TWM436298U - Printed circuit boards - Google Patents
Printed circuit boards Download PDFInfo
- Publication number
- TWM436298U TWM436298U TW100219970U TW100219970U TWM436298U TW M436298 U TWM436298 U TW M436298U TW 100219970 U TW100219970 U TW 100219970U TW 100219970 U TW100219970 U TW 100219970U TW M436298 U TWM436298 U TW M436298U
- Authority
- TW
- Taiwan
- Prior art keywords
- metal layer
- printed circuit
- circuit board
- core
- subassembly
- Prior art date
Links
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
M436298 五、新型說明: C 型屬冬餘々真^^】 新型領域 本新型係關於印刷電路板,其中一般係有關於印刷電 路板及其製造方法,且更具體係在於有關使用並行處理互 連次組件之印刷電路板製造方法。 C 前冬好;3 新型背景 大夕數的電子系統包括具有兩密度電子互連之印刷電 路板。一印刷電路板(PCB)能夠包括一個或更多的電路芯 材 '基材或載體。在一種用於具有該一個或更多電路載體 之印刷電路板的製造計晝中,電子電路(例如,墊片、電子 互連等)係製造到一個別電路載體的相反兩側上,以形成一 對電路層。電路板之這些電路層對接著能夠藉著製造一黏 著劑(或是一預浸膠體或是一黏合聚合物),以壓按方式疊合 s玄專電路層對以及黏著劑,固化所產生的電路板構造,鑽 鑿出通孔,且接著以銅材料電鍍該等通孔,使該等電路層 對互連,以實體或電子方式連接,而形成該印刷電路板。 固化程序係用以固化該黏著劑,以便提供電路板構造 之永久性實體結合。然而,黏著劑在固化程序期間一般而 言會顯著地收縮。此收縮加上稍後進行的通孔鑽鑿與電鍍 程序會導致整體構造中產生可觀的應力,進而使電路層之 間產生損《是*可靠的互連或結合。因此,業界對於能 夠補償此收縮及能夠對於電路層冑之間提供不受應力影響 3 ivmo 观 且可靠的電子連接之材料與相關程序具有需求。 β主此外,以銅材料進行之穿透孔或通孔電鍍需要額外、 叩貝且耗時的加工程序,其無法以快速靈活之方式進行。 第'圖係為用以製造-具有疊合通孔之印刷電路板的先後 層壓程序’其包括昂f且耗時之先後層壓與麵步驟。因 此,業界對於-種能夠快速且料製造,且/或能夠择保位 於印刷電路板上之互連的對齊性,藉著降低_程序的重M436298 V. New description: Type C belongs to Dongyue Zhenzhen ^^] New field This new type is about printed circuit boards, which are generally related to printed circuit boards and their manufacturing methods, and more systematically related to the use of parallel processing interconnects. Printed circuit board manufacturing method for sub-components. C Good winter; 3 New background The electronic system of the big eve includes a printed circuit board with two-density electronic interconnection. A printed circuit board (PCB) can include one or more circuit cores 'substrate or carrier. In a manufacturing process for a printed circuit board having the one or more circuit carriers, electronic circuits (eg, pads, electronic interconnects, etc.) are fabricated on opposite sides of a separate circuit carrier to form A pair of circuit layers. These circuit layer pairs of the circuit board can then be laminated by pressing an adhesive (or a prepreg or a bonding polymer) to laminate the sinusoidal circuit layer and the adhesive. The circuit board is constructed by drilling through holes and then plating the vias with a copper material to interconnect the circuit layers to form a physical or electronic connection to form the printed circuit board. The curing process is used to cure the adhesive to provide a permanent physical bond to the board construction. However, the adhesive generally shrinks significantly during the curing process. This shrinkage, coupled with later through hole drilling and plating procedures, can result in considerable stresses in the overall construction, which can result in damage between the circuit layers. Therefore, there is a need in the industry for materials and related procedures that can compensate for this shrinkage and provide a reliable electronic connection between the circuit layers and the stress-free 3 ivmo. In addition, the penetration or via plating of copper material requires additional, mussel and time consuming processing procedures that cannot be performed in a fast and flexible manner. The 'Fig.' is a sequential lamination process for manufacturing a printed circuit board having laminated vias' which includes an up-and-down sequential lamination and surface steps. Therefore, the industry is able to quickly and materially manufacture and/or be able to secure the alignment of interconnects on a printed circuit board by reducing the weight of the program.
複-人數’從而降低製造時間與成本的印刷電路板及其製造 方法具有需求》 … C剩型内容_】 新型概要Printed circuit boards and their manufacturing methods that reduce the manufacturing time and cost have a demand... C Remaining Content_] New Overview
本新型係提出印刷電路板,依據本新型之實施例的: 點係有關且旨在於使用並行處理互連次組件的印刷電路; 製^方法。本新型之—實施例提供—種印刷電路板的製』 方法’該方法包括提供—至少包括—個金屬層載體之a 總成,在並行處❹個單-金勒制中的各個單一金」 層載體之後提好個單—金制载體,其巾該等多個單_ 金屬層載體其中至少—者之並行處理包括使光阻劑成像I -基材之至少-部分上,該基材之該至少—部分 刀 於該基材H面上之至少層㈣;關該基材具有j V層銅>自之部分;错至少—層光阻劑,以便暴露出言 至少-層㈣之至少—部分,藉以形成至少—㈣概塾; 將一層壓減龍加_基材之第二表面;絲-保P 膜到該層祕著劑;趣基材之第二表面中形成至;^ 4 M436298 微通孔,以便暴露出該至少一個銅箔襯墊;將傳導漿充填 到該至少一個微通孔中;以及去除該保護薄膜,以便露出 位於基材上用以黏附的層壓黏著劑,以及將該等多個單一 金屬層載體其中至少二者彼此黏附,且與該芯材次總成黏 附。The present invention is directed to a printed circuit board in accordance with an embodiment of the present invention: a printed circuit that is related to and intended to use parallel processing of interconnected sub-assemblies; The present invention provides an embodiment of a method for manufacturing a printed circuit board. The method includes providing - at least one assembly of a metal layer carrier, and a single gold in a single-golden system in parallel. The layer carrier is then provided with a single-gold carrier, the plurality of single-metal layer carriers of the plurality of single-metal layer carriers, wherein at least one of the parallel processing comprises imaging the photoresist onto at least a portion of the substrate, the substrate The at least one portion of the at least one layer (four) on the surface of the substrate H; the substrate having the j V layer copper > from the portion; the at least one layer of the photoresist to expose at least the layer (four) at least a part, by which at least - (4) an outline is formed; a laminated lacquer plus a second surface of the substrate; a silk-protective P film to the layer of the secret agent; formed in the second surface of the interesting substrate; M436298 microvias to expose the at least one copper foil liner; filling the conductive paste into the at least one microvia; and removing the protective film to expose the laminated adhesive on the substrate for adhesion, And bonding at least two of the plurality of single metal layer carriers to each other And subassemblies attached to the core adhesion.
