TW201832297A - Package on package structure and manufacturing method thereof - Google Patents

Package on package structure and manufacturing method thereof Download PDF

Info

Publication number
TW201832297A
TW201832297A TW106105525A TW106105525A TW201832297A TW 201832297 A TW201832297 A TW 201832297A TW 106105525 A TW106105525 A TW 106105525A TW 106105525 A TW106105525 A TW 106105525A TW 201832297 A TW201832297 A TW 201832297A
Authority
TW
Taiwan
Prior art keywords
wafer
package
interposer
conductive
package structure
Prior art date
Application number
TW106105525A
Other languages
Chinese (zh)
Inventor
王啓安
徐宏欣
陳裕緯
Original Assignee
力成科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力成科技股份有限公司 filed Critical 力成科技股份有限公司
Priority to TW106105525A priority Critical patent/TW201832297A/en
Publication of TW201832297A publication Critical patent/TW201832297A/en

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A package on package structure including a first package structure, an interposer layer, a thermal conductive layer, and a second package structure is provided. The first package structure includes a first chip and a first insulation encapsulation. The first insulation encapsulation encapsulates the first chip and exposes a top surface of the first chip. The interposer layer is disposed on the first package structure and is electrically connected to the first package structure. The heat conductive layer is sandwiched between the first package structure and the interposer layer. The thermal conductive layer covers at least part of the top surface of the first chip. The thermal conductive layer is directly in contact with the first chip and the interposer layer. The second package structure is disposed on the interposer layer and is electrically connected to the interposer layer. A manufacturing method of a package on package structure is also provided.

Description

封裝堆疊構造及其製造方法Package stack structure and manufacturing method thereof

本發明是有關於一種封裝堆疊構造及其製造方法,且特別是有關於一種具有導熱層的封裝堆疊構造及其製造方法。The present invention relates to a package stack structure and a method of fabricating the same, and more particularly to a package stack structure having a heat conductive layer and a method of fabricating the same.

近年來,積體電路的積集度(integration)不斷提升。隨著封裝件的體積越來越小,多晶片堆疊的半導體封裝結構,例如堆疊式封裝(package on package,PoP)的應用亦快速地成長。In recent years, the integration of integrated circuits has been increasing. As package sizes become smaller and smaller, multi-wafer stacked semiconductor package structures, such as package on package (PoP) applications, are rapidly growing.

堆疊式封裝是將不同的晶片封裝單元相互堆疊,並在這些晶片封裝單元之間夾置中介層。舉例來說,將記憶體晶片封裝單元堆疊於中介層上,並在中介層上堆疊邏輯晶片封裝單元。在現有的封裝疊加製程中,中介層與下層封裝結構之間具有間隙,而使得封裝結構中的晶片外露與空氣接觸。然而,由於空氣的對流現象不易散熱,故會導致晶片過熱而使得晶片處理速度變慢。此外,中介層與下層封裝結構之間的間隙會使得堆疊式封裝結構在信賴性測試中容易產生接點斷裂(crack)的現象。The stacked package stacks different chip package units on each other and sandwiches an interposer between the chip package units. For example, a memory chip package unit is stacked on an interposer and a logic chip package unit is stacked on the interposer. In the existing package stacking process, there is a gap between the interposer and the underlying package structure, so that the wafer in the package structure is exposed to air. However, since the convection phenomenon of the air is not easy to dissipate heat, the wafer is overheated and the wafer processing speed is slowed down. In addition, the gap between the interposer and the underlying encapsulation structure may cause the stacked package structure to easily cause joint cracking in the reliability test.

本發明提供一種封裝堆疊構造及其製造方法,能夠有效地提升散熱效率並防止接點斷裂等問題。The invention provides a package stack structure and a manufacturing method thereof, which can effectively improve heat dissipation efficiency and prevent problems such as joint breakage.

本發明提供一種封裝堆疊構造,其包括第一封裝結構、中介層、導熱層以及第二封裝結構。第一封裝結構包括第一晶片以及第一絕緣密封體。第一絕緣密封體密封第一晶片且暴露出第一晶片的上表面。中介層配置於第一封裝結構上,且與第一封裝結構電性連接。導熱層夾置於第一封裝結構與中介層之間,且覆蓋第一晶片的至少部分上表面。導熱層與第一晶片以及中介層直接接觸。第二封裝結構配置於中介層上,且與中介層電性連接。The present invention provides a package stack structure including a first package structure, an interposer, a heat conductive layer, and a second package structure. The first package structure includes a first wafer and a first insulating sealing body. The first insulating sealing body seals the first wafer and exposes an upper surface of the first wafer. The interposer is disposed on the first package structure and electrically connected to the first package structure. The thermally conductive layer is sandwiched between the first package structure and the interposer and covers at least a portion of the upper surface of the first wafer. The thermally conductive layer is in direct contact with the first wafer and the interposer. The second package structure is disposed on the interposer and electrically connected to the interposer.

本發明提供一種封裝堆疊構造的製造方法,其至少包括以下步驟。首先,形成第一封裝結構,其中第一封裝結構包括第一晶片以及第一絕緣密封體,第一絕緣密封體密封第一晶片且暴露出第一晶片的上表面。接著,在第一晶片的至少部分上表面上形成導熱層。然後,在導熱層以及第一封裝結構上形成中介層,其中中介層與第一封裝結構電性連接,且導熱層夾置於第一封裝結構與中介層之間,並與第一晶片以及中介層直接接觸。在中介層上形成第二封裝結構,其中第二封裝結構與中介層電性連接。The present invention provides a method of fabricating a package stack construction that includes at least the following steps. First, a first package structure is formed, wherein the first package structure includes a first wafer and a first insulating sealing body, the first insulating sealing body sealing the first wafer and exposing an upper surface of the first wafer. Next, a thermally conductive layer is formed on at least a portion of the upper surface of the first wafer. And forming an interposer on the heat conducting layer and the first package structure, wherein the interposer is electrically connected to the first package structure, and the heat conductive layer is sandwiched between the first package structure and the interposer, and is coupled to the first chip and the interposer The layer is in direct contact. A second package structure is formed on the interposer, wherein the second package structure is electrically connected to the interposer.

