TWM589895U - Chip package structure - Google Patents

Chip package structure Download PDF

Info

Publication number
TWM589895U
TWM589895U TW108211201U TW108211201U TWM589895U TW M589895 U TWM589895 U TW M589895U TW 108211201 U TW108211201 U TW 108211201U TW 108211201 U TW108211201 U TW 108211201U TW M589895 U TWM589895 U TW M589895U
Authority
TW
Taiwan
Prior art keywords
conductive
layer
protective layer
wafer
die
Prior art date
Application number
TW108211201U
Other languages
Chinese (zh)
Inventor
輝星 周
Original Assignee
新加坡商Pep創新私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新加坡商Pep創新私人有限公司 filed Critical 新加坡商Pep創新私人有限公司
Publication of TWM589895U publication Critical patent/TWM589895U/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3185Partial encapsulation or coating the coating covering also the sidewalls of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18161Exposing the passive side of the semiconductor or solid-state body of a flip chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

本公開提供了一種晶片封裝結構,一種晶片封裝結構,包括:至少一個晶粒,所述晶粒包括晶粒活性面和晶粒背面;導電結構,形成於所述晶粒活性面一側;具有材料特性的保護層,形成於所述晶粒活性面一側;具有材料特性的塑封層,所述塑封層用於包封所述晶粒;介電層。所述晶片封裝結構具有一系列的材料和結構特性,從而減小封裝過程中的翹曲,降低晶粒精准度需求,減小面板封裝工藝的難度,並且使封裝後的晶片結構具有耐久的使用週期,尤其適用於大型面板級封裝以及大電通量、薄型晶片的封裝。The present disclosure provides a chip packaging structure, which includes: at least one crystal grain, the crystal grain including a crystal grain active surface and a crystal grain back surface; a conductive structure formed on one side of the crystal grain active surface; having A protective layer with material characteristics is formed on the side of the active surface of the crystal grain; a plastic encapsulation layer with material characteristics, the plastic encapsulation layer is used to encapsulate the crystal grain; and a dielectric layer. The chip packaging structure has a series of materials and structural characteristics, thereby reducing warpage during the packaging process, reducing the accuracy requirements of the die, reducing the difficulty of the panel packaging process, and making the packaged wafer structure durable to use The cycle is especially suitable for large-scale panel-level packaging and packaging of large electric flux and thin chips.

Description

晶片封裝結構Chip packaging structure

本公開涉及半導體技術領域,尤其涉及晶片封裝結構。The present disclosure relates to the field of semiconductor technology, and in particular to a wafer packaging structure.

面板級封裝(panel-level package)即將晶圓切割分離出眾多晶粒,將所述晶粒排布粘貼在載板上,將眾多晶粒在同一工藝流程中同時封裝。面板級封裝作為近年來興起的技術受到廣泛關注,和傳統的晶圓級封裝(wafer-level package)相比,面板級封裝具有生產效率高,生產成本低,適於大規模生產的優勢。A panel-level package (panel-level package) is to separate a plurality of dies from a wafer by cutting, arranging and pasting the dies on a carrier board, and encapsulating the plurality of dies simultaneously in the same process. Panel-level packaging has attracted widespread attention as a technology that has emerged in recent years. Compared with traditional wafer-level packages, panel-level packaging has the advantages of high production efficiency, low production cost, and is suitable for large-scale production.

然而,面板封裝在技術上存在眾多壁壘,例如面板的翹曲問題;面板上的晶粒對位精準度問題等。However, there are many technical barriers to panel packaging, such as the warpage of the panel; the accuracy of die alignment on the panel.

尤其是在當今電子設備小型輕量化的趨勢下,小型質薄的晶片日益受到市場青睞,然而利用大型面板封裝技術封裝小型質薄晶片的封裝工藝難度更加不容小覷。Especially in today's trend of small and light-weight electronic devices, small and thin wafers are increasingly favored by the market. However, the difficulty of packaging technology using large panel packaging technology to package small and thin wafers cannot be underestimated.

本公開提供一種晶片封裝結構,包括:至少一個晶粒,所述晶粒包括一晶粒活性面和一晶粒背面;導電結構,形成於所述晶粒活性面一側;保護層,形成於所述晶粒活性面一側;塑封層,所述塑封層用於包封所述晶粒;及介電層。The present disclosure provides a chip packaging structure including: at least one die, the die including a die active surface and a die back surface; a conductive structure formed on one side of the die active surface; a protective layer formed on One side of the active surface of the crystal grain; a plastic encapsulation layer for encapsulating the crystal grain; and a dielectric layer.

在一個實施例中,該導電結構包括晶圓導電層、導電填充通孔和面板級導電層;該導電填充通孔形成於該保護層內。In one embodiment, the conductive structure includes a wafer conductive layer, a conductive filled via, and a panel-level conductive layer; the conductive filled via is formed in the protective layer.

在另一個實施例中,所述導電填充通孔具有導電填充通孔下表面和導電填充通孔上表面,所述導電填充通孔下表面的面積小於所述導電填充通孔上表面的面積。In another embodiment, the conductive filled via has a lower surface of the conductive filled via and an upper surface of the conductive filled via, and the area of the lower surface of the conductive filled via is smaller than the area of the upper surface of the conductive filled via.

在再一個實施例中,所述晶粒活性面包括電連接點和絕緣層;至少一部分所述晶圓導電層和至少一部分所述電連接點電連接,用於將至少一部分所述電連接點從所述晶粒活性面引出;導電填充通孔下表面和所述晶圓導電層電連接;導電填充通孔上表面和所述面板級導電層電連接。In still another embodiment, the active surface of the die includes an electrical connection point and an insulating layer; at least a portion of the wafer conductive layer and at least a portion of the electrical connection point are electrically connected to connect at least a portion of the electrical connection point It is drawn from the active surface of the crystal grain; the lower surface of the conductive filled via is electrically connected to the conductive layer of the wafer; the upper surface of the conductive filled via is electrically connected to the panel-level conductive layer.

在一個實施例中,至少一部分所述晶圓導電層將至少一部分所述電連接點單獨引出。In one embodiment, at least a portion of the wafer conductive layer separates at least a portion of the electrical connection points.

在另一個實施例中,至少一部分所述晶圓導電層將至少一部分中的多個所述電連接點彼此互連並引出。In another embodiment, at least a part of the wafer conductive layer interconnects and leads out a plurality of the electrical connection points in at least a part.

在再一個實施例中,所述晶圓導電層與所述電連接點的單個接觸區域的接觸面積小於所述晶圓導電層與所述導電填充通孔的單個接觸區域的接觸面積。In yet another embodiment, the contact area of the wafer conductive layer and the single contact area of the electrical connection point is smaller than the contact area of the wafer conductive layer and the single contact area of the conductive filled via.

在一個實施例中,所述面板級導電層包括導電跡線和/或導電凸柱;所述導電凸柱形成於所述導電跡線的焊墊或連接點上;所述介電層,包覆於所述面板級導電層;所述面板級導電層為一層或多層。In one embodiment, the panel-level conductive layer includes conductive traces and/or conductive bumps; the conductive bumps are formed on pads or connection points of the conductive traces; the dielectric layer, including Covering the panel-level conductive layer; the panel-level conductive layer is one or more layers.

在一個實施例中,最靠近所述晶粒活性面的所述導電跡線的至少一部分形成在塑封層正面並延伸至封裝體的邊緣。In one embodiment, at least a portion of the conductive trace closest to the active surface of the die is formed on the front of the plastic encapsulation layer and extends to the edge of the package.

在另一個實施例中,所述晶粒背面從所述塑封層暴露。In another embodiment, the back side of the die is exposed from the molding compound layer.

在再一個實施例中,介電層的表面對應於所述導電層的位置處具有凹槽。In still another embodiment, the surface of the dielectric layer has a groove at a position corresponding to the conductive layer.

在一個實施例中,所述至少一個晶粒為多個晶粒,所述多個晶粒之間根據產品設計進行電連接。In one embodiment, the at least one die is a plurality of die, and the plurality of die are electrically connected according to product design.

在另一個實施例中,所述多個晶粒為具有不同功能的晶粒,以形成多晶片模組。In another embodiment, the plurality of dies are dies with different functions to form a multi-chip module.

在另一個實施例中,所述保護層的材料為有機/無機複合材料。In another embodiment, the material of the protective layer is an organic/inorganic composite material.

在一個實施例中,所述保護層的楊氏模數為以下任一數值範圍或數值:1000~20000 MPa、1000~10000 MPa、4000~8000 MPa、1000~7000 MPa、4000~7000 MPa、5500 MPa。In one embodiment, the Young's modulus of the protective layer is any one of the following numerical ranges or values: 1000~20000 MPa, 1000~10000 MPa, 4000~8000 MPa, 1000~7000 MPa, 4000~7000 MPa, 5500 MPa.

在再一個實施例中,所述保護層的厚度為以下任一數值範圍或數值:15~50μm、20~50μm、35μm、45μm、50μm。In still another embodiment, the thickness of the protective layer is any one of the following numerical ranges or values: 15-50 μm, 20-50 μm, 35 μm, 45 μm, 50 μm.

在一個實施例中,所述保護層的熱膨脹係數為以下任一數值範圍或數值:3~10 ppm/K、5 ppm/K、7 ppm/K、10 ppm/K。In one embodiment, the thermal expansion coefficient of the protective layer is any one of the following numerical ranges or values: 3-10 ppm/K, 5 ppm/K, 7 ppm/K, 10 ppm/K.

在另一個實施例中,所述塑封層的熱膨脹係數為以下任一數值範圍或數值:3~10 ppm/K、5 ppm/K、7 ppm/K、10 ppm/K。In another embodiment, the thermal expansion coefficient of the plastic encapsulation layer is any one of the following numerical ranges or values: 3-10 ppm/K, 5 ppm/K, 7 ppm/K, 10 ppm/K.

在再一個實施例中,所述保護層和所述塑封層具有相同或相近的熱膨脹係數。In still another embodiment, the protective layer and the plastic encapsulation layer have the same or similar thermal expansion coefficients.

在一個實施例中,所述保護層中包括無機填料顆粒,所述無機填料顆粒的直徑為小於3 μm。In one embodiment, the protective layer includes inorganic filler particles, and the diameter of the inorganic filler particles is less than 3 μm.

在一個實施例中,無機填料顆粒的直徑為1~2 μm。In one embodiment, the diameter of the inorganic filler particles is 1-2 μm.

為使本公開的技術方案更加清楚,技術效果更加明晰,以下結合附圖對本公開的優選實施例給出詳細具體的描述和說明,不能理解為以下描述是本公開的唯一實現形式,或者是對本公開的限制。In order to make the technical solutions of the present disclosure clearer and the technical effects clearer, the following gives detailed and specific descriptions and descriptions of the preferred embodiments of the present disclosure in conjunction with the drawings, and it cannot be understood that the following descriptions are the only implementation form of the present disclosure or Open restrictions.

圖1至圖14是根據本公開示例性實施例提出的晶片封裝方法的流程。1 to 14 are flowcharts of a chip packaging method according to an exemplary embodiment of the present disclosure.

如圖1所示,提供至少一個晶圓100,該晶圓100具有晶圓活性面1001和晶片背面1002,所述晶圓100包括多個晶粒113,其中每一個晶粒的活性表面構成了晶圓活性面1001,所述晶圓100中每一個晶粒的活性面均通過摻雜、沉積、刻蝕等一系列工藝形成一系列主動部件和被動部件,主動部件包括二極體、三極管等,被動部件包括電壓器、電容器、電阻器、電感器等,將這些主動部件和被動部件利用連接線連接形成功能電路,從而實現晶片的各種功能。所述晶圓活性面1001還包括用於將功能電路引出的電連接點103以及用於保護該電連接點103的絕緣層105。As shown in FIG. 1, at least one wafer 100 is provided. The wafer 100 has a wafer active surface 1001 and a wafer back surface 1002. The wafer 100 includes a plurality of dies 113, wherein the active surface of each die constitutes Wafer active surface 1001, the active surface of each die in the wafer 100 forms a series of active components and passive components through a series of processes such as doping, deposition, etching, etc. The active components include diodes, triodes, etc. Passive components include voltage regulators, capacitors, resistors, inductors, etc. These active components and passive components are connected by connecting wires to form functional circuits, so as to realize various functions of the chip. The wafer active surface 1001 further includes an electrical connection point 103 for leading out the functional circuit and an insulating layer 105 for protecting the electrical connection point 103.

如圖2a和圖2b所示,在所述晶圓活性面1001上形成晶圓導電層106。As shown in FIGS. 2a and 2b, a wafer conductive layer 106 is formed on the wafer active surface 1001.

所述晶圓導電層106可以是銅、金、銀、錫、鋁等材料或其組合材料,也可以為其它合適的導電材料通過利用PVD、CVD、濺鍍、電解電鍍、無電極電鍍工藝,或者其它合適的金屬沉積工藝形成。The wafer conductive layer 106 may be copper, gold, silver, tin, aluminum, or other materials or a combination thereof, or may be other suitable conductive materials by using PVD, CVD, sputtering, electrolytic plating, electroless plating process, Or other suitable metal deposition process.