本新型之另一實施例提供一種印刷電路板的製造方 法,該方法包括提供一至少包括一個金屬層載體之芯材總 成,在並行處理多個單一金屬層載體中的各個單一金屬層 載體之後提供多個單一金屬層載體,其中該等多個單一金 屬層載體其中至少一者之並行處理包括使光阻劑成像到一 基材之至少一部分上,該基材之該至少一部分具有形成於 該基材之第一表面上之至少一銅箔;蝕刻該基材具有至少 一層銅箔之部分;去除至少一層光阻劑,以便暴露出該至 少一層銅箔之至少一部分,藉以形成至少一銅箔襯墊;將 一層壓黏著劑施加到該基材之第二表面;施加一保護薄膜 到該層壓黏著劑;在該基材之第二表面中形成至少一個微 通孔,以便暴露出該至少一個銅箔襯墊;將傳導槳充填到 該至少一個微通孔中;以及去除該保護薄膜,以便露出位 於基材上用以黏附的層壓黏著劑,將該等多個單一金屬層 載體其中至少二者彼此黏附,且與該芯材總成之第一表面 黏附;以及將該等多個單一金屬層載體其中至少二者彼此 黏附,且與該芯材次總成黏附。 本新型之又一實施例提供一種製造印刷電路板之方 法,該方法包括提供一至少包括一個金屬層載體之芯材總 5 M436298 成,在並行處理多個單一金屬層載體中的各個單一金屬層 載體之後,將該等多個單一金屬層載體彼此黏附,以便形 成一第一次總成,其中該等多個單一金屬層載體其中至少 一者之並行處理包括使光阻劑成像到一基材之至少一部分 上,該基材之該至少一部分具有形成於該基材之第一表面 上之至少一銅箔;触刻該基材具有至少一層銅箔之部分; 去除至少一層光阻劑,以便暴露出該至少一層銅箔之至少 一部分,藉以形成至少一銅箔襯墊;將一層壓黏著劑施加 到該基材之第二表面;施加一保護薄膜到該層壓黏著劑; 在該基材之第二表面中形成至少一個微通孔,以便暴露出 該至少一個銅箔襯墊;將傳導漿充填到該至少一個微通孔 中;以及去除該保護薄膜,以便露出位於基材上用以黏附 的層壓黏著劑,在並行處理多個單一金屬層載體其中各個 單一金屬層載體之後,將該等多個單一金屬層載體彼此黏 附,以形成一第二次總成,將該第一總成黏附到該芯材次 總成之一第一表面,並且將該第二次總成黏附到該芯材次 總成之第二表面。 圖式簡單說明 第1圖係為用以製造一具有層壓通礼之印刷電路板的 一種順序層壓程序之流程圖,其包括順序層壓及電鍍步驟。 第2圖係為根據本新型之一實施例的用以製造一具有 層壓通孔之印刷電路板的一種順序層壓程序之流程圖,其 包括一單獨層壓程序。 第3a〜3g圖顯示根據本新型之一實施例的用以製造一 6 單一金屬層基材的程序,該基材係用於具有堆疊(或交錯) 微通孔的一單獨層壓循環或是處理程序中。 第4 a圖係為根據本新型之一實施例的一混合印刷電路 板之一橫剖面分解圖,其包含四個第3a〜3g圖之經蝕刻的單 一金屬層基材以及兩個未經触刻的單一金屬層基材夾住一 芯材次總成。 第4 b圖係為根據本新型之一實施例的一混合印刷電路 板之一橫剖面分解圖,其包含六個第3g圖中所示之經蝕刻 單一金屬層基材夾住一芯材次總成。 第4 c圖係為根據本新型之一實施例的一混合印刷電路 板之一橫剖面分解圖,其包含六個第3g圖中所示之採用預 壓形式之單一金屬層基材夾住一芯材次總成。 第5圖係為第4b或4c圖之經完成的混合印刷電路板之 一橫剖面圖。 第6圖係為根據本新型之一實施例的一混合印刷電路 板之一橫剖面圖,其包括一外部混成層夾住兩個位於一個 四層金屬層芯材次總成兩側上的單一金屬層基材。 第7圖係為根據本新型之一實施例的一混合印刷電路 板之一橫剖面圖,其包括一混成層黏附到兩個夾著一個四 層金屬層芯材次總成之單一金屬層基材其中一者。 第8圖係為根據本新型之一實施例的一混合印刷電路 板之一橫剖面圖,其包括六個第3g圖所示之該單一金屬層 基材夾著一包括一主動裝置之芯材次總成。 第9圖係為根據本新型之一實施例的一混合印刷電路 M436298 板之—橫剖面圖,其包括六個第3g圖所示之該單一金屬層 基材失著一包括—主動裝置之芯材次總成。 第10圖係為根據本新型之一實施例的一混合印刷電路 板之一k剖面圖,其包括使該總成之撓性部分與堅硬區段 分離之切除區域。 【實施冷式】 詳細說明 在以下的詳細說明中,將藉由圖式顯示且描述本新型 之實知例。如同熟諳此技藝之人士所能得到的體認,所描 "不範性實施例能夠以各種不同方式進行修改,而不會 脫離本新型之精神與範_。因此,該等圖式與說明本質上 係作為顯不用’而非作為本新型之限制。實施例中具有圖 有”、、員示或未顯示之部件,於本說明書中並未加以討 响’因為該等部件對於全面理解本新型而言並非必要。相 同的參考數字代表相同的元件。 第2圖係為根據本新型之一實施例的一種用以製造具 有堆,通孔之—印刷轉板的程序之-流程圖,該程序包 括—早次層壓料。與第丨®之先前技練序相較,第2圖 线單次層壓程序實質上包括較少的處理步驟 。更具體而 言,第2圖之該單次層|程序消除了—些用以製造多層印刷 電路板所需的順序層厘程序之層__處理步驟。用以 製造電路板之單次相程序的觀點係進—步描述於美國專 1第7,523,545號以及美國臨時專利申請案第…⑻⑺號 中,各個案件之完整内容係以參考方式併人本文之中。 8 M436298 在第2圖中所示之流程圖中,該程序實施了一些有關於 印刷電路_處理步驟。在其他實施财,_使用其他 適用的印刷電路板技術,以取代圖式中所示者,包括傳統 的印刷電路板製造技術。在某些實施例中,該程序並未實 行所有的^9述作業。在其他|施例中,該程序則實行了額 外的作業。在-實施例中,該程序以不同於顯示之順序實 打該等作業。在某些實施例中,該程序則同步地實行某些 作業。在一實施例中,該程序直接從“積層與層壓,,進行到 “最終成品,,。在一實施例中,“顯影、電鍍、剝離、蝕刻、 剝除係以”顯影、轴刻、剝除”力〇以取代。 第3a〜3g圖顯示根據本新型之一實施例的用以製造一 單一金屬層基材的程序,該基材係用於具有堆疊(或交錯) 微通孔的一早獨層壓循環或是處理程序令。 如第3a圖中所示,製備出一種雙面基材或是載體1〇。 基材10包括一銅箔1 〇a,其形成在該基材之相反側或表面 上、以及一芯材l〇b,其係由金屬、陶瓷或絕緣材料(例如 FR4、液晶聚合物(LCP)、熱黏著劑(Thermount)、雙亞醯胺 -三氮雜苯(BT)、GPY,諸如鐵氟龍、熱傳導碳(stabiec〇r)、 不含鹵素之絕緣材料等)所製成’其中GPY係為一不屬於 FR4種類之疊層’諸如聚醯胺、諸如Kapton聚醯胺薄膜、氮 丙啶硬化環氧物、雙亞醯胺(bismalimide)、以及其他電級疊 層。然而’本新型並非限定於如此》例如,在本新型之一 實施例中係使用一單層芯材或基材,一銅箔(例如一單層薄 膜)僅形成於該基材之一側上。在其他實施例中,則能夠使 9 M436298 用其他適合的基材與傳導層材料。 在第3a圖所顯示之實施例中,該基材具有之厚度範圍 從3到4 mil(米爾,千分之一英°才)(或是約3到4 mil)»然而, 在其他實施例中,該基材與其他組件能夠具有其他的適當 尺寸。 在第3b圖中,兩層光阻劑20係成像到該基材10上。在 本文中,所顯示之該兩層光阻劑係以雷射直接成像(或是列 印)到該基材1〇之一側(亦即底側)上。然而,本新型並非限 定於如此。例如,該兩層光阻劑能夠使用任何適當的印刷 方式進行成像’諸如光學、絲網、偏移、喷墨以及類似方 法。在一實施例中,能夠使多於或少於兩層之光阻劑成像 到該基材上。 在第3c圖中,除了銅箔1〇a藉由該兩層光阻劑2〇加以覆 蓋的部份以外之該銅謂l〇a係從基材蝕刻去除,接著係剝除 °亥覆蓋部分’以便露出對應的銅洛襯堅1 i。然而,本新型 並非限枝如此。例如’在本新型之另-實施例中,-個 j更夕的單一金屬層載體(例如一個或更多的單側電路)係 错由製備-金板(例如—残鋼板)而形成。 在有關使用该金屬板之程序的更多細節方面,一銅薄 ^係叫快速-以薄電鍍龍金屬板之-側或更多 或更夕層纽劑係施加到該金屬板之—個或更 著錢行成像(例如負片成 室I接著剝除光阻:更二室成接著將銅電_等腔 乂便形成一個或更多用於一個或 10 M436298 更多電路層的鋼箔襯墊。此外,—個或更多的預浸膠體係 施加到該等銅箔襯墊上,以便層壓該等預浸膠體以及金屬 板。接著使該等預浸膠體硬化。該等預浸膠體從而與金屬 層進行層壓及硬化,其間填有銅箔襯墊以及銅薄鍍層。該 等銅箔襯墊與銅薄鍍層以及硬化的預浸膠體接著係由該金 屬板剝除。接著係蝕刻去除該銅薄鍍層,以便露出位於該 經過硬化之預浸膠體上的銅箔襯墊。 以上所述包括該等銅箔概墊之電路層(例如襯墊丨丨或 者是包括銅襯墊之電路層)一旦形成,第3(1圖中所示之一保 護薄膜(或是麥勒(Mylar)片)40係以層壓黏著劑(或是預浸膠 體或未硬化預浸膠體)30填入該Mylar片40與芯材10b之間 的方式附裝到該基材1〇(或是經過硬化之預浸膠體)的芯材 l〇b。在第3d圖中,所顯示之該保護層或是厘丫丨肛片4〇係附 裝到該基材具有兩個銅箔襯墊1丨側的另一側。然而,本新 型並非限定於僅使用Mylar片之此案例,且其能夠由任何其 他適當材料所製成,諸如聚酯、定向聚丙烯、聚氟乙烯、 聚乙烯、高密度聚乙烯、聚2,6萘二甲酸乙二酯、pac〇thane、 聚曱基戊烯或是其組合。 在第3e圖中,通孔或微通孔50係形成在基材1〇(或是硬 化預浸膠體)中。各個微通孔50係藉由雷射鑽孔(且/或機械 鑽孔)在基材1〇(或是硬化預浸膠體)中鑽出一直徑範圍從4 到10 mil(或是約4到10 mil)的孔所形成。在其他實施例中, 能夠使用具有其他適當直徑之微通孔。在另—實施例中, 該等通孔或微通孔能夠使用一光可成像介電程序、電漿程 11 序、壓印程序,或是其他適當的通孔產生程序所產生。 在第3f圖中,一傳導漿(或墨水)6〇係填入各個形成於基 材1〇(或硬化預浸膠體)中的微通孔50,且在第3g圖中,接著 係剝除該Mylar片40,以形成一單一金屬層載體70,作為積 層與層壓之用。 在其他實施例中,該金屬層載體能夠包括額外的層或 疋組件。在一實施例中,例如該金屬層載體能夠包括使用 特殊層或層壓加以實行之一埋入式電阻或是一埋入式電 谷。金屬層載體亦能夠包括表面處理,其包括但非限定於 有機金屬 '浸金 '浸銀、浸錫、且/或在黏附之前施加外層 銅。這些表面處理能夠改良電子與熱傳導性。 該等金屬層載體能夠使用各種不同的層壓機器進行層 壓,包括但非限定於一切板層壓機、一層壓壓印機、一熱 滾軋層壓機、一真空層壓機、一快速層壓壓印機,或者是 其他適當的層壓機器。 第4a圖係為根據本新型之一實施例的一混合印刷電路 板100-1之一橫刮面分解圖,該印刷電路板包括第3a〜3g圖 中所示之四個單一金屬層基材兀—丨以及兩個未蝕刻單一金 屬層基材70-2夾住一芯材次組件丨〇2。外部之單一金屬層基 材或是未蝕刻基材70-2在其外表面上具有一未蝕刻銅層。 芯材次組件102具有使用一層壓程序所形成之四個金 屬層以及兩個電鑛或是充填穿透通孔104。在其他實施例 中’芯材次組件102包括多於或少於兩個通孔,其包括穿透 通孔且/或微通孔。該單一金屬層基材或載體(704,70-2)各 12 M436298 包括多個微通孔150,其係以傳導漿加以充填,使每個組件 形成兩個堆疊通孔。欲組合該混合印刷電路板丨⑼能夠使 該等單-金屬隸材(7(M,70_2)在怎材:欠組件1〇2上方與下 方對齊,並使用一個或更多的黏著層將其一併擠壓以便 夾住該次組件102。