 схематично зображений загальний принцип нагрівання, що лежить в основі даного винаходу. На фіг. 1 схематично зображена циліндрична індукційна котушка 12 зі спіральним намотуванням, що має довгасту форму та утворює внутрішній об'єм, у якому частково або повністю розташований субстрат 20, що утворює аерозоль, курильного виробу 2, при цьому субстрат, що утворює аерозоль, містить струмоприймач 21. Курильний виріб 2, що містить субстрат 20, що утворює аерозоль, зі струмоприймачем 21, схематично показаний на збільшеному фрагменті в поперечному перерізі, зображеному окремо, праворуч від фіг. 1. Як уже згадувалося, субстрат 20, що утворює аерозоль, курильного виробу 2 може являти собою тютюновмісний твердий субстрат, але не обмежуючись їм.
Крім цього, на фіг. 1 магнітне "ле у внутрішньому об'ємі індукційної котушки І 2 позначене схематично декількома лініями В, магнітного поля в один конкретний момент часу, оскільки магнітне поле, утворене змінним струмом ц2, що проходить через індукційну котишку 1-2, є змінним магнітним полем, що змінює свою полярність із частотою змінного струму І 2 , яка може перебувати в діапазоні від приблизно 1 МГц до приблизно 30 МГц (включаючи діапазон від 1
МГц до 30 МГЦ), і, зокрема, може перебувати в діапазоні від приблизно 1 МГц до приблизно 10
МГц (включаючи діапазон від 1 МГц до 10 МГц, ії особливо може бути менше 10 МГЦ), ії точніше частота може перебувати в діапазоні від приблизно 5 МГц до приблизно 7 МГц (включаючи діапазон від 5 МГц до 7 МГц. Два о-"овні механізми, відповідальні за вироблення тепла в струмоприймачі 21, втрати потужності Ге , викликані вихровими струмами (при цьому замкнений контур представляє вихрові струми), і втрати потужності Р ; викликані гістерезисом (при цьому замкнена крива гістерезису представляє гістерезис), також схематично позначені на фіг. 1.
Більш докладний опис цих механізмів представлений вище.
На фіг. З зображений варіант здійснення системи подачі аерозолю згідно з винаходом, що містить індукційний нагрівальний пристрій 1 згідно з винаходом. Індукційний нагрівальний пристрій 1 містить корпус 10 пристрою, який може бути виготовлений із пластику, і джерело 11 живлення постійного струму (див. фіг. 2), що містить акумуляторну батарею 110. Індукційний нагрівальний пристрій 1 додатково містить стикувальний порт 12, що містить штифт 120 для стикування індукційного нагрівального пристрою із зарядною станцією або зарядним пристроєм для перезарядження акумуляторної батареї 110. Крім цього, індукційний нагрівальний пристрій 1 містить електронні схеми 13 подачі живлення, виконані з можливістю роботи на необхідній частоті. Електронні схеми 13 подачі живлення електрично з'єднані з акумуляторною батареєю 110 за допомогою придатного електричного з'єднання 130. Хоча електронні схеми 13 подачі живлення містять додаткові компоненти, які не видні на фіг. З, ці електронні схеми містять, зокрема, ланцюг індуктивно-ємнісного навантаження (див. фіг. 4), який у свою чергу містить індуктор 2, що позначене пунктирними лініями на фіг. 3. Індуктор 2 розміщений усередині корпуса 10 пристрою в ближньому кінці корпуса 10 пристрою та оточує порожнину 14, яка також розташована в ближньому кінці корпуса 10 пристрою. Індуктор 2 може містити циліндричну індукційну котушку зі спіральним намотуванням, що має довгасту форму, як показано на фіг. 5.
Циліндрична індукційна котушка 12 зі спіральним намотуванням може мати радіус г у діапазоні від приблизно 5 мм до приблизно 10 мм і, зокрема, радіус г може становити приблизно 7 мм.
Довжина І! циліндричної індукційної котушки зі спіральним намотуванням може перебувати в
БО діапазоні від приблизно 8 мм до приблизно 14 мм. Відповідно, внутрішній об'єм може перебувати в діапазоні від приблизно 0,15 см3 до приблизно 1,10 см3, при цьому він віднімається з об'єму конкретного субстрату, що утворює аерозоль.
Як також зображено на фіг. З, індукційний нагрівальний пристрій додатково містить лічильник 134 для підрахунку кількості затяжок, уже здійснених з конкретного субстрату, що утворює аерозоль, який переважно (але не обов'язково) є невід'ємною частиною електронних схем 13 подачі живлення, а також індикатор 100, розташований у корпусі пристрою (наприклад, дисплей) для відображення кількості затяжок, уже здійснених з конкретного субстрату, що утворює аерозоль, або для відображення кількості затяжок, які залишилося здійснити із цього субстрату, утворюючого аерозоль, або обидві ці кількості. Тютюновмісний твердий субстрат 20,
що утворює аерозоль, який містить струмоприймач 21, розміщається в порожнині 14 у ближньому кінці корпуса 10 пристрою таким чином, щоб при експлуатації індуктор 12 (циліндрична індукційна котушка зі спіральним намотуванням) був індуктивно з'єднаний зі струмоприймачем 21 тютюновмісного твердого субстрату 20, що утворює аерозоль, курильного виробу 2. Фільтрувальна частина 22 курильного виробу 2 може бути розташована зовні порожнини 14 індукційного нагрівального пристрою 1 таким чином, щоб при експлуатації споживач міг втягувати аерозоль через фільтрувальну частину 22. Коли курильний виріб витягнуто з порожнини 14, порожнину 14 можна легко очистити, оскільки, за винятком відкритого дальнього кінця, через який вставляється субстрат 20, що утворює аерозоль, курильного виробу 2, порожнина повністю закрита й оточена внутрішніми стінками пластикового корпуса 10 пристрою, що утворюють порожнину 14.
На фіг. 2 зображена блок-схема варіанта здійснення системи подачі аерозолю, що містить індукційний нагрівальний пристрій 1 згідно з винаходом, але також містить деякі необов'язкові елементи або компоненти, як буде описано нижче. Індукційний нагрівальний пристрій 1 разом із субстратом 20, що утворює аерозоль, який містить струмоприймач 21, утворює варіант здійснення системи подачі аерозолю згідно з винаходом. Блок-схема, показана на фіг. 2, є наочним зображенням, що враховує спосіб експлуатації. Як видно, індукційний нагрівальний пристрій 1 містить джерело 11 живлення постійного струму (яке на фіг. З містить акумуляторну батарею 110), мікроконтролер (мікропроцесорний блок керування) 131, перетворювач 132 постійного струму на змінний (виконаний у вигляді інверторного перетворювача постійного струму на змінний), узгоджувальний ланцюг 133 для адаптації до навантаження й індуктор 12.
Мікропроцесорний блок 131 керування, перетворювач 132 постійного струму на змінний та узгоджувальний ланцюг 133, а також індуктор 2 входять "7" "кладу електронних схем 13 поле" ї живлення (див. фіг. 1). Напруга постійного струму Мос і сила постійного струму ос, одержуваного із джерела 11 живлення постійного струму, подаються по каналах зворотного зв'язку в мікропроу"""рний блок 131 керування, пєе"""ажно шляхом вимірювання як напруги постійного струму Мос ; так і сили постійного струму с ;» одержуваного із джерела 11 живлення постійного струму, для керування подальшою подачею змінного струму Рдс на ланцюг індуктивно-ємнісного навантаження й, зокрема, на індуктор 2. Цей аспект індукційного нагрівального пристрою згідно з винаходом буде докладніше описаний нижче. Узгоджувальний ланцюг 133 може бути наданий для оптимальної адаптації до навантаження, але не є обов'язковим і не включений у варіант здійснення, докладніше описаний далі.
На фіг. 4 зображені деякі основні компоненти електронних схем 13 подачі живлення, зокрема перетворювача 132 постійного струму на змінний. Як видно на фіг. 4, перетворювач постійного струму на змінний містить підсилювач потужності класу Е, що містить транзисторний перемикач 1320, який містить польовий транзистор (БЕТ) 1321, наприклад, польовий транзистор зі структурою метал-оксид-напівпровідник (МОБ5БЕЕТ), схему живлення транзисторного перемикача, позначену стрілююю 1322, призначену для подачі сигналу перемикання (напруга затвор-витіь) на БЕТ 1321, і ланцюг 1323 індуктивно-ємнісного навантаження, що містить шунтувальний конденсатор С1 і послідовне з'єднання конденсатора
С2 і індуктора 12. Крім цього, зображене джерело 11 живленьк- "естійного струму, що містить дросель 11, призначене для подачі напруги постійного струму Мос ; із силою постійного струму ос ;» одержуваного із джерела 11 живлення постійного струму, при експлуатації. Також на фіг. 4 показаний омічеу (Р, що представляє загальне сдине чевечстаження 1324, яке є сумою омічногоопору опи індуктора 12 і омічного опору Чавантаження струмоприймача 21, як це показане на фіг. 6.
Через дуже малу кількість компонентів можна підтримувати надзвичайно малий об'єм електронних схем 13 подачі живлення. Наприклад, об'єм електронних схем подачі живлення може бути рівним або менше 2 см3. Цей надзвичайно малий об'єм електронних схем подачі живлення можливий завдяки індуктору 2 ланцюга 1323 індуктивно-ємнісного навантаження, безпосередньо використовуваного в якості індуктора для індуктивного зв'язку зі струмоприймачем 21 субстрату 20, що утворює аерозоль, і цей малий об'єм дозволяє зберігати невеликі загальні розміри всього індукційного нагрівального пристрою 1. У випадку, якщо для індуктивного з'єднання зі струмоприймачем 21 використовується окремий індуктор, а не індуктор І2, це автоматично збільшує об'єм електронних схем джерела живлення, при цьому цей об'єм також збільшується, якщо узгоджувальний ланцюг 133 включений в електронні схеми джерела живлення.
Хоча загальний принцип роботи підсилювача потужності класу Е є відомим і докладно описаний у вже згадуваній статті "Сіа55-Е ЕЕ Ромжег Атрійеге", Маїйап 0. зокКаї, опублікованій в журналі ОЕХ, що виходить раз у два місяці, випуск Січень/Лютий 2001 р., сторінки 9-20,
Американської ліги радіоаматорів (АККІ), м. Ньюінгтон, Коннектикут, США, деякі загальні принципи будуть описані далі.
Припустимо, що схема 1322 живлення транзисторного перемикача подає напругу перемикання (напругу затвор-витік польового транзистора ЕРЕТ), що має прямокутний профіль, на ЕЕТ 1321. Доти, доки ЕЕТ 1321 є провідним (у включеному стані), він по суті складає ланцюг короткого замикання (з малим опором) і весь електричний струм тече через дросель 11 і РЕТ 1321. Коли РЕТ 1321 є не провідним (у виключеному стані), увесь електричний струм тече в ланцюг індуктивно-ємнісного навантаження, оскільки РЕТ 1321 по суті являє собою розімкнутий ланцюг (з великим опором). Перемикання транзистора між цими двома станами здійснює перетворення подаваної постійної напруги та постійного струму на змінну напругу та змінний струм.
Для ефективного нагрівання струмоприймача 21 необхідно передавати максимальну кількість подаваної енергії постійного струму у формі змінного струму в індуктор 12 (циліндричну індукційну котушку зі спіральним намотуванням) і згодом у струмоприймач 21 субстрату 20, що утворює аерозоль, який індуктивно з'єднаний з індуктором 2. Енергія, що розсіюється в струмоприймачі 21 (втрати на вихрові струми, втрати на гістерезис), генерує тепло в струмоприймачі 21, як докладно описано вище. Інакше кажучи, розсіювання енергії в РЕЕТ 1321 повинно бути зведене до мінімуму, при цьому розсіювання енергії в струмоприймачі 21 повинно бути збільшене до максимуму.
Розсіювання енергії в РЕТ 1321 протягом одного періоду змінної напруги/струму є добутком напруги та струму транзистора в кожній тимчасовій точці протягом періоду змінної напруги/струму, інтегрованим за цим періодом та усередненим за цим періодом. Оскільки РЕТ 1231 повинен підтримувати високу напруга протягом частини цього періоду та проводити сильний електричний струм протягом частини цього періоду, слід уникати одночасної наявності високої напруги та сильного електричного струму, оскільки це приведе до істотного розсіювання енергії в ЕЕТ 1231. У включеному стані РЕТ 1231 напруга транзистора близька до нульової, коли сильний електричний струм тече крізь РЕТ 1231. У виключеному стані РЕТ 1231 напруга
Зо транзистора є високою, але електричний струм, що проходить крізь ГЕТ 1231, близький до нульового.
Крім того, переходи при перемиканнях неминуче тривають протягом деяких часток періоду.
Проте, великого добутку напруги й електричного струму, що представляє велику втрату енергії в ЕЕТ 1231, можна уникнути за допомогою наступних додаткових заходів. По-перше, підвищення напруги транзистора відкладається доти, доки електричний струм, що проходить крізь транзистор, не буде зменшений до нуля. По-друге, напруга транзистора вертається до нульового значення перед тем, як електричний струм, що проходить крізь транзистор, починає підвищуватися. Це досягається завдяки ланцюгу 1323 навантаження, що містить шунтувальний конденсатор С1 і послідовне з'єднання конденсатора Са і індуктора 12, при цьому цей ланцюг навантаження являє собою ланцюг між РЕТ 1231 і навантаженням 1324. По-третє, напруга транзистора під час включення практично дорівнює "еулю (для біполярного площинного транзистора "ВУ" вона є напругою зсуву насичення Мо, Транзистор, що включається, не розряджає заряджений шунтувальний конденсатор С1, тим самим уникаючи розсіювання накопиченої енергії шунтувального конденсатора. По-четверте, крутість напруги транзистора дорівнює нулю під час включення. Потім, електричний струм, поданий на транзистор, що включається, по ланцюгу навантаження, плавно підвищується від нуля з керованою помірною швидкістю, що приводить до низького розсіювання енергії, у той час як провідність транзистора зростає від нуля під час переходу при включенні. У результаті, напруга транзистора й електричний струм ніколи не є високими одночасно. Переходи при перемиканнях напруги й електричного струму зміщені за часом відносно один одного.