基於上述,藉由將導熱層填入第一封裝結構與中介層之間的間隙,能夠使得第一封裝結構中的第一晶片所產生的熱能藉由導熱層傳導並散熱,因而大幅提升封裝堆疊構造的散熱效率。此外,由於導熱層與第一晶片以及中介層直接接觸,在進行信賴性測試時,導熱層可以分散中介層導電端子接收到的應力,故可以防止封裝堆疊構造接點斷裂的問題。Based on the above, by filling the heat conductive layer into the gap between the first package structure and the interposer, the thermal energy generated by the first wafer in the first package structure can be conducted and dissipated by the heat conduction layer, thereby greatly improving the package stack. The heat dissipation efficiency of the structure. In addition, since the heat conductive layer is in direct contact with the first wafer and the interposer, the heat conductive layer can disperse the stress received by the interposer conductive terminals during the reliability test, so that the problem of the package stack structure joint breakage can be prevented.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

圖1A至圖1H是依照本發明的一實施例的一種封裝堆疊構造的製造過程的剖面示意圖。1A through 1H are schematic cross-sectional views showing a manufacturing process of a package stack structure in accordance with an embodiment of the present invention.

請參考圖1A,提供第一載板110。第一載板110具有第一表面S1以及相對於第一表面S1的第二表面S2。第一載板110包括第一核心層112、位於第一表面S1的第一線路層114、位於第二表面S2的第二線路層116以及多個導通孔118。第一核心層112為第一載板110的中間層,且其材料例如包括玻璃、環氧樹脂、聚醯亞胺(polyimide;PI)、雙馬來醯亞胺-三氮雜苯(Bismaleimide Triazine;BT)樹脂、FR4或其他合適的材料。第一載板110具有主動區A以及環繞主動區A的周邊區R。第一線路層114包括位於主動區A內的多個接墊114a以及位於周邊區R內的多個接墊114b,而第二線路層116則包括多個接墊116a。接墊114a、接墊114b以及接墊116a的材料例如包括銅、錫、金、鎳或其他導電材料。此外,接墊114a、接墊114b以及接墊116a的形成方法例如包括微影蝕刻製程,然而,本發明不限於此。其他適合形成接墊114a、接墊114b以及接墊116a的材料及方法亦可用於本發明。導通孔118穿透第一核心層112而使至少部分的接墊114a、接墊114b透過導通孔118與接墊116a電性連接。導通孔118的材料可以與接墊114a、接墊114b以及接墊116a的材料相同或不同。換言之,導通孔118的材料例如包括銅、錫、金、鎳或其他導電材料。值得注意的是,圖1A省略繪示了第一載板110中的一些電路層。在其他實施例中,除了第一線路層114以及第二線路層116之外,第一載板110還可以包括嵌入在第一核心層112中的其他電路層。Referring to FIG. 1A, a first carrier 110 is provided. The first carrier 110 has a first surface S1 and a second surface S2 with respect to the first surface S1. The first carrier 110 includes a first core layer 112, a first wiring layer 114 on the first surface S1, a second wiring layer 116 on the second surface S2, and a plurality of vias 118. The first core layer 112 is an intermediate layer of the first carrier 110, and the material thereof includes, for example, glass, epoxy resin, polyimide (PI), Bismaleimide Triazine (Bismaleimide Triazine) ; BT) resin, FR4 or other suitable material. The first carrier 110 has an active area A and a peripheral area R surrounding the active area A. The first circuit layer 114 includes a plurality of pads 114a located in the active region A and a plurality of pads 114b located in the peripheral region R, and the second circuit layer 116 includes a plurality of pads 116a. The materials of the pads 114a, the pads 114b, and the pads 116a include, for example, copper, tin, gold, nickel, or other conductive materials. In addition, the method of forming the pads 114a, the pads 114b, and the pads 116a includes, for example, a photolithography process, however, the invention is not limited thereto. Other materials and methods suitable for forming pads 114a, pads 114b, and pads 116a can also be used in the present invention. The via hole 118 penetrates the first core layer 112 to electrically connect at least a portion of the pad 114a and the pad 114b to the pad 116a through the via hole 118. The material of the via hole 118 may be the same as or different from the material of the pad 114a, the pad 114b, and the pad 116a. In other words, the material of the via hole 118 includes, for example, copper, tin, gold, nickel, or other conductive material. It should be noted that FIG. 1A omits some circuit layers in the first carrier 110. In other embodiments, the first carrier 110 may include other circuit layers embedded in the first core layer 112 in addition to the first circuit layer 114 and the second circuit layer 116.

請參考圖1B,在第一載板110的第二表面S2上形成多個第一導電端子120。第一導電端子120與第一載板110的第二線路層116電性連接。具體來說,第一導電端子120對應接墊116a設置而與接墊116a以及至少部分的導通孔118電性連接。在一些實施例中,第一導電端子120例如包括錫球,然而本發明不限於此。呈現其他形狀或材料的導電結構亦可以做為第一導電端子120。舉例來說,在其他實施例中,第一導電端子120是導電柱或是導電凸塊。在一些實施例中,第一導電端子120可以藉由例如植球以及回銲製程形成。Referring to FIG. 1B, a plurality of first conductive terminals 120 are formed on the second surface S2 of the first carrier 110. The first conductive terminal 120 is electrically connected to the second circuit layer 116 of the first carrier 110 . Specifically, the first conductive terminal 120 is disposed corresponding to the pad 116a to be electrically connected to the pad 116a and at least a portion of the via hole 118. In some embodiments, the first conductive terminal 120 includes, for example, a solder ball, although the invention is not limited thereto. A conductive structure exhibiting other shapes or materials may also serve as the first conductive terminal 120. For example, in other embodiments, the first conductive terminal 120 is a conductive pillar or a conductive bump. In some embodiments, the first conductive terminal 120 can be formed by, for example, a ball placement and a reflow process.

請參考圖1C,在第一載板110的第一表面S1上形成第一晶片130以及多個導電結構140。第一晶片130位於主動區A內,而導電結構140位於周邊區R內。在一些實施例中,第一晶片130包括多個第一導電凸塊132,且第一晶片130藉由第一導電凸塊132而以覆晶(flip-chip)的方式與第一載板110的接墊114a連接。舉例來說,第一導電凸塊132可為銅柱凸塊,且可以使用銲料(未繪示)銲接第一導電凸塊132的端面至第一載板110的接墊114a。除此之外,在一些實施例中,第一晶片130與第一載板110之間更包括底部填充劑(underfill;未繪示)以密封第一導電凸塊132並增加第一晶片130與第一載板110的接合製程的可靠性。在一些實施例中,第一晶片130例如是特殊應用積體電路(Application-Specific Integrated Circuit;ASIC)。舉例來說,第一晶片130可以是用來執行邏輯運用程序,但本發明不限於此。在其他實施例中,第一晶片130亦可以是其他合適的主動元件。Referring to FIG. 1C, a first wafer 130 and a plurality of conductive structures 140 are formed on the first surface S1 of the first carrier 110. The first wafer 130 is located within the active region A and the conductive structure 140 is located within the peripheral region R. In some embodiments, the first wafer 130 includes a plurality of first conductive bumps 132 , and the first wafer 130 is flip-chip and the first carrier 110 by the first conductive bumps 132 . The pads 114a are connected. For example, the first conductive bump 132 can be a copper stud bump, and the end surface of the first conductive bump 132 can be soldered to the pad 114a of the first carrier 110 using solder (not shown). In addition, in some embodiments, an underfill (not shown) is further included between the first wafer 130 and the first carrier 110 to seal the first conductive bump 132 and increase the first wafer 130 and The reliability of the bonding process of the first carrier 110. In some embodiments, the first wafer 130 is, for example, an Application-Specific Integrated Circuit (ASIC). For example, the first wafer 130 may be used to execute a logic application, but the invention is not limited thereto. In other embodiments, the first wafer 130 can also be other suitable active components.