Another embodiment of the present invention provides a method of fabricating a printed circuit board, the method comprising providing a core material assembly including at least one metal layer carrier, after processing each of the plurality of single metal layer carriers in parallel Providing a plurality of single metal layer carriers, wherein parallel processing of at least one of the plurality of single metal layer carriers comprises imaging the photoresist onto at least a portion of a substrate, the at least a portion of the substrate having the At least one copper foil on the first surface of the substrate; etching the substrate to have at least one portion of the copper foil; removing at least one layer of photoresist to expose at least a portion of the at least one copper foil, thereby forming at least one copper foil a pad; applying a laminating adhesive to the second surface of the substrate; applying a protective film to the laminating adhesive; forming at least one microvia in the second surface of the substrate to expose the at least a copper foil liner; filling a conductive paddle into the at least one microvia; and removing the protective film to expose the substrate for adhesion Attaching a laminating adhesive, at least two of the plurality of single metal layer carriers are adhered to each other and adhered to the first surface of the core material assembly; and at least two of the plurality of single metal layer carriers Adhered to each other and adhered to the core sub-assembly. Yet another embodiment of the present invention provides a method of fabricating a printed circuit board, the method comprising: providing a total of 5 M436298 of a core material comprising at least one metal layer carrier, and processing each of the plurality of single metal layer carriers in parallel After the carrier, the plurality of single metal layer carriers are adhered to each other to form a first subassembly, wherein parallel processing of at least one of the plurality of single metal layer carriers includes imaging the photoresist onto a substrate At least a portion of the substrate having at least one copper foil formed on the first surface of the substrate; the substrate having the at least one layer of copper foil; the at least one photoresist removed Exposing at least a portion of the at least one layer of copper foil to form at least one copper foil liner; applying a laminating adhesive to the second surface of the substrate; applying a protective film to the laminating adhesive; Forming at least one microvia in the second surface to expose the at least one copper foil liner; filling the conductive slurry into the at least one microvia; Removing the protective film to expose a laminating adhesive on the substrate for adhering, and after processing the plurality of single metal layer carriers in each of the single metal layer carriers in parallel, bonding the plurality of single metal layer carriers to each other to A second subassembly is formed, the first assembly is adhered to one of the first surfaces of the core subassembly, and the second subassembly is adhered to the second surface of the core subassembly. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a flow diagram of a sequential lamination process for fabricating a printed circuit board having a laminate pass, including sequential lamination and plating steps. Figure 2 is a flow diagram of a sequential lamination process for fabricating a printed circuit board having laminated vias in accordance with an embodiment of the present invention, including a separate lamination process. 3a-3g show a procedure for fabricating a 6 single metal layer substrate for a separate lamination cycle with stacked (or staggered) microvias, in accordance with an embodiment of the present invention In the handler. Figure 4a is a cross-sectional exploded view of a hybrid printed circuit board according to an embodiment of the present invention, comprising four etched single metal layer substrates of 3a to 3g and two untouched The engraved single metal layer substrate sandwiches a core sub-assembly. Figure 4b is a cross-sectional exploded view of a hybrid printed circuit board according to one embodiment of the present invention, comprising six etched single metal layer substrates shown in Figure 3g sandwiching a core material Assembly. Figure 4c is a cross-sectional exploded view of a hybrid printed circuit board according to one embodiment of the present invention, comprising six single metal layer substrates in a pre-compressed form as shown in Figure 3g. Core material sub-assembly. Figure 5 is a cross-sectional view of the completed hybrid printed circuit board of Figure 4b or 4c. Figure 6 is a cross-sectional view of a hybrid printed circuit board according to an embodiment of the present invention, comprising an external hybrid layer sandwiching two single sides on a side of a four-layer metal core assembly Metal layer substrate. Figure 7 is a cross-sectional view of a hybrid printed circuit board according to an embodiment of the present invention, comprising a hybrid layer adhered to two single metal layer bases sandwiching a four-layer metal core assembly One of the materials. Figure 8 is a cross-sectional view of a hybrid printed circuit