至少一部分所述晶圓導電層106與所述晶圓活性面1001上的至少一部分所述電連接點103電連接。At least a portion of the wafer conductive layer 106 is electrically connected to at least a portion of the electrical connection point 103 on the wafer active surface 1001.

可選的,如圖2a所示,所述晶圓導電層106將所述晶圓活性面1001上的至少一部分中的多個所述電連接點103彼此互連並引出。Optionally, as shown in FIG. 2a, the wafer conductive layer 106 interconnects and leads out a plurality of the electrical connection points 103 in at least a portion of the active surface 1001 of the wafer.

晶圓導電層106的形成可以降低之後工藝中保護層開口109形成的個數,利用晶圓導電層106按照電路設計首先將多個電連接點103彼此互聯,省去了在每個電連接點103上形成保護層開口109的需求。The formation of the wafer conductive layer 106 can reduce the number of protective layer openings 109 formed in the subsequent process. The wafer conductive layer 106 is used to first interconnect multiple electrical connection points 103 according to the circuit design, eliminating the need for each electrical connection point The requirement of forming a protective layer opening 109 on 103.

可選的,如圖2b所示,所述晶圓導電層106將所述晶圓活性面1001上的至少一部分所述電連接點103單獨引出。Optionally, as shown in FIG. 2b, the wafer conductive layer 106 leads at least a part of the electrical connection points 103 on the active surface 1001 of the wafer separately.

晶圓導電層106的形成有助於降低之後的保護層開口109的形成工藝難度,由於晶圓導電層106的存在,可以使保護層開口下表面109a具有更大的面積,相對應的,可以使保護層開口109具有更大的面積,尤其是在具有較小裸露出的電連接點103的晶圓100上,使保護層開口的形成成為可能。The formation of the wafer conductive layer 106 helps to reduce the difficulty of forming the protective layer opening 109 later. Due to the presence of the wafer conductive layer 106, the lower surface 109a of the protective layer opening can have a larger area. Correspondingly, Providing the protective layer opening 109 with a larger area, especially on the wafer 100 having the smaller exposed electrical connection points 103, enables the formation of the protective layer opening.

雖然未在圖中示出,但是可以理解的,所述晶圓導電層106將所述晶圓活性面1001上的一部分所述電連接點103單獨引出並且將所述晶圓活性面1001上的另一部分所述電連接點103彼此互連並引出。Although not shown in the figure, it can be understood that the wafer conductive layer 106 leads a part of the electrical connection points 103 on the active surface 1001 of the wafer separately and connects the In another part, the electrical connection points 103 are interconnected and led out.

如圖3所示,在所述晶圓活性面1001和所述晶圓導電層106上施加保護層107。As shown in FIG. 3, a protective layer 107 is applied on the wafer active surface 1001 and the wafer conductive layer 106.

保護層107採用絕緣材料,可選的如BCB(苯並環丁烯)、PI(聚醯亞胺)、PBO(聚苯並惡唑)、聚合物基質介電膜、有機聚合物膜、或者其它具有相似絕緣和結構特性的材料,透過層壓(lamination)、塗覆(coating)、印刷(printing)等方式形成。The protective layer 107 uses an insulating material, such as BCB (benzocyclobutene), PI (polyimide), PBO (polybenzoxazole), polymer matrix dielectric film, organic polymer film, or Other materials with similar insulation and structural properties are formed by lamination, coating, printing, etc.

在一個實施例中,保護層採用層壓的方式施加。In one embodiment, the protective layer is applied in a laminated manner.

可選的,在施加所述保護層107的步驟前,對所述晶圓活性面1001和/或所述保護層107施加於所述晶圓100上的一面進行物理和/或化學處理,以使所述保護層107和所述晶圓100的之間的結合更為緊密。處理方法可選的為電漿表面處理使表面粗糙化增大粘接面積和/或化學促進改性劑處理,在所述晶圓100和所述保護層107之間引入促進改性基團,例如同時帶有親和有機和親和無機的基團的表面改性劑,增加有機/無機介面層之間的粘合力。Optionally, before the step of applying the protective layer 107, physical and/or chemical treatment is performed on the wafer active surface 1001 and/or the side of the protective layer 107 applied to the wafer 100, to The bonding between the protective layer 107 and the wafer 100 is made closer. The treatment method is optionally plasma surface treatment to roughen the surface to increase the bonding area and/or chemical acceleration modifier treatment, introducing a modification-promoting group between the wafer 100 and the protective layer 107, For example, surface modifiers with both affinity organic and affinity inorganic groups increase the adhesion between the organic/inorganic interface layer.

所述保護層107可以用於保護晶粒活性面1131。在之後的塑封過程中,由於塑封壓力易於使在加熱條件下流動的塑封材料滲入晶粒113和載板117的縫隙中,特別是當晶粒活性面1131上形成有晶圓導電層106,使晶粒和載板之間的縫隙變大,塑封時,塑封材料極易滲入。當所述晶粒活性面1131具有保護層時,所述保護層107可以保護所述晶粒活性面1131不使塑封材料滲入從而保護所述晶粒活性面1131免受破壞。The protective layer 107 can be used to protect the crystal active surface 1131. In the subsequent molding process, due to the molding pressure, the molding material flowing under the heating condition tends to penetrate into the gap between the die 113 and the carrier plate 117, especially when the wafer conductive layer 106 is formed on the die active surface 1131. The gap between the crystal grains and the carrier plate becomes larger, and the plastic packaging material easily penetrates during plastic packaging. When the crystal active surface 1131 has a protective layer, the protective layer 107 can protect the crystal active surface 1131 from penetration of the molding compound to protect the crystal active surface 1131 from damage.

所述保護層107的存在同時也可以使所述晶粒113和粘接層121之間的粘合作用更強,使在塑封過程中,塑封壓力不易導致所述晶粒113在所述載板117上發生位置移動。The presence of the protective layer 107 can also make the adhesion between the die 113 and the adhesive layer 121 stronger, so that during the molding process, the molding pressure is not easy to cause the die 113 to be on the carrier board A position shift occurred on 117.

在一個優選實施例中,所述保護層107的楊氏模數為1000~20000 MPa的範圍內、更加優選的所述保護層107的楊氏模數為1000~10000 MPa範圍內;進一步優選的所述保護層107的楊氏模數為1000~7000、4000~7000或4000~8000 MPa;在最佳實施例中所述保護層107的楊氏模數為5500 MPa。In a preferred embodiment, the Young's modulus of the protective layer 107 is in the range of 1000~20000 MPa, more preferably, the Young's modulus of the protective layer 107 is in the range of 1000~10000 MPa; further preferred The Young's modulus of the protective layer 107 is 1000 to 7000, 4000 to 7000, or 4000 to 8000 MPa; in a preferred embodiment, the Young's modulus of the protective layer 107 is 5500 MPa.

在一個優選實施例中,所述保護層107的厚度為15~50μm的範圍內;更加優選的所述保護層的厚度為20~50μm的範圍內;在一個優選實施例中,所述保護層107的厚度為35μm;在另一個優選實施例中,所述保護層107的厚度為45μm;在再一個優選實施例中,所述保護層107的厚度為50μm。In a preferred embodiment, the thickness of the protective layer 107 is in the range of 15-50 μm; more preferably, the thickness of the protective layer is in the range of 20-50 μm; in a preferred embodiment, the protective layer The thickness of 107 is 35 μm; in another preferred embodiment, the thickness of the protective layer 107 is 45 μm; in yet another preferred embodiment, the thickness of the protective layer 107 is 50 μm.

所述保護層107的楊氏模數數值範圍在1000~20000MPa時,一方面,所述保護層107質軟,具有良好的柔韌性和彈性;另一方面,所述保護層可以提供足夠的支撐作用力,使所述保護層107對其表面形成的導電層具有足夠的支撐。同時,所述保護層107的厚度在15~50μm時,保證了所述保護層107能夠提供足夠的緩衝和支撐。When the Young's modulus of the protective layer 107 ranges from 1000 to 20000 MPa, on the one hand, the protective layer 107 is soft and has good flexibility and elasticity; on the other hand, the protective layer can provide sufficient support The force makes the protective layer 107 have sufficient support for the conductive layer formed on its surface. At the same time, when the thickness of the protective layer 107 is 15-50 μm, it is ensured that the protective layer 107 can provide sufficient cushioning and support.

特別是在一些種類的晶片中,既需要使用薄型晶粒進行封裝,又需要導電層達到一定的厚度值以形成大的電通量,此時,選擇所述保護層107的厚度範圍為15~50μm,所述保護層107楊氏模數的數值範圍為1000~10000MPa。質軟,柔韌性佳的所述保護層107可以在所述晶粒113和在保護層表面形成的導電層之間形成緩衝層,以使在晶片的使用過程中,保護層表面的導電層不會過度壓迫所述晶粒113,防止厚重的導電層的壓力使所述晶粒113破碎。同時所述保護層107具有足夠的材料強度,所述保護層107可以對厚重的導電層提供足夠支撐。Especially in some types of wafers, it is necessary to use thin die for packaging, and the conductive layer needs to reach a certain thickness to form a large electrical flux. At this time, the thickness of the protective layer 107 is selected to be 15-50 μm The value range of the Young's modulus of the protective layer 107 is 1000~10000MPa. The protective layer 107, which is soft and flexible, can form a buffer layer between the die 113 and the conductive layer formed on the surface of the protective layer, so that during the use of the wafer, the conductive layer on the surface of the protective layer does not The crystal grains 113 will be excessively compressed to prevent the pressure of the thick conductive layer from crushing the crystal grains 113. At the same time, the protective layer 107 has sufficient material strength, and the protective layer 107 can provide sufficient support for the thick conductive layer.

當所述保護層107的楊氏模數為1000~20000MPa時,特別是所述保護層107的楊氏模數為4000~8000MPa時,所述保護層107的厚度為20~50μm時,由於所述保護層107的材料特性,使所述保護層107能夠在之後的晶粒轉移過程中有效保護所述晶粒對抗晶粒轉移設備的頂針壓力;When the Young's modulus of the protective layer 107 is 1000~20000MPa, especially when the Young's modulus of the protective layer 107 is 4000~8000MPa, when the thickness of the protective layer 107 is 20~50μm, due to The material characteristics of the protective layer 107, so that the protective layer 107 can effectively protect the crystal grains against the thimble pressure of the crystal grain transfer equipment during the subsequent crystal grain transfer process;

晶粒轉移過程是將切割分離後的晶粒113重新排布粘合在載板117的過程(reconstruction process),晶粒轉移過程需要使用晶粒轉移設備(bonder machine),晶粒轉移設備包括頂針,利用頂針將晶圓100上的晶粒113頂起,用吸頭(bonder head)吸起被頂起的晶粒113轉移並粘合到載板117上。The grain transfer process is a process of rearranging and bonding the separated and separated grains 113 to the carrier board 117 (reconstruction process). The grain transfer process requires the use of a grain transfer device (bonder machine), which includes a thimble Then, the die 113 on the wafer 100 is lifted up with a thimble, and the lifted die 113 is transferred with a suction head (bonder head) to be transferred and bonded to the carrier board 117.

在頂針頂起晶粒113的過程中,晶粒113尤其是薄型晶粒113質脆,易於受到頂針的頂起壓力而破碎,有材料特性的保護層100在此工藝中可以保護質脆的晶粒113即使在較大的頂起壓力下,也可以保持晶粒113的完整。In the process of ejecting the grain 113 by the thimble, the grain 113, especially the thin grain 113, is brittle and easily broken by the ejection pressure of the thimble. The protective layer 100 with material characteristics can protect the brittle crystal in this process The grain 113 can keep the grain 113 intact even under a relatively large jacking pressure.

在一個優選實施例中,所述保護層107為包括填料顆粒的有機/無機複合材料層。進一步的,所述填料顆粒為無機氧化物顆粒;進一步的,所述填料顆粒為SiO 2顆粒;在一個實施例中,所述保護層107中的填料顆粒,為兩種或兩種以上不同種類的無機氧化物顆粒,例如SiO 2混合TiO 2顆粒。優選的,所述保護層107中的填料顆粒,例如無機氧化物顆粒,例如SiO 2顆粒,例如SiO 2混合TiO 2顆粒,為球型或類球型。在一個優選實施例中,所述保護層107中的填料顆粒,例如無機氧化物顆粒,例如SiO 2顆粒,例如SiO 2混合TiO 2顆粒,的填充量為50%以上。 In a preferred embodiment, the protective layer 107 is an organic/inorganic composite material layer including filler particles. Further, the filler particles are inorganic oxide particles; further, the filler particles are SiO 2 particles; in one embodiment, the filler particles in the protective layer 107 are two or more different types Of inorganic oxide particles, such as SiO 2 mixed with TiO 2 particles. Preferably, the filler particles in the protective layer 107, such as inorganic oxide particles, such as SiO 2 particles, such as SiO 2 mixed TiO 2 particles, are spherical or spherical. In a preferred embodiment, the filler particles in the protective layer 107, such as inorganic oxide particles, such as SiO 2 particles, such as SiO 2 mixed with TiO 2 particles, the filling amount is more than 50%.

有機材料具有易操作易施加的優點,待封裝晶粒113為無機材料,如矽材質,當保護層107單獨採用有機材料時,由於有機材料的材料學性質和無機材料的材料學性質之間的差異,會使封裝工藝難度大,影響封裝效果。採用在有機材料中添加無機顆粒的有機/無機複合材料,會使有機材料的材料學性能得到改性,使材料兼具有機材料和無機材料的特點。Organic materials have the advantages of easy operation and easy application. The grains to be packaged 113 are inorganic materials, such as silicon materials. When the protective layer 107 uses organic materials alone, due to the difference between the material properties of the organic materials and the inorganic materials The difference will make the packaging process difficult and affect the packaging effect. The use of organic/inorganic composite materials in which inorganic particles are added to organic materials will modify the material properties of the organic materials, so that the materials have both the characteristics of organic materials and inorganic materials.

在一個優選實施例中,當(T>Tg)時,所述保護層107的熱膨脹係數的範圍為3~10 ppm/K;在一個優選實施例中,所述保護層107的熱膨脹係數為5 ppm/K;在一個優選實施例中;所述保護層107的熱膨脹係數為7 ppm/K;在一個優選實施例中,所述保護層107的熱膨脹係數為10 ppm/K。In a preferred embodiment, when (T>Tg), the thermal expansion coefficient of the protective layer 107 ranges from 3 to 10 ppm/K; in a preferred embodiment, the thermal expansion coefficient of the protective layer 107 is 5 ppm/K; in a preferred embodiment; the thermal expansion coefficient of the protective layer 107 is 7 ppm/K; in a preferred embodiment, the thermal expansion coefficient of the protective layer 107 is 10 ppm/K.

在接下來的塑封工藝中,施加有保護層107的晶粒113會在塑封過程的加熱和冷卻過程中相應的膨脹和收縮,當保護層107的熱膨脹係數在3~10 ppm/K的範圍時,保護層107和晶粒113之間的膨脹收縮程度保持相對一致,保護層107和晶粒113的連接介面不易產生介面應力,不易破壞保護層107和晶粒113之間的結合,使封裝後的晶片結構更加穩定。In the subsequent plastic packaging process, the grains 113 with the protective layer 107 applied will expand and contract accordingly during the heating and cooling process of the plastic packaging process, when the thermal expansion coefficient of the protective layer 107 is in the range of 3 to 10 ppm/K , The degree of expansion and contraction between the protective layer 107 and the die 113 remains relatively consistent, the connection interface between the protective layer 107 and the die 113 is not easy to produce interface stress, and it is not easy to damage the connection between the protective layer 107 and the die 113, so that after packaging The wafer structure is more stable.

封裝完成的晶片在使用過程中,常常需要經歷冷熱循環,保護層107的熱膨脹係數範圍為3~10 ppm/K和晶粒113具有相同或者相近的熱膨脹係數,在冷熱循環過程中,保護層107和晶粒113保持相對一致的膨脹和收縮程度,免於在保護層107和晶粒113之間的介面積累介面疲勞,使封裝後的晶片具有耐久性,延長晶片使用壽命。The packaged wafers often need to undergo cold and heat cycles during use. The thermal expansion coefficient of the protective layer 107 ranges from 3 to 10 ppm/K and the die 113 has the same or similar thermal expansion coefficient. During the cold and thermal cycle, the protective layer 107 It maintains a relatively consistent degree of expansion and contraction with the die 113 to prevent accumulation of interface fatigue at the interface between the protective layer 107 and the die 113, so that the packaged wafer has durability and extends the service life of the wafer.

另一方面,保護層的熱膨脹係數過小,需使保護層107的複合材料中填充過多的填料顆粒,在進一步減小熱膨脹係數的同時也會增大材料的楊氏模數,使保護層材料的柔韌性減少,剛度過強,保護層107的緩衝作用欠佳。將保護層的熱膨脹係數限定為5~10ppm/k為最優。On the other hand, the thermal expansion coefficient of the protective layer is too small, and it is necessary to fill the composite material of the protective layer 107 with too much filler particles. While further reducing the thermal expansion coefficient, it will also increase the Young's modulus of the material and make the protective layer material The flexibility is reduced, the rigidity is too strong, and the cushioning effect of the protective layer 107 is not good. It is optimal to limit the thermal expansion coefficient of the protective layer to 5-10 ppm/k.

在一個優選實施例中,所述保護層107中的填料顆粒,例如無機氧化物顆粒,例如SiO 2顆粒的直徑為小於3μm,優選的所述保護層107中的填料顆粒,例如無機氧化物顆粒,例如SiO 2顆粒的直徑為1~2μm之間。 In a preferred embodiment, the filler particles in the protective layer 107, such as inorganic oxide particles, such as SiO 2 particles have a diameter of less than 3 μm, the preferred filler particles in the protective layer 107, such as inorganic oxide particles For example, the diameter of SiO 2 particles is between 1 and 2 μm.

控制填料顆粒的直徑尺寸為小於3μm,有利於雷射圖案化製造工藝中在保護層107上形成具有較平滑側壁的保護層開口,從而在導電材料填充工藝中可以使材料填充充分,避免具有大尺寸凹凸的保護層開口側壁109c在有凸起遮擋的側壁後側導電材料無法填充,影響導電填充通孔111的導電性能。Controlling the diameter of the filler particles to be less than 3 μm is conducive to the formation of a protective layer opening with smoother sidewalls on the protective layer 107 in the laser patterning manufacturing process, so that the material can be fully filled in the conductive material filling process, avoiding large The side wall 109c of the protective layer opening with uneven size cannot be filled with conductive material behind the side wall covered by the protrusion, which affects the conductive performance of the conductive filled via 111.

同時,1~2μm的填充尺寸會使雷射圖案化的過程中,將小粒徑的填料暴露出來,使保護層開口側壁109c具有一定粗糙度,此具有一定粗糙度的側壁會和導電材料的接觸面更大,接觸更加緊密,形成導電性能好的導電填充通孔111。At the same time, the filling size of 1~2μm will expose the filler with small particle size during the laser patterning process, so that the protective opening side wall 109c has a certain roughness, and this side wall with a certain roughness will interact with the conductive material The contact surface is larger and the contact is closer, forming a conductive filled via 111 with good conductivity.

以上所述填料的直徑尺寸為顆粒直徑的平均值。The diameter of the filler mentioned above is the average of the particle diameters.

在一個優選實施例中,所述保護層107的抗拉強度的數值範圍為20~50 MPa;在一個優選實施例中,所述保護層107的抗拉強度為37 MPa。In a preferred embodiment, the numerical value of the tensile strength of the protective layer 107 is 20-50 MPa; in a preferred embodiment, the tensile strength of the protective layer 107 is 37 MPa.

可選的,在所述晶圓活性面1001上施加所述保護層107流程後,對所述晶片背面1002進行研磨減薄晶片至所需厚度。Optionally, after applying the protective layer 107 on the active surface 1001 of the wafer, the back surface 1002 of the wafer is ground to reduce the thickness of the wafer to a desired thickness.

現代電子設備小型輕量化,晶片具有薄型化趨勢,在此步驟中,所述晶圓100有時會需要被減薄到很薄的厚度,然而,薄型晶圓100的加工和轉移難度大,研磨減薄過程工藝難度大,往往很難將晶圓100減薄到理想厚度。當晶圓100表面具有保護層107時,具有材料特性的保護層107會對晶圓100起到支撐作用,降低晶圓100的加工,轉移和減薄難度。Modern electronic equipment is small and lightweight, and the wafer has a thinning trend. In this step, the wafer 100 sometimes needs to be thinned to a very thin thickness. However, the processing and transfer of the thin wafer 100 is difficult and grinding The process of the thinning process is difficult, and it is often difficult to thin the wafer 100 to an ideal thickness. When a protective layer 107 is provided on the surface of the wafer 100, the protective layer 107 with material characteristics will support the wafer 100, reducing the difficulty of processing, transferring, and thinning the wafer 100.

如圖4a和圖4b所示,在所述保護層107表面形成保護層開口109。As shown in FIGS. 4a and 4b, a protective layer opening 109 is formed on the surface of the protective layer 107.

至少一部分所述保護層開口109位置為和晶圓導電層106相對應,通過保護層開口109將晶圓導電層106暴露出來;所述保護層開口109具有保護層開口下表面109a和保護層開口上表面109b。At least a portion of the protective layer opening 109 corresponds to the wafer conductive layer 106, and the wafer conductive layer 106 is exposed through the protective layer opening 109; the protective layer opening 109 has a protective layer opening lower surface 109a and a protective layer opening Upper surface 109b.

在一優選實施例中,保護層開口109的形狀為,保護層開口上表面109b的面積大於保護層開口下表面109a的面積,此時,保護層開口側壁109c的斜度可以使導電材料的填充容易進行,在填充過程中,導電材料會均勻連續形成在側壁上。In a preferred embodiment, the shape of the protective layer opening 109 is such that the area of the upper surface 109b of the protective layer opening is larger than the area of the lower surface 109a of the protective layer opening. In this case, the slope of the side wall 109c of the protective layer opening can fill the conductive material Easy to carry out, during the filling process, the conductive material will be uniformly and continuously formed on the side wall.

可選的,至少一部分晶圓導電層106中的每個晶圓導電層106對應一個或者多個保護層開口109。Optionally, each of the at least a portion of the wafer conductive layers 106 corresponds to one or more protective layer openings 109.

可選的,所述晶圓導電層106與所述電連接點103的單個接觸區域的接觸面積α1小於所述晶圓導電層106與所述保護層開口109的單個接觸區域的接觸面積β1。Optionally, the contact area α1 of the single contact area of the wafer conductive layer 106 and the electrical connection point 103 is smaller than the contact area β1 of the single contact area of the wafer conductive layer 106 and the protective layer opening 109.

當晶圓100的種類為裸露出的電連接點103面積較小時,在晶圓活性面1001形成導電層,然後再形成保護層開口,可以有效降低保護層開口的形成難度,避免由於保護層開口下表面109a過小,而使保護層開口109難以形成。When the type of the wafer 100 is that the exposed electrical connection points 103 have a small area, forming a conductive layer on the wafer active surface 1001 and then forming a protective layer opening can effectively reduce the difficulty of forming the protective layer opening, avoiding the protective layer The opening lower surface 109a is too small, making it difficult to form the protective layer opening 109.

優選的,採用雷射圖形化的方式形成所述保護層開口。Preferably, the protective layer opening is formed in a laser patterning manner.

對應於圖2a中的晶圓導電層106,圖4a示出了在將多個所述電連接點103彼此互連並引出的晶圓導電層106上形成所述保護層107,圖中示出了每個晶圓導電層106對應多個保護層開口109,可以理解的,每個晶圓導電層106可以對應一個保護層開口109,也可以為一部分晶圓導電層106對應一個保護層開口109,另一部分晶圓導電層106對應多個保護層開口109。Corresponding to the wafer conductive layer 106 in FIG. 2a, FIG. 4a shows that the protective layer 107 is formed on the wafer conductive layer 106 interconnecting and drawing a plurality of the electrical connection points 103 with each other. Each wafer conductive layer 106 corresponds to multiple protective layer openings 109. It can be understood that each wafer conductive layer 106 can correspond to one protective layer opening 109, or can correspond to one protective layer opening 109 for a portion of the wafer conductive layer 106. , Another portion of the wafer conductive layer 106 corresponds to a plurality of protective layer openings 109.

對應於圖2b中的晶圓導電層106,圖4b示出了在將所述電連接點103單獨引出的晶圓導電層106上形成所述保護層107,優選的,每個晶圓導電層106可以對應一個保護層開口109。Corresponding to the wafer conductive layer 106 in FIG. 2b, FIG. 4b shows that the protective layer 107 is formed on the wafer conductive layer 106 which leads the electrical connection point 103 separately, preferably, each wafer conductive layer 106 may correspond to one protective layer opening 109.

可選的,如圖5所示,在所述保護層開口109中填充導電介質,使得所述保護層開口109成為導電填充通孔111,至少一部分所述導電填充通孔111與所述晶圓導電層106電連接,所述保護層圍繞在所述導電填充通孔111四周。導電介質可以是金、銀、銅、錫、鋁等材料或其組合材料,也可以為其它合適的導電材料通過利用PVD、CVD、濺鍍、電解電鍍、無電極電鍍工藝,或者其它合適的金屬沉積工藝形成在保護層開口109形成導電填充通孔111。Optionally, as shown in FIG. 5, the protective layer opening 109 is filled with a conductive medium, so that the protective layer opening 109 becomes a conductive filled through hole 111, and at least a part of the conductive filled through hole 111 and the wafer The conductive layer 106 is electrically connected, and the protective layer surrounds the conductive filled via 111. The conductive medium can be gold, silver, copper, tin, aluminum, or other materials or a combination of materials, or other suitable conductive materials by using PVD, CVD, sputtering, electrolytic plating, electrodeless plating process, or other suitable metals A deposition process is formed in the protective layer opening 109 to form a conductive filled via 111.

導電介質的填充可以為對保護層開口109的完全填充,也可以為只在保護層開口109中形成一層導電材料,能夠和面板級導電層進行電連接即可。相應的,對導電填充通孔111的理解為只要使保護層開口中具有導電介質,該導電介質能夠和面板級導電層進行電連接即可,不必要是對保護層開口完全填充形成。The filling of the conductive medium may be the complete filling of the protective layer opening 109, or it may be that only a layer of conductive material is formed in the protective layer opening 109, which can be electrically connected to the panel-level conductive layer. Correspondingly, the conductive filled via 111 is understood as long as a conductive medium is provided in the opening of the protective layer, and the conductive medium can be electrically connected to the panel-level conductive layer, and it is not necessary to completely fill the opening of the protective layer.

首先形成晶圓導電層106和電連接點103電連接,由於晶圓導電層106是在晶片級形成,其和電連接點103的對位精度高,然後通過在保護層107上形成保護層開口109和/或填入導電介質的方式,使得晶圓導電層106的位置可以通過保護層開口109精準定位。First, the wafer conductive layer 106 is electrically connected to the electrical connection point 103. Since the wafer conductive layer 106 is formed at the wafer level, its alignment accuracy with the electrical connection point 103 is high, and then by forming a protective layer opening on the protective layer 107 109 and/or a method of filling with a conductive medium, so that the position of the wafer conductive layer 106 can be accurately positioned through the protective layer opening 109.

如圖6所示,將形成有晶圓導電層106和施加過保護層107的晶圓100沿著切割道進行切割,得到多個晶粒113,所述晶粒113具有晶粒活性面1131和晶粒背面1132。As shown in FIG. 6, the wafer 100 on which the wafer conductive layer 106 and the protective layer 107 have been applied is cut along the scribe line to obtain a plurality of crystal grains 113 having the crystal grain active surface 1131 and The back of the die 1132.

在一個實施例中,切割如圖3所示出的具有晶圓導電層106和保護層107的晶圓100形成晶粒113。In one embodiment, the wafer 100 having the wafer conductive layer 106 and the protective layer 107 as shown in FIG. 3 is cut to form the die 113.

在一個實施例中,切割如圖4a、圖4b所示出的具有晶圓導電層106,保護層107和保護層開口109的晶圓100形成晶粒113。In one embodiment, the wafer 100 having the wafer conductive layer 106, the protective layer 107 and the protective layer opening 109 as shown in FIGS. 4 a and 4 b is cut to form a die 113.

在一個實施例中,切割如圖5所示出的具有晶圓導電層106,保護層107和導電填充通孔111的晶圓100形成晶粒113。In one embodiment, the wafer 100 having the wafer conductive layer 106, the protective layer 107 and the conductive filled via 111 as shown in FIG. 5 is cut to form a die 113.

由於保護層的材料特性,使得在晶圓100的切割工序中,分離出的晶粒113沒有毛刺和碎屑(die chip)。Due to the material characteristics of the protective layer, in the dicing process of the wafer 100, the separated crystal grains 113 are free of burrs and die chips.

在一個實施例中,在切割所述晶圓100分離出所述晶粒113步驟之前,還包括對施加有所述保護層107的晶圓100的具有保護層107的一面進行電漿表面處理,增大表面粗糙度,以使後續工藝中所述晶粒113在所述載板117上的粘合性增大,不易產生所述晶粒113在塑封壓力下的晶粒移動。In one embodiment, before the step of cutting the wafer 100 to separate the die 113, the method further includes performing plasma surface treatment on the side of the wafer 100 to which the protective layer 107 is applied, having the protective layer 107, The surface roughness is increased to increase the adhesion of the crystal grains 113 on the carrier board 117 in the subsequent process, and it is difficult for the crystal grains 113 to move under the molding pressure.

可以理解的是,在工藝允許的情況下,根據具體的實際情況可選擇的將所述晶圓100切割成待封裝晶粒113後,在每個晶粒113的晶粒活性面1131上形成晶圓導電層106和/或保護層107。所述晶圓導電層106是指在將晶圓100切割成晶粒113並裝貼到載板之前,所形成的導電層。It can be understood that, if the process permits, after the wafer 100 is selectively cut into the dies 113 to be packaged according to the specific actual situation, crystals are formed on the die active surface 1131 of each die 113 The round conductive layer 106 and/or the protective layer 107. The wafer conductive layer 106 refers to the conductive layer formed before the wafer 100 is cut into the die 113 and mounted on the carrier board.

如圖7a、圖7b和圖7c所示,提供一個載板117,所述載板117具有載板正面1171和載板背面1172,在所述載板正面1171的預設位置上排布分割好的所述晶粒113,所述晶粒活性面1131朝向所述載板117,所述晶粒背面1132朝離所述載板117排布。As shown in FIGS. 7a, 7b and 7c, a carrier board 117 is provided. The carrier board 117 has a carrier board front 1171 and a carrier board back 1172. The carrier board 117 is arranged and divided at preset positions on the carrier board front 1171 The die 113, the die active surface 1131 faces the carrier plate 117, and the die back 1132 is arranged away from the carrier plate 117.

載板117的形狀為:圓形、三邊形,四邊形或其它任何形狀,載板117的大小可以是小尺寸的晶圓基板,也可以是各種尺寸特別是大尺寸的矩形載板,載板117的材質可以是金屬、非金屬、塑膠、樹脂、玻璃、不銹鋼等。優選的,載板117為不銹鋼材質的四邊形大尺寸面板。The shape of the carrier board 117 is: round, triangular, quadrangular or any other shape. The size of the carrier board 117 can be a small-sized wafer substrate, or a rectangular carrier board of various sizes, especially a large size, carrier board The material of 117 can be metal, non-metal, plastic, resin, glass, stainless steel, etc. Preferably, the carrier plate 117 is a quadrilateral large-size panel made of stainless steel.

載板117具有載板正面113和載板背面115,載板正面113優選的為一個平面。The carrier board 117 has a carrier board front 113 and a carrier board back 115, and the carrier board front 113 is preferably a flat surface.

在一個實施例中,利用粘接層121將晶粒113粘合並固定在載板117上。In one embodiment, the die 113 is bonded and fixed on the carrier board 117 by the adhesive layer 121.

粘接層121可通過層壓、印刷、噴塗、塗敷等方式形成在載板正面1171上。為了便於在之後的流程中將載板117和背部塑封完成的晶粒113分離,粘接層121優選的採用易分離的材料,例如採用熱分離材料作為粘接層121。The adhesive layer 121 may be formed on the front surface 1171 of the carrier board by lamination, printing, spraying, coating, or the like. In order to facilitate the separation of the carrier board 117 and the back-molded die 113 in the subsequent process, the adhesive layer 121 preferably uses a material that can be easily separated, for example, a thermal separation material is used as the adhesive layer 121.

優選的,可以在載板117上預先標識出晶粒113排布的位置,標識可採用雷射、機械刻圖等方式在載板117上形成,同時晶粒113上也設置有對位元標識,以在粘貼時與載板117上的粘貼位置瞄準對位。Preferably, the position where the die 113 is arranged can be pre-marked on the carrier plate 117. The logo can be formed on the carrier plate 117 by means of laser, mechanical engraving, etc. At the same time, the die 113 is also provided with an alignment mark To aim and align with the pasting position on the carrier board 117 during pasting.

排布在載板117上的晶粒113的形式,可以為如圖7a所示出的晶粒113上的所述晶圓導電層106將所述晶粒活性面1131上的至少一部分中的多個所述電連接點103彼此互連並引出的晶粒形式;也可以為如圖7b所示出的所述晶圓導電層106將所述晶粒活性面1131上的至少一部分所述電連接點103單獨引出的晶粒形式;還可為切割如圖3所示出的具有晶圓導電層106和保護層107的晶圓100形成的晶粒113的形式;切割如圖5所示出的具有晶圓導電層106,保護層107和導電填充通孔111的晶圓100形成的晶粒113的形式。The form of the die 113 arranged on the carrier 117 may be the wafer conductive layer 106 on the die 113 shown in FIG. The electrical connection points 103 are in the form of grains interconnected with each other and lead out; at least a part of the electrical connection on the active surface 1131 of the grain may be electrically connected to the wafer conductive layer 106 as shown in FIG. 7b The form of the grains led out by the point 103 alone; it can also be in the form of the grains 113 formed by cutting the wafer 100 having the wafer conductive layer 106 and the protective layer 107 shown in FIG. 3; the cutting is shown in FIG. 5 The wafer 100 having the wafer conductive layer 106, the protective layer 107, and the conductive filled via 111 is formed in the form of a die 113.

可選的,如圖7c所示,在一次封裝過程中,可以將多個,特別是具有不同功能的多個晶粒113a和113b,圖中示出兩個,也可以為兩個以上,按照實際產品的需求排布在載板117上,並進行封裝,在完成封裝後,再切割成多個封裝體;由此一個封裝體包括多個所述晶粒113a和113b以形成多晶片模組(multi-chip module ,MCM),而多個所述晶粒113a和113b的位置可以根據實際產品的需要進行自由設置。Optionally, as shown in FIG. 7c, in one packaging process, multiple, especially multiple die 113a and 113b with different functions may be used. Two or more than two die shown in the figure may be used. The actual product needs are arranged on the carrier board 117 and packaged. After the package is completed, it is cut into multiple packages; thus one package includes a plurality of the die 113a and 113b to form a multi-chip module (Multi-chip module, MCM), and the positions of the plurality of die 113a and 113b can be freely set according to the needs of actual products.

如圖8所示,形成塑封層123。As shown in FIG. 8, the plastic encapsulation layer 123 is formed.

在所述待封裝晶粒113的四周以及載板正面1171或粘接層121的裸露表面形成塑封層123。塑封層123用於將載板正面1171和待封裝晶粒113完全包封住,以重新構造一平板結構,以便在將載板117剝離後,能夠繼續在重新構造的該平板結構上進行接下來的封裝步驟。A plastic encapsulation layer 123 is formed around the die 113 to be packaged and the exposed surface of the front surface 1171 of the carrier board or the exposed surface of the adhesive layer 121. The plastic encapsulation layer 123 is used to completely encapsulate the front surface 1171 of the carrier board and the die 113 to be encapsulated, so as to reconstruct a flat plate structure, so that after the carrier board 117 is peeled off, it can continue on the reconstructed flat plate structure. Packaging steps.

將塑封層123與載板正面1171或粘接層121接觸的一面定義為塑封層正面1231。將塑封層123背離載板正面1171或粘接層121的一面定義為塑封層背面1232。The surface of the plastic encapsulation layer 123 in contact with the front surface 1171 of the carrier board or the adhesive layer 121 is defined as the front surface 1231 of the plastic packaging layer. The side of the plastic encapsulation layer 123 facing away from the front surface 1171 of the carrier board or the adhesive layer 121 is defined as the back surface 1232 of the plastic encapsulation layer.

優選的,所述塑封層正面1231和所述塑封層背面1232基本上呈平板狀,且與所述載板正面1171平行。Preferably, the front surface 1231 of the plastic encapsulation layer and the rear surface 1232 of the plastic encapsulation layer are substantially flat and parallel to the front surface 1171 of the carrier board.

塑封層123可採用漿料印刷、注塑成型、熱壓成型、壓縮模塑、傳遞模塑、液體密封劑模塑、真空層壓、或其它合適的成型方式。塑封層123可採用有機複合材料、樹脂複合材料、高分子複合材料、聚合物複合材料,例如具有填充物的環氧樹脂、ABF(Ajinomoto buildup film)或具有合適填充物的其它聚合物。The plastic sealing layer 123 may use paste printing, injection molding, hot compression molding, compression molding, transfer molding, liquid sealant molding, vacuum lamination, or other suitable molding methods. The plastic encapsulation layer 123 may be an organic composite material, a resin composite material, a polymer composite material, or a polymer composite material, such as epoxy resin with filler, ABF (Ajinomoto buildup film), or other polymers with suitable fillers.

在一實施例中,所述塑封層123採用有機/無機複合材料採用模壓成型的方式形成。In one embodiment, the plastic encapsulation layer 123 is formed by compression molding using an organic/inorganic composite material.

優選的,所述塑封層123的熱膨脹係數為3~10 ppm/K;在一個優選實施例中所述塑封層123的熱膨脹係數為5 ppm/K;在另一個優選實施例中所述塑封層123的熱膨脹係數為7 ppm/K;在再一個優選實施例中所述塑封層123的熱膨脹係數為10 ppm/K。Preferably, the thermal expansion coefficient of the plastic encapsulation layer 123 is 3-10 ppm/K; in a preferred embodiment, the thermal expansion coefficient of the plastic encapsulation layer 123 is 5 ppm/K; in another preferred embodiment, the plastic encapsulation layer The thermal expansion coefficient of 123 is 7 ppm/K; in yet another preferred embodiment, the thermal expansion coefficient of the plastic encapsulation layer 123 is 10 ppm/K.

優選的,所述塑封層123和所述保護層107具有相同或相近的熱膨脹係數。Preferably, the plastic encapsulation layer 123 and the protective layer 107 have the same or similar thermal expansion coefficients.

將塑封層123的熱膨脹係數選定為3~10 ppm/K且選定和保護層107具有相同或相近的熱膨脹係數,塑封流程的加熱和冷卻過程中,保護層107,塑封層123之間的膨脹收縮程度保持一致,兩種材料不易產生介面應力,低的熱膨脹係數使塑封層,保護層和晶粒的熱膨脹係數接近,使塑封層123,保護層107以及晶粒113的介面結合緊密,避免產生介面層分離。The thermal expansion coefficient of the plastic sealing layer 123 is selected to be 3~10 ppm/K and the thermal expansion coefficient of the protective layer 107 is selected to be the same or similar. During the heating and cooling of the plastic sealing process, the expansion and contraction between the protective layer 107 and the plastic sealing layer 123 The degree of consistency is the same, and the two materials are not easy to produce interface stress. The low thermal expansion coefficient makes the thermal expansion coefficients of the plastic encapsulation layer, the protective layer and the grains close, so that the interfaces of the plastic encapsulation layer 123, the protective layer 107 and the grain 113 are closely combined to avoid the generation of an interface Layer separation.

封裝完成的晶片在使用過程中,常常需要經歷冷熱循環,由於保護層107,塑封層123以及晶粒113的熱膨脹係數相近,在冷熱循環過程中,保護層107和塑封層123以及晶粒113的介面疲勞小,保護層107,塑封層123以及晶粒113之間不易出現介面間隙,使晶片的使用壽命增長,晶片的可應用領域廣泛。During the use of the packaged wafer, it is often necessary to undergo a cold and hot cycle. Because the thermal expansion coefficients of the protective layer 107, the plastic encapsulation layer 123 and the die 113 are similar, during the cold and hot cycle, the protective layer 107 and the plastic encapsulation layer 123 and the die 113 The interface fatigue is small, and the interface gap is not easy to occur between the protective layer 107, the plastic encapsulation layer 123 and the die 113, so that the service life of the chip is increased, and the applicable fields of the chip are wide.

晶粒113和塑封層123熱膨脹係數的差異還會使塑封後的面板模組產生翹曲,由於翹曲現象的產生,使得後續的導電層形成工藝中,難以定位晶粒113在面板模組中的精確位置,對導電層形成工藝產生很大影響。The difference between the thermal expansion coefficients of the die 113 and the plastic encapsulation layer 123 can also cause warpage of the panel module after plastic encapsulation. Due to the occurrence of the warpage phenomenon, it is difficult to locate the die 113 in the panel module in the subsequent conductive layer formation process The precise location of the metal has a great influence on the formation process of the conductive layer.

特別的,在大面板封裝工藝中,由於面板的尺寸較大,即便是輕微的面板翹曲,也會使面板遠離中心的外部四周圍部分的晶粒相對於模塑成型之前,產生較大尺寸的位置變化,所以,在大型面板封裝工藝中,解決翹曲問題成為整個工藝的關鍵之一,翹曲問題甚至限制了面板尺寸的放大化發展,成為大尺寸面板封裝中的技術壁壘。In particular, in the large panel packaging process, due to the large size of the panel, even a slight panel warpage will cause the outer periphery of the panel to be far away from the center. Because of the change of position, in the large-scale panel packaging process, solving the warpage problem has become one of the keys of the whole process. The warpage problem even limits the enlargement of the panel size and becomes a technical barrier in large-size panel packaging.

將所述保護層107和所述塑封層123的熱膨脹係數限定在3~10 ppm/K的範圍內,且優選所述塑封層123和所述保護層107具有相同或相近的熱膨脹係數,可以有效避免面板模組翹曲的產生,實現採用大型面板的封裝工藝。The thermal expansion coefficients of the protective layer 107 and the plastic encapsulation layer 123 are limited to the range of 3-10 ppm/K, and it is preferable that the plastic encapsulation layer 123 and the protective layer 107 have the same or similar thermal expansion coefficients, which can be effective To avoid the generation of warpage of the panel module, realize the packaging process using a large panel.

同時,在塑封過程中,由於塑封壓力會對所述晶粒113背部產生壓力,此壓力易於將所述晶粒113壓入粘接層121,從而使晶粒113在形成塑封層123過程中陷入粘接層121中,在塑封層123形成後,晶粒113和塑封層正面1231不處於同一平面,晶粒113的表面為突出在塑封層正面1231之外,形成一個臺階狀的結構,在後續導電層形成過程中,導電跡線125也相應的會出現臺階狀結構,使得封裝結構不穩定。At the same time, during the plastic encapsulation process, the pressure of the plastic encapsulation will generate pressure on the back of the die 113, and this pressure will easily press the die 113 into the adhesive layer 121, thereby causing the die 113 to fall into the process of forming the plastic encapsulation layer 123 In the adhesive layer 121, after the plastic encapsulation layer 123 is formed, the crystal grain 113 and the front surface 1231 of the plastic encapsulation layer are not in the same plane. The surface of the crystal grain 113 protrudes beyond the front surface 1231 of the plastic encapsulation layer to form a stepped structure. During the formation of the conductive layer, the conductive trace 125 also correspondingly has a stepped structure, making the packaging structure unstable.

當晶粒活性面1131有具有材料特性的保護層107時,可以在塑封壓力下起到緩衝作用,避免晶粒113陷入粘接層121中,從而避免塑封層正面1231臺階狀結構的產生。When the active surface 1131 of the die has a protective layer 107 with material properties, it can play a buffering role under the pressure of the plastic packaging to prevent the crystal 113 from sinking into the adhesive layer 121, thereby avoiding the generation of a stepped structure on the front surface 1231 of the plastic packaging layer.

如圖9a所示,所述塑封層123的厚度可以通過對所述塑封層背面1232進行研磨或拋光來減薄。As shown in FIG. 9a, the thickness of the plastic encapsulation layer 123 can be reduced by grinding or polishing the back surface 1232 of the plastic encapsulation layer.

在一實施例中,如圖9b所示,所述塑封層123的厚度可減薄至晶粒113的晶粒背面1132,從而暴露出晶粒背面1132。封裝成型的晶片結構如圖15b所示。In one embodiment, as shown in FIG. 9b, the thickness of the plastic encapsulation layer 123 may be reduced to the back surface 1132 of the die 113, thereby exposing the back surface 1132 of the die. The packaged and molded wafer structure is shown in Figure 15b.

如圖10所示,剝離載板117,露出所述塑封層正面1231和所述保護層107。As shown in FIG. 10, the carrier board 117 is peeled off to expose the front surface 1231 of the plastic encapsulation layer and the protective layer 107.

在一個實施例中,當排布在所述載板117的所述晶粒113具有保護層開口109時,剝離所述載板117,還會露出所述保護層開口109。In one embodiment, when the die 113 arranged on the carrier plate 117 has the protective layer opening 109, the carrier plate 117 is peeled off, and the protective layer opening 109 is also exposed.

在一個實施例中,當排布在所述載板117的所述晶粒113為還未在所述保護層107上形成保護層開口時,在剝離完所述載板117後還有在所述塑封層123包覆的晶粒113上的保護層107上形成保護層開口的步驟。In one embodiment, when the die 113 arranged on the carrier board 117 has not yet formed a protective layer opening on the protective layer 107, after the peeling of the carrier board 117 is still there The step of forming a protective layer opening on the protective layer 107 on the die 113 covered by the plastic encapsulation layer 123.

在一個實施例中,當排布在載板117的晶粒113為具有導電填充通孔111的晶粒113時,還會露出所述導電填充通孔111。In one embodiment, when the die 113 arranged on the carrier board 117 is a die 113 having a conductive filled via 111, the conductive filled via 111 is also exposed.

載板117分離後,將包覆有晶粒113的塑封層123結構定義為面板模組150。After the carrier board 117 is separated, the structure of the plastic encapsulation layer 123 coated with the die 113 is defined as the panel module 150.

圖11和圖12示出了在塑封層123中的晶粒113上形成圖案化面板級導電層過程的一個實施例。11 and 12 show one embodiment of the process of forming a patterned panel-level conductive layer on the die 113 in the plastic encapsulation layer 123.

當包覆在塑封層123中晶粒113表面的保護層107還未形成導電填充通孔111時,在所述保護層開口109中填充導電介質,使得所述保護層開口109成為導電填充通孔111,至少一部分所述導電填充通孔111與所述晶圓導電層106電連接,所述保護層圍繞在所述導電填充通孔111四周。導電介質可以是金、銀、銅、錫、鋁等材料或其組合材料,也可以為其它合適的導電材料通過利用PVD、CVD、濺鍍、電解電鍍、無電極電鍍工藝,或者其它合適的金屬沉積工藝形成在保護層開口109形成導電填充通孔111。When the protective layer 107 covering the surface of the die 113 in the plastic encapsulation layer 123 has not yet formed a conductive filled via 111, the protective layer opening 109 is filled with a conductive medium so that the protective layer opening 109 becomes a conductive filled via 111. At least a part of the conductive filled via 111 is electrically connected to the wafer conductive layer 106, and the protective layer surrounds the conductive filled via 111. The conductive medium can be gold, silver, copper, tin, aluminum, or other materials or a combination of materials, or other suitable conductive materials by using PVD, CVD, sputtering, electrolytic plating, electrodeless plating process, or other suitable metals A deposition process is formed in the protective layer opening 109 to form a conductive filled via 111.

導電介質的填充可以為對保護層開口109的完全填充,也可以為只在保護層開口109中形成一層導電材料,能夠和面板級導電層進行電連接即可。相應的,對導電填充通孔111的理解為只要使保護層開口中具有導電介質,該導電介質能夠和面板級導電層進行電連接即可,不必要是對保護層開口完全填充形成。The filling of the conductive medium may be the complete filling of the protective layer opening 109, or it may be that only a layer of conductive material is formed in the protective layer opening 109, which can be electrically connected to the panel-level conductive layer. Correspondingly, the conductive filled via 111 is understood as long as a conductive medium is provided in the opening of the protective layer, and the conductive medium can be electrically connected to the panel-level conductive layer. It is not necessary to completely fill the opening of the protective layer.

圖11示出了在塑封層123中的晶粒113上形成導電跡線(trace)125;所述導電跡線125的至少一部分形成在所述晶粒活性面1131上的保護層107表面,和至少一部分的導電填充通孔111電連接;在一個實施例中,導電跡線125沿著保護層107的表面和塑封層正面1231延伸,並延伸到當封裝完成的晶片封裝體的邊緣,封裝成型的晶片結構如圖15b所示。導電跡線125延伸到封裝體的邊緣,此時導電跡線125將保護層107和塑封層132的界面包覆並連接起來,增加了封裝後晶片結構的穩定性。FIG. 11 shows that a conductive trace 125 is formed on the grain 113 in the plastic encapsulation layer 123; at least a part of the conductive trace 125 is formed on the surface of the protective layer 107 on the active surface 1131 of the grain, and At least a portion of the conductive filled vias 111 are electrically connected; in one embodiment, the conductive traces 125 extend along the surface of the protective layer 107 and the front surface of the plastic encapsulation layer 1231, and extend to the edge of the chip package when packaging is completed, and the package is molded The wafer structure is shown in Figure 15b. The conductive trace 125 extends to the edge of the package. At this time, the conductive trace 125 covers and connects the interface of the protective layer 107 and the plastic encapsulation layer 132, which increases the stability of the wafer structure after packaging.

導電跡線125可以是一層或多層的銅、金、銀、錫、鋁等材料或其組合材料,也可以為其它合適的導電材料通過利用PVD、CVD、濺鍍、電解電鍍、無電極電鍍工藝,或者其它合適的金屬沉積工藝形成。The conductive trace 125 may be one or more layers of copper, gold, silver, tin, aluminum, or other materials or a combination thereof, or other suitable conductive materials by using PVD, CVD, sputtering, electrolytic plating, electrodeless plating process , Or other suitable metal deposition process.

優選的,導電跡線125的形成過程和導電填充通孔111導電材料的填充過程在同一金屬層形成過程中形成。Preferably, the forming process of the conductive trace 125 and the filling process of the conductive filling via 111 are formed in the same metal layer forming process.

當然,導電跡線125的形成過程和導電填充通孔111導電材料的填充過程也可以分步驟進行。Of course, the forming process of the conductive trace 125 and the filling process of the conductive material of the conductive filling via 111 can also be performed in steps.

圖12示出了在導電跡線125的焊墊或連接點上形成導電凸柱(stud)127;導電凸柱127的形狀可以是圓的,也可以是其它形狀如橢圓形、方形、線形等。導電凸柱127可以是一層或多層的銅、金、銀、錫、鋁等材料或其組合材料,也可以為其它合適的導電材料通過利用PVD、CVD、濺鍍、電解電鍍、無電極電鍍工藝,或者其它合適的金屬沉積工藝形成。12 shows the formation of conductive studs 127 on the pads or connection points of the conductive traces 125; the shape of the conductive studs 127 may be round or other shapes such as ellipses, squares, lines, etc. . The conductive studs 127 may be one or more layers of copper, gold, silver, tin, aluminum and other materials or combinations thereof, or other suitable conductive materials by using PVD, CVD, sputtering, electrolytic plating, electrodeless plating process , Or other suitable metal deposition process.

面板級導電層由導電跡線125和/或導電凸柱127構成,面板級導電層可以為一層也可以為多層。面板級導電層可以具有扇出再佈線(fan-out RDL)的功能。The panel-level conductive layer is composed of conductive traces 125 and/or conductive bumps 127, and the panel-level conductive layer may be one layer or multiple layers. The panel-level conductive layer may have a fan-out RDL function.

如圖13a、圖13b和圖13c所示,在面板級導電層上形成介電層129。As shown in FIGS. 13a, 13b, and 13c, a dielectric layer 129 is formed on the panel-level conductive layer.

使用層壓,塗覆、噴塗、印刷、模塑以及其它等適合方法在面板級導電層表面形成一層或多層介電層129。One or more dielectric layers 129 are formed on the surface of the panel-level conductive layer using suitable methods such as lamination, coating, spraying, printing, molding, and others.

介電層129可以為BCB(苯並環丁烯)、PI(聚醯亞胺)、PBO(聚苯並惡唑)、ABF、二氧化矽、氮化矽、氮氧化矽、五氧化二鉭、氧化鋁、聚合物基質介電膜、有機聚合物膜;也可以為有機複合材料、樹脂複合材料、高分子複合材料、聚合物複合材料,例如具有填充物的環氧樹脂、ABF、或具有合適填充物的其它聚合物;還可以為其它具有相似絕緣和結構特性的材料。在一個優選實施例仲介電層129為ABF。介電層129起到保護導電層和絕緣的作用。The dielectric layer 129 may be BCB (benzocyclobutene), PI (polyimide), PBO (polybenzoxazole), ABF, silicon dioxide, silicon nitride, silicon oxynitride, tantalum pentoxide , Alumina, polymer matrix dielectric film, organic polymer film; can also be organic composite materials, resin composite materials, polymer composite materials, polymer composite materials, such as epoxy resin with filler, ABF, or have Other polymers with suitable fillers; other materials with similar insulation and structural properties. In a preferred embodiment, the secondary dielectric layer 129 is ABF. The dielectric layer 129 functions to protect the conductive layer and the insulation.

在一個實施例中,介電層129施加的厚度比面板級導電層的厚度厚,通過研磨過程將面板級導電層裸露出來;在另一個實施例中,介電層133施加的厚度和面板級導電層的厚度相同,施加完介電層129之後面板級導電層正好裸露出來。In one embodiment, the thickness applied by the dielectric layer 129 is thicker than the thickness of the panel-level conductive layer, and the panel-level conductive layer is exposed through the grinding process; in another embodiment, the thickness applied by the dielectric layer 133 and the panel-level The conductive layers have the same thickness, and the panel-level conductive layer is barely exposed after the dielectric layer 129 is applied.

在一個實施例中,重複圖11至圖13c的步驟,在晶粒113的晶粒活性面1131上形成多層面板級導電層。In one embodiment, the steps of FIGS. 11 to 13c are repeated to form a multi-layer panel-level conductive layer on the grain active surface 1131 of the grain 113.

重新回到圖11至圖13c的步驟中。在一個實施例中,面板級導電層的形成步驟可以為: 在晶粒113的晶粒活性面1131上形成導電跡線125; 使用層壓,塗覆、噴塗、印刷、模塑以及其它等適合方法在導電跡線125表面形成一層或多層介電層129,介電層129的高度高於導電跡線125的高度,將導電跡線125完全包封於介電層129中;及 在介電層129上與導電跡線125的焊墊或連接點對應的位置處形成開口,在開口內形成導電凸柱127。 Return to the steps of FIGS. 11 to 13c again. In one embodiment, the steps of forming the panel-level conductive layer may be: Forming a conductive trace 125 on the grain active surface 1131 of the grain 113; Use suitable methods such as lamination, coating, spraying, printing, molding, and other methods to form one or more dielectric layers 129 on the surface of the conductive trace 125. The height of the dielectric layer 129 is higher than the height of the conductive trace 125. Trace 125 is completely enclosed in dielectric layer 129; and An opening is formed on the dielectric layer 129 at a position corresponding to the pad or connection point of the conductive trace 125, and a conductive stud 127 is formed in the opening.

又一實施例中,開口內可不形成導電凸柱127,使完成後的封裝體的導電跡線125的焊墊或連接點從開口中露出。In another embodiment, conductive bumps 127 may not be formed in the opening, so that the pads or connection points of the conductive traces 125 of the completed package are exposed from the opening.

在一優選實施例中,在介電層129的施加步驟之後,蝕刻減薄最外層面板級導電層厚度,以在介電層129的外表面形成凹槽131,封裝成型的晶片結構如圖15b所示。In a preferred embodiment, after the step of applying the dielectric layer 129, the thickness of the outermost panel-level conductive layer is etched down to form a groove 131 on the outer surface of the dielectric layer 129. The chip structure of the package is shown in FIG. 15b As shown.

可選的,如圖13c所示,在一次封裝過程中,可以將多個,特別是具有不同功能的多個晶粒113a和113b,圖中示出兩個,也可以為兩個以上,封裝成為多晶片封裝模組,多個晶粒113a和113b的導電結構的圖案化設計根據實際產品的電連接需要進行設計。封裝成型的晶片結構如圖15d所示。Optionally, as shown in FIG. 13c, multiple dies 113a and 113b, particularly two or more dies with different functions, can be packaged in a single packaging process, and two or more than two can be packaged in the figure. As a multi-chip package module, the patterned design of the conductive structures of multiple dies 113a and 113b is designed according to the electrical connection needs of the actual product. The packaged and molded wafer structure is shown in Figure 15d.

如圖14所示,切割分離出封裝單體形成封裝完成的晶片,可以利用機械或雷射進行切割。As shown in FIG. 14, the encapsulated monomer is cut and separated to form a packaged wafer, which can be cut by mechanical or laser.

圖15a、圖15b、圖15c和圖15d是根據本公開示例性實施例提供的封裝方法得到的晶片封裝結構的示意圖,一種晶片封裝結構,包括:至少一個晶粒113,所述晶粒113包括晶粒活性面1131和晶粒背面1132;導電結構,形成於所述晶粒活性面1131一側;保護層107,形成於所述晶粒活性面1131一側;塑封層123,所述塑封層123用於包封所述晶粒113;介電層129。15a, 15b, 15c, and 15d are schematic views of a chip packaging structure obtained according to a packaging method provided by an exemplary embodiment of the present disclosure. A chip packaging structure includes: at least one die 113, and the die 113 includes Grain active surface 1131 and grain back surface 1132; conductive structure formed on the side of the grain active surface 1131; protective layer 107 formed on the side of the grain active surface 1131; plastic encapsulation layer 123, the plastic encapsulation layer 123 is used to encapsulate the die 113; the dielectric layer 129.

在一些實施例中,所述導電結構包括晶圓導電層106,導電填充通孔111和面板級導電層170;所述導電填充通孔111形成於所述保護層107內。In some embodiments, the conductive structure includes a wafer conductive layer 106, a conductive filled via 111 and a panel-level conductive layer 170; the conductive filled via 111 is formed in the protective layer 107.

在一些實施例中,所述晶粒活性面1131包括電連接點103和絕緣層105;一部分或全部的所述晶圓導電層106和一部分或者全部的所述電連接點103電連接,用於將一部分或者全部的所述電連接點103從所述晶粒活性面1131引出;導電填充通孔下表面111a和所述晶圓導電層106電連接;導電填充通孔上表面111b和所述面板級導電層170電連接。In some embodiments, the die active surface 1131 includes an electrical connection point 103 and an insulating layer 105; a part or all of the wafer conductive layer 106 and a part or all of the electrical connection point 103 are electrically connected for A part or all of the electrical connection points 103 are drawn out from the die active surface 1131; the conductively filled via lower surface 111a and the wafer conductive layer 106 are electrically connected; the conductively filled via upper surface 111b and the panel The level conductive layer 170 is electrically connected.

在一些實施例中,所述面板級導電層170包括導電跡線125和/或導電凸柱127;所述導電凸柱127形成於所述導電跡線125的焊墊或連接點上;所述介電層129,包覆於所述面板級導電層170;所述面板級導電層170為一層。In some embodiments, the panel-level conductive layer 170 includes conductive traces 125 and/or conductive bumps 127; the conductive bumps 127 are formed on pads or connection points of the conductive traces 125; the The dielectric layer 129 encapsulates the panel-level conductive layer 170; the panel-level conductive layer 170 is a layer.

雖未在圖中示出,所述面板級導電層也可以為多層。Although not shown in the figure, the panel-level conductive layer may be multiple layers.

在一些實施例中,所述保護層107的楊氏模數為以下任一數值範圍或數值:1000~20000 MPa、1000~10000 MPa、4000~8000 MPa、1000~7000 MPa、4000~7000 MPa、5500 MPa。In some embodiments, the Young's modulus of the protective layer 107 is any one of the following numerical ranges or values: 1000~20000 MPa, 1000~10000 MPa, 4000~8000 MPa, 1000~7000 MPa, 4000~7000 MPa, 5500 MPa.

在一些實施例中,所述保護層107的材料為有機/無機複合材料。In some embodiments, the material of the protective layer 107 is an organic/inorganic composite material.

在一些實施例中,所述保護層107的厚度為以下任一數值範圍或數值:15~50μm、20~50μm、35μm、45μm、50μm。In some embodiments, the thickness of the protective layer 107 is any one of the following numerical ranges or values: 15-50 μm, 20-50 μm, 35 μm, 45 μm, 50 μm.

在一些實施例中,所述保護層107的熱膨脹係數為以下任一數值範圍或數值:3~10 ppm/K、5 ppm/K、7 ppm/K、10 ppm/K。In some embodiments, the thermal expansion coefficient of the protective layer 107 is any one of the following numerical ranges or values: 3-10 ppm/K, 5 ppm/K, 7 ppm/K, 10 ppm/K.

在一些實施例中,所述塑封層123的熱膨脹係數為以下任一數值範圍或數值:3~10 ppm/K、5 ppm/K、7 ppm/K、10 ppm/K。In some embodiments, the thermal expansion coefficient of the plastic encapsulation layer 123 is any one of the following numerical ranges or values: 3-10 ppm/K, 5 ppm/K, 7 ppm/K, 10 ppm/K.

在一些實施例中,所述保護層107和所述塑封層123具有相同或相近的熱膨脹係數。In some embodiments, the protective layer 107 and the plastic encapsulation layer 123 have the same or similar thermal expansion coefficients.

在一些實施例中,所述保護層107中包括無機填料顆粒,所述無機填料顆粒的直徑為小於3 μm。In some embodiments, the protective layer 107 includes inorganic filler particles, and the diameter of the inorganic filler particles is less than 3 μm.

在一些實施例中,所述無機填料顆粒的直徑為1~2 μm。In some embodiments, the diameter of the inorganic filler particles is 1-2 μm.

在一些實施例中,如圖15a的放大圖中所示所述導電填充通孔111具有導電填充通孔下表面111a和導電填充通孔上表面111b,所述導電填充通孔下表面111a的面積小於所述導電填充通孔上表面111b的面積。In some embodiments, as shown in the enlarged view of FIG. 15a, the conductive filled via 111 has a conductive filled via lower surface 111a and a conductive filled via upper surface 111b, and the area of the conductive filled via lower surface 111a It is smaller than the area of the upper surface 111b of the conductive filled via.

在一些實施例中,如圖15a和15b所示,至少一部分所述晶圓導電層106將所述晶粒活性面1131上的至少一部分中的多個所述電連接點103彼此互連並引出。In some embodiments, as shown in FIGS. 15a and 15b, at least a portion of the wafer conductive layer 106 interconnects and leads out a plurality of the electrical connection points 103 in at least a portion of the die active surface 1131 .

在一些實施例中,如圖15c所示,至少一部分所述晶圓導電層106將所述晶粒活性面1131上的至少一部分所述電連接點103單獨引出。In some embodiments, as shown in FIG. 15c, at least a portion of the wafer conductive layer 106 leads at least a portion of the electrical connection point 103 on the active surface 1131 of the die to be separately extracted.

在一些實施例中,如圖15c中局部放大圖所示,所述晶圓導電層106與所述電連接點103的單個接觸區域的接觸面積α2小於所述晶圓導電層106與所述導電填充通孔111的單個接觸區域的接觸面積β2。In some embodiments, as shown in a partially enlarged view in FIG. 15c, the contact area α2 of the single contact area of the wafer conductive layer 106 and the electrical connection point 103 is smaller than that of the wafer conductive layer 106 and the conductive The contact area β2 of the single contact area filling the through hole 111.

在一些實施例中,如圖15b所示,最靠近所述晶粒活性面1131的所述導電跡線125的至少一部分形成在塑封層正面1231並延伸至封裝體的邊緣。In some embodiments, as shown in FIG. 15b, at least a portion of the conductive trace 125 closest to the die active surface 1131 is formed on the front surface 1231 of the plastic encapsulation layer and extends to the edge of the package.

在一些實施例中,如圖15b所示,所述晶粒背面1132從所述塑封層123暴露。In some embodiments, as shown in FIG. 15b, the die back surface 1132 is exposed from the plastic encapsulation layer 123.

在一些實施例中,如圖15b所示,介電層129的表面對應於所述導電層的位置處具有凹槽。In some embodiments, as shown in FIG. 15b, the surface of the dielectric layer 129 has a groove at a position corresponding to the conductive layer.

在一些實施例中,如圖15a、15b、15c所示,封裝結構包括多個晶粒113。In some embodiments, as shown in FIGS. 15 a, 15 b, and 15 c, the package structure includes a plurality of dies 113.

在一些實施例中,如圖15d所示,封裝結構包括多個晶粒113,所述多個晶粒113之間根據產品設計進行電連接。In some embodiments, as shown in FIG. 15d, the package structure includes a plurality of dies 113, and the plurality of dies 113 are electrically connected according to a product design.

優選的,所述多個晶粒113為具有不同功能的晶粒,以形成多晶片模組。Preferably, the plurality of dies 113 are dies with different functions to form a multi-chip module.

圖16示出了封裝晶片在使用時的示意圖,在使用過程中通過焊料160將封裝晶片連接到電路板或基板161上,然後與其他電路元件進行連接。FIG. 16 shows a schematic diagram of a packaged wafer in use. During use, the packaged wafer is connected to a circuit board or substrate 161 by solder 160 and then connected to other circuit components.

當所述封裝晶片的介電層129的表面上具有凹槽131時,可使焊料160連接穩定,不易移動。When a groove 131 is formed on the surface of the dielectric layer 129 of the packaged chip, the solder 160 can be connected stably and not easily moved.

以上所述的具體實施例,其目的是對本公開的技術方案和技術效果進行進一步的詳細說明,但是本領域技術人員將理解的是,以上所述具體實施例並不用於限制本公開,凡在本公開的發明思路之內所做的任何修改、等效置換、改進等,均應包含在本公開的保護範圍之內。The specific embodiments described above are intended to further describe the technical solutions and technical effects of the present disclosure in detail, but those skilled in the art will understand that the specific embodiments described above are not intended to limit the present disclosure. Any modifications, equivalent substitutions, improvements, etc. made within the inventive idea of the present disclosure should be included in the protection scope of the present disclosure.

100‧‧‧晶圓 1001‧‧‧晶圓活性面 1002‧‧‧晶圓背面 103‧‧‧電連接點 105‧‧‧絕緣層 106‧‧‧晶圓導電層 107‧‧‧保護層 109‧‧‧保護層開口 109a‧‧‧保護層開口下表面 109b‧‧‧保護層開口上表面 109c‧‧‧保護層開口側壁 111‧‧‧導電填充通孔 111a‧‧‧導電填充通孔下表面 111b‧‧‧導電填充通孔上表面 113‧‧‧晶粒 113a‧‧‧晶粒 113b‧‧‧晶粒 1131‧‧‧晶粒活性面 1132‧‧‧晶粒背面 117‧‧‧載板 1171‧‧‧載板正面 1172‧‧‧載板背面 121‧‧‧粘接層 123‧‧‧塑封層 1231‧‧‧塑封層正面 1232‧‧‧塑封層背面 125‧‧‧導電跡線 127‧‧‧導電凸柱 129‧‧‧介電層 131‧‧‧凹槽 150‧‧‧面板模組 160‧‧‧焊料 161‧‧‧基板 170‧‧‧面板級導電層 100‧‧‧ Wafer 1001‧‧‧wafer active surface 1002‧‧‧wafer back 103‧‧‧Electrical connection point 105‧‧‧Insulation 106‧‧‧wafer conductive layer 107‧‧‧Protective layer 109‧‧‧Protection layer opening 109a‧‧‧Lower surface of protective layer opening 109b‧‧‧The upper surface of the protective layer opening 109c‧‧‧Open side wall of protective layer 111‧‧‧Filled through hole 111a‧‧‧Lower surface of conductive filled via 111b‧‧‧Electrically filled via upper surface 113‧‧‧grain 113a‧‧‧grain 113b‧‧‧grain 1131‧‧‧ active surface 1132‧‧‧The back of the die 117‧‧‧ carrier board 1171‧‧‧Front of carrier board 1172‧‧‧Back of carrier board 121‧‧‧adhesive layer 123‧‧‧Plastic layer 1231‧‧‧Plastic layer front 1232‧‧‧Plastic back 125‧‧‧ conductive trace 127‧‧‧Conducting convex column 129‧‧‧dielectric layer 131‧‧‧groove 150‧‧‧Panel Module 160‧‧‧Solder 161‧‧‧ substrate 170‧‧‧Panel-level conductive layer

圖1至圖14是根據本公開示例性實施例提出的晶片封裝方法的流程; 圖1是根據本公開示例性實施例中晶片的示意圖; 圖2a和圖2b是根據本公開示例性實施例中形成晶圓導電層後的晶圓的示意圖; 圖3是根據本公開示例性實施例中施加保護層後的晶圓的示意圖; 圖4a和圖4b是根據本公開示例性實施例中形成保護層開口的晶圓的示意圖; 圖5是根據本公開示例性實施例中形成導電填充通孔的晶圓的示意圖; 圖6是根據本公開示例性實施例中切割晶圓形成晶粒的示意圖; 圖7a和圖7b是根據本公開示例性實施例中載板上貼裝晶粒的示意圖; 圖7c是根據本公開示例性實施例中載板上粘貼晶粒組合的示意圖; 圖8是根據本公開示例性實施例中在載板上形成塑封層的示意圖; 圖9a是根據本公開示例性實施例中減薄塑封層厚度的示意圖; 圖9b是根據本公開示例性實施例中將塑封層減薄至裸露晶粒背面的示意圖; 圖10是根據本公開示例性實施例中剝離載板和粘接層的示意圖; 圖11是根據本公開示例性實施例中在面板模組上形成導電填充通孔和導電跡線的示意圖; 圖12是根據本公開示例性實施例中在面板模組上形成導電凸柱的示意圖; 圖13a、圖13b和圖13c是根據本公開示例性實施例中在面板模組上形成介電層的示意圖; 圖14是根據本公開示例性實施例中分割面板模組形成封裝完成的晶片的示意圖; 圖15a、圖15b、圖15c和圖15d是根據本公開示例性實施例提供的利用上述封裝方法得到的晶片封裝結構的示意圖; 圖16是根據本公開示例性實施例中封裝晶片在使用時的示意圖。 1 to 14 are flowcharts of a chip packaging method according to an exemplary embodiment of the present disclosure; FIG. 1 is a schematic diagram of a wafer according to an exemplary embodiment of the present disclosure; 2a and 2b are schematic diagrams of a wafer after forming a conductive layer of a wafer according to an exemplary embodiment of the present disclosure; 3 is a schematic diagram of a wafer after applying a protective layer according to an exemplary embodiment of the present disclosure; 4a and 4b are schematic diagrams of a wafer forming a protective layer opening according to an exemplary embodiment of the present disclosure; 5 is a schematic diagram of a wafer formed with conductive filled vias according to an exemplary embodiment of the present disclosure; 6 is a schematic diagram of cutting a wafer to form a die according to an exemplary embodiment of the present disclosure; 7a and 7b are schematic diagrams of mounting die on a carrier board according to an exemplary embodiment of the present disclosure; FIG. 7c is a schematic diagram of a die combination on a carrier board according to an exemplary embodiment of the present disclosure; 8 is a schematic diagram of forming a plastic encapsulation layer on a carrier board according to an exemplary embodiment of the present disclosure; 9a is a schematic diagram of reducing the thickness of a plastic encapsulation layer according to an exemplary embodiment of the present disclosure; 9b is a schematic diagram of thinning the plastic encapsulation layer to the exposed back side of the die according to an exemplary embodiment of the present disclosure; 10 is a schematic diagram of peeling off the carrier board and the adhesive layer according to an exemplary embodiment of the present disclosure; 11 is a schematic diagram of forming conductive filled vias and conductive traces on a panel module according to an exemplary embodiment of the present disclosure; 12 is a schematic diagram of forming conductive bumps on a panel module according to an exemplary embodiment of the present disclosure; 13a, 13b and 13c are schematic diagrams of forming a dielectric layer on a panel module according to an exemplary embodiment of the present disclosure; 14 is a schematic diagram of forming a packaged chip by dividing a panel module according to an exemplary embodiment of the present disclosure; 15a, 15b, 15c and 15d are schematic diagrams of a wafer packaging structure obtained by using the above packaging method according to an exemplary embodiment of the present disclosure; 16 is a schematic diagram of a packaged wafer in use according to an exemplary embodiment of the present disclosure.

103‧‧‧電連接點 103‧‧‧Electrical connection point

105‧‧‧絕緣層 105‧‧‧Insulation

106‧‧‧晶圓導電層 106‧‧‧wafer conductive layer

107‧‧‧保護層 107‧‧‧Protective layer

111‧‧‧導電填充通孔 111‧‧‧Filled through hole

111a‧‧‧導電填充通孔下表面 111a‧‧‧Lower surface of conductive filled via

111b‧‧‧導電填充通孔上表面 111b‧‧‧Electrically filled via upper surface

113‧‧‧晶粒 113‧‧‧grain

1131‧‧‧晶粒活性面 1131‧‧‧ active surface

1132‧‧‧晶粒背面 1132‧‧‧The back of the die

123‧‧‧塑封層 123‧‧‧Plastic layer

1231‧‧‧塑封層正面 1231‧‧‧Plastic layer front

1232‧‧‧塑封層背面 1232‧‧‧Plastic back

125‧‧‧導電跡線 125‧‧‧ conductive trace

127‧‧‧導電凸柱 127‧‧‧Conducting convex column

129‧‧‧介電層 129‧‧‧dielectric layer

170‧‧‧面板級導電層 170‧‧‧Panel-level conductive layer

Claims (19)

一種晶片封裝結構,包括: 至少一晶粒,該晶粒包括一晶粒活性面和一晶粒背面; 一導電結構,形成於該晶粒活性面一側; 一保護層,形成於該晶粒活性面一側; 一塑封層,該塑封層用於包封該晶粒;及 一介電層。 A chip packaging structure includes: At least one grain, the grain including a grain active surface and a grain back surface; A conductive structure formed on the side of the active surface of the grain; A protective layer formed on the side of the active surface of the crystal grain; A plastic encapsulation layer for encapsulating the die; and A dielectric layer. 如請求項1所述的晶片封裝結構,該導電結構包括一晶圓導電層、一導電填充通孔和一面板級導電層;該導電填充通孔形成於該保護層內。The chip packaging structure according to claim 1, the conductive structure includes a wafer conductive layer, a conductive filled via, and a panel-level conductive layer; the conductive filled via is formed in the protective layer. 如請求項2所述的晶片封裝結構,其中: 該晶粒活性面包括一電連接點和絕緣層; 至少一部分該晶圓導電層和該電連接點電連接,用於將該電連接點從該晶粒活性面引出; 至少一部分導電填充通孔下表面和該晶圓導電層電連接;及 至少一部分導電填充通孔上表面和該面板級導電層電連接。 The chip packaging structure according to claim 2, wherein: The active surface of the grain includes an electrical connection point and an insulating layer; At least a portion of the wafer conductive layer and the electrical connection point are electrically connected for drawing the electrical connection point from the active surface of the die; At least a portion of the lower surface of the conductive filled via is electrically connected to the conductive layer of the wafer; and At least a portion of the upper surface of the conductive filled via is electrically connected to the panel-level conductive layer. 如請求項3所述的晶片封裝結構,至少一部分該晶圓導電層將多個該電連接點彼此互連並引出。According to the chip packaging structure of claim 3, at least a part of the wafer conductive layer interconnects and leads a plurality of the electrical connection points to each other. 如請求項3所述的晶片封裝結構,至少一部分該晶圓導電層將該電連接點單獨引出。According to the chip packaging structure of claim 3, at least a part of the wafer conductive layer separates the electrical connection point. 如請求項5所述的晶片封裝結構,該晶圓導電層與該電連接點的單個接觸區域的接觸面積小於該晶圓導電層與該導電填充通孔的單個接觸區域的接觸面積。As described in claim 5, the contact area of the wafer conductive layer and the single contact area of the electrical connection point is smaller than the contact area of the wafer conductive layer and the single contact area of the conductive filled via. 如請求項3所述的晶片封裝結構,其中, 該面板級導電層包括導電跡線和/或導電凸柱; 該介電層,包覆於該面板級導電層;及 該面板級導電層為一層或多層。 The chip packaging structure according to claim 3, wherein The panel-level conductive layer includes conductive traces and/or conductive bumps; The dielectric layer is wrapped around the panel-level conductive layer; and The panel-level conductive layer is one or more layers. 如請求項7所述的晶片封裝結構,最靠近該晶粒活性面的該導電跡線的至少一部分形成在一塑封層正面並延伸至一封裝體的邊緣。According to the chip packaging structure of claim 7, at least a portion of the conductive trace closest to the active surface of the die is formed on the front surface of a plastic encapsulation layer and extends to the edge of a package body. 如請求項3所述的晶片封裝結構,該晶粒背面從該塑封層暴露。According to the chip packaging structure of claim 3, the die back surface is exposed from the plastic encapsulation layer. 如請求項3所述的晶片封裝結構,該介電層的表面對應於該面板級導電層的位置處具有凹槽。As described in claim 3, the surface of the dielectric layer has a groove at a position corresponding to the panel-level conductive layer. 如請求項1至10任一項所述的晶片封裝結構,該至少一個晶粒為多個晶粒,該多個晶粒之間根據產品設計進行電連接。The chip packaging structure according to any one of claims 1 to 10, the at least one die is a plurality of die, and the plurality of die are electrically connected according to a product design. 如請求項1至10任一項所述的晶片封裝結構,該保護層的材料為有機/無機複合材料。The chip packaging structure according to any one of claims 1 to 10, the material of the protective layer is an organic/inorganic composite material. 如請求項12所述的晶片封裝結構,該保護層的楊氏模數為以下任一數值範圍或數值:1000~20000 MPa、1000~10000 MPa、4000~8000 MPa、5500 MPa。According to the chip packaging structure described in claim 12, the Young's modulus of the protective layer is any one of the following numerical ranges or values: 1000~20000 MPa, 1000~10000 MPa, 4000~8000 MPa, 5500 MPa. 如請求項12所述的晶片封裝結構,該保護層的厚度為以下任一數值範圍或數值:15~50μm、20~50μm、35μm、45μm、50μm。According to the chip packaging structure of claim 12, the thickness of the protective layer is any one of the following numerical ranges or values: 15-50 μm, 20-50 μm, 35 μm, 45 μm, 50 μm. 如請求項12所述的晶片封裝結構,該保護層的熱膨脹係數為以下任一數值範圍或數值:3~10 ppm/K、5 ppm/K、7 ppm/K、10 ppm/K。As described in claim 12, the thermal expansion coefficient of the protective layer is any one of the following numerical ranges or values: 3-10 ppm/K, 5 ppm/K, 7 ppm/K, 10 ppm/K. 如請求項12所述的晶片封裝結構,該塑封層的熱膨脹係數為以下任一數值範圍或數值:3~10 ppm/K、5 ppm/K、7 ppm/K、10 ppm/K。According to the chip packaging structure described in claim 12, the thermal expansion coefficient of the plastic encapsulation layer is any one of the following numerical ranges or values: 3~10 ppm/K, 5 ppm/K, 7 ppm/K, 10 ppm/K. 如請求項12所述的晶片封裝結構,該保護層和該塑封層具有相同或相近的熱膨脹係數。According to the chip packaging structure of claim 12, the protective layer and the plastic encapsulation layer have the same or similar thermal expansion coefficients. 如請求項12所述的晶片封裝結構,該保護層中包括無機填料顆粒,該無機填料顆粒的直徑為小於3 μm或無機填料顆粒的直徑為1~2 μm。The wafer packaging structure according to claim 12, wherein the protective layer includes inorganic filler particles having a diameter of less than 3 μm or inorganic filler particles having a diameter of 1 to 2 μm. 如請求項12所述的晶片封裝結構,該導電填充通孔具有一導電填充通孔下表面和一導電填充通孔上表面,該導電填充通孔下表面的面積小於該導電填充通孔上表面的面積。The chip packaging structure according to claim 12, the conductive filled via has a conductive filled via lower surface and a conductive filled via upper surface, the conductive filled via lower surface has a smaller area than the conductive filled via upper surface Area.
TW108211201U 2019-03-04 2019-08-22 Chip package structure TWM589895U (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
SG10201901893Q 2019-03-04
SG10201901893Q 2019-03-04
SG10201902149Q 2019-03-11
SG10201902149Q 2019-03-11
SG10201902426V 2019-03-19
SG10201902426V 2019-03-19
CN201910656851.4 2019-07-19
CN201910656851.4A CN110729271A (en) 2019-03-04 2019-07-19 Chip packaging method and packaging structure

Publications (1)

Publication Number Publication Date
TWM589895U true TWM589895U (en) 2020-01-21

Family

ID=69217701

Family Applications (8)

Application Number Title Priority Date Filing Date
TW108130125A TWI725519B (en) 2019-03-04 2019-08-22 Chip packaging method
TW110108794A TWI756076B (en) 2019-03-04 2019-08-22 Chip packaging structure
TW108211202U TWM601901U (en) 2019-03-04 2019-08-22 Chip package structure
TW108211200U TWM589897U (en) 2019-03-04 2019-08-22 Chip package structure
TW108130124A TWI728434B (en) 2019-03-04 2019-08-22 Chip packaging method
TW108211201U TWM589895U (en) 2019-03-04 2019-08-22 Chip package structure
TW110114599A TWI751944B (en) 2019-03-04 2019-08-22 Chip packaging structure
TW108130126A TW202034442A (en) 2019-03-04 2019-08-22 Chip packaging method and chip packaging structure

Family Applications Before (5)

Application Number Title Priority Date Filing Date
TW108130125A TWI725519B (en) 2019-03-04 2019-08-22 Chip packaging method
TW110108794A TWI756076B (en) 2019-03-04 2019-08-22 Chip packaging structure
TW108211202U TWM601901U (en) 2019-03-04 2019-08-22 Chip package structure
TW108211200U TWM589897U (en) 2019-03-04 2019-08-22 Chip package structure
TW108130124A TWI728434B (en) 2019-03-04 2019-08-22 Chip packaging method

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW110114599A TWI751944B (en) 2019-03-04 2019-08-22 Chip packaging structure
TW108130126A TW202034442A (en) 2019-03-04 2019-08-22 Chip packaging method and chip packaging structure

Country Status (2)

Country Link
CN (6) CN210006733U (en)
TW (8) TWI725519B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114315B2 (en) 2017-11-29 2021-09-07 Pep Innovation Pte. Ltd. Chip packaging method and package structure
US11232957B2 (en) 2017-11-29 2022-01-25 Pep Inovation Pte. Ltd. Chip packaging method and package structure
US11233028B2 (en) 2017-11-29 2022-01-25 Pep Inovation Pte. Ltd. Chip packaging method and chip structure
US11610855B2 (en) 2017-11-29 2023-03-21 Pep Innovation Pte. Ltd. Chip packaging method and package structure

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113725100A (en) * 2020-03-27 2021-11-30 矽磐微电子(重庆)有限公司 Semiconductor packaging method and semiconductor packaging structure
CN113725102B (en) * 2020-03-27 2024-02-27 矽磐微电子(重庆)有限公司 Semiconductor packaging method and semiconductor packaging structure
CN113725090A (en) * 2020-03-27 2021-11-30 矽磐微电子(重庆)有限公司 Semiconductor packaging method
CN113725095A (en) * 2020-03-27 2021-11-30 矽磐微电子(重庆)有限公司 Semiconductor packaging method and semiconductor packaging structure
CN113725098B (en) * 2020-03-27 2023-12-26 矽磐微电子(重庆)有限公司 Semiconductor packaging method and semiconductor packaging structure
CN113725101B (en) * 2020-03-27 2024-02-27 矽磐微电子(重庆)有限公司 Semiconductor packaging method and semiconductor packaging structure
CN113471086A (en) * 2021-06-29 2021-10-01 矽磐微电子(重庆)有限公司 Semiconductor packaging method and semiconductor packaging structure
CN115692331A (en) * 2021-07-30 2023-02-03 矽磐微电子(重庆)有限公司 Chip packaging structure and manufacturing method thereof
TW202320276A (en) * 2021-11-04 2023-05-16 胡迪群 Semiconductor substrate structure and manufacturing method thereof
TWI806263B (en) * 2021-11-30 2023-06-21 矽品精密工業股份有限公司 Electronic package and manufacturing method thereof
TWI822387B (en) * 2022-10-11 2023-11-11 廖富江 Semiconductor device, semiconductor package and manufacturing method the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120326300A1 (en) * 2011-06-24 2012-12-27 National Semiconductor Corporation Low profile package and method
US9385006B2 (en) * 2012-06-21 2016-07-05 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming an embedded SOP fan-out package
US9419156B2 (en) * 2013-08-30 2016-08-16 Taiwan Semiconductor Manufacturing Co., Ltd. Package and method for integration of heterogeneous integrated circuits
US9252065B2 (en) * 2013-11-22 2016-02-02 Taiwan Semiconductor Manufacturing Co., Ltd. Mechanisms for forming package structure
CN104779220A (en) * 2015-03-27 2015-07-15 矽力杰半导体技术(杭州)有限公司 Chip packaging structure and manufacture method thereof
US10636773B2 (en) * 2015-09-23 2020-04-28 Mediatek Inc. Semiconductor package structure and method for forming the same
US20170133334A1 (en) * 2015-11-09 2017-05-11 Amkor Technology, Inc. Semiconductor device and manufacturing method thereof
KR102448099B1 (en) * 2016-06-02 2022-09-27 에스케이하이닉스 주식회사 Semiconductor package including heat spreader
KR102576764B1 (en) * 2016-10-28 2023-09-12 에스케이하이닉스 주식회사 Semiconductor packages of asymmetric chip stacks
US10153222B2 (en) * 2016-11-14 2018-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. Package structures and methods of forming the same
US10204889B2 (en) * 2016-11-28 2019-02-12 Taiwan Semiconductor Manufacturing Co., Ltd. Package structure and method of forming thereof
CN106601627A (en) * 2016-12-21 2017-04-26 江苏长电科技股份有限公司 Process of first sealing then corrosion electro copper column conduction three-dimensional packaging structure
TW201832297A (en) * 2017-02-20 2018-09-01 力成科技股份有限公司 Package on package structure and manufacturing method thereof
TWI621187B (en) * 2017-03-07 2018-04-11 力成科技股份有限公司 Package on package structure and manufacturing method thereof
TW201836098A (en) * 2017-03-17 2018-10-01 力成科技股份有限公司 Semiconductor package structure and manufacturing method thereof
US10177011B2 (en) * 2017-04-13 2019-01-08 Powertech Technology Inc. Chip packaging method by using a temporary carrier for flattening a multi-layer structure
TWI637474B (en) * 2017-06-03 2018-10-01 力成科技股份有限公司 Package structure and manufacturing method thereof
US10163803B1 (en) * 2017-06-20 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated fan-out packages and methods of forming the same
TWI635579B (en) * 2017-07-13 2018-09-11 力成科技股份有限公司 Package structure and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114315B2 (en) 2017-11-29 2021-09-07 Pep Innovation Pte. Ltd. Chip packaging method and package structure
US11232957B2 (en) 2017-11-29 2022-01-25 Pep Inovation Pte. Ltd. Chip packaging method and package structure
US11233028B2 (en) 2017-11-29 2022-01-25 Pep Inovation Pte. Ltd. Chip packaging method and chip structure
US11610855B2 (en) 2017-11-29 2023-03-21 Pep Innovation Pte. Ltd. Chip packaging method and package structure

Also Published As

Publication number Publication date
TWM601901U (en) 2020-09-21
TW202034441A (en) 2020-09-16
TWI728434B (en) 2021-05-21
TWM589897U (en) 2020-01-21
CN210006733U (en) 2020-01-31
CN110729271A (en) 2020-01-24
TWI756076B (en) 2022-02-21
TW202129829A (en) 2021-08-01
CN110729272A (en) 2020-01-24
TW202135252A (en) 2021-09-16
TWI725519B (en) 2021-04-21
CN210182379U (en) 2020-03-24
TW202034442A (en) 2020-09-16
CN210006732U (en) 2020-01-31
CN110729270A (en) 2020-01-24
TW202036813A (en) 2020-10-01
TWI751944B (en) 2022-01-01

Similar Documents

Publication Publication Date Title
TWI756076B (en) Chip packaging structure
TWI719600B (en) Chip packaging method and chip packaging structure
TWI666740B (en) Chip packaging method and packaging structure
US11233028B2 (en) Chip packaging method and chip structure
US11114315B2 (en) Chip packaging method and package structure
TWI829392B (en) Chip packaging method and chip structure
US11232957B2 (en) Chip packaging method and package structure
US11610855B2 (en) Chip packaging method and package structure
CN209804638U (en) Fan-out type antenna packaging structure
US20220102254A1 (en) Chip packaging method and chip structure