導電結構140環繞第一晶片130。在一些實施例中,導電結構140對應接墊114b設置,故導電結構140與第一載板110的第一線路層114以及至少部分的導通孔118電性連接。在本實施例中,如圖1C所示,導電結構140為橢圓形,但本發明不限於此。在其他實施例中,導電結構140亦可以是柱體、球體或其他幾何形狀。在一些實施例中,導電結構140可以在第一載板110上形成密集排列的陣列,以達到後續製程中細間距(fine pitch)走線的需求。導電結構140的材料包括銅、錫、金、鎳或其他導電材料,且導電結構140可以為單層或多層結構。舉例來說,導電結構140可以是銅、金、鎳或是銲料等所構成的單層結構,也可以是銅-銲料、銅-鎳-銲料等所構成的多層結構。儘管圖1C繪示了導電結構140的高度大於第一晶片130的高度,但本發明不限於此。在其他實施例中,導電結構140的高度以及第一晶片130的高度之間的比例可以為1:1。The conductive structure 140 surrounds the first wafer 130. In some embodiments, the conductive structure 140 is disposed corresponding to the pad 114b, so the conductive structure 140 is electrically connected to the first circuit layer 114 of the first carrier 110 and at least a portion of the vias 118. In the present embodiment, as shown in FIG. 1C, the conductive structure 140 is elliptical, but the invention is not limited thereto. In other embodiments, the electrically conductive structure 140 can also be a cylinder, a sphere, or other geometric shape. In some embodiments, the conductive structures 140 may form a dense array on the first carrier 110 to meet the need for fine pitch routing in subsequent processes. The material of the conductive structure 140 includes copper, tin, gold, nickel or other conductive materials, and the conductive structure 140 may be a single layer or a multilayer structure. For example, the conductive structure 140 may be a single layer structure composed of copper, gold, nickel, or solder, or may be a multilayer structure composed of copper-solder, copper-nickel-solder, or the like. Although FIG. 1C illustrates that the height of the conductive structure 140 is greater than the height of the first wafer 130, the invention is not limited thereto. In other embodiments, the ratio between the height of the conductive structure 140 and the height of the first wafer 130 may be 1:1.

請參考圖1D,在第一載板110的第一表面S1上形成第一絕緣密封體150以將第一晶片130以及導電結構140密封。在一些實施例中,第一絕緣密封體150可藉由模塑製程形成於第一載板110上,且第一絕緣密封體150例如是環氧模封化合物(Epoxy Molding Compound;EMC)、樹脂(resin)或其他合適的絕緣材料。Referring to FIG. 1D, a first insulating sealing body 150 is formed on the first surface S1 of the first carrier 110 to seal the first wafer 130 and the conductive structure 140. In some embodiments, the first insulating sealing body 150 can be formed on the first carrier 110 by a molding process, and the first insulating sealing body 150 is, for example, an epoxy resin compound (EMC), a resin. (resin) or other suitable insulating material.

請參考圖1E,研磨第一絕緣密封體150以及導電結構140直到暴露出第一晶片130的上表面T為止。在此步驟中,第一封裝結構100的製造流程已大致完成。值得注意的是,在一些實施例中,在第一晶片130的上表面T被暴露出之後,可以繼續研磨第一晶片130以進一步減薄第一封裝結構100的整體厚度。如前所述,由於第一晶片130是藉由覆晶的方式配置,其主動表面會朝向第一載板110,故第一晶片130的上表面T實際上為第一晶片130的非主動表面。因此,就算部分的非主動表面被移除也不會影響到第一晶片130的性能。研磨第一絕緣密封體150以及導電結構140的方法包括機械研磨(Mechanical grinding)、化學機械研磨(Chemical-Mechanical Polishing,CMP)、蝕刻或其他合適的製程。在一些實施例中,研磨程序可以將導電結構140的高度減少約50至100µm。Referring to FIG. 1E, the first insulating sealing body 150 and the conductive structure 140 are ground until the upper surface T of the first wafer 130 is exposed. In this step, the manufacturing process of the first package structure 100 has been substantially completed. It should be noted that in some embodiments, after the upper surface T of the first wafer 130 is exposed, the first wafer 130 may be further polished to further thin the overall thickness of the first package structure 100. As described above, since the first wafer 130 is configured by flip chip, the active surface thereof faces the first carrier 110, so the upper surface T of the first wafer 130 is actually the inactive surface of the first wafer 130. . Therefore, even if a portion of the inactive surface is removed, the performance of the first wafer 130 is not affected. The method of grinding the first insulating sealing body 150 and the conductive structure 140 includes mechanical grinding, chemical-mechanical polishing (CMP), etching, or other suitable processes. In some embodiments, the grinding process can reduce the height of the electrically conductive structure 140 by about 50 to 100 [mu]m.

在一些實施例中,由於導電結構140是中間較寬而頂端及底端較窄的橢圓形或圓形結構,故當導電結構140被移除的高度接近完整導電結構140高度的一半時,導電結構140能有較大的面積被第一絕緣密封體150暴露出來。值得注意的是,儘管圖1B以及圖1C繪示了在第一導電端子120形成之後才在第一載板110的第一表面S1上形成第一晶片130以及導電結構140,但本發明並不限於此順序。在其他實施例中,也可以在形成第一晶片130以及多個導電結構140之後(如圖1C所示)或是研磨完第一絕緣密封體150以及導電結構140(如圖1E所示)之後再將第一導電端子120形成在第一載板110的第二表面S2上。In some embodiments, since the conductive structure 140 is an elliptical or circular structure having a wide middle portion and a narrow top end and a bottom end, the conductive structure 140 is electrically conductive when the removed height is close to half the height of the complete conductive structure 140. The structure 140 can have a larger area exposed by the first insulating sealing body 150. It should be noted that although FIG. 1B and FIG. 1C illustrate that the first wafer 130 and the conductive structure 140 are formed on the first surface S1 of the first carrier 110 after the first conductive terminal 120 is formed, the present invention does not. Limited to this order. In other embodiments, after the first wafer 130 and the plurality of conductive structures 140 are formed (as shown in FIG. 1C ) or after the first insulating sealing body 150 and the conductive structure 140 (shown in FIG. 1E ) are ground. The first conductive terminal 120 is formed on the second surface S2 of the first carrier 110.