board according to an embodiment of the present invention, comprising six single metal layer substrates shown in Figure 3g sandwiching a core material including an active device Sub-assembly. Figure 9 is a cross-sectional view of a hybrid printed circuit M436298 according to an embodiment of the present invention, comprising six single metal substrate substrates shown in Figure 3g, including a core of the active device Material sub-assembly. Figure 10 is a cross-sectional view of a k of a hybrid printed circuit board in accordance with an embodiment of the present invention including a cut-away region separating the flexible portion of the assembly from the rigid portion. [Implementation of the cold type] Detailed Description In the following detailed description, a practical example of the present invention will be shown and described by the drawings. As can be appreciated by those skilled in the art, the described embodiments can be modified in various ways without departing from the spirit and scope of the present invention. Accordingly, the drawings and description are to be regarded as illustrative rather than limiting. The components in the embodiments having the "," or "not shown" are not to be considered in the present description because the components are not necessary for a comprehensive understanding of the present invention. The same reference numerals represent the same elements. Figure 2 is a flow diagram of a process for making a transfer plate having a stack of through holes, in accordance with an embodiment of the present invention, the process comprising - an early layup. In the second step, the single-layer lamination process of Figure 2 essentially includes fewer processing steps. More specifically, the single-layer process of Figure 2 eliminates some of the steps used to fabricate multilayer printed circuit boards. The sequence of the sequence of the steps required for the process of the single-phase process for the manufacture of the board is described in US Patent No. 7,523,545 and U.S. Provisional Patent Application Serial No. (8)(7). The complete content of each case is incorporated by reference. 8 M436298 In the flow chart shown in Figure 2, the program implements some steps related to the printed circuit _ processing. In other implementations, _ use other suitable Printed circuit board technology, in place of the one shown in the drawings, includes conventional printed circuit board manufacturing techniques. In some embodiments, the program does not perform all of the operations described. In other embodiments, The program then performs additional operations. In the embodiment, the program performs the operations in a different order than the display. In some embodiments, the program performs certain jobs simultaneously. In an embodiment In the process, the procedure proceeds directly from "stacking and laminating, to "final finished product," in one embodiment, "developing, plating, stripping, etching, stripping, "development, shafting, stripping" force 〇 to replace. Figures 3a to 3g show a procedure for fabricating a single metal layer substrate for an early single lamination cycle or treatment with stacked (or staggered) microvias in accordance with an embodiment of the present invention. Program order. As shown in Figure 3a, a double-sided substrate or carrier was prepared. The substrate 10 includes a copper foil 1 〇a formed on the opposite side or surface of the substrate, and a core material 100b made of metal, ceramic or insulating material (for example, FR4, liquid crystal polymer (LCP) ), Thermount, Bismuthmine-Triazabenzene (BT), GPY, such as Teflon, heat-conducting carbon (stabiec〇r), halogen-free insulating materials, etc. GPY is a laminate that is not of the FR4 type such as polyamine, such as Kapton polyimide film, aziridine hardened epoxy, bismalimide, and other electrical grade laminates. However, 'the present invention is not limited to this'. For example, in one embodiment of the present invention, a single core material or substrate is used, and a copper foil (for example, a single layer film) is formed only on one side of the substrate. . In other embodiments, 9 M436298 can be used with other suitable substrates and conductive layer materials. In the embodiment shown in Figure 3a, the substrate has a thickness ranging from 3 to 4 mils (mil, thousandths of a mil) (or about 3 to 4 mils). However, in other embodiments The substrate and other components can have other suitable dimensions. In Figure 3b, two layers of photoresist 20 are imaged onto the substrate 10. Herein, the two-layer photoresist is shown directly imaged (or printed) by laser onto one side (i.e., the bottom side) of the substrate. However, the present invention is not limited to this. For example, the two layer photoresist can be imaged using any suitable printing method such as optical, screen, offset, ink jet, and the like. In one embodiment, more or less than two layers of photoresist can be imaged onto the substrate. In the 3c figure, except for the portion of the copper foil 1A covered by the two layers of photoresist 2, the copper is removed from the substrate, and then the portion covered by the coating is removed. 