Для визначення розмірів різних компонентів перетворювача 132 постійного струму на змінний, зображеного на фіг. 4, необхідно враховувати наступні рівняння, що є загальновідомими й докладно описані у вищезгаданій статті "Сіаз5-Е ВЕ Ромег Атрійіегв",
Машап ОО. 5оКаЇ, опублікованій в журналі ОЕХ, що виходить раз у два місяці, випуск
Січень/Лютий 2001 р., сторінки 9-20, Американської ліги радіоаматорів (АККГУ), м. Ньюінітон,
Коннектикут США.
Нехай о (фактор якості індуктивно-ємнісного ланцюга навантаження) являє собою величину, яка в кожному разі перевищує 1,7879, але яка є величиною, яку обирає проектувальник (див. вищезгадану статтю), також нехай Р являє собою вихідну потужність, що 60 подається на опір К, і нехай ї являє собою частоту, тоді різні компоненти чисельно розраховуються з наступних рівнянь (при цьому Мо для польових транзисторів РЕТ дорівнює
Нул'е ії ап пає гокгіу напругу зсуву насичення для транзисторів ВТ, див. вище):
Уа п/р апругу зсуву для тр р д ще) в- (мос - м /в). 05768 ,0000086-0,41439У0, -0,55750742 -0205967/ оз) в СІ - (1/(34,2219-1 «п))-0,в98660,91 424/Фу -1,031 7в/сі? кові «(4
Сг - (1/гліг)- (1/9 -0,104823.-(1,001214-(1,01468/0, -1 7879). (0,2 . В)
Це дозволяє швидко нагрівати струмоприймач, що має омічний опір, рівний К-0,6 Ом для подачі приблизно 7 Вт потужності за 5-6 секунд, припускаючи, що сила струму, рівна приблизно 3,4 А, доступна від джерела живлення постійного струму, що має максимальну вихідну напругу, рівну 2,8 В, і максимальну вихідну силу струму, рівну 3,4 А, частоту, рівну 1-5 МГц (коефіцієнт заповнення - 50 ч6)д. вність індуктора 12, рівну приблизно 500 нГн, і омічний опір індуктора 12, рівний отупки - 0,1 Ом, індуктивність 11, рівну приблизно 1 мкГн, і ємності. рівні
В
7 нФ для конденсатора СІ1 і 2,2 нФ для конденсатора С2. Ефективний омічний опір /Сотупки
Навантаження становить приблизно 0,6 Ом. Може бути отримана ефективність (потужність, що розсіюється в струмоприймачі 21/максимальна потужність джерела 11 живлення постійного струму), яка складає приблизно 83,5 95, що є дуже високою ефективністю.
Для експлуатації курильний виріб 2 вставляють у порожнину 14 (див. фіг. 2) індукційного нагрівального пристрою 1 таким чином, щоб субстрат 20, що утворює аерозоль, який містить струмоприймач 21, був індуктивно з'єднаний з індуктором 2 (наприклад, циліндричною котушкою зі спіральним намотуванням). Струмоприймач 21 потім нагрівається протягом декількох секунд, як описано вище, і потім споживач може починати втягувати аерозоль через фільтр 22 (зрозуміло, курильний виріб не обов'язковий повинний містити фільтр 22).
Індукційний нагрівальний пристрій і курильні вироби загалом можуть розповсюджуватися окремо або в складі набору. Наприклад, можна розповсюджувати так званий "набір для початківців", що містить індукційний нагрівальний пристрій, а також множину курильних виробів.
Після того, як споживач придбав такий набір для початківців, у майбутньому споживач може придбавати лише курильні вироби, які можуть використовуватися із цим |індукційним нагрівальним пристроєм набору для початківців. індукційний нагрівальний пристрій легко чистити й, у випадку використання акумуляторних батарей у якості джерела живлення
Зо постійного струму, ці акумуляторні батареї легсо перезаряджати за допомогою придатного зарядного пристрою, який необхідно підключати до стикувального порта 12, що містить штифт 120 (або індукційний нагрівальний пристрій необхідно пристиковувати до відповідної стикувальної станції зарядного пристрою). В
Як уже згадувалося вище, шляхом визначення уявного омічного опору а з напруги постійного струму Мос джерела 11 живлення постійного струму й із сили постійного струму ос ,» одержуваного із джерела 11 живлення постійного струму, можна визначати температуру Т струмоприймача 21. Це можливо тому, що несподівано було з'ясовано, що у ошення температури Т струмоприймача 21 і співвідношення напруги постійного струму "ОС ї сили постійного струму ос є строго одноманітним, і навіть може бути практично лінійним для підсилювача класу Е. Таке строго одноманітне відношення зображене на фіг. 8 як приклад. Як уже згадувалося, відношення не обов'язково повинне бути лінійним, воно лише повинне ди строго одноманітним таким чином, щоб для заданої напруги джерела постійного струму "00 існувало точно виражене відношення між відповідною силою постійного струму ос і температурою Т суу"моприймача. Інакше кажучи, існує точно виражене відношення ме уявним омічним опором а (визначеним зі співвідношення напруги постійного струму "ОС ії сили постійного струму ос » одержуваного із джерела живлення постійного струму) і температурою Т струмоприймача. Це відповідає еквівалентному ланцюгу, зображеному на фіг. 9, де На відповідає послідовному з'єднанню, утвореному омічним опором Ланцюга (яке дуттено менше омічного опору струмоприймача) і залежному від температури омічному опору /Струмоприй мача струмоприймача.
Як уже згадувалося, у випадку викориду"ння підсилювача класу Е це строго одноманітне відношення між уявним омічним опором 2 і температурою Т струмоприймача є практично лінійним, щонайменше для розглянутого температурного діапазону (наприклад для температурного діапазону від 100 "С до 400 "С). В
Якщо відношення між уявним омічним опором а і температурою Т конкретного струмоприймача, виготовленого з конкретного матеріалу, що має конкретну геометричну форму, є відомим (наприклад, таке відношення може бути визначене за допомогою точних вимірювань у лабораторних умовах для великої кількості ідентичних струмоприймачів і наступне" усереднення окремих результатів вимірювання), це відношення між уявним омічним опором а і температурою Т цього конкретного струмоприймача може бути запрограмоване в мікроконтролері 131 (див. фіг. 2) таким чином, щоб В експлуатації системи подачі аерозолю потрібно було визначати лише уявний омічний опір 2 з фактичної напруги постійного струму
Мос (зазвичай вона є постійною напругою батареї) і фактичної сили постійного струму ос, в ржуваного із джерела 11 живлення постійного струму. Велика кількість таких відношень між а і температурою Т може бути запрограмована в мікроконтролері 131 для струмоприймачів, виготовлених з різних матеріалів, що мають різні геометричні форми, таким чином, щоб при експлуатації пристрою, що утворює аерозоль, було необхідно лише ідентифікувати відповідний тип струмоприймача й потім можна було використовувати відповідне відношення (попередньо запрограмоване в мікроконтролері) для визначення температури Т відповідного типу фактично використовуваного струмоприймача шляхом визначення фактичної напруги постійного струму та фактичної сили постійного струму, одержуваного із джерела живлення у тійного струму.
Можливо й може бути переважним, щоб напруга постійного струму "ОС і сила постійного струму ос ,» одержуваного із джерела 11 живлення постійного струму, могли бути виміряні (це може бути досягнуте за допомогою придатного датчика напруги постійного струму та придатного датчика сили постійного струму, які можуть бути легко включені в невеликий ланцюг, не займаючи значного "еестору). Проте, у випадку використання джерела живлення постійного струму з напругою "ОС незмінної величини, можна обійтися без датчика напруги постійного струму, ""ичому лише датчик постійного струму необхідний для вимірювання сили постійного струму ОС, одержуваного із джерела 11 живлення постійного струму.
На фіг. 7 зображені два сигнали, що представляють силу постійного струму ос ; одержуваного із джерела 11 живлення постійного струму (верхній сигнал), і температуту т
Зо струмоприймача 21 (нижній сигнал), визначену з відношення між уявним омічним опором а і температурою Т для цього струмоприймача 21, яке запрограмоване в мікроконтролері 131.
Як вул, після початку нагрівання струмоприймача субстрату, що утворює аерозоль, сила струму ОС перебуває на високому рівні й зменшується в міру збільшення температури Т струмоприймача субстрать "до утворює аерозоль (збільшення темперттти струмоприймача приводить до збільшення а, що у свою чергу приводить до зменшення ОС).
У різний час у ході цього процесу нагрівання (зокрема, коли субстрат, що утворює аерозоль, досягає певної температури), користувач може робити затяжки з курильного виробу, що містить субстрат, що утворює аерозоль, зі струмоприймачем, розташованим усередині нього. У цей час повітря, що втягується в ході затяжки тривалістю ОО, приводить до швидкого зниження АТ температури субстрату 20, що утворює аерозоль, і струмоприйгрна 21. Це зниження температури АТ приводить до зменшення уявного омічного опору а і це, у свою чергу, приводить до збільшення сили постійного струму с, одержуваного із джерела 11 живлення постійного струму. Ці моменти, коли користувач робить затяжки, позначені на фіг. 7 відповідними стрілками (за винятком першої затяжки, де зазначені тривалість ЮО затяжки та зниження температури АТ). По завершенню затяжки повітря більше не втягується й температура струмоприйтуча знову підвищується (що приводить до відповідного збільшення уявного омічного опору а і температури Т струмоприймача) і сила постійного струму ОС відповідно зменшується.
Винятково як приклад, затяжки, зображені на фіг. 7, здійснюються кожні тридцять секунд і мають тривалість 0, рівну двом секундам, у той час як кожна затяжка включає утягнене повітря в об'ємі п'ятдесяти п'яти мілілітрів, і зниження температури АТ струмоприймача 21 становить, наприклад, приблизно 40 "С. Як тільки виявляється зниження температури АТ, характерне для такої затяжки, мікроконтролер 131 змушує лічильник 134, що відраховує затяжки, здійснені з того самого субстрату, що утворює аерозоль, збільшувати показання на одиницю й індикатор 100, що відображає кількість затяжок, здійснених з того самого субстрату, що утворює аерозоль або кількість затяжок, які залишилося здійснити із цього субстрату, що утворює аерозоль, або обидві ці кількості, відповідним чином збільшувати/зменшувати показання на одиту"ю. По завершенню затяжки, коли температура Т струмоприймача 21 і уявний омічний опір а знову збільшуються при нагріванні (як описано вище), сила постійного струму ос, одержуваного із джерела 11 живлення постійного струму, відповідно зменшується.
Як також видно на фіг. 7, перетворювач постійного струму на змінний виробляє змінний струм доти, доки темпегр -"-румоприймача 21 не буде рівнятися або перевищувати задану граничну температуру Ранична Коли температура струмоприймача субстрату. що утворює . т, аерозоль, стає рівною або перевищує цю задану граничну температуру 'Ранична (наприклад, цільову робочу температуру), мікроконтролер 131 запрограмований переривати подальше вироблення змінного струму перетворювачем 132 постійного струму на змінний. Потім бажано підтримувати температуру Т струмоприймача 21 на рівні цільової робочої температт т температура Т струмоприймача 21 знову опускається нижче граничної температури "Ранична мікроконтролер 131 запрограмований знову відновляти вироблення змінного струму.
Цього можна досягти, наприклад, шляхом регулювання коефіцієнта заповнення перемикального транзистора. Це описане, у принципі, в документі УМО 2014/040988. Наприклад, при нагріванні перетворювач постійного струму на змінний безупинно в'я еляє змінний струм, що нагріває струмоприймач, і одночасно напруга постійного струму "ОС і сила постійного струму с виміряються кожні 10 мілісекунд протягом 1 мілісекунди. Визначається уявний омічний опір На (за співвідношенням Мос і іс, і з На досягає або перевищує величину
На, що відповідає заданій граничній температурі 'Ранична або температурі, що перевищує т, . . задану граничну температуру 'ранична деремикальний транзистор 1231 (див. фіг. 4) перемикається в режим, у якому він генерує імпульси лише кожні 10 мілісекунд протягом 1 мілісекунди (у такому випадку коефіцієнт заповнення перемикального транзистора становить лише приблизно 995). Протягом цієї 1 мілісекунди включеного стану (провідну" стану) перемикального транзистора 1231 виміряються величини напруги постійного струму "9 ії сипи постійного струму с і визначається уявний омічний опір На . Оскільки уявний омічний опір На є характерну температури Т струмоприймача 21, яка нижче заданій граничної температури 'Ранична транзистор перемикається назад у вищезгаданий режим (таким чином, щоб коефіцієнт заповнення перемикального транзистора знову становив практично 100 95).
Зо Наприклад, струмоприймач 21 може мати довжину, рівну приблизно 12 міліметрів, ширину, рівну приблизно 4 міліметра, і товщину, рівну приблизно 50 мікрометрів, і може бути виготовлений з нержавіючої сталі марки 430 (55430). У якості альтернативного прикладу струмоприймач може мати довжину, рівну приблизно 12 міліметрів, ширину, рівну приблизно 5 міліметрів, і товщину, рівну приблизно 50 мікрометрів, і може бути виготовлений з нержавіючої сталі марки 420 (55430). Ці струмоприймачі також можуть бути виготовлені з нержавіючої сталі марки 420 (55420).
Завдяки опису варіантів здійснення винаходу за допомогою графічних матеріалів очевидно, що може бути передбачено багато змін і модифікацій у межах загальної ідеї, що лежить в основі даного винаходу. Отже, передбачається, що обсяг захисту не обмежується конкретними варіантами здійснення, але визначається прикладеною формулою винаходу.