請參考圖1F,在第一封裝結構100的主動區A上形成導熱層200。在本實施例中,導熱層200完全覆蓋第一晶片130的上表面T,且導熱層200的側壁與第一晶片130的側壁對齊。也就是說,導熱層200僅位於主動區A中。由於第一晶片130與第一絕緣密封體150之間沒有間隙,因此,導熱層200不會與第一晶片130的側面接觸。在一些實施例中,導熱層200的材料包括黏合劑(binder)以及分散於黏合劑中的導熱粉體。黏合劑的材料包括環氧樹脂、醇酸樹脂、丙烯酸樹脂、聚氨酯樹脂、酚醛樹脂、氯乙烯-醋酸乙烯共聚樹脂或其組合。另一方面,導熱粉體例如是金屬、鑽石、其組合或其他高導熱係數的材料。在一些實施例中,導熱層200可以藉由旋轉塗佈、噴墨塗佈或微影蝕刻等方法形成。Referring to FIG. 1F, a thermally conductive layer 200 is formed on the active region A of the first package structure 100. In the present embodiment, the heat conductive layer 200 completely covers the upper surface T of the first wafer 130, and the sidewalls of the heat conductive layer 200 are aligned with the sidewalls of the first wafer 130. That is, the heat conductive layer 200 is only located in the active area A. Since there is no gap between the first wafer 130 and the first insulating sealing body 150, the heat conductive layer 200 does not come into contact with the side surface of the first wafer 130. In some embodiments, the material of the thermally conductive layer 200 includes a binder and a thermally conductive powder dispersed in the binder. The material of the binder includes an epoxy resin, an alkyd resin, an acrylic resin, a polyurethane resin, a phenol resin, a vinyl chloride-vinyl acetate copolymer resin, or a combination thereof. On the other hand, the thermally conductive powder is, for example, a metal, a diamond, a combination thereof or other material having a high thermal conductivity. In some embodiments, the thermally conductive layer 200 can be formed by methods such as spin coating, inkjet coating, or photolithography.

請參考圖1G,在導熱層200以及第一封裝結構100上形成中介層300。導熱層200夾置於第一封裝結構100與中介層300之間,並與第一晶片130以及中介層300直接接觸。中介層300包括中介層基板310以及多個中介層導電端子320。中介層基板310包括中介核心層312、第三線路層314、第四線路層316以及導通孔318。第三線路層314位於中介層基板310的一側,而第四線路層316位於中介層基板310的另一側。第三線路層314包括多個接墊314a,而第四線路層316則包括多個接墊316a。接墊314a與接墊316a的材料及形成方法例如與接墊114a、接墊114b以及接墊116a的材料及形成方法類似,故在此不再贅述。導通孔318穿透中介核心層312而使至少部分的接墊314a透過導通孔318與接墊316a電性連接。在一些實施例中,導通孔318的材料可以與接墊314a以及接墊316a的材料相同或不同。Referring to FIG. 1G, an interposer 300 is formed on the thermally conductive layer 200 and the first package structure 100. The heat conductive layer 200 is sandwiched between the first package structure 100 and the interposer 300 and is in direct contact with the first wafer 130 and the interposer 300. The interposer 300 includes an interposer substrate 310 and a plurality of interposer conductive terminals 320. The interposer substrate 310 includes an interposer core layer 312, a third circuit layer 314, a fourth circuit layer 316, and via holes 318. The third wiring layer 314 is located on one side of the interposer substrate 310, and the fourth wiring layer 316 is located on the other side of the interposer substrate 310. The third circuit layer 314 includes a plurality of pads 314a, and the fourth circuit layer 316 includes a plurality of pads 316a. The materials and forming methods of the pads 314a and the pads 316a are similar to those of the pads 114a, the pads 114b, and the pads 116a, and are not described herein. The via 318 penetrates the intermediate core layer 312 such that at least a portion of the pads 314a are electrically connected to the pads 316a through the vias 318. In some embodiments, the material of the via 318 may be the same as or different from the material of the pad 314a and the pad 316a.

中介層導電端子320配置於中介層基板310上,並與至少部分接墊316a連接。具體來說,中介層導電端子320對應第一封裝結構100的導電結構140設置,以使得中介層300與第一封裝結構100電性連接。換句話說,中介層導電端子320配置於第一封裝結構100的周邊區R上。中介層導電端子320的材料及形成方法例如與第一導電端子120的材料及形成方法類似,故在此不再贅述。在一些實施例中,中介層導電端子320的高度H1會與導熱層200的厚度H2相同,以使得導熱層200與第一晶片130以及中介層300直接接觸。舉例來說,在一些實施例中,導熱層200與第一晶片130以及中介層300的接墊316a直接接觸,故第一晶片130在運作過程中所散發出的熱能可以透過接墊316a傳導至其他散熱結構或是空氣中,藉此更進一步提升散熱效率。此外,導熱層可以在後續的信賴性測試中分散中介層導電端子320接收到的應力,故可以防止接點斷裂的問題。The interposer conductive terminal 320 is disposed on the interposer substrate 310 and connected to at least a portion of the pads 316a. Specifically, the interposer conductive terminal 320 is disposed corresponding to the conductive structure 140 of the first package structure 100 such that the interposer 300 is electrically connected to the first package structure 100. In other words, the interposer conductive terminal 320 is disposed on the peripheral region R of the first package structure 100. The material and formation method of the interposer conductive terminal 320 are similar to the material and formation method of the first conductive terminal 120, and therefore will not be described herein. In some embodiments, the height H1 of the interposer conductive terminal 320 may be the same as the thickness H2 of the thermally conductive layer 200 such that the thermally conductive layer 200 is in direct contact with the first wafer 130 and the interposer 300. For example, in some embodiments, the thermal conductive layer 200 is in direct contact with the first wafer 130 and the pads 316a of the interposer 300. Therefore, the thermal energy emitted by the first wafer 130 during operation can be conducted through the pads 316a. Other heat dissipation structures or air are used to further improve heat dissipation efficiency. In addition, the heat conductive layer can disperse the stress received by the interposer conductive terminal 320 in the subsequent reliability test, so that the problem of joint breakage can be prevented.

請參考圖1H,在中介層300上形成第二封裝結構400,且第二封裝結構400與中介層300電性連接。第二封裝結構400類似於第一封裝結構100,故關於第二封裝結構400內的各元件的材料以及形成方法在此就不再贅述。第二封裝結構400以及第一封裝結構100的差異點在於第二封裝結構400可以不包括如同第一封裝結構100的導電結構140且可以不經過如同第一封裝結構100的研磨程序。具體來說,第二封裝結構400包括第二載板410、第二晶片430、第二絕緣密封體450以及多個第二導電端子420。第二載板410具有第三表面S3以及相對於第三表面S3的第四表面S4。第二晶片430配置於第三表面S3上。第二絕緣密封體450配置於第三表面S3上且密封第二晶片430。多個第二導電端子420配置於第四表面S4上,且與中介層300的至少部分接墊314a電性連接。Referring to FIG. 1H , a second package structure 400 is formed on the interposer 300 , and the second package structure 400 is electrically connected to the interposer 300 . The second package structure 400 is similar to the first package structure 100, so the materials and formation methods of the components in the second package structure 400 will not be described herein. The second package structure 400 and the first package structure 100 differ in that the second package structure 400 may not include the conductive structure 140 like the first package structure 100 and may not pass through the polishing process as the first package structure 100. Specifically, the second package structure 400 includes a second carrier 410, a second wafer 430, a second insulating sealing body 450, and a plurality of second conductive terminals 420. The second carrier 410 has a third surface S3 and a fourth surface S4 with respect to the third surface S3. The second wafer 430 is disposed on the third surface S3. The second insulating sealing body 450 is disposed on the third surface S3 and seals the second wafer 430. The plurality of second conductive terminals 420 are disposed on the fourth surface S4 and electrically connected to at least a portion of the pads 314 a of the interposer 300 .

第二載板410包括第二核心層412、位於第三表面S3的第五線路層414、位於第四表面S4的第六線路層416以及多個導通孔418。第五線路層414包括多個接墊414a,而第六線路層416則包括多個接墊416a。導通孔418穿透第二核心層412而使至少部分的接墊414a透過導通孔418與接墊416a電性連接。值得注意的是,圖1H省略繪示了第二載板410中的一些電路層。然而,在其他實施例中,除了第五線路層414以及第六線路層416之外,第二載板410還可以包括嵌入在第二核心層412中的其他電路層。The second carrier 410 includes a second core layer 412, a fifth wiring layer 414 at the third surface S3, a sixth wiring layer 416 at the fourth surface S4, and a plurality of vias 418. The fifth circuit layer 414 includes a plurality of pads 414a, and the sixth circuit layer 416 includes a plurality of pads 416a. The via 418 penetrates the second core layer 412 such that at least a portion of the pads 414a are electrically connected to the pads 416a through the vias 418. It should be noted that some circuit layers in the second carrier 410 are omitted in FIG. 1H. However, in other embodiments, in addition to the fifth circuit layer 414 and the sixth circuit layer 416, the second carrier 410 may also include other circuit layers embedded in the second core layer 412.

在一些實施例中,第二晶片430包括多個第二導電凸塊432,且第二晶片430藉由第二導電凸塊432而以覆晶的方式與第二載板410的接墊414a連接。除此之外,在一些實施例中,第二晶片430與第二載板410之間更包括底部填充劑(未繪示)以密封第二導電凸塊432並增加第二晶片430與第二載板410的接合製程的可靠性。在一些實施例中,第二晶片430例如是類似於第一晶片130的特定功能積體電路,但本發明不限於此。在其他實施例中,第二晶片430亦可以是其他合適的主動元件。In some embodiments, the second wafer 430 includes a plurality of second conductive bumps 432, and the second wafer 430 is connected to the pads 414a of the second carrier 410 in a flip chip manner by the second conductive bumps 432. . In addition, in some embodiments, an underfill (not shown) is further included between the second wafer 430 and the second carrier 410 to seal the second conductive bump 432 and add the second wafer 430 and the second The reliability of the bonding process of the carrier 410. In some embodiments, the second wafer 430 is, for example, a specific functional integrated circuit similar to the first wafer 130, but the invention is not limited thereto. In other embodiments, the second wafer 430 can also be other suitable active components.

基於上述,藉由將導熱層200填入第一封裝結構100與中介層300之間的間隙,能夠使得第一封裝結構100中的第一晶片130所產生的熱能藉由導熱層200傳導並散熱,因而大幅提升封裝堆疊構造10的散熱效率。此外,由於導熱層200與第一晶片130以及中介層300直接接觸,在進行信賴性測試時,導熱層200可以分散中介層導電端子320接收到的應力,故可以防止封裝堆疊構造10接點斷裂的問題。Based on the above, by filling the thermal conductive layer 200 into the gap between the first package structure 100 and the interposer 300, the thermal energy generated by the first wafer 130 in the first package structure 100 can be conducted and dissipated by the heat conduction layer 200. Therefore, the heat dissipation efficiency of the package stack structure 10 is greatly improved. In addition, since the heat conductive layer 200 is in direct contact with the first wafer 130 and the interposer 300, the heat conductive layer 200 can disperse the stress received by the interposer conductive terminal 320 during the reliability test, so that the package stack structure 10 can be prevented from being broken. The problem.

圖2是依照本發明另一實施例的一種封裝堆疊構造的剖面示意圖。在此必須說明的是,圖2的實施例沿用圖1的實施例的元件標號與部分內容,其中採用相同的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,下述實施例不再重複贅述。圖2的封裝堆疊構造20與圖1H的封裝堆疊構造10的差異在於:封裝堆疊構造20的導熱層200A的面積大於第一晶片130的面積。2 is a cross-sectional view showing a package stack structure in accordance with another embodiment of the present invention. It is to be noted that the embodiment of FIG. 2 follows the same elements and parts of the embodiment of FIG. 1 , wherein the same reference numerals are used to refer to the same or similar elements, and the description of the same technical content is omitted. For the description of the omitted portions, reference may be made to the foregoing embodiments, and the following embodiments are not repeated. The package stack configuration 20 of FIG. 2 differs from the package stack configuration 10 of FIG. 1H in that the area of the thermally conductive layer 200A of the package stack construction 20 is greater than the area of the first wafer 130.

請參考圖2,在本實施例中,導熱層200A的面積大於第一晶片130的面積。換句話說,導熱層200A完全覆蓋第一晶片130的上表面T,且從主動區A延伸至周邊區R以覆蓋部分第一絕緣密封體150的上表面。由於第一絕緣密封體150的上表面與第一晶片130的上表面共面(coplanar),因此,導熱層200A可以平整地形成於第一晶片130與第一絕緣密封體150上。Referring to FIG. 2, in the embodiment, the area of the heat conductive layer 200A is larger than the area of the first wafer 130. In other words, the heat conductive layer 200A completely covers the upper surface T of the first wafer 130 and extends from the active area A to the peripheral area R to cover a portion of the upper surface of the first insulating sealing body 150. Since the upper surface of the first insulating sealing body 150 is coplanar with the upper surface of the first wafer 130, the heat conductive layer 200A may be formed flat on the first wafer 130 and the first insulating sealing body 150.

基於上述,藉由將導熱層200A填入第一封裝結構100與中介層300之間的間隙,能夠使得第一封裝結構100中的第一晶片130所產生的熱能藉由導熱層200傳導並散熱,因而大幅提升封裝堆疊構造20的散熱效率。此外,由於導熱層200A與第一晶片130以及中介層300直接接觸,在進行信賴性測試時,導熱層200A可以分散中介層導電端子320接收到的應力,故可以防止封裝堆疊構造20接點斷裂的問題。此外,由於本實施例的導熱層200A的面積大於第一晶片130的面積,因此能獲得更佳的散熱效果。Based on the above, the thermal energy generated by the first wafer 130 in the first package structure 100 can be conducted and dissipated by the heat conductive layer 200 by filling the thermal conductive layer 200A into the gap between the first package structure 100 and the interposer 300. Therefore, the heat dissipation efficiency of the package stack structure 20 is greatly improved. In addition, since the heat conductive layer 200A is in direct contact with the first wafer 130 and the interposer 300, the heat conductive layer 200A can disperse the stress received by the interposer conductive terminal 320 during the reliability test, so that the package stack structure 20 can be prevented from being broken. The problem. In addition, since the area of the heat conductive layer 200A of the present embodiment is larger than the area of the first wafer 130, a better heat dissipation effect can be obtained.

圖3是依照本發明再一實施例的一種封裝堆疊構造的剖面示意圖。在此必須說明的是,圖3的實施例沿用圖1的實施例的元件標號與部分內容,其中採用相同的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,下述實施例不再重複贅述。圖3的封裝堆疊構造30與圖1H的封裝堆疊構造10的差異在於:封裝堆疊構造30的導熱層200B的面積小於第一晶片130的面積。3 is a cross-sectional view showing a package stack structure in accordance with still another embodiment of the present invention. It is to be noted that the embodiment of FIG. 3 follows the same elements and parts of the embodiment of FIG. 1 , wherein the same reference numerals are used to refer to the same or similar elements, and the description of the same technical content is omitted. For the description of the omitted portions, reference may be made to the foregoing embodiments, and the following embodiments are not repeated. The package stack configuration 30 of FIG. 3 differs from the package stack configuration 10 of FIG. 1H in that the area of the thermally conductive layer 200B of the package stack configuration 30 is smaller than the area of the first wafer 130.

請參考圖3,在本實施例中,導熱層200B的面積小於第一晶片130的面積。換句話說,導熱層200B並未完全覆蓋第一晶片130且暴露出第一晶片130的部分上表面T。Referring to FIG. 3, in the embodiment, the area of the heat conductive layer 200B is smaller than the area of the first wafer 130. In other words, the thermally conductive layer 200B does not completely cover the first wafer 130 and exposes a portion of the upper surface T of the first wafer 130.

基於上述,藉由將導熱層200B填入第一封裝結構100與中介層300之間的間隙,能夠使得第一封裝結構100中的第一晶片130所產生的熱能藉由導熱層200傳導並散熱,因而大幅提升封裝堆疊構造30的散熱效率。此外,由於導熱層200B與第一晶片130以及中介層300直接接觸,在進行信賴性測試時,導熱層200B可以分散中介層導電端子320接收到的應力,故可以防止封裝堆疊構造30接點斷裂的問題。Based on the above, the thermal energy generated by the first wafer 130 in the first package structure 100 can be conducted and dissipated by the heat conduction layer 200 by filling the thermal conductive layer 200B into the gap between the first package structure 100 and the interposer 300. Therefore, the heat dissipation efficiency of the package stack structure 30 is greatly improved. In addition, since the heat conductive layer 200B is in direct contact with the first wafer 130 and the interposer 300, the heat conductive layer 200B can disperse the stress received by the interposer conductive terminal 320 during the reliability test, so that the package stack structure 30 can be prevented from being broken. The problem.

綜上所述,藉由將導熱層填入第一封裝結構與中介層之間的間隙,能夠使得第一封裝結構中的第一晶片所產生的熱能藉由導熱層傳導並散熱,因而大幅提升封裝堆疊構造的散熱效率。此外,由於導熱層與第一晶片以及中介層直接接觸,在進行信賴性測試時,導熱層可以分散中介層導電端子接收到的應力,故可以防止封裝堆疊構造接點斷裂的問題。In summary, by filling the gap between the first package structure and the interposer, the thermal energy generated by the first wafer in the first package structure can be conducted and dissipated by the heat conduction layer, thereby greatly improving The heat dissipation efficiency of the package stack structure. In addition, since the heat conductive layer is in direct contact with the first wafer and the interposer, the heat conductive layer can disperse the stress received by the interposer conductive terminals during the reliability test, so that the problem of the package stack structure joint breakage can be prevented.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

10、20、30‧‧‧封裝堆疊構造10, 20, 30‧‧‧ package stack construction

100‧‧‧第一封裝結構100‧‧‧First package structure

110‧‧‧第一載板110‧‧‧ first carrier

112‧‧‧第一核心層112‧‧‧First core layer

114‧‧‧第一線路層114‧‧‧First line layer

116‧‧‧第二線路層116‧‧‧Second circuit layer

114a、114b、116a、314a、316a、414a、416a‧‧‧接墊114a, 114b, 116a, 314a, 316a, 414a, 416a‧‧‧ pads

118、318、418‧‧‧導通孔118, 318, 418‧‧ ‧ through holes

120‧‧‧第一導電端子120‧‧‧First conductive terminal

130‧‧‧第一晶片130‧‧‧First chip

132‧‧‧第一導電凸塊132‧‧‧First conductive bump

140‧‧‧導電結構140‧‧‧Electrical structure

150‧‧‧第一絕緣密封體150‧‧‧First Insulation Seal

200、200A、200B‧‧‧導熱層200, 200A, 200B‧‧‧ heat conduction layer

300‧‧‧中介層300‧‧‧Intermediary

310‧‧‧中介層基板310‧‧‧Interposer substrate

312‧‧‧中介核心層312‧‧‧Intermediary core

314‧‧‧第三線路層314‧‧‧ third circuit layer

316‧‧‧第四線路層316‧‧‧ fourth circuit layer

320‧‧‧中介層導電端子320‧‧‧Interposer conductive terminals

400‧‧‧第二封裝結構400‧‧‧Second package structure

410‧‧‧第二載板410‧‧‧Second carrier

412‧‧‧第二核心層412‧‧‧ second core layer

414‧‧‧第五線路層414‧‧‧ fifth circuit layer

416‧‧‧第六線路層416‧‧‧ sixth circuit layer

420‧‧‧中介層導電端子420‧‧‧Interposer conductive terminals

430‧‧‧第二晶片430‧‧‧second chip

432‧‧‧第二導電凸塊432‧‧‧Second conductive bump

450‧‧‧第二絕緣密封體450‧‧‧Second insulation seal

A‧‧‧主動區A‧‧‧active area

R‧‧‧周邊區R‧‧‧ surrounding area

H1‧‧‧高度H1‧‧‧ Height

H2‧‧‧厚度H2‧‧‧ thickness

T‧‧‧上表面T‧‧‧ upper surface

S1‧‧‧第一表面S1‧‧‧ first surface

S2‧‧‧第二表面S2‧‧‧ second surface

S3‧‧‧第三表面S3‧‧‧ third surface

S4‧‧‧第四表面S4‧‧‧ fourth surface

圖1A至圖1H是依照本發明一實施例的一種封裝堆疊構造的製造過程的剖面示意圖。 圖2是依照本發明另一實施例的一種封裝堆疊構造的剖面示意圖。 圖3是依照本發明再一實施例的一種封裝堆疊構造的剖面示意圖。1A through 1H are schematic cross-sectional views showing a manufacturing process of a package stack structure in accordance with an embodiment of the present invention. 2 is a cross-sectional view showing a package stack structure in accordance with another embodiment of the present invention. 3 is a cross-sectional view showing a package stack structure in accordance with still another embodiment of the present invention.

Claims (10)

一種封裝堆疊構造,包括: 第一封裝結構,包括第一晶片以及第一絕緣密封體,其中所述第一絕緣密封體密封所述第一晶片且暴露出所述第一晶片的上表面; 中介層,配置於所述第一封裝結構上,且與所述第一封裝結構電性連接; 導熱層,夾置於所述第一封裝結構與所述中介層之間,且覆蓋所述第一晶片的至少部分所述上表面,其中所述導熱層與所述第一晶片以及所述中介層直接接觸;以及 第二封裝結構,配置於所述中介層上,且與所述中介層電性連接。A package stacking structure comprising: a first package structure including a first wafer and a first insulating sealing body, wherein the first insulating sealing body seals the first wafer and exposes an upper surface of the first wafer; a layer disposed on the first package structure and electrically connected to the first package structure; a heat conductive layer sandwiched between the first package structure and the interposer, and covering the first layer At least a portion of the upper surface of the wafer, wherein the thermally conductive layer is in direct contact with the first wafer and the interposer; and a second encapsulation structure disposed on the interposer and electrically coupled to the interposer connection. 如申請專利範圍第1項所述的封裝堆疊構造,其中所述第一封裝結構更包括: 第一載板,具有第一表面與相對於所述第一表面的第二表面,其中所述第一晶片以及所述第一絕緣密封體配置於所述第一表面上; 多個導電結構,配置於所述第一表面上且環繞所述第一晶片,其中所述導電結構嵌入於所述第一絕緣密封體中,且所述第一絕緣密封體暴露出所述導電結構;以及 多個第一導電端子,配置於所述第二表面上。The package stack structure of claim 1, wherein the first package structure further comprises: a first carrier having a first surface and a second surface opposite to the first surface, wherein the first a wafer and the first insulating sealing body are disposed on the first surface; a plurality of conductive structures disposed on the first surface and surrounding the first wafer, wherein the conductive structure is embedded in the first An insulating sealing body, wherein the first insulating sealing body exposes the conductive structure; and a plurality of first conductive terminals disposed on the second surface. 如申請專利範圍第2項所述的封裝堆疊構造,其中所述中介層包括: 中介層基板;以及 多個中介層導電端子,配置於所述中介層基板上,其中所述中介層導電端子對應所述第一封裝結構的所述導電結構設置,以與所述第一封裝結構電性連接。The package stack structure of claim 2, wherein the interposer comprises: an interposer substrate; and a plurality of interposer conductive terminals disposed on the interposer substrate, wherein the interposer conductive terminals correspond to The conductive structure of the first package structure is disposed to be electrically connected to the first package structure. 如申請專利範圍第3項所述的封裝堆疊構造,其中所述中介層導電端子的高度與所述導熱層的厚度相同。The package stack structure of claim 3, wherein the height of the interposer conductive terminal is the same as the thickness of the heat conductive layer. 如申請專利範圍第1項所述的封裝堆疊構造,其中所述第二封裝結構包括: 第二載板,具有第三表面以及相對於所述第三表面的第四表面; 第二晶片,配置於所述第三表面上; 第二絕緣密封體,配置於所述第三表面上且密封所述第二晶片;以及 多個第二導電端子,配置於所述第四表面上,且與所述中介層電性連接。The package stack structure of claim 1, wherein the second package structure comprises: a second carrier having a third surface and a fourth surface opposite to the third surface; On the third surface; a second insulating sealing body disposed on the third surface and sealing the second wafer; and a plurality of second conductive terminals disposed on the fourth surface, and The interposer is electrically connected. 如申請專利範圍第1項所述的封裝堆疊構造,其中所述導熱層包括黏合劑(binder)以及分散於所述黏合劑中的導熱粉體,其中所述黏合劑的材料包括環氧樹脂、醇酸樹脂、丙烯酸樹脂、聚氨酯樹脂、酚醛樹脂、氯乙烯-醋酸乙烯共聚樹脂或其組合,所述導熱粉體的材料包括金屬、鑽石或其組合。The package stacking structure of claim 1, wherein the heat conductive layer comprises a binder and a heat conductive powder dispersed in the binder, wherein the binder material comprises an epoxy resin, An alkyd resin, an acrylic resin, a polyurethane resin, a phenol resin, a vinyl chloride-vinyl acetate copolymer resin, or a combination thereof, and the material of the heat conductive powder includes a metal, a diamond, or a combination thereof. 如申請專利範圍第1項所述的封裝堆疊構造,其中所述導熱層完全覆蓋所述第一晶片。The package stack construction of claim 1, wherein the thermally conductive layer completely covers the first wafer. 一種封裝堆疊構造的製造方法,包括: 形成第一封裝結構,其中所述第一封裝結構包括第一晶片以及第一絕緣密封體,所述第一絕緣密封體密封所述第一晶片且暴露出所述第一晶片的上表面; 在所述第一晶片的至少部分所述上表面上形成導熱層; 在所述導熱層以及所述第一封裝結構上形成中介層,其中所述中介層與所述第一封裝結構電性連接,且所述導熱層夾置於所述第一封裝結構與所述中介層之間並與所述第一晶片以及所述中介層直接接觸;以及 在所述中介層上形成第二封裝結構,其中所述第二封裝結構與所述中介層電性連接。A manufacturing method of a package stack structure, comprising: forming a first package structure, wherein the first package structure includes a first wafer and a first insulating sealing body, the first insulating sealing body sealing the first wafer and exposing An upper surface of the first wafer; a thermally conductive layer formed on at least a portion of the upper surface of the first wafer; an interposer formed on the thermally conductive layer and the first package structure, wherein the interposer The first package structure is electrically connected, and the heat conductive layer is sandwiched between the first package structure and the interposer and is in direct contact with the first wafer and the interposer; A second package structure is formed on the interposer, wherein the second package structure is electrically connected to the interposer. 如申請專利範圍第8項所述的封裝堆疊構造的製造方法,其中形成所述第一封裝結構的步驟包括: 提供第一載板,其中所述第一載板具有第一表面以及相對於所述第一表面的第二表面; 在所述第二表面上形成多個第一導電端子; 在所述第一表面上形成所述第一晶片以及多個導電結構,且所述導電結構環繞所述第一晶片; 藉由所述第一絕緣密封體將所述第一晶片以及所述導電結構密封;以及 研磨所述第一絕緣密封體以及所述導電結構直到暴露出所述第一晶片的所述上表面為止。The manufacturing method of the package stacking structure of claim 8, wherein the forming the first package structure comprises: providing a first carrier, wherein the first carrier has a first surface and a second surface of the first surface; forming a plurality of first conductive terminals on the second surface; forming the first wafer and the plurality of conductive structures on the first surface, and the conductive structure surrounds a first wafer; sealing the first wafer and the conductive structure by the first insulating sealing body; and grinding the first insulating sealing body and the conductive structure until the first wafer is exposed Up to the upper surface. 如申請專利範圍第8項所述的封裝堆疊構造的製造方法,其中形成所述導熱層的方法包括旋轉塗佈、噴墨塗佈或微影蝕刻。The method of manufacturing a package stack structure according to claim 8, wherein the method of forming the heat conductive layer comprises spin coating, inkjet coating, or photolithography.
TW106105525A 2017-02-20 2017-02-20 Package on package structure and manufacturing method thereof TW201832297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106105525A TW201832297A (en) 2017-02-20 2017-02-20 Package on package structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106105525A TW201832297A (en) 2017-02-20 2017-02-20 Package on package structure and manufacturing method thereof