'In order to expose the corresponding copper lining 1 i. However, this novel is not limited to this. For example, in another embodiment of the present invention, a single metal layer carrier (e.g., one or more single-sided circuits) is formed by a preparation-gold plate (e.g., a residual steel plate). In terms of more details about the procedure for using the metal sheet, a thin copper is called a fast-to-side or more or more or more layered metal sheet applied to the metal sheet or More money is imaged (eg, negative film forming chamber I and then stripping photoresist: two more chambers are then used to form one or more steel foil liners for one or more layers of 10 M436298 more circuit layers) In addition, one or more prepreg systems are applied to the copper foil liners to laminate the prepregs and the metal sheets. The prepregs are then hardened. Laminated and hardened with a metal layer filled with a copper foil liner and a copper thin plating layer. The copper foil liner is then stripped with the copper thin coating and the hardened prepreg, and then removed by etching. The copper is thinly plated to expose a copper foil liner on the hardened prepreg. The circuit layer comprising the copper foil pads (eg, a pad or a circuit layer including a copper pad) Once formed, one of the protective films shown in Figure 3 (or A Mylar sheet 40 is attached to the substrate by laminating an adhesive (or a prepreg or an uncured prepreg) 30 between the Mylar sheet 40 and the core 10b. (or hardened prepreg) core material l〇b. In Fig. 3d, the protective layer or cisturbus anal sheet 4 is attached to the substrate with two copper foils The other side of the liner 1 side. However, the present invention is not limited to this case using only Mylar sheets, and it can be made of any other suitable material, such as polyester, oriented polypropylene, polyvinyl fluoride, poly Ethylene, high density polyethylene, polyethylene 2,6 naphthalate, pac〇thane, polydecylpentene or a combination thereof. In Figure 3e, a via or micro via 50 is formed on the substrate. 1〇 (or hardened prepreg). Each microvia 50 is drilled in a diameter of the substrate 1 (or hardened prepreg) by laser drilling (and/or mechanical drilling). Holes ranging from 4 to 10 mils (or about 4 to 10 mils) are formed. In other embodiments, microvias having other suitable diameters can be used. The vias or microvias can be generated using a photoimageable dielectric process, a plasma process sequence, an imprint process, or other suitable via generation process. In Figure 3f, a conduction The slurry (or ink) 6 is filled into microvias 50 each formed in the substrate 1 (or hardened prepreg), and in the 3g diagram, the Mylar sheet 40 is subsequently stripped to form a A single metal layer carrier 70 is used for lamination and lamination. In other embodiments, the metal layer carrier can include additional layers or germanium components. In an embodiment, for example, the metal layer carrier can include the use of a special layer or Lamination is performed to implement a buried resistor or a buried electrical valley. The metal layer carrier can also include surface treatment including, but not limited to, organometallic 'immersion gold' immersion in silver, immersion tin, and/or Apply outer copper before sticking. These surface treatments can improve electron and thermal conductivity. The metal layer supports can be laminated using a variety of different laminating machines including, but not limited to, all laminating presses, a laminating press, a hot rolling laminator, a vacuum laminator, a fast Laminating embossing machine, or other suitable laminating machine. Figure 4a is a cross-sectional exploded view of a hybrid printed circuit board 100-1 according to an embodiment of the present invention, the printed circuit board including four single metal layer substrates shown in Figures 3a to 3g The crucible and the two unetched single metal layer substrates 70-2 sandwich a core subassembly 丨〇2. The outer single metal layer substrate or the unetched substrate 70-2 has an unetched copper layer on its outer surface. The core subassembly 102 has four metal layers formed using a lamination process and two electric ore or filled through holes 104. In other embodiments, the core subassembly 102 includes more or less than two through holes including through holes and/or micro vias. The single metal layer substrate or carrier (704, 70-2) each 12 M436298 includes a plurality of microvias 150 that are filled with a conductive paste such that each component forms two stacked vias. The combination of the hybrid printed circuit board (9) enables the single-metal materials (7 (M, 70_2) to be aligned above and below the underlying component 1〇2 and to be bonded using one or more adhesive layers. It is squeezed together to clamp the subassembly 102.