Claims (22)
1. Індукційний нагрівальний пристрій (1) для нагрівання субстрату (20), що утворює аерозоль, містить струмоприймач (21), при цьому індукційний нагрівальний пристрій (1) містить: - корпус (10) пристрою, - джерело (11) живлення постійного струму, яке при експлуатації забезпечує напругу постійного струму (Мос) і силу постійного струму (Ірс), - електронні схеми (13) подачі живлення, виконані з можливістю роботи на високій частоті, при цьому електронні схеми (13) подачі живлення містять перетворювач (132) постійного струму на змінний, приєднаний до джерела (11) живлення постійного струму, при цьому перетворювач (132) постійного струму на змінний містить ланцюг (1323) індуктивно-ємнісного навантаження, виконаний з можливістю роботи з низьким омічним навантаженням (1324), при цьому ланцюг (1323) індуктивно-ємнісного навантаження містить послідовне з'єднання конденсатора (С) і індуктора (12), що має омічний опір (Ккотушки),
- порожнину (14), розташовану в корпусі (10) пристрою, при цьому порожнина має внутрішню поверхню, форма якої дозволяє розміщати щонайменше частину субстрату (20), що утворює аерозоль, при цьому порожнина (14) розташована таким чином, щоб при розміщенні частини субстрату (20), що утворює аерозоль, у порожнині (14) індуктор (2) ланцюга (1323) індуктивно- ємнісного навантаження індуктивно з'єднувався зі струмоприймачем (21) субстрату (20), що утворює аерозоль, при експлуатації, при цьому електронні схеми (13) подачі живлення додатково містять мікроконтролер (131), запрограмований на те, щоб при експлуатації визначати за напругою постійного струму (Мос) джерела (11) живлення постійного струму та за силою постійного струму (Іос), одержуваного із джерела (11) живлення постійного струму, уявний омічний опір (Ка), і додатково запрограмований на те, щоб при експлуатації визначати за уявним омічним опором (Ка) температуру (Т) струмоприймача (21) субстрату (20), що утворює аерозоль, і додатково запрограмований на відстеження змін уявного омічного опору (Ка) і на виявлення затяжки при визначенні зменшення уявного омічного опору (Ка), яке є характерним для зниження температури (АТ) струмоприймача (21) при вдиханні користувачем.
2. Індукційний нагрівальний пристрій за п. 1, який відрізняється тим, що мікроконтролер (131) запрограмований на виявлення затяжки, коли зменшення уявного омічного опору (Ка) відповідає зниженню температури (АТ) струмоприймача (21) у діапазоні від 10 "С до 100 С, переважно в діапазоні від 20 "С до 70 76.
3. Індукційний нагрівальний пристрій за будь-яким із попередніх пунктів, який відрізняється тим, що мікроконтролер (131) додатково запрограмований на забезпечення виявлення затяжок тривалістю (0) у діапазоні від 0,5 секунди до 4 секунд, точніше в діапазоні від 1 секунди до З секунд, і ще переважно тривалістю приблизно 2 секунди.
4. Індукційний нагрівальний пристрій за будь-яким із попередніх пунктів, який відрізняється тим, що додатково містить лічильник (134) для підрахунку затяжок, уже здійснених з того самого субстрату (20), що утворює аерозоль, і, необов'язково, індикатор (100) для демонстрації користувачеві кількості затяжок, здійснених з того самого субстрату (20), що утворює аерозоль, або кількості затяжок, які залишилося здійснити з того самого субстрату (20), що утворює аерозоль, або як кількості уже здійснених затяжок, так і кількості затяжок, які залишилося Зо здійснити з того самого субстрату (20), що утворює аерозоль.
5. Індукційний нагрівальний пристрій за п. 4, який відрізняється тим, що мікроконтролер (131) додатково запрограмований на те, щоб забезпечувати можливість здійснювати максимальну кількість затяжок із того самого субстрату (20), що утворює аерозоль, і при цьому мікроконтролер (131) запрограмований припиняти подачу постійного струму із джерела (11) живлення постійного струму на перетворювач постійного струму на змінний, коли лічильник (134) відрахував максимальну кількість затяжок, здійснених з одного і того ж субстрату (20), що утворює аерозоль.
6. Індукційний нагрівальний пристрій за будь-яким із попередніх пунктів, який відрізняється тим, що пристрій виконаний таким чином, щоб нагрівати субстрат (20), що утворює аерозоль, курильного виробу (2).
7. Індукційний нагрівальний пристрій за будь-яким із попередніх пунктів, який відрізняється тим, що джерело (11) живлення постійного струму являє собою батарею постійного струму, зокрема акумуляторну батарею постійного струму, для забезпечення напруги постійного струму (Мос) незмінної величини, і при цьому електронні схеми (13) подачі живлення додатково містять датчик постійного струму для вимірювання сили постійного струму (Іос), одержуваного з батареї постійного струму, для визначення уявного омічного опору (Ка) за напругою постійного струму (Мос) незмінної величини і виміряною силою постійного струму.
8. Індукційний нагрівальний пристрій за будь-яким із попередніх пунктів, який відрізняється тим, що електронні схеми (13) подачі живлення додатково містять датчик напруги постійного струму для вимірювання напруги постійного струму (Мос) джерела (11) живлення постійного струму.
9. Індукційний нагрівальний пристрій за будь-яким із попередніх пунктів, який відрізняється тим, що мікроконтролер (131) додатково запрограмований переривати вироблення змінного струму перетворювачем (132) постійного струму на змінний, коли визначена температура (Т) струмоприймача (21) субстрату (20), що утворює аерозоль, рівна або перевищує задану граничну температуру (ІГгранична), і при цьому мікроконтролер (132) запрограмований відновляти вироблення змінного струму, коли визначена температура (Т) струмоприймача (21) субстрату (20), що утворює аерозоль, знову опускається нижче заданої граничної температури (ІТ гранична).
10. Індукційний нагрівальний пристрій за будь-яким із попередніх пунктів, який відрізняється бо тим, що перетворювач (132) постійного струму на змінний містить підсилювач потужності класу
Е, що містить транзисторний перемикач (1320), задавальну схему (1322) транзисторного перемикача й ланцюг (1323) індуктивно-ємнісного навантаження, виконаний з можливістю роботи з низьким омічним навантаженням (1324), при цьому ланцюг (1323) індуктивно-ємнісного навантаження додатково містить шунтувальний конденсатор (С1).
11. Індукційний нагрівальний пристрій за будь-яким із попередніх пунктів, який відрізняється тим, що підсилювач потужності класу Е має вихідний імпеданс і при цьому електронні схеми подачі живлення додатково містять узгоджувальний ланцюг (133) для узгодження вихідного імпедансу підсилювача потужності класу Е з низьким омічним навантаженням (1324).
12. Індукційний нагрівальний пристрій за будь-яким із попередніх пунктів, який відрізняється тим, що індуктор (12) ланцюга (1323) індуктивно-ємнісного навантаження містить циліндричну індукційну котушку (12) зі спіральним намотуванням, розташовану на внутрішній поверхні порожнини (14) або поруч із нею.
13. Система подачі аерозолю, яка містить індукційний нагрівальний пристрій (1) за будь-яким із попередніх пунктів і субстрат (20), що утворює аерозоль, який містить струмоприймач (21), причому щонайменше частина субстрату (20), що утворює аерозоль, розміщена в порожнині (14) індукційного нагрівального пристрою (1) таким чином, щоб індуктор (2) ланцюга (1323) індуктивно-ємнісного навантаження перетворювача (132) постійного струму на змінний індукційного нагрівального пристрою (1) був індуктивно з'єднаний зі струмоприймачем (21) субстрату (20), що утворює аерозоль, при експлуатації.
14. Система подачі аерозолю за п. 13, яка відрізняється тим, що субстрат (20), що утворює аерозоль, курильного виробу являє собою тютюновмісний твердий субстрат (2), що утворює аерозоль.
15. Система подачі аерозолю за будь-яким із пп. 13 або 14, яка відрізняється тим, що струмоприймач (21) виготовлений з нержавіючої сталі.
16. Система подачі аерозолю за п. 15, яка відрізняється тим, що струмоприймач (21) містить плоску смугу з нержавіючої сталі, при цьому плоска смуга з нержавіючої сталі має довжину в діапазоні від приблизно 8 міліметрів до приблизно 15 міліметрів, переважно довжину рівну приблизно 12 міліметрам, має ширину в діапазоні від приблизно З міліметрів до приблизно 6 міліметрів, переважно ширину рівну приблизно 4 міліметрам або приблизно 5 міліметрам, і має Зо товщину в діапазоні від приблизно 20 мікрометрів до приблизно 50 мікрометрів, переважно товщину в діапазоні від приблизно 20 мікрометрів до приблизно 40 мікрометрів, наприклад товщину рівну приблизно 25 мікрометрів або приблизно 35 мікрометрів.
17. Спосіб експлуатації системи подачі аерозолю за будь-яким із пп. 13-16, при цьому спосіб включає наступні етапи: - визначення за напругою постійного струму (МОС) джерела (11) живлення постійного струму та за силою постійного струму (Іосс), одержуваного із джерела (11) живлення постійного струму, уявного омічного опору (Ва), - визначення за уявним омічним опором (Ка) температури (Т) струмоприймача (21) субстрату (20), що утворює аерозоль, - відстеження змін уявного омічного опору (Ра) і - виявлення затяжки при визначенні зменшення уявного омічного опору (Ва), характерного для зниження температури (АТ) струмоприймача (21) при вдиханні користувачем.
18. Спосіб за п. 17, який відрізняється тим, що етап виявлення затяжки включає виявлення затяжки, коли зменшення уявного омічного опору (Ка) відповідає зниженню температури (АТ) струмоприймача (21) у діапазоні від 10 "С до 100 "С, переважно в діапазоні від 20 "С до 70 76.
19. Спосіб за будь-яким із пп. 17 або 18, який відрізняється тим, що етап виявлення затяжки додатково включає забезпечення виявлення затяжок тривалістю (0) у діапазоні від 0,5 секунди до 4 секунд, точніше в діапазоні від 1 секунди до З секунд, і ще переважно тривалістю приблизно 2 секунди.
20. Спосіб за будь-яким із пп. 17-19, який відрізняється тим, що додатково включає етапи підрахунку затяжок, здійснених з того самого субстрату (20), що утворює аерозоль, і, необов'язково, демонстрації користувачеві кількості затяжок, здійснених з того самого субстрату (20), що утворює аерозоль, або кількості затяжок, які залишилося здійснити з того самого субстрату (20), що утворює аерозоль, або як кількості уже здійснених затяжок, так і кількості затяжок, які залишилося здійснити з того самого субстрату (20), що утворює аерозоль.
21. Спосіб за п. 20, який відрізняється тим, що додатково включає етап забезпечення здійснення максимальної кількості затяжок із того самого субстрату, що утворює аерозоль, і припинення подачі постійного струму із джерела (11) живлення постійного струму на перетворювач (132) постійного струму на змінний, коли лічильник (134) відрахував максимальну бо кількість затяжок, здійснених з того самого субстрату (20), що утворює аерозоль.
22. Спосіб за будь-яким із пп. 17-21, який відрізняється тим, що додатково включає наступні етапи: - переривання вироблення змінного струму перетворювачем (132) постійного струму на змінний, коли визначена температура (Т) струмоприймача (21) субстрату (20), що утворює аерозоль, рівна або перевищує задану граничну температуру (гранична), і - відновлення вироблення змінного струму, коли визначена температура (Т) струмоприймача (21) субстрату (20), що утворює аерозоль, знову опускається нижче заданої граничної температури (Тгранична). В, : С Ж 4 І в я в земне: щі В вій тт ва КЕ ее Ме ія КО ще ше т шеф оне ок нн ее ДТ «ще шу ше ее ек: чани п й шен ви и І СИ Ме; ху ох я С КЕ Фіг і х ші х У КУ Ук о Їро і зм х ши а і ан і ен СИ АК рувенриачах Ї Лжере те іх за їх ектів А Увехкувати КА. я ракова їх я НК КЕН щ В ї ЯК г і й струм вх м й мі замами" г алу Кк ОБ и й те ствжае ох х зхнивй Її у г | У Таж ї ше и і ї я Б ши їх х х х ЗА ї І Вк Н ї ; НЕ НК 123 я
Фіг.
Е їх х х тем Кк, І Бе ЕЕ ж, о з й оч і ї І ї : Ж ви І ІЗ у ЕЕ у; 1 х ї Есе Ей «к х їх. ї т : м ж с : ї ще й х де: яму: ода с х Кз 2 ме пами р щу У жк І і гі й кож к ІЗ Т щ- 7 ен ї С ІЗ ї я свй в ї Ї сечрннс я ооорессееофоссссорфеоеседсооі с ресісссссу сседу нн нн І Ї 5: х. мс є. си ЗЕ оо Кн НД ШИЯ у К-ї в Коні КК КОН В ВВ щ- В ря Е; : К Е З 3. г нас : «о й Я и Кк А у Ж ВК і кого озововомннх шт : Бо ї "ШУ х с; ? Кз І 7 Вобонжнц з Х Хоней о З з ї ї Кана і: Б. КО со ї 3 о 5 Е х Я : плит З і ЩЕ 5 ї ВИЩ беж, ШИН и ИН Є. ни и ЖК х ЯКИХ : Її» их - З 4 Е Її ТЕ ї Ех В 1 Х ї г З ї ї і хонванві їх їх ІЗ й їх ; т у: Н ооо а я у З Е З з й ШИК Яй і ан ТЕ т в і ЕВ і НК са і жк я у ж збо (І как се ооо о далем КН ї- К їх і х Кам 23 ую вона х чі т СОДИ ДЯ ОМ К КОХ Й Холм се м х скхжтя й - с с ААЛАКААЮ кн КА КК ок фо Км міом мм 3 ї Ї -. Х Ні Кі ї : і Ко 2 є 3 І х 7 Ї ї Хоюеттетян няння ї І Ї У Є У Н Її 2 й ї Ї ї й : І ІЗ « КО, «ху Ж Но ОО де Ах хкдю я ск ДК ЖЖ ЖК КК Мк Хе. Мих ххю ху Меюх сіхм, зхєж яххю тех, щей З с нь ї Н р : ї ї ; Н ЕКЗ У зх І і Н п кій ее а п ЕЕ НЕ х ою нм Хей я ну ї ї Мая ї ї 3 Е т се УК ти, нг ї-Ж ї х 3 ї саше ЗИ се Ше пе ХЕ й ай кВ 5 : Х 5 5 1 ї 5 "У - Ж х ї Кома з х ї Ку. ї їОЖ Ж 5 х хї Я ХЕ т сах й я ИН ЗЕ Зв ЗК ДУ ВИ ОК х ї ше і (ріг 4 ИН Я: о ї ЕН Ок ї ї їж ї є о М х Не Гонон ж їЯ й ох ій на не паж НЕ : Не НЕ ШО | Кон І ше рн ох хх ни Ва Н я У х ї ї СТниЕ ч ух ї ї ї Ї и А ЕЕ зно а ке їх 3 І х Ж х "ох х х Й х «й х Е їі жк ду о їз Кк а не х х ЕЕ ва « Кай ХУсннх Ж 5 їх ежя М БУ ОД задово ХЕ й-- ї Ж же : ЕЕЯ У х Же. ї до жк як ж З ЕЕ В 1555 137 о 2 Х мими Х мя еко - Й -Я 132а х ; ех Ж об век їх 2 т 7 х ї Жобн ї ее «оф ї. х 7 К ії ! в ! з: и ! Х Ї ї - й ще У ме б б ов Фіг.о ї й ями ІГ. ї хі ІЗ ик У
КК. ї Е ці ие її ї ї Кох їх їж Бе ЩІ ї ї ї ген ще - (( й ц ши - з с Ши
Фіг.5 пе сення ее нен не чин пепеннтенннннннннтнння М М жену : шо Що г о о :
Фіг.т
! Б ШЕ ж ша Є Кй п Е ОК т ве ОО ЛИ мае: У я що я межа їх в: зам веКе І іїоЄ
Фіг.8 Ше 7 Ка КУ денну Ех ЖЕО Бу дело : її ТК азни і
5. попадання : Хогрню? : Ук щі : ж : Е і Її й Хром : 0 ЖК керу МОпрНМча :
Фіг.з
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14169191 | 2014-05-21 | ||
PCT/EP2015/061202 WO2015177257A1 (en) | 2014-05-21 | 2015-05-21 | Inductive heating device, aerosol-delivery system comprising an inductive heating device, and method of operating same |
Publications (1)
Publication Number | Publication Date |
---|---|
UA118867C2 true UA118867C2 (uk) | 2019-03-25 |
Family
ID=50735956
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
UAA201608778A UA120921C2 (uk) | 2014-05-21 | 2015-05-21 | Індукційний нагрівальний пристрій для нагрівання субстрату, що утворює аерозоль |
UAA201609383A UA118867C2 (uk) | 2014-05-21 | 2015-05-21 | Індукційний нагрівальний пристрій, система подачі аерозолю, яка містить індукційний нагрівальний пристрій, та спосіб її експлуатації |
UAA201610215A UA119979C2 (uk) | 2014-05-21 | 2015-05-21 | Індукційний нагрівальний пристрій, система подачі аерозолю, яка містить індукційний нагрівальний пристрій, та спосіб її експлуатації |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
UAA201608778A UA120921C2 (uk) | 2014-05-21 | 2015-05-21 | Індукційний нагрівальний пристрій для нагрівання субстрату, що утворює аерозоль |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
UAA201610215A UA119979C2 (uk) | 2014-05-21 | 2015-05-21 | Індукційний нагрівальний пристрій, система подачі аерозолю, яка містить індукційний нагрівальний пристрій, та спосіб її експлуатації |
Country Status (27)
Country | Link |
---|---|
US (6) | US10674763B2 (uk) |
EP (5) | EP3723452B1 (uk) |
JP (6) | JP6452709B2 (uk) |
KR (5) | KR102282571B1 (uk) |
CN (4) | CN110522092B (uk) |
AR (3) | AR100541A1 (uk) |
AU (3) | AU2015261880B2 (uk) |
BR (2) | BR112016020498B1 (uk) |
CA (3) | CA2948729C (uk) |
DK (2) | DK2967156T3 (uk) |
ES (4) | ES2610419T3 (uk) |
HU (4) | HUE031696T2 (uk) |
IL (3) | IL246460B (uk) |
LT (2) | LT3145342T (uk) |
MX (3) | MX2016015142A (uk) |
MY (3) | MY182566A (uk) |
PH (3) | PH12016501239A1 (uk) |
PL (4) | PL3145342T3 (uk) |
PT (2) | PT3145342T (uk) |
RS (2) | RS55484B1 (uk) |
RU (3) | RU2670951C9 (uk) |
SG (3) | SG11201605889WA (uk) |
SI (1) | SI3145342T1 (uk) |
TW (3) | TWI692274B (uk) |
UA (3) | UA120921C2 (uk) |
WO (3) | WO2015177257A1 (uk) |
ZA (3) | ZA201604314B (uk) |
Families Citing this family (291)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10244793B2 (en) | 2005-07-19 | 2019-04-02 | Juul Labs, Inc. | Devices for vaporization of a substance |
RU2595971C2 (ru) | 2011-09-06 | 2016-08-27 | Бритиш Америкэн Тобэкко (Инвестментс) Лимитед | Нагревание курительного материала |
GB201217067D0 (en) | 2012-09-25 | 2012-11-07 | British American Tobacco Co | Heating smokable material |
US10279934B2 (en) | 2013-03-15 | 2019-05-07 | Juul Labs, Inc. | Fillable vaporizer cartridge and method of filling |
USD825102S1 (en) | 2016-07-28 | 2018-08-07 | Juul Labs, Inc. | Vaporizer device with cartridge |
CN110664012A (zh) | 2013-12-23 | 2020-01-10 | 尤尔实验室有限公司 | 蒸发装置系统和方法 |
US10159282B2 (en) | 2013-12-23 | 2018-12-25 | Juul Labs, Inc. | Cartridge for use with a vaporizer device |
USD842536S1 (en) | 2016-07-28 | 2019-03-05 | Juul Labs, Inc. | Vaporizer cartridge |
US10076139B2 (en) | 2013-12-23 | 2018-09-18 | Juul Labs, Inc. | Vaporizer apparatus |
US20160366947A1 (en) | 2013-12-23 | 2016-12-22 | James Monsees | Vaporizer apparatus |
US10058129B2 (en) | 2013-12-23 | 2018-08-28 | Juul Labs, Inc. | Vaporization device systems and methods |
CA3205347A1 (en) * | 2014-02-28 | 2015-09-03 | Altria Client Services Llc | Electronic vaping device with induction heating |
BR112016021596B1 (pt) * | 2014-03-21 | 2022-08-23 | Nicoventures Trading Limited | Aparelho para possibilitar que material fumável seja aquecido e artigo de material fumável |
HUE031205T2 (en) * | 2014-05-21 | 2017-07-28 | Philip Morris Products Sa | Aerosol generating article with multi-material susceptor |
TWI692274B (zh) | 2014-05-21 | 2020-04-21 | 瑞士商菲利浦莫里斯製品股份有限公司 | 用於加熱氣溶膠形成基材之感應加熱裝置及操作感應加熱系統之方法 |
CN115944117A (zh) | 2014-05-21 | 2023-04-11 | 菲利普莫里斯生产公司 | 具有内部感受器的气溶胶生成制品 |
GB2527597B (en) | 2014-06-27 | 2016-11-23 | Relco Induction Dev Ltd | Electronic Vapour Inhalers |
GB2546921A (en) * | 2014-11-11 | 2017-08-02 | Jt Int Sa | Electronic vapour inhalers |
KR102574658B1 (ko) | 2014-12-05 | 2023-09-05 | 쥴 랩스, 인크. | 교정된 투여량 제어 |
US20180004298A1 (en) * | 2015-01-22 | 2018-01-04 | Texas Tech University System | System and method for non-contact interaction with mobile devices |
US11154094B2 (en) | 2015-05-19 | 2021-10-26 | Jt International S.A. | Aerosol generating device and capsule |
GB201511358D0 (en) * | 2015-06-29 | 2015-08-12 | Nicoventures Holdings Ltd | Electronic aerosol provision systems |
GB201511349D0 (en) | 2015-06-29 | 2015-08-12 | Nicoventures Holdings Ltd | Electronic aerosol provision systems |
GB201511361D0 (en) | 2015-06-29 | 2015-08-12 | Nicoventures Holdings Ltd | Electronic vapour provision system |
GB201511359D0 (en) | 2015-06-29 | 2015-08-12 | Nicoventures Holdings Ltd | Electronic vapour provision system |
US20170013702A1 (en) * | 2015-07-10 | 2017-01-12 | Moxtek, Inc. | Electron-Emitter Transformer and High Voltage Multiplier |
MX2018001724A (es) * | 2015-08-17 | 2018-05-11 | Philip Morris Products Sa | Sistema generador de aerosol y articulo generador de aerosol para usar en dicho sistema. |
US20170055575A1 (en) | 2015-08-31 | 2017-03-02 | British American Tobacco (Investments) Limited | Material for use with apparatus for heating smokable material |
US20170055574A1 (en) | 2015-08-31 | 2017-03-02 | British American Tobacco (Investments) Limited | Cartridge for use with apparatus for heating smokable material |
US11924930B2 (en) | 2015-08-31 | 2024-03-05 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
US20170055584A1 (en) | 2015-08-31 | 2017-03-02 | British American Tobacco (Investments) Limited | Article for use with apparatus for heating smokable material |
US20170055583A1 (en) * | 2015-08-31 | 2017-03-02 | British American Tobacco (Investments) Limited | Apparatus for heating smokable material |
US20170055582A1 (en) * | 2015-08-31 | 2017-03-02 | British American Tobacco (Investments) Limited | Article for use with apparatus for heating smokable material |
GB2543329B (en) * | 2015-10-15 | 2018-06-06 | Jt Int Sa | A method for operating an electronic vapour inhaler |
US10582726B2 (en) | 2015-10-21 | 2020-03-10 | Rai Strategic Holdings, Inc. | Induction charging for an aerosol delivery device |
US20170112194A1 (en) * | 2015-10-21 | 2017-04-27 | Rai Strategic Holdings, Inc. | Rechargeable lithium-ion capacitor for an aerosol delivery device |
WO2017068099A1 (en) | 2015-10-22 | 2017-04-27 | Philip Morris Products S.A. | Aerosol-generating article and method for manufacturing such aerosol-generating article; aerosol-generating device and system |
US20170119051A1 (en) | 2015-10-30 | 2017-05-04 | British American Tobacco (Investments) Limited | Article for Use with Apparatus for Heating Smokable Material |
US20170119050A1 (en) | 2015-10-30 | 2017-05-04 | British American Tobacco (Investments) Limited | Article for Use with Apparatus for Heating Smokable Material |
US20170119046A1 (en) | 2015-10-30 | 2017-05-04 | British American Tobacco (Investments) Limited | Apparatus for Heating Smokable Material |
US20170119047A1 (en) | 2015-10-30 | 2017-05-04 | British American Tobacco (Investments) Limited | Article for Use with Apparatus for Heating Smokable Material |
US20180317554A1 (en) | 2015-10-30 | 2018-11-08 | British American Tobacco (Investments) Limited | Article for use with apparatus for heating smokable material |
US10820630B2 (en) | 2015-11-06 | 2020-11-03 | Rai Strategic Holdings, Inc. | Aerosol delivery device including a wirelessly-heated atomizer and related method |
MX2018008092A (es) * | 2016-01-07 | 2018-08-23 | Philip Morris Products Sa | Dispositivo generador de aerosol con compartimento sellado. |
US10104912B2 (en) | 2016-01-20 | 2018-10-23 | Rai Strategic Holdings, Inc. | Control for an induction-based aerosol delivery device |
JP6959927B2 (ja) * | 2016-02-01 | 2021-11-05 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | 複数の電源供給を有するエアロゾル発生装置 |
UA125687C2 (uk) | 2016-02-11 | 2022-05-18 | Джуул Лебз, Інк. | Заповнювальний картридж випарного пристрою та способи його заповнення |
SG10202108578XA (en) | 2016-02-11 | 2021-09-29 | Juul Labs Inc | Securely attaching cartridges for vaporizer devices |
US10757976B2 (en) | 2016-02-12 | 2020-09-01 | Altria Client Services Llc | Aerosol-generating system with puff detector |
RU2735170C2 (ru) * | 2016-02-12 | 2020-10-28 | Филип Моррис Продактс С.А. | Генерирующая аэрозоль система с детектором затяжек |
GB201602831D0 (en) * | 2016-02-18 | 2016-04-06 | British American Tobacco Co | Flavour delivery device |
US20190037925A1 (en) * | 2016-02-23 | 2019-02-07 | Fontem Holdings 1 B.V. | High frequency polarization aerosol generator |
CN113925200A (zh) | 2016-03-09 | 2022-01-14 | 菲利普莫里斯生产公司 | 气溶胶生成制品 |
US10405582B2 (en) | 2016-03-10 | 2019-09-10 | Pax Labs, Inc. | Vaporization device with lip sensing |
US10321712B2 (en) * | 2016-03-29 | 2019-06-18 | Altria Client Services Llc | Electronic vaping device |
KR102471331B1 (ko) | 2016-04-20 | 2022-11-28 | 필립모리스 프로덕츠 에스.에이. | 하이브리드 에어로졸 발생 요소 및 하이브리드 에어로졸 발생 요소를 제조하기 위한 방법 |
GB201607839D0 (en) * | 2016-05-05 | 2016-06-22 | Relco Induction Developments Ltd | Aerosol generating systems |
UA124426C2 (uk) * | 2016-05-31 | 2021-09-15 | Філіп Морріс Продактс С.А. | Проникний для рідини нагрівач у зборі для систем, що генерують аерозоль |
MX2018014054A (es) | 2016-05-31 | 2019-04-04 | Philip Morris Products Sa | Articulo generador de aerosol rellenable. |
USD849996S1 (en) | 2016-06-16 | 2019-05-28 | Pax Labs, Inc. | Vaporizer cartridge |
USD836541S1 (en) | 2016-06-23 | 2018-12-25 | Pax Labs, Inc. | Charging device |
USD851830S1 (en) | 2016-06-23 | 2019-06-18 | Pax Labs, Inc. | Combined vaporizer tamp and pick tool |
KR20230165864A (ko) * | 2016-06-29 | 2023-12-05 | 니코벤처스 트레이딩 리미티드 | 흡연가능 물질을 가열하기 위한 장치 |
RU2737356C2 (ru) * | 2016-06-29 | 2020-11-27 | Никовенчерс Трейдинг Лимитед | Устройство для нагревания курительного материала |
CA3028019C (en) | 2016-06-29 | 2021-05-25 | British American Tobacco (Investments) Limited | Apparatus for heating smokable material |
MX2019001928A (es) * | 2016-08-31 | 2019-08-05 | Philip Morris Products Sa | Dispositivo generador de aerosol con inductor. |
GB2553773A (en) * | 2016-09-09 | 2018-03-21 | Rucker Simon | Vapour producing device with a removable container and a removable container for use with such a device |
US10524508B2 (en) | 2016-11-15 | 2020-01-07 | Rai Strategic Holdings, Inc. | Induction-based aerosol delivery device |
TW201818833A (zh) * | 2016-11-22 | 2018-06-01 | 瑞士商菲利浦莫里斯製品股份有限公司 | 感應加熱裝置、包含感應加熱裝置之氣溶膠產生系統及其操作方法 |
JP7096820B2 (ja) * | 2016-12-29 | 2022-07-06 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | エアロゾル発生物品の構成要素の製造のための方法および装置 |
EP4122340A1 (en) * | 2017-01-18 | 2023-01-25 | KT&G Corporation | Fine particle generating device |
CN108338414B (zh) * | 2017-01-25 | 2022-05-27 | 贵州中烟工业有限责任公司 | 电加热吸烟系统的控制方法和控制系统 |
ES2910131T3 (es) * | 2017-01-25 | 2022-05-11 | Nicoventures Trading Ltd | Aparatos para calentar material fumable |
JP6779290B2 (ja) * | 2017-02-16 | 2020-11-04 | スミス テクノロジー カンパニー リミテッド | 電子タバコ及び電子タバコの吸入回数検出方法 |
GB201705206D0 (en) * | 2017-03-31 | 2017-05-17 | British American Tobacco Investments Ltd | Apparatus for a resonance circuit |
GB201705208D0 (en) * | 2017-03-31 | 2017-05-17 | British American Tobacco Investments Ltd | Temperature determination |
IL270017B2 (en) * | 2017-04-17 | 2024-10-01 | Loto Labs Inc | Temperature sensing devices, systems and methods in induction heating systems |
KR102558685B1 (ko) * | 2017-05-10 | 2023-07-24 | 필립모리스 프로덕츠 에스.에이. | 최적화된 기재 사용을 갖는 에어로졸 발생 물품, 장치 및 시스템 |
TW201902372A (zh) | 2017-05-31 | 2019-01-16 | 瑞士商菲利浦莫里斯製品股份有限公司 | 氣溶膠產生裝置之加熱構件 |
EP3644768B1 (en) | 2017-06-28 | 2023-06-21 | Philip Morris Products S.A. | Shisha device with air preheat without combustion |
KR102696601B1 (ko) | 2017-06-28 | 2024-08-21 | 필립모리스 프로덕츠 에스.에이. | 복수의 챔버를 갖는 시샤 카트리지 |
WO2019002329A1 (en) * | 2017-06-28 | 2019-01-03 | Philip Morris Products S.A. | ELECTRIC HEATING ASSEMBLY, AEROSOL GENERATING DEVICE, AND RESISTIVE HEATING METHOD OF AEROSOL FORMING SUBSTRATE |
KR20230088515A (ko) | 2017-06-30 | 2023-06-19 | 필립모리스 프로덕츠 에스.에이. | 유도 가열 장치, 유도 가열 장치를 포함하는 에어로졸 발생 시스템, 및 유도 가열 장치 작동 방법 |
TWI760513B (zh) | 2017-06-30 | 2022-04-11 | 瑞士商菲利浦莫里斯製品股份有限公司 | 具有有效電力控制的感應加熱系統之氣溶膠產生裝置與氣溶膠產生系統 |
CN110769706B (zh) | 2017-07-19 | 2023-10-17 | 菲利普莫里斯生产公司 | 用于增强气溶胶特性的水烟装置 |
US11478590B2 (en) | 2017-07-21 | 2022-10-25 | Philip Morris Products S.A. | Aerosol generating device with spiral movement for heating |
WO2019021119A1 (en) | 2017-07-25 | 2019-01-31 | Philip Morris Products S.A. | HEAT TRANSFER ADAPTER FOR AEROSOL GENERATION DEVICE |
JP2020530775A (ja) | 2017-08-09 | 2020-10-29 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | 円錐台形状の誘導コイルを有する誘導ヒーターを備えたエアロゾル発生装置 |
US11246347B2 (en) | 2017-08-09 | 2022-02-15 | Philip Morris Products S.A. | Aerosol-generating device with induction heater and movable component |
CN110891443A (zh) | 2017-08-09 | 2020-03-17 | 菲利普莫里斯生产公司 | 具有多个感受器的气溶胶生成系统 |
CN111031821A (zh) | 2017-08-09 | 2020-04-17 | 菲利普莫里斯生产公司 | 具有可拆卸插入的加热室的气溶胶生成装置 |
EP3664633B1 (en) * | 2017-08-09 | 2023-07-05 | Philip Morris Products S.A. | Aerosol-generating device with induction heater with side opening |
RU2765097C2 (ru) | 2017-08-09 | 2022-01-25 | Филип Моррис Продактс С.А. | Генерирующее аэрозоль устройство с плоской катушкой индуктивности |
US11382358B2 (en) | 2017-08-09 | 2022-07-12 | Philip Morris Products S.A. | Aerosol-generating device with susceptor layer |
US11363840B2 (en) | 2017-08-09 | 2022-06-21 | Philip Morris Products S.A. | Aerosol-generating device with removable susceptor |
HUE055702T2 (hu) * | 2017-08-09 | 2021-12-28 | Philip Morris Products Sa | Aeroszol-fejlesztõ rendszer több indukciós tekerccsel |
CN110944530B (zh) | 2017-08-09 | 2023-09-29 | 菲利普莫里斯生产公司 | 具有非圆形电感器线圈的气溶胶生成系统 |
CN114601203A (zh) | 2017-08-09 | 2022-06-10 | 菲利普莫里斯生产公司 | 具有模块化感应加热器的气溶胶生成装置 |
US11375753B2 (en) | 2017-08-09 | 2022-07-05 | Philip Morris Products S.A. | Aerosol-generating device having an inductor coil with reduced separation |
KR20230096139A (ko) * | 2017-09-06 | 2023-06-29 | 제이티 인터내셔널 소시에떼 아노님 | 증기 생성 디바이스에 대한 유도 가열 어셈블리 |
USD887632S1 (en) | 2017-09-14 | 2020-06-16 | Pax Labs, Inc. | Vaporizer cartridge |
PL3681321T3 (pl) | 2017-09-15 | 2023-05-29 | Nicoventures Trading Limited | Urządzenie do podgrzewania materiału nadającego się do palenia |
TW201933937A (zh) | 2017-09-22 | 2019-08-16 | 瑞士商傑太日煙國際股份有限公司 | 用於一蒸氣產生裝置之感應可加熱匣 |
WO2019064119A1 (en) | 2017-09-27 | 2019-04-04 | Philip Morris Products S.A. | HEAT DIFFUSER FOR AEROSOL GENERATING DEVICE |
US11602163B2 (en) | 2017-10-06 | 2023-03-14 | Philip Morris Products S.A. | Shisha device with aerosol condensation |
GB201716732D0 (en) | 2017-10-12 | 2017-11-29 | British American Tobacco Investments Ltd | Vapour provision systems |
GB201716730D0 (en) | 2017-10-12 | 2017-11-29 | British American Tobacco Investments Ltd | Aerosol provision systems |
CN207444281U (zh) * | 2017-10-27 | 2018-06-05 | 深圳市合元科技有限公司 | 一种加热装置及低温烘焙烟具 |
US10517332B2 (en) | 2017-10-31 | 2019-12-31 | Rai Strategic Holdings, Inc. | Induction heated aerosol delivery device |
TWI633921B (zh) * | 2017-11-03 | 2018-09-01 | 台灣晶技股份有限公司 | Micro aerosol sensing device with self-cleaning function |
US10806181B2 (en) * | 2017-12-08 | 2020-10-20 | Rai Strategic Holdings, Inc. | Quasi-resonant flyback converter for an induction-based aerosol delivery device |
GB201721612D0 (en) * | 2017-12-21 | 2018-02-07 | British American Tobacco Investments Ltd | Circuitry for a plurality of induction elements for an aerosol generating device |
GB201721646D0 (en) * | 2017-12-21 | 2018-02-07 | British American Tobacco Investments Ltd | Aerosol provision device |
GB201721610D0 (en) | 2017-12-21 | 2018-02-07 | British American Tobacco Investments Ltd | Circuitry for an induction element for an aerosol generating device |
CN108200675B (zh) * | 2017-12-25 | 2021-01-15 | 盐城莱尔电热科技有限公司 | 一种具有螺旋加热电极的绝缘衬底 |
US11700874B2 (en) | 2017-12-29 | 2023-07-18 | Jt International S.A. | Inductively heatable consumable for aerosol generation |
TW201929702A (zh) * | 2017-12-29 | 2019-08-01 | 瑞士商傑太日煙國際股份有限公司 | 用於一蒸氣產生裝置之加熱總成 |
TWI769355B (zh) * | 2017-12-29 | 2022-07-01 | 瑞士商傑太日煙國際股份有限公司 | 用於一蒸氣產生裝置之感應加熱總成 |
EP3731680A1 (en) | 2017-12-29 | 2020-11-04 | JT International SA | Aerosol generating articles and methods for manufacturing the same |
PL3731679T3 (pl) * | 2017-12-29 | 2023-07-17 | Jt International Sa | Sterowany elektrycznie system wytwarzania aerozolu |
US11272741B2 (en) | 2018-01-03 | 2022-03-15 | Cqens Technologies Inc. | Heat-not-burn device and method |
US10750787B2 (en) | 2018-01-03 | 2020-08-25 | Cqens Technologies Inc. | Heat-not-burn device and method |
EP3740089B1 (en) | 2018-01-15 | 2023-03-01 | Philip Morris Products S.A. | Shisha device with active cooling for enhanced aerosol characteristics |
TWI744466B (zh) * | 2018-01-26 | 2021-11-01 | 日商日本煙草產業股份有限公司 | 霧氣生成裝置及霧氣生成裝置的製造方法 |
RU2747002C1 (ru) | 2018-01-26 | 2021-04-23 | Джапан Тобакко Инк. | Аэрозольное устройство, способ приведения в действие аэрозольного устройства и компьютерно-читаемый носитель данных, хранящий программу для управления данным устройством |
CA3089502C (en) * | 2018-01-26 | 2022-11-29 | Japan Tobacco Inc. | Aerosol generation device, and method and program for operating same |
EP3744193B1 (en) | 2018-01-26 | 2022-06-15 | Japan Tobacco Inc. | Aerosol generation device |
US11019850B2 (en) | 2018-02-26 | 2021-06-01 | Rai Strategic Holdings, Inc. | Heat conducting substrate for electrically heated aerosol delivery device |
RU2756544C1 (ru) * | 2018-03-26 | 2021-10-01 | Джапан Тобакко Инк. | Устройство формирования аэрозоля, способ управления и программа |
WO2019207511A1 (en) | 2018-04-25 | 2019-10-31 | Philip Morris Products S.A. | Ventilation for shisha device |
CN110403241B (zh) * | 2018-04-28 | 2021-02-23 | 深圳御烟实业有限公司 | 气溶胶生成装置和系统 |
KR102373331B1 (ko) * | 2018-05-11 | 2022-03-11 | 주식회사 이엠텍 | 미세 입자 발생 장치의 과열 및 오작동 차단 방법 |
WO2019222456A1 (en) * | 2018-05-16 | 2019-11-21 | Intrepid Brands, LLC | Radio-frequency heating medium |
FR3081732B1 (fr) | 2018-05-29 | 2020-09-11 | Deasyl Sa | Broyeur tridimensionnel, son procede de mise en œuvre et ses utilisations |
ES2934594T3 (es) | 2018-06-05 | 2023-02-23 | Philip Morris Products Sa | Dispositivo para sustrato formador de aerosol calentado con precalentamiento de aire |
US11730199B2 (en) | 2018-06-07 | 2023-08-22 | Juul Labs, Inc. | Cartridges for vaporizer devices |
EP3811801B1 (en) * | 2018-06-22 | 2023-03-29 | Japan Tobacco Inc. | Aerosol generation device, and method and program for operating same |
KR102367432B1 (ko) * | 2018-07-04 | 2022-02-24 | 주식회사 케이티앤지 | 에어로졸 생성장치 및 에어로졸 생성장치의 퍼프인식 방법 |
PL3817607T3 (pl) * | 2018-07-05 | 2023-01-02 | Philip Morris Products S.A. | Podgrzewany indukcyjnie układ wytwarzania aerozolu z czujnikiem temperatury otoczenia |
KR102330293B1 (ko) * | 2018-07-09 | 2021-11-24 | 주식회사 케이티앤지 | 에어로졸 생성 장치 |
KR102197837B1 (ko) * | 2018-07-20 | 2021-01-04 | 주식회사 맵스 | 궐련형 전자담배 비접촉 발열장치 |
EP3826491A1 (en) * | 2018-07-26 | 2021-06-02 | Philip Morris Products S.A. | Device for generating an aerosol |
EP3826492A1 (en) * | 2018-07-26 | 2021-06-02 | Philip Morris Products S.A. | System for generating an aerosol |
JP7323600B2 (ja) * | 2018-07-26 | 2023-08-08 | ジェイティー インターナショナル エスエイ | エアロゾル発生システム及びデバイス |
US20200035118A1 (en) | 2018-07-27 | 2020-01-30 | Joseph Pandolfino | Methods and products to facilitate smokers switching to a tobacco heating product or e-cigarettes |
US10897925B2 (en) | 2018-07-27 | 2021-01-26 | Joseph Pandolfino | Articles and formulations for smoking products and vaporizers |
KR102511169B1 (ko) * | 2018-07-31 | 2023-03-16 | 니뽄 다바코 산교 가부시키가이샤 | 정보처리 단말, 정보처리 방법, 정보처리 시스템 및 프로그램 |
CN112638186B (zh) | 2018-07-31 | 2024-03-19 | 菲利普莫里斯生产公司 | 包括气溶胶形成杆段的可感应加热的气溶胶生成制品以及用于制造此类气溶胶形成杆段的方法 |
GB201812497D0 (en) | 2018-07-31 | 2018-09-12 | Nicoventures Holdings Ltd | Aerosol generation |
US12114700B2 (en) | 2018-08-02 | 2024-10-15 | Philip Morris Products S.A. | System comprising aerosol-generating device and adapter element |
GB201814199D0 (en) * | 2018-08-31 | 2018-10-17 | Nicoventures Trading Ltd | Apparatus for an aerosol generating device |
GB201814197D0 (en) * | 2018-08-31 | 2018-10-17 | Nicoventures Trading Ltd | Aerosol generating material characteristic determination |
GB201814202D0 (en) * | 2018-08-31 | 2018-10-17 | Nicoventures Trading Ltd | A resonant circuit for an aerosol generating system |
GB201814198D0 (en) * | 2018-08-31 | 2018-10-17 | Nicoventures Trading Ltd | Apparatus for an aerosol generating device |
WO2020059049A1 (ja) * | 2018-09-19 | 2020-03-26 | 日本たばこ産業株式会社 | 香味生成装置、電源ユニット、香味生成装置を制御する方法、及びプログラム |
ES2931822T3 (es) | 2018-09-25 | 2023-01-02 | Philip Morris Products Sa | Artículo generador de aerosol que se calienta inductivamente que comprende un sustrato formador de aerosol y un conjunto de susceptor |
WO2020064686A1 (en) * | 2018-09-25 | 2020-04-02 | Philip Morris Products S.A. | Heating assembly and method for inductively heating an aerosol-forming substrate |
KR20210064301A (ko) | 2018-09-25 | 2021-06-02 | 필립모리스 프로덕츠 에스.에이. | 에어로졸 형성 기재를 유도 가열하기 위한 유도 가열 조립체 |
CN209376679U (zh) * | 2018-09-28 | 2019-09-13 | 深圳市合元科技有限公司 | 烘焙烟具 |
KR20210070352A (ko) | 2018-10-08 | 2021-06-14 | 필립모리스 프로덕츠 에스.에이. | 정향-함유 에어로졸 발생 기재 |
KR102167501B1 (ko) * | 2018-10-26 | 2020-10-19 | 주식회사 이엠텍 | 전자기파 발열 방식 미세 입자 발생 장치 |
US11882438B2 (en) * | 2018-10-29 | 2024-01-23 | Zorday IP, LLC | Network-enabled electronic cigarette |
JP7411654B2 (ja) | 2018-11-05 | 2024-01-11 | ジュール・ラブズ・インコーポレイテッド | 気化器デバイス用のカートリッジ |
US12066654B2 (en) | 2018-11-19 | 2024-08-20 | Rai Strategic Holdings, Inc. | Charging control for an aerosol delivery device |
KR102278589B1 (ko) * | 2018-12-06 | 2021-07-16 | 주식회사 케이티앤지 | 유도가열방식을 이용하는 에어로졸 생성장치 및 유도가열방식을 이용하여 에어로졸을 생성시키는 방법 |
KR102342331B1 (ko) * | 2018-12-07 | 2021-12-22 | 주식회사 케이티앤지 | 궐련을 가열하는 히터 조립체 및 이를 포함하는 에어로졸 생성 장치 |
KR102199796B1 (ko) * | 2018-12-11 | 2021-01-07 | 주식회사 케이티앤지 | 유도 가열 방식으로 에어로졸을 생성하는 장치 및 시스템 |
KR102270185B1 (ko) * | 2018-12-11 | 2021-06-28 | 주식회사 케이티앤지 | 에어로졸 생성 장치 |
KR102199793B1 (ko) * | 2018-12-11 | 2021-01-07 | 주식회사 케이티앤지 | 에어로졸 생성 장치 |
EP3900552A4 (en) | 2018-12-21 | 2022-09-14 | Inno-It Co., Ltd. | APPARATUS FOR GENERATING FINE PARTICLES HAVING AN INDUCTION HEATER |
JP7280365B2 (ja) | 2018-12-21 | 2023-05-23 | イノ-アイティー・カンパニー・リミテッド | 誘導加熱ヒータを有する微細粒子発生装置 |
KR102209440B1 (ko) * | 2018-12-28 | 2021-01-29 | 주식회사 이랜텍 | 유도 가열식 기화 디바이스 |
KR102212378B1 (ko) * | 2019-01-03 | 2021-02-04 | 주식회사 케이티앤지 | 전압 변환기를 포함하는 에어로졸 생성 장치 및 이를 제어하는 방법 |
EP3911187A1 (en) | 2019-01-14 | 2021-11-24 | Philip Morris Products, S.A. | Radiation heated aerosol-generating system, cartridge, aerosol-generating element and method therefor |
JP2022516367A (ja) | 2019-01-14 | 2022-02-25 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | 赤外線加熱式エアロゾル発生要素 |
TWI745834B (zh) * | 2019-01-15 | 2021-11-11 | 南韓商韓國煙草人參股份有限公司 | 氣溶膠生成系統、裝置、其運轉方法及充電設備 |
KR20200098027A (ko) | 2019-02-11 | 2020-08-20 | 주식회사 이엠텍 | 유도가열식 미세입자발생장치 |
KR102252031B1 (ko) | 2019-02-11 | 2021-05-14 | 주식회사 이노아이티 | 유도가열식 미세입자발생장치의 액상 카트리지 |
KR20210134921A (ko) | 2019-02-28 | 2021-11-11 | 필립모리스 프로덕츠 에스.에이. | 유도 가열식 에어로졸 형성 로드 및 이러한 로드의 제조에 사용하기 위한 성형 장치 |
WO2020174027A1 (en) | 2019-02-28 | 2020-09-03 | Philip Morris Products S.A. | Inductively heatable aerosol-forming rods and shaping device for usage in the manufacturing of such rods |
BR112021016899A2 (pt) | 2019-02-28 | 2021-11-03 | Philip Morris Products Sa | Artigo gerador de aerossol aquecível indutivamente, método para a fabricação de tal artigo e um aparelho para fabricar um susceptor de tal artigo |
BR112021016715A2 (pt) | 2019-02-28 | 2021-10-13 | Philip Morris Products S.A. | Colunas formadoras de aerossol aquecíveis indutivamente e dispositivo modelador para uso na fabricação de tais colunas |
KR102253046B1 (ko) * | 2019-03-05 | 2021-05-17 | 주식회사 케이티앤지 | 에어로졸 생성 장치, 에어로졸 생성 시스템, 및 에어로졸 생성 장치의 제조 방법 |
US10986677B2 (en) | 2019-03-05 | 2021-04-20 | Dialog Semiconductor Korea Inc. | Method and apparatus for connecting to access point in WLAN network |
AU2020235035A1 (en) * | 2019-03-11 | 2021-10-07 | Nicoventures Trading Limited | Aerosol provision device |
GB201903268D0 (en) * | 2019-03-11 | 2019-04-24 | Nicoventures Trading Ltd | Aerosol generation |
GB201903249D0 (en) * | 2019-03-11 | 2019-04-24 | Nicoventures Trading Ltd | Aerosol provision device |
KR102593473B1 (ko) * | 2019-03-11 | 2023-10-23 | 니코벤처스 트레이딩 리미티드 | 에어로졸 제공 디바이스 |
GB201903264D0 (en) * | 2019-03-11 | 2019-04-24 | Nicoventures Trading Ltd | Aerosol provision system |
JP7515500B2 (ja) * | 2019-03-11 | 2024-07-12 | ニコベンチャーズ トレーディング リミテッド | エアロゾル発生デバイス用の装置 |
EP3952674B1 (en) | 2019-04-08 | 2023-05-03 | Philip Morris Products S.A. | Aerosol-generating article comprising an aerosol-generating film |
EP3952675B1 (en) | 2019-04-08 | 2024-06-12 | Philip Morris Products S.A. | Aerosol-generating substrate comprising an aerosol-generating film |
CN113796160A (zh) * | 2019-04-29 | 2021-12-14 | 音诺艾迪有限公司 | 复合加热型烟雾生成装置 |
KR102652571B1 (ko) | 2019-04-29 | 2024-03-29 | 주식회사 이노아이티 | 복합 히팅 에어로졸 발생장치 |
CN110101117A (zh) * | 2019-04-30 | 2019-08-09 | 安徽中烟工业有限责任公司 | 一种使用lc振荡电路的加热装置 |
CN110267378A (zh) * | 2019-04-30 | 2019-09-20 | 安徽中烟工业有限责任公司 | 一种磁粒均热加热线圈 |
CN113710113A (zh) | 2019-05-16 | 2021-11-26 | 菲利普莫里斯生产公司 | 装置组装方法和根据这种方法制造的装置 |
MX2021013758A (es) | 2019-05-24 | 2022-02-21 | Philip Morris Products Sa | Sustrato generador de aerosol novedoso. |
EP4233590A3 (en) | 2019-06-12 | 2024-02-21 | Philip Morris Products S.A. | Aerosol-generating article comprising three dimensional code |
KR102281296B1 (ko) * | 2019-06-17 | 2021-07-23 | 주식회사 케이티앤지 | 에어로졸 생성 장치 및 그의 동작 방법 |
GB201909377D0 (en) * | 2019-06-28 | 2019-08-14 | Nicoventures Trading Ltd | Apparatus for an aerosol generating device |
EP3760062B1 (en) * | 2019-07-04 | 2021-09-01 | Philip Morris Products S.A. | Inductive heating arrangement comprising a temperature sensor |
KR102278595B1 (ko) * | 2019-08-09 | 2021-07-16 | 주식회사 케이티앤지 | 에어로졸 생성 장치 |
CN110650561A (zh) * | 2019-09-27 | 2020-01-03 | 刘团芳 | 一种高频大功率电磁感应加热器 |
EP4048094B1 (en) | 2019-10-21 | 2023-11-29 | Philip Morris Products S.A. | Novel aerosol-generating substrate comprising illicium species |
CN114727646A (zh) | 2019-10-21 | 2022-07-08 | 菲利普莫里斯生产公司 | 包含姜物种的新型气溶胶生成基质 |
JP6667708B1 (ja) * | 2019-10-24 | 2020-03-18 | 日本たばこ産業株式会社 | エアロゾル吸引器の電源ユニット |
JP6667709B1 (ja) * | 2019-10-24 | 2020-03-18 | 日本たばこ産業株式会社 | エアロゾル吸引器の電源ユニット |
CN110808638A (zh) * | 2019-10-28 | 2020-02-18 | 刘团芳 | 一种高频大功率输出的电磁感应控制电路 |
CN112741375B (zh) * | 2019-10-31 | 2024-05-03 | 深圳市合元科技有限公司 | 气雾生成装置及控制方法 |
CN112806610B (zh) * | 2019-11-15 | 2024-05-03 | 深圳市合元科技有限公司 | 气雾生成装置及控制方法 |
KR20210060071A (ko) * | 2019-11-18 | 2021-05-26 | 주식회사 이엠텍 | 휴대용 에어로졸 발생장치 |
KR102323793B1 (ko) * | 2019-11-21 | 2021-11-09 | 주식회사 이노아이티 | 팬 코일을 이용한 유도 가열 장치 |
KR20220092570A (ko) | 2019-12-02 | 2022-07-01 | 필립모리스 프로덕츠 에스.에이. | 홈통을 갖는 시샤 장치 |
KR102354965B1 (ko) * | 2020-02-13 | 2022-01-24 | 주식회사 케이티앤지 | 에어로졸 생성 장치 및 그의 동작 방법 |
KR20220148213A (ko) * | 2020-02-28 | 2022-11-04 | 필립모리스 프로덕츠 에스.에이. | 신규 기재 및 상류 요소를 포함하는 에어로졸-발생 물품 |
US20230346001A1 (en) | 2020-02-28 | 2023-11-02 | Philip Morris Products S.A. | Novel aerosol-generating substrate |
KR20220148214A (ko) | 2020-02-28 | 2022-11-04 | 필립모리스 프로덕츠 에스.에이. | 로즈마리 종을 포함하는 신규 에어로졸 발생 기재 |
KR102465729B1 (ko) | 2020-06-24 | 2022-11-14 | 주식회사 이엠텍 | 단열구조를 가지는 미세입자 발생장치 |
IL299377A (en) | 2020-06-30 | 2023-02-01 | Philip Morris Products Sa | A new substrate creates a spray containing chamomile species |
US20230309608A1 (en) | 2020-06-30 | 2023-10-05 | Philip Morris Products S.A. | Novel aerosol-generating substrate comprising thymus species |
CN115843221A (zh) | 2020-06-30 | 2023-03-24 | 菲利普莫里斯生产公司 | 包含莳萝属物种的新型气溶胶生成基质 |
CN113966875A (zh) * | 2020-07-22 | 2022-01-25 | 深圳市合元科技有限公司 | 气雾生成装置 |
KR102487585B1 (ko) * | 2020-07-27 | 2023-01-11 | 주식회사 케이티앤지 | 코일에 흐르는 전류의 주파수를 최적화하는 에어로졸 생성 장치 및 그 방법 |
CN213587421U (zh) * | 2020-08-13 | 2021-07-02 | 深圳市合元科技有限公司 | 气雾生成装置 |
JP2023540269A (ja) | 2020-09-01 | 2023-09-22 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | エアロゾル放出モードおよび一時停止モードで動作可能なエアロゾル発生装置 |
JP7401685B2 (ja) * | 2020-09-07 | 2023-12-19 | ケーティー アンド ジー コーポレイション | エアロゾル生成装置 |
GB202014599D0 (en) * | 2020-09-16 | 2020-10-28 | Nicoventures Trading Ltd | Aerosol provision device |
GB202014643D0 (en) * | 2020-09-17 | 2020-11-04 | Nicoventures Trading Ltd | Apparatus for an aerosol generating device |
US20230404132A1 (en) | 2020-10-07 | 2023-12-21 | Philip Morris Products S.A. | An aerosol-forming substrate |
CN112056634B (zh) * | 2020-10-10 | 2023-03-14 | 云南中烟工业有限责任公司 | 一种控制电加热烟具加热烟支的方法 |
KR102523580B1 (ko) * | 2020-12-09 | 2023-04-20 | 주식회사 케이티앤지 | 에어로졸 생성 장치 및 그의 동작 방법 |
CN114916218A (zh) * | 2020-12-09 | 2022-08-16 | 韩国烟草人参公社 | 气溶胶生成装置和对该气溶胶生成装置进行操作的方法 |
KR20220082377A (ko) | 2020-12-10 | 2022-06-17 | 주식회사 이엠텍 | 미세입자발생장치의 유도가열히터 구조 |
JP2023553404A (ja) | 2020-12-11 | 2023-12-21 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | 電気化学センサスイッチを備えるエアロゾル発生システム |
US11789476B2 (en) | 2021-01-18 | 2023-10-17 | Altria Client Services Llc | Heat-not-burn (HNB) aerosol-generating devices including intra-draw heater control, and methods of controlling a heater |
CN114788580A (zh) * | 2021-01-25 | 2022-07-26 | 深圳麦克韦尔科技有限公司 | 电池组件、雾化器、电子雾化装置及识别方法 |
US20240237159A9 (en) * | 2021-02-22 | 2024-07-11 | Induction Food Systems, Inc. | Systems and methods for magnetic heat induction and exchange to mobile streams of matter |
WO2022195770A1 (ja) * | 2021-03-17 | 2022-09-22 | 日本たばこ産業株式会社 | 吸引装置、プログラム及びシステム |
WO2022195868A1 (ja) | 2021-03-19 | 2022-09-22 | 日本たばこ産業株式会社 | 吸引装置及びシステム |
JP6974641B1 (ja) | 2021-03-31 | 2021-12-01 | 日本たばこ産業株式会社 | 誘導加熱装置並びにその制御部及びその動作方法 |
JP6967169B1 (ja) * | 2021-03-31 | 2021-11-17 | 日本たばこ産業株式会社 | 誘導加熱装置及びその動作方法 |
JP7329157B2 (ja) * | 2021-03-31 | 2023-08-17 | 日本たばこ産業株式会社 | 誘導加熱装置並びにその制御部及びその動作方法 |
JP7335306B2 (ja) * | 2021-03-31 | 2023-08-29 | 日本たばこ産業株式会社 | 誘導加熱装置並びにその制御部及びその動作方法 |
JP7035248B1 (ja) * | 2021-03-31 | 2022-03-14 | 日本たばこ産業株式会社 | 誘導加熱装置 |
JP7532527B2 (ja) * | 2021-04-09 | 2024-08-13 | 日本たばこ産業株式会社 | 香味吸引器及び喫煙システム |
WO2022224318A1 (ja) * | 2021-04-19 | 2022-10-27 | 日本たばこ産業株式会社 | 制御装置、基材、システム、制御方法及びプログラム |
KR20220154464A (ko) | 2021-05-13 | 2022-11-22 | 주식회사 이노아이티 | 이중 히터를 구비하는 유도 가열 히터 |
KR20220154465A (ko) | 2021-05-13 | 2022-11-22 | 주식회사 이노아이티 | 이중 히터를 구비하는 유도 가열 히터 |
KR20220162472A (ko) | 2021-06-01 | 2022-12-08 | 주식회사 케이티앤지 | 에어로졸 생성 물품의 삽입을 감지하는 에어로졸 생성 장치 및 그의 동작 방법 |
KR20220167981A (ko) | 2021-06-15 | 2022-12-22 | 주식회사 케이티앤지 | 히터의 전원을 제어하는 에어로졸 생성 장치 및 그의 동작 방법 |
KR20230008390A (ko) | 2021-07-07 | 2023-01-16 | 주식회사 이노아이티 | 미세입자 발생장치용 유도가열 히터 |
KR20230008391A (ko) | 2021-07-07 | 2023-01-16 | 주식회사 이노아이티 | 외부 발열체 겸 궐련 취출부재를 구비하는 유도 가열 히터 |
EP4368046A1 (en) | 2021-07-09 | 2024-05-15 | Japan Tobacco, Inc. | Power supply unit for aerosol generation device |
JP7569453B2 (ja) | 2021-07-09 | 2024-10-17 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット |
WO2023281752A1 (ja) | 2021-07-09 | 2023-01-12 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット |
WO2023286116A1 (ja) * | 2021-07-12 | 2023-01-19 | 日本たばこ産業株式会社 | 吸引装置、基材、及び制御方法 |
US20240334984A1 (en) * | 2021-07-12 | 2024-10-10 | Philip Morris Products S.A. | Aerosol-generating device and system comprising an inductive heating device and method of operating same |
MX2024000651A (es) | 2021-07-16 | 2024-01-31 | Philip Morris Products Sa | Novedoso sustrato generador de aerosol que comprende especies de comino. |
IL309918A (en) | 2021-07-16 | 2024-03-01 | Philip Morris Products Sa | A new substrate creates a spray that includes oregano species |
EP4373313A1 (en) | 2021-07-20 | 2024-05-29 | Philip Morris Products S.A. | Aerosol-generating article comprising a wrapper with a metal layer |
JP2024525726A (ja) | 2021-07-20 | 2024-07-12 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | サセプタ要素および金属層を有するラッパーを備えたエアロゾル発生物品 |
WO2023026408A1 (ja) * | 2021-08-25 | 2023-03-02 | 日本たばこ産業株式会社 | 吸引装置、基材、及び制御方法 |
KR20230030983A (ko) | 2021-08-26 | 2023-03-07 | 주식회사 이노아이티 | 다면 가열 구조의 에어로졸 발생장치 |
CN115736387A (zh) * | 2021-09-02 | 2023-03-07 | 深圳市合元科技有限公司 | 气溶胶生成装置及其控制方法 |
CN117652075A (zh) | 2021-09-29 | 2024-03-05 | 三星电子株式会社 | 包括用于减少谐波的尺寸减小的逆变器的无线电力发送器 |
KR20230049516A (ko) | 2021-10-05 | 2023-04-13 | 주식회사 이노아이티 | 서셉터 필름을 내장한 궐련 및 이를 위한 에어로졸 발생장치 |
KR20230055307A (ko) | 2021-10-18 | 2023-04-25 | 주식회사 이노아이티 | 권선 가이드 일체형 히터 프레임 |
CN117979850A (zh) | 2021-10-25 | 2024-05-03 | 菲利普莫里斯生产公司 | 用于在模拟加热条件下测试感受器装置的测试设备和方法 |
KR20240113950A (ko) | 2021-12-06 | 2024-07-23 | 필립모리스 프로덕츠 에스.에이. | 신규한 에어로졸 발생 기재를 갖는 에어로졸 발생 물품 |
KR20240113951A (ko) | 2021-12-06 | 2024-07-23 | 필립모리스 프로덕츠 에스.에이. | 신규 에어로졸 발생 기재를 갖는 에어로졸 발생 물품 |
WO2023104706A1 (en) | 2021-12-06 | 2023-06-15 | Philip Morris Products S.A. | Aerosol-generating article comprising hollow tubular substrate element |
EP4444119A1 (en) | 2021-12-06 | 2024-10-16 | Philip Morris Products S.A. | Aerosol-generating article comprising hollow tubular substrate element with sealing element |
KR102622606B1 (ko) | 2021-12-22 | 2024-01-09 | 주식회사 이노아이티 | 에어로졸 발생장치의 코일 권취 구조 |
CN114209096A (zh) * | 2021-12-30 | 2022-03-22 | 深圳麦时科技有限公司 | 雾化装置及微波加热组件 |
KR102688140B1 (ko) | 2022-02-11 | 2024-07-25 | 주식회사 이노아이티 | 에어로졸 발생장치의 코일 권취 구조 |
KR20230140233A (ko) | 2022-03-29 | 2023-10-06 | 주식회사 실리콘마이터스 | 전자담배의 에어로졸 형성 물품을 가열하기 위한 전자기 유도 가열 장치 |
KR102706698B1 (ko) | 2022-04-28 | 2024-09-19 | 주식회사 이노아이티 | 유도 가열 방식의 에어로졸 발생 장치 |
WO2023219429A1 (en) * | 2022-05-13 | 2023-11-16 | Kt&G Corporation | Aerosol-generating device and operation method thereof |
KR20230160990A (ko) | 2022-05-17 | 2023-11-27 | 주식회사 이엠텍 | 유도 가열용 궐련형 에어로졸 발생물품 |
WO2024003396A1 (en) | 2022-06-30 | 2024-01-04 | Philip Morris Products S.A. | Aerosol-generating device comprising airflow guiding element extending into heating chamber |
WO2024003397A1 (en) | 2022-06-30 | 2024-01-04 | Philip Morris Products S.A. | Aerosol-generating article comprising airflow guiding element extending into tubular substrate |
WO2024003194A1 (en) | 2022-06-30 | 2024-01-04 | Philip Morris Products S.A. | Aerosol-generating article comprising a perforated hollow tubular substrate element |
KR20240016493A (ko) | 2022-07-29 | 2024-02-06 | 주식회사 이엠텍 | 에어로졸 발생장치의 외기 도입홀에 설치되는 에어 히터 |
KR20240021998A (ko) | 2022-08-10 | 2024-02-20 | 주식회사 이엠텍 | 기류패스 자동 조절 구조를 구비하는 에어로졸 발생장치 |
KR20240041083A (ko) | 2022-09-22 | 2024-03-29 | 주식회사 이엠텍 | 분리형 에어 히터를 구비하는 에어로졸 발생장치 |
KR102614369B1 (ko) | 2022-10-04 | 2023-12-15 | 주식회사 이엠텍 | 에어 히터를 구비하는 에어로졸 발생장치 |
KR20240047034A (ko) | 2022-10-04 | 2024-04-12 | 주식회사 이엠텍 | 에어로졸 발생장치의 히팅 디바이스 구조 |
KR20240057162A (ko) | 2022-10-24 | 2024-05-02 | 주식회사 실리콘마이터스 | 전자담배의 에어로졸 형성 물품을 가열하기 위한 전자기 유도 가열 장치 및 그 구동방법 |
WO2024143800A1 (en) * | 2022-12-30 | 2024-07-04 | Kt&G Corporation | Aerosol generating device, aerosol generating system including the same, and method of manufacturing aerosol generating device |
WO2024147520A1 (ko) * | 2023-01-02 | 2024-07-11 | 주식회사 케이티앤지 | 에어로졸 생성 장치용 히터 조립체 및 이를 포함하는 에어로졸 생성 장치 |
Family Cites Families (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US28533A (en) * | 1860-05-29 | chichester | ||
US4016530A (en) | 1975-06-02 | 1977-04-05 | Goll Jeffrey H | Broadband electroacoustic converter |
US4482246A (en) | 1982-09-20 | 1984-11-13 | Meyer Gerhard A | Inductively coupled plasma discharge in flowing non-argon gas at atmospheric pressure for spectrochemical analysis |
US4457011A (en) * | 1982-09-30 | 1984-06-26 | Hoover Brian L | FM Broadcast band demodulator/stereo decoder |
US4607323A (en) | 1984-04-17 | 1986-08-19 | Sokal Nathan O | Class E high-frequency high-efficiency dc/dc power converter |
GB2163630B (en) * | 1984-07-28 | 1988-02-24 | Blum Gmbh & Co E | Inductively heated apparatus for heating a substance |
US5729511A (en) | 1991-02-15 | 1998-03-17 | Discovision Associates | Optical disc system having servo motor and servo error detection assembly operated relative to monitored quad sum signal |
US5505214A (en) * | 1991-03-11 | 1996-04-09 | Philip Morris Incorporated | Electrical smoking article and method for making same |
US5613505A (en) | 1992-09-11 | 1997-03-25 | Philip Morris Incorporated | Inductive heating systems for smoking articles |
JP3347886B2 (ja) | 1994-08-05 | 2002-11-20 | アピックヤマダ株式会社 | 外部リードの曲げ装置 |
US5573613A (en) * | 1995-01-03 | 1996-11-12 | Lunden; C. David | Induction thermometry |
US5649554A (en) * | 1995-10-16 | 1997-07-22 | Philip Morris Incorporated | Electrical lighter with a rotatable tobacco supply |
CN1106812C (zh) | 1996-06-17 | 2003-04-30 | 日本烟业产业株式会社 | 香味生成物品 |
EP0910468A1 (en) * | 1996-07-11 | 1999-04-28 | University of Cincinnati | Electrically assisted synthesis of particles and films with precisely controlled characteristics |
EP0991170B1 (en) | 1998-09-28 | 2003-11-26 | STMicroelectronics S.r.l. | Integrated protection from the effects of a short circuit of the output of a flyback converter |
US6320169B1 (en) * | 1999-09-07 | 2001-11-20 | Thermal Solutions, Inc. | Method and apparatus for magnetic induction heating using radio frequency identification of object to be heated |
US6455825B1 (en) | 2000-11-21 | 2002-09-24 | Sandia Corporation | Use of miniature magnetic sensors for real-time control of the induction heating process |
US6593807B2 (en) | 2000-12-21 | 2003-07-15 | William Harris Groves, Jr. | Digital amplifier with improved performance |
US6681998B2 (en) | 2000-12-22 | 2004-01-27 | Chrysalis Technologies Incorporated | Aerosol generator having inductive heater and method of use thereof |
JP2003323970A (ja) * | 2002-04-30 | 2003-11-14 | Harison Toshiba Lighting Corp | 誘導加熱装置、定着装置、および画像形成装置 |
US20050172976A1 (en) | 2002-10-31 | 2005-08-11 | Newman Deborah J. | Electrically heated cigarette including controlled-release flavoring |
GB2395437C (en) | 2002-11-20 | 2010-10-20 | Profile Respiratory Systems Ltd | Improved inhalation method and apparatus |
US6803550B2 (en) * | 2003-01-30 | 2004-10-12 | Philip Morris Usa Inc. | Inductive cleaning system for removing condensates from electronic smoking systems |
CN1549653A (zh) * | 2003-05-20 | 2004-11-24 | 车王电子股份有限公司 | 自我温控保护加热器 |
US6934645B2 (en) | 2003-09-25 | 2005-08-23 | Infineon Technologies Ag | Temperature sensor scheme |
US7323666B2 (en) * | 2003-12-08 | 2008-01-29 | Saint-Gobain Performance Plastics Corporation | Inductively heatable components |
US7326872B2 (en) | 2004-04-28 | 2008-02-05 | Applied Materials, Inc. | Multi-frequency dynamic dummy load and method for testing plasma reactor multi-frequency impedance match networks |
US7236053B2 (en) * | 2004-12-31 | 2007-06-26 | Cree, Inc. | High efficiency switch-mode power amplifier |
US7186958B1 (en) * | 2005-09-01 | 2007-03-06 | Zhao Wei, Llc | Inhaler |
US7459899B2 (en) * | 2005-11-21 | 2008-12-02 | Thermo Fisher Scientific Inc. | Inductively-coupled RF power source |
US20080035682A1 (en) * | 2006-08-10 | 2008-02-14 | Calvin Thomas Coffey | Apparatus for particle synthesis |
CN100541208C (zh) | 2006-08-30 | 2009-09-16 | 梅特勒-托利多仪器(上海)有限公司 | 溶液电导率的测量方法 |
US7489531B2 (en) * | 2006-09-28 | 2009-02-10 | Osram Sylvania, Inc. | Inverter with improved overcurrent protection circuit, and power supply and electronic ballast therefor |
KR20080095139A (ko) | 2007-04-23 | 2008-10-28 | 익시스 코포레이션 | 인덕션 가열 회로 및 이를 위한 가열 코일 |
US7808220B2 (en) | 2007-07-11 | 2010-10-05 | Semtech Corporation | Method and apparatus for a charge pump DC-to-DC converter having parallel operating modes |
CN100577043C (zh) * | 2007-09-17 | 2010-01-06 | 北京格林世界科技发展有限公司 | 电子烟 |
EP2100525A1 (en) * | 2008-03-14 | 2009-09-16 | Philip Morris Products S.A. | Electrically heated aerosol generating system and method |
EP2113178A1 (en) * | 2008-04-30 | 2009-11-04 | Philip Morris Products S.A. | An electrically heated smoking system having a liquid storage portion |
US7714649B1 (en) | 2008-06-02 | 2010-05-11 | Rockwell Collins, Inc. | High-efficiency linear amplifier using non linear circuits |
CN201683029U (zh) | 2009-04-15 | 2010-12-29 | 中国科学院理化技术研究所 | 一种采用电容供电的加热雾化电子烟 |
US8851068B2 (en) * | 2009-04-21 | 2014-10-07 | Aj Marketing Llc | Personal inhalation devices |
CN201445686U (zh) | 2009-06-19 | 2010-05-05 | 李文博 | 高频感应雾化装置 |
US8523429B2 (en) | 2009-10-19 | 2013-09-03 | Tsi Technologies Llc | Eddy current thermometer |
EP2316286A1 (en) | 2009-10-29 | 2011-05-04 | Philip Morris Products S.A. | An electrically heated smoking system with improved heater |
US9259886B2 (en) * | 2009-12-15 | 2016-02-16 | The Boeing Company | Curing composites out-of-autoclave using induction heating with smart susceptors |
EP2340730A1 (en) * | 2009-12-30 | 2011-07-06 | Philip Morris Products S.A. | A shaped heater for an aerosol generating system |
US8822893B2 (en) | 2010-07-22 | 2014-09-02 | Bernard C. Lasko | Common field magnetic susceptors |
EP4397344A3 (en) * | 2010-08-24 | 2024-10-02 | JT International SA | Inhalation device including substance usage controls |
US20120085745A1 (en) | 2010-10-08 | 2012-04-12 | Cambro Manufacturing Company | Dual Climate Cart and Tray for Accommodating Comestible Items and a Method of Operating the Same |
EP2460423A1 (en) * | 2010-12-03 | 2012-06-06 | Philip Morris Products S.A. | An electrically heated aerosol generating system having improved heater control |
EP2468117A1 (en) * | 2010-12-24 | 2012-06-27 | Philip Morris Products S.A. | An aerosol generating system having means for determining depletion of a liquid substrate |
RU103281U1 (ru) * | 2010-12-27 | 2011-04-10 | Общество с ограниченной ответственностью "ПромКапитал" | Электронная сигарета |
US9820339B2 (en) | 2011-09-29 | 2017-11-14 | The Boeing Company | Induction heating using induction coils in series-parallel circuits |
WO2013060743A2 (en) * | 2011-10-25 | 2013-05-02 | Philip Morris Products S.A. | Aerosol generating device with heater assembly |
EP2609820A1 (en) * | 2011-12-30 | 2013-07-03 | Philip Morris Products S.A. | Detection of aerosol-forming substrate in an aerosol generating device |
WO2013098398A2 (en) | 2011-12-30 | 2013-07-04 | Philip Morris Products S.A. | Aerosol generating system with consumption monitoring and feedback |
US9853602B2 (en) * | 2012-04-11 | 2017-12-26 | James K. Waller, Jr. | Adaptive tracking rail audio amplifier |
US9578692B2 (en) * | 2012-04-19 | 2017-02-21 | Infineon Technologies Americas Corp. | Power converter with tank circuit and over-voltage protection |
CN103997377A (zh) | 2013-02-16 | 2014-08-20 | 意法-爱立信有限公司 | 接收信号码功率的测量方法、装置及用户终端 |
CN203762288U (zh) | 2013-12-30 | 2014-08-13 | 深圳市合元科技有限公司 | 适用于固体烟草物质的雾化装置以及电子香烟 |
CN103689812A (zh) * | 2013-12-30 | 2014-04-02 | 深圳市合元科技有限公司 | 烟雾生成装置以及包括该烟雾生成装置的电子烟 |
TWI660685B (zh) * | 2014-05-21 | 2019-06-01 | 瑞士商菲利浦莫里斯製品股份有限公司 | 電熱式氣溶膠產生系統及用於此系統中之匣筒 |
TWI666992B (zh) | 2014-05-21 | 2019-08-01 | 瑞士商菲利浦莫里斯製品股份有限公司 | 氣溶膠產生系統及用在氣溶膠產生系統中之料匣 |
TWI692274B (zh) * | 2014-05-21 | 2020-04-21 | 瑞士商菲利浦莫里斯製品股份有限公司 | 用於加熱氣溶膠形成基材之感應加熱裝置及操作感應加熱系統之方法 |
US10820630B2 (en) | 2015-11-06 | 2020-11-03 | Rai Strategic Holdings, Inc. | Aerosol delivery device including a wirelessly-heated atomizer and related method |
-
2015
- 2015-05-11 TW TW104114850A patent/TWI692274B/zh active
- 2015-05-20 AR ARP150101571A patent/AR100541A1/es active IP Right Grant
- 2015-05-21 AR ARP150101587A patent/AR100586A1/es active IP Right Grant
- 2015-05-21 UA UAA201608778A patent/UA120921C2/uk unknown
- 2015-05-21 KR KR1020197038771A patent/KR102282571B1/ko active IP Right Grant
- 2015-05-21 EP EP20174413.3A patent/EP3723452B1/en active Active
- 2015-05-21 CN CN201910982720.5A patent/CN110522092B/zh active Active
- 2015-05-21 ES ES15727324.4T patent/ES2610419T3/es active Active
- 2015-05-21 KR KR1020167022040A patent/KR102062721B1/ko active IP Right Grant
- 2015-05-21 HU HUE15727324A patent/HUE031696T2/en unknown
- 2015-05-21 BR BR112016020498-0A patent/BR112016020498B1/pt active IP Right Grant
- 2015-05-21 UA UAA201609383A patent/UA118867C2/uk unknown
- 2015-05-21 JP JP2016552513A patent/JP6452709B2/ja active Active
- 2015-05-21 PL PL15724272T patent/PL3145342T3/pl unknown
- 2015-05-21 CN CN201580000864.6A patent/CN105307524B/zh active Active
- 2015-05-21 HU HUE20174413A patent/HUE062338T2/hu unknown
- 2015-05-21 KR KR1020157034844A patent/KR101678335B1/ko active IP Right Grant
- 2015-05-21 EP EP15724989.7A patent/EP3145347B1/en active Active
- 2015-05-21 WO PCT/EP2015/061202 patent/WO2015177257A1/en active Application Filing
- 2015-05-21 CN CN201580007754.2A patent/CN105992528B/zh active Active
- 2015-05-21 DK DK15727324.4T patent/DK2967156T3/da active
- 2015-05-21 US US15/121,556 patent/US10674763B2/en active Active
- 2015-05-21 BR BR112016021509-5A patent/BR112016021509B1/pt active IP Right Grant
- 2015-05-21 ES ES20174413T patent/ES2951903T3/es active Active
- 2015-05-21 WO PCT/EP2015/061200 patent/WO2015177255A1/en active Application Filing
- 2015-05-21 MY MYPI2016702550A patent/MY182566A/en unknown
- 2015-05-21 LT LTEP15724272.8T patent/LT3145342T/lt unknown
- 2015-05-21 HU HUE15724272A patent/HUE039428T2/hu unknown
- 2015-05-21 JP JP2015563026A patent/JP6080987B2/ja active Active
- 2015-05-21 EP EP23176783.1A patent/EP4255115A3/en active Pending
- 2015-05-21 SG SG11201605889WA patent/SG11201605889WA/en unknown
- 2015-05-21 MY MYPI2016702424A patent/MY181248A/en unknown
- 2015-05-21 RU RU2016149758A patent/RU2670951C9/ru active
- 2015-05-21 CN CN201580015503.9A patent/CN106163306B/zh active Active
- 2015-05-21 ES ES15724272.8T patent/ES2682744T3/es active Active
- 2015-05-21 AU AU2015261880A patent/AU2015261880B2/en active Active
- 2015-05-21 JP JP2016567520A patent/JP6623175B2/ja active Active
- 2015-05-21 MX MX2016015142A patent/MX2016015142A/es active IP Right Grant
- 2015-05-21 KR KR1020167026117A patent/KR102570990B1/ko active IP Right Grant
- 2015-05-21 EP EP15727324.4A patent/EP2967156B1/en active Active
- 2015-05-21 CA CA2948729A patent/CA2948729C/en active Active
- 2015-05-21 SI SI201530311T patent/SI3145342T1/en unknown
- 2015-05-21 TW TW104116173A patent/TWI662906B/zh active
- 2015-05-21 PL PL20174413.3T patent/PL3723452T3/pl unknown
- 2015-05-21 PT PT15724272T patent/PT3145342T/pt unknown
- 2015-05-21 DK DK15724272.8T patent/DK3145342T3/en active
- 2015-05-21 KR KR1020237028469A patent/KR20230128574A/ko not_active Application Discontinuation
- 2015-05-21 PT PT157273244T patent/PT2967156T/pt unknown
- 2015-05-21 ES ES15724989T patent/ES2800056T3/es active Active
- 2015-05-21 PL PL15724989T patent/PL3145347T3/pl unknown
- 2015-05-21 AR ARP150101588A patent/AR100861A1/es active IP Right Grant
- 2015-05-21 PL PL15727324T patent/PL2967156T3/pl unknown
- 2015-05-21 MX MX2016015135A patent/MX2016015135A/es active IP Right Grant
- 2015-05-21 HU HUE15724989A patent/HUE050740T2/hu unknown
- 2015-05-21 US US15/121,548 patent/US10477894B2/en active Active
- 2015-05-21 AU AU2015261879A patent/AU2015261879B2/en active Active
- 2015-05-21 CA CA2937066A patent/CA2937066C/en active Active
- 2015-05-21 CA CA2937068A patent/CA2937068C/en active Active
- 2015-05-21 RS RS20161107A patent/RS55484B1/sr unknown
- 2015-05-21 MY MYPI2016702521A patent/MY176353A/en unknown
- 2015-05-21 LT LTEP15727324.4T patent/LT2967156T/lt unknown
- 2015-05-21 UA UAA201610215A patent/UA119979C2/uk unknown
- 2015-05-21 SG SG11201605885VA patent/SG11201605885VA/en unknown
- 2015-05-21 MX MX2016015134A patent/MX2016015134A/es active IP Right Grant
- 2015-05-21 RS RS20180842A patent/RS57456B1/sr unknown
- 2015-05-21 TW TW104116171A patent/TWI662905B/zh active
- 2015-05-21 SG SG11201605739PA patent/SG11201605739PA/en unknown
- 2015-05-21 US US14/900,318 patent/US10028533B2/en active Active
- 2015-05-21 WO PCT/EP2015/061201 patent/WO2015177256A1/en active Application Filing
- 2015-05-21 RU RU2016138698A patent/RU2670060C2/ru active
- 2015-05-21 AU AU2015261878A patent/AU2015261878B2/en active Active
- 2015-05-21 RU RU2015151873A patent/RU2677111C2/ru active
- 2015-05-21 EP EP15724272.8A patent/EP3145342B1/en active Active
-
2016
- 2016-06-23 PH PH12016501239A patent/PH12016501239A1/en unknown
- 2016-06-24 ZA ZA2016/04314A patent/ZA201604314B/en unknown
- 2016-06-26 IL IL246460A patent/IL246460B/en active IP Right Grant
- 2016-06-27 IL IL246486A patent/IL246486B/en active IP Right Grant
- 2016-06-27 ZA ZA2016/04349A patent/ZA201604349B/en unknown
- 2016-06-28 ZA ZA2016/04364A patent/ZA201604364B/en unknown
- 2016-06-29 PH PH12016501275A patent/PH12016501275A1/en unknown
- 2016-06-29 PH PH12016501276A patent/PH12016501276A1/en unknown
- 2016-11-14 IL IL248950A patent/IL248950B/en active IP Right Grant
-
2018
- 2018-12-11 JP JP2018231381A patent/JP6792606B2/ja active Active
-
2019
- 2019-11-18 US US16/686,340 patent/US20200077715A1/en active Pending
- 2019-11-25 JP JP2019212190A patent/JP6905569B2/ja active Active
-
2020
- 2020-06-05 US US16/893,517 patent/US11483902B2/en active Active
- 2020-11-06 JP JP2020185649A patent/JP7025512B2/ja active Active
-
2022
- 2022-08-30 US US17/898,915 patent/US11844168B2/en active Active
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
UA118867C2 (uk) | Індукційний нагрівальний пристрій, система подачі аерозолю, яка містить індукційний нагрівальний пристрій, та спосіб її експлуатації |