Publications (1)

Publication Number Publication Date
TW201832297A true TW201832297A (en) 2018-09-01

Family

ID=64426208

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106105525A TW201832297A (en) 2017-02-20 2017-02-20 Package on package structure and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW201832297A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716191B (en) * 2019-10-06 2021-01-11 南亞科技股份有限公司 Semiconductor package and method for manufacturing semiconductor package
TWI725519B (en) * 2019-03-04 2021-04-21 新加坡商Pep創新私人有限公司 Chip packaging method
US11114315B2 (en) 2017-11-29 2021-09-07 Pep Innovation Pte. Ltd. Chip packaging method and package structure
US11232957B2 (en) 2017-11-29 2022-01-25 Pep Inovation Pte. Ltd. Chip packaging method and package structure
US11233028B2 (en) 2017-11-29 2022-01-25 Pep Inovation Pte. Ltd. Chip packaging method and chip structure
US11610855B2 (en) 2017-11-29 2023-03-21 Pep Innovation Pte. Ltd. Chip packaging method and package structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114315B2 (en) 2017-11-29 2021-09-07 Pep Innovation Pte. Ltd. Chip packaging method and package structure
US11232957B2 (en) 2017-11-29 2022-01-25 Pep Inovation Pte. Ltd. Chip packaging method and package structure
US11233028B2 (en) 2017-11-29 2022-01-25 Pep Inovation Pte. Ltd. Chip packaging method and chip structure
US11610855B2 (en) 2017-11-29 2023-03-21 Pep Innovation Pte. Ltd. Chip packaging method and package structure
TWI725519B (en) * 2019-03-04 2021-04-21 新加坡商Pep創新私人有限公司 Chip packaging method
TWI716191B (en) * 2019-10-06 2021-01-11 南亞科技股份有限公司 Semiconductor package and method for manufacturing semiconductor package

Similar Documents

Publication Publication Date Title
JP5042591B2 (en) Semiconductor package and stacked semiconductor package
US9385056B2 (en) Packaging substrate having embedded interposer and fabrication method thereof
TWI662667B (en) Package structure and manufacturing method thereof
TWI496270B (en) Semiconductor package and method of manufacture
TW201832297A (en) Package on package structure and manufacturing method thereof
US11515290B2 (en) Semiconductor package
TWI473218B (en) Through-hole medium board, package substrate, and method of forming the same
TW201826461A (en) Stacked type chip package structure
KR101605600B1 (en) Manufacturing method of semiconductor device and semiconductor device thereof
TWI614848B (en) Electronic package and method of manufacture thereof
KR20150091932A (en) Manufacturing method of semiconductor device and semiconductor device thereof
TWI492350B (en) Semiconductor package and method of forming same
US9899308B2 (en) Semiconductor package and method of fabricating the same
US20170358557A1 (en) Package-on-package structure and manufacturing method thereof
US12040304B2 (en) Semiconductor package and method of fabricating the same
JP2004253738A (en) Package substrate and flip chip type semiconductor device
TW201742167A (en) Electronic package and method for fabricating the same
US20230411349A1 (en) Semiconductor device packages and methods of manufacturing the same
CN108461454B (en) Package-on-package structure and method for manufacturing the same
TW201327769A (en) Semiconductor package and manufacturing method thereof
JP2007250916A (en) Semiconductor device and manufacturing method therefor
TWI652783B (en) Semiconductor device and method of manufacturing same
TW202320271A (en) Semiconductor die package
TWI744825B (en) Chip embedded substrate structure, chip package structure and methods of manufacture thereof
TW202205600A (en) Semiconductor package