在第4a圖中所示的實施例中,該芯材次組件具有四個 金屬層載體。在其他實施财,該糾次組件能夠具有多 於或少於四個金屬層賴。在此—_巾,制材次組件 係使用一有關於僅利用單次層壓之程序進行組裝。在其他 此等實施例中,該S材次組件係使用_有關於無層壓(例如 該3材次組件不具通孔)程序進行組裝。在某些實施例中, δ玄‘vi材次組件之諸層係在將S亥等單一金屬層載體層壓在一 起之時進行層壓,以形成該PCB。在其他實施例中,該芯 材次組件之諸層係在將該等單一金屬層載體層壓在一起之 前進行層壓。In the embodiment shown in Figure 4a, the core subassembly has four metal layer carriers. In other implementations, the correction component can have more or less than four metal layers. Here—the towel, the sub-assembly of the material is assembled using a procedure that utilizes only a single lamination. In other such embodiments, the S-material subassembly is assembled using a procedure for no lamination (e.g., the 3-material sub-assembly does not have a through-hole). In some embodiments, the layers of the δ 玄 ' vi sub-assembly are laminated while laminating a single metal layer carrier such as S Hai to form the PCB. In other embodiments, the layers of the core subassembly are laminated prior to laminating the single metal layer carriers together.
在第4a圖中所示之實施例中,三個單一金屬層載體係 配置在該:¾材次組件上方’且三個單一金屬層載體係配置 於其下方。在其他實施例中,該芯材次組件上方能夠配置 多於或少於三個單一金屬層載體。同樣地,在其他實施例 中’該ίί材次組件下方能夠配置多於或少於三個單一金屬 層載體。在一實施例中’ 一個或更多的芯材次組件係以一 具有傳導漿微通孔之單一金屬層基材加以取代。在第4a圖 中所示之實施例中’該混合PCB包括兩個堆疊通孔。在其 他實施例中,該混合PCB能夠具有多於或少於兩個堆疊通 13 第4b圖係為根據本新型之一實施例的一遇合印刷電路 板的-橫剔面分解圖’其包括六個第3§圖中所示之經触刻 單-金屬層基材夾住芯材次組件。除了外側單―金屬層載 體係根據第3a〜3g圖中所述之程序進㈣刻,而非如第_ 之未餘刻以外’第4b圖大致上與第4a圖類&。在其他觀點 中,第4b圖能夠以如同第4a圖中所示般實行。在第仆圖中, -疊微通孔151係與下方的穿透通孔1G4對齊,而其他的微 通孔150則偏移該等穿透通孔1〇4。 第4c圖係為根據本新型t 一實施例的1合印刷電路 板100-3之-橫剖面分解圖’其包括六個如叫圖所示處於 擠壓前形式之單-金屬層基材7(M夾住—芯材次組件。該 擠壓前形式包括一上方總成8(M,其包括該等六個單一金 屬層基材70-1其中三者、以及一下方總成8〇 2,其包括該等 六個單-金眉層基材7(M其中另外三者。除了第扑圖之該 等單-金屬層紐初鱗於-㈣狀“外,第如圖之實 施例係與第_者_。在其他觀財,第&圖能夠以如 同第4b圖中所示般實行。 第5圖係為根據第4 b或4 c圖之該等實施例的一完成混 合印刷電路板_·4之-橫剖面圖。在許多實施例中,除了 外部層包括未_鋼以外,第4a圖中之—完成的混合印刷 電路板外觀類似於第5圖。 第6圖係為根據本新型之一實施例的—混合pcB 2〇〇之 橫剖面圖,其包括-組合層27〇_2夾住兩個位於一個四層金 M436298 屬層芯材次組件202之兩側上的單一金屬層基材270-1。在 許多實施例宁,該混合PCB 200包含順序層壓板製造程序以 及單次層壓板製造程序之優點。例如,該混合PCB 200能夠 提供大致上或確實平坦的外部表面。在某些實施例中,該 等大致上或確實箏坦之表面係為業界高度期望者。此外, 混合PCB 200之製造程序能夠藉由去除許多不同的層壓與 電鍍步驟而改良製造時間與成本。In the embodiment shown in Figure 4a, three single metal layer carriers are disposed above the material assembly and three single metal layer carriers are disposed thereunder. In other embodiments, more or less than three single metal layer carriers can be disposed over the core subassembly. Likewise, in other embodiments, more or less than three single metal layer carriers can be disposed under the 材 material sub-assembly. In one embodiment, one or more of the core sub-assemblies are replaced by a single metal layer substrate having conductive microvias. In the embodiment shown in Figure 4a, the hybrid PCB includes two stacked vias. In other embodiments, the hybrid PCB can have more or less than two stacked passes. FIG. 4b is a cross-sectional exploded view of a coincident printed circuit board according to an embodiment of the present invention. The etched single-metal layer substrate shown in the third figure shows the core subassembly. Except for the outer single-metal layer carrier system, according to the procedure described in the figures 3a to 3g, (4), instead of the _th, the 4th diagram is substantially the same as the 4a diagram & Among other points of view, Figure 4b can be implemented as shown in Figure 4a. In the servant diagram, the stacked micro vias 151 are aligned with the underlying through vias 1G4, while the other microvias 150 are offset from the through vias 1〇4. Figure 4c is a cross-sectional exploded view of a 1-in printed circuit board 100-3 according to an embodiment of the present invention, which includes six single-metal layer substrates 7 in a pre-extrusion form as shown. (M-clamping - core material subassembly. The pre-extrusion form includes an upper assembly 8 (M comprising three of the six single metal layer substrates 70-1, and a lower assembly 8〇2 , which includes the six single-gold eyebrow base materials 7 (M of which are the other three. In addition to the single-metal layer of the first-metal layer in the first map in the - (four) shape, the embodiment shown in the figure And the other _. In other views, the & graph can be implemented as shown in Figure 4b. Figure 5 is a completed hybrid printing according to the embodiments of Figure 4b or 4c A cross-sectional view of a circuit board _·4. In many embodiments, except for the outer layer comprising un-steel, the finished hybrid printed circuit board in Figure 4a looks similar to Figure 5. Figure 6 is A cross-sectional view of a hybrid pcB 2 根据 according to an embodiment of the present invention, comprising - a combined layer 27 〇 2 sandwiching two sub-assemblies of a four-layer gold M436298 genus core material A single metal layer substrate 270-1 on either side of the 202. In many embodiments, the hybrid PCB 200 includes the advantages of a sequential laminate fabrication process and a single laminate fabrication process. For example, the hybrid PCB 200 can provide a rough Upper or indeed flat outer surface. In some embodiments, such substantially or indeed a surface is highly desirable in the industry. In addition, the manufacturing process of hybrid PCB 200 can be accomplished by removing many different laminates and The electroplating step improves manufacturing time and cost.
該四個單一金屬層基材270-1包括多個堆疊微通孔 250 ’且能夠使用上述任何程序加以形成。該四個金屬層芯 材次組件202包括多個穿透通孔2〇4,且能夠使用上述之順 序層壓程序加以形成。在某些實施例中,該等穿透通孔係 以銅或是傳導漿加以充填的微通孔進行取代。該兩個組合 層270-2包括多個經電錢或經充填之微通孔(例如,穿透通孔) 284,且能夠以第1圖中所示之用以製造PCB的程序加以形 成0 在第6圖中所示之實施例中,該PCB包括兩個單一金屬 層基材位於該芯材次組件的上方與下方。在其他實施例 中,該PCB能夠包括兩個以上的單一金屬層基材。在第6圖 中所示的實施例中’一組合層270-2係配置於該等單一金屬 層基材上方,且〆組合層270-2係配置於該等單一金屬層基 材下方。在其他實施例中,能夠將一個以上的組合層配置 在該等單一金屬層基材上方,並將一個以上的組合層配置 在該等單一金屬層基材下方。在一實施例中,一個或更多 的組合層係以該等單一金屬層基材其中另一層加以取代, 15 M436298 或者是一併去除。 在第6圖中所示之實施例中,一個四金屬層芯材次組件 202係配置在混合PCB 200之中央。在其他實施例中,該芯 材次組件能夠包括多於或少於四層。在第6圖中所示之該實 施例中,該四金屬層芯材次組件包括兩個電鏟或充填之穿 透通孔204。在其他實施例中,該芯材次組件能夠包括多於 或少於兩個通孔。在一此實施例中,該芯材次組件能夠不 具任何通孔。在第6圖中所示之該實施例中,該混合PCB包 括兩個堆疊通孔。在其他實施例中,該混合PCB能夠包括 多於或少於兩個堆疊通孔。 在第5與6圖中’芯材次組件1〇2與202各自包括兩個穿 透通孔(1〇4,2〇4) ’其係與單一金屬層基材(7〇_1,27〇-1)之堆 疊通孔150偏移。在其他實施例中,芯材次總成1〇2及202能 夠包括一個或更多的微通孔。在某些實施例中,該等微通 孔係以傳導衆墨水或銅加以充填。在此一實施例中,該傳 導性墨水微通孔具有一梯形橫剖面,其中微通孔之一較寬 開口係最接近該芯材次組件之一中心線(參看例如第5圖中 之微通孔150的方向)。在某些實施例中,次組件丨及202 之穿透通孔並未與該單一金屬層基材的堆疊通孔偏移。 第7圖係為根據本新型之一實施例的一混合pcB 3〇〇之 一橫剖面圖,其包括一組合層27〇_2,該組合層黏附到該等 四個單一金屬層基材其中夾住一個四金屬層芯材次組件 202的一者。该混合PCB 300包括組合層270-2,其在芯材次 組件202之一側上夾住兩個單一金屬層基材mi。該混合 16 M436298 PCB 3 00進一步包把上 /匕栝兩個單一金屬層基材270-1 ,其在芯材 人’.且件之另側上失住該四金屬層芯材次組件2〇2。除 了去除外雜合層以外第7圖中所示之實施例係與第6圖 的實把例祕。在其他實施例巾,該上方單-金屬層載體 八中者或一者亦能夠加以去除。在許多實施例中, 第7圖之一 PCB的構造能夠以類似於上述用於第6圖之該 混合PCB的方式進行修改。 第8圖係為根據本新型之一實施例的一混合印刷電路 板400之一橫剖面圖,其包括六個第%圖之單一金屬層基材 (470-1,470-2)夾住包括一主動裝置4〇6的一芯材次組件 402。除了該芯材次組件4〇2包括實施例的主動裝置4〇6、且 上方單一金屬層基材470-2包括額外的微通孔450,其形成 一堆疊通孔’用以連接到該主動裝置406以外,第8圖中所 示之該混合PCB 400係與第5圖的實施例類似。該主動裝置 406可為一電晶體、積體電路,或是其他普遍結合—印刷電 路板使用之主動裝置。在第8圖中所示之該實施例中,該混 合PCB 400包括一單獨主動裝置4〇6。在其他實施例中能 夠使用額外的主動裝置以及額外的通孔,用以支撐各種不 同的所需連接。在許多實施例中,第8圖之該混合pCB能夠 以類似於上述用於第4a,4b,4c,5及6圖之該混合PCB的方式 進行修改。在一實施例中,該主動裝置能夠位於該等單一 金屬層基材其令一者之上或之内。在其他實施例中,主動 裝置能夠位於單一金屬層基材與芯材次組件其中任何一者 之上或之内。 17 M436298 第9圖係為根據本新型之一實施例的一混合印刷電路 板500之一橫剖面圖,其包括兩個第3g圖之單一金屬岸美材 (570-1J70-2)夾住包括一主動裝置5〇6的一芯材次組件 502。除了包括一額外的通孔584,用以連接主動裝置5〇6, 其係進一步實施在第8圖中之芯材次組件502内以外,第9圖 中所示之該PCB係大致上與第8圖者類似。在其他觀點中, 第9圖之該混合PCB的功能能夠如同第8圖之該混合peg,亦 能夠如其一般進行修改。 第10圖係為根據本新型之一實施例的一印刷電路板總 成600之一橫剖面圖,其包括使該總成之撓性區域6〇6與堅 硬區段(602,604)分離之切除區域。通孔6〇8能夠提供不同撓 性、堅硬以及堅硬·撓性層之間的電子互連性。 在許多實施例中,該電路板總成600能夠使用文中所描 述之任何製造程序所形成,包括例如上述在第3a〜3g,4a〜4c 圖中的單獨層壓程序。習用的層壓程序,包括順序層壓類 程序’需要一相當大量的處理步驟,其可能會在製造程序 期間損壞一挽性或堅硬-撓性基材。更具體而言,諸如電 鍵、清潔、擦栻以及平面化之習用的處理步驟可能會損壞 撓性或是堅硬-撓性基材’並導致產生些許定位公差的相關 問題。根據文中所述之製造程序,能夠形成電路板總成 600’同時避免或顯著減少許多習用程序普遍使用的重複步 驟’包括例如侵入電鍍、清潔、擦拭,以及平面化處理步 驟。 儘管以上描述包含許多本新型之特定實施例,其不應 18 視為本新型之限制’而應視為其特定實施例之範例。因此, 本新型之範疇並非限定於所顯示之實施例,而係由所附申 請專利範圍及其同等項目加以界定。 例如,文中所述之製造程序能夠結合一些技術加以使 用,包括但非限定於:覆晶、微機電系統(MEMS)電路、陶 瓷封裝、有機封裝、高密度基材、球柵陣列(BGA)基材、堅 硬基材、撓性基材,以及堅硬-撓性基材。 在某些實施例中,文中所述之該等微通孔可稱之為Z 軸互連孔。 在上述實施例中’電路板總成係使用穿透通孔、通孔、 微通孔、盲通孔或其他通孔所形成。在其他實施例中,這 些通孔能夠交互更換使用’且/或能夠以業界熟知的其他適 當通孔加以取代。 t圖式簡單說明ϋ 第1圖係為用以製造一具有層壓通孔之印刷電路板的 一種順序層壓程序之流程圖,其包括順序層壓及電鑛步驟。 第2圖係為根據本新型之一實施例的用以製造一具有 層壓通孔之印刷電路板的一種順序層壓程序之流程圖,其 包括一單獨層壓程序。 第3a~3g圖顯示根據本新型之一實施例的用以製造一 單一金屬層基材的程序,該基材係用於具有堆疊(或交錯) 微通孔的一單獨層壓循環或是處理程序中。 第4a圖係為根據本新型之一實施例的一混合印刷電路 板之一橫刺面分解圖’其包含四個第3a〜3g圖之經触刻的單 19 M436298 一金屬層基材以及兩個未經触刻的單一金屬層基材災住一 芯材次總成。 第4 b圖係為根據本新型之一實施例的一混合印刷電路 板之一橫剖面分解圖,其包含六個第3g圖中所示之經蝕刻 單一金屬層基材夾住一芯材次總成。 第4 c圖係為根據本新型之一實施例的一混合印刷電路 板之一橫剖面分解圖,其包含六個第3g圖中所示之採用預 壓形式之單一金屬層基材夾住一芯材次總成。 第5圖係為第4b或4c圖之經完成的混合印刷電路板之 一橫剖面圖。 第6圖係為根據本新型之一實施例的一混合印刷電路 板之一橫剖面圖,其包括一外部混成層夾住兩個位於一個 四層金屬層芯材次總成兩側上的單一金屬層基材。 第7圖係為根據本新型之一實施例的一混合印刷電路 板之一橫剖面圖,其包括一混成層黏附到兩個夾著一個四 層金屬層芯材次總成之單一金屬層基材其中一者。 第8圖係為根據本新型之一實施例的一混合印刷電路 板之一橫剖面圖,其包括六個第3g圖所示之該單一金屬層 基材夾著一包括一主動裝置之芯材次總成。 第9圖係為根據本新型之一實施例的一混合印刷電路 板之一橫剖面圖,其包括六個第3g圖所示之該單一金屬層 基材夾著一包括一主動裝置之芯材次總成。 第10圖係為根據本新型之一實施例的一混合印刷電路 板之一橫剖面圖,其包括使該總成之撓性部分與堅硬區段 20 M436298 分離之切除區域。 【主要元件符號說明】 10...雙面基材 200…混合印刷電路板 10a...銅猪 10b...芯材 11.. .銅箔襯垫 20.. .光阻劑 30.. .層壓黏著劑 40…保護薄膜 50.. .通孔/微通孔 60.. .傳導漿 70…單一金屬層載體 70-1...單一金屬層基材 70-2.··單一金屬層基材 80-1...上方總成 80-2...下方總成 100-1...混合印刷電路板 100-2...混合印刷電路板 100-3…混合印刷電路板 100-4…混合印刷電路板 102.. .芯材次組件 104…穿透通孔 150.. .微通孔 151.. .微通孔 202.. .芯材次組件 204.. .穿透通孔 250.. .堆疊微通孔 270-1…單一金屬層基材 270-2.·.組合層 284.. .微通孔 300…混合印刷電路板 400.. .混合印刷電路板 402.. .芯材次組件 406.. .主動裝置 450.. .微通孔 470-1...單一金屬層基材 470-2...單一金屬層基材 500.. .混合印刷電路板 502.. .芯材次組件 504.. .穿透通孔 506.. .主動裝置 550.. .微通孔 570-1…單一金屬層基材 570-2...單一金屬層基材 584.. .通孔 21 M436298 600.. .印刷電路板總成 606...撓性區域 602.. .堅硬區段 608…通孔 604.. .堅硬區段 22The four single metal layer substrates 270-1 comprise a plurality of stacked microvias 250' and can be formed using any of the procedures described above. The four metal layer core sub-assemblies 202 include a plurality of through vias 2〇4 and can be formed using the sequential lamination procedure described above. In some embodiments, the through vias are replaced by microvias filled with copper or a conductive paste. The two combined layers 270-2 include a plurality of charged or filled microvias (e.g., through vias) 284, and can be formed by the procedure for fabricating the PCB shown in FIG. In the embodiment shown in Figure 6, the PCB includes two single metal layer substrates above and below the core subassembly. In other embodiments, the PCB can include more than two single metal layer substrates. In the embodiment shown in Fig. 6, a combination layer 270-2 is disposed over the single metal layer substrates, and the tantalum composite layer 270-2 is disposed under the single metal layer substrates. In other embodiments, more than one combined layer can be disposed over the single metal layer substrates and more than one combined layer can be disposed beneath the single metal layer substrates. In one embodiment, one or more of the combined layers are replaced by another of the single metal layer substrates, 15 M436298 or removed together. In the embodiment shown in Fig. 6, a four metal core component subassembly 202 is disposed in the center of the hybrid PCB 200. In other embodiments, the core subassembly can include more or less than four layers. In the embodiment illustrated in Figure 6, the four metal core component subassembly includes two shovel or filled through holes 204. In other embodiments, the core subassembly can include more or less than two through holes. In one such embodiment, the core subassembly can have no through holes. In the embodiment shown in Figure 6, the hybrid PCB includes two stacked vias. In other embodiments, the hybrid PCB can include more or less than two stacked vias. In Figures 5 and 6, the core sub-assemblies 1〇2 and 202 each comprise two through-vias (1〇4, 2〇4) 'with a single metal layer substrate (7〇_1, 27) The stack via 150 of 〇-1) is offset. In other embodiments, the core sub-assemblies 1〇2 and 202 can include one or more micro-through holes. In some embodiments, the microvias are filled with conductive ink or copper. In this embodiment, the conductive ink microvia has a trapezoidal cross section, wherein one of the microvias has a wider opening closest to a centerline of the core subassembly (see, for example, the micrograph in FIG. 5) The direction of the through hole 150). In some embodiments, the through vias of the submounts 202 and 202 are not offset from the stacked vias of the single metal layer substrate. Figure 7 is a cross-sectional view of a hybrid pcB 3 根据 according to an embodiment of the present invention, comprising a composite layer 27 〇 2, the composite layer being adhered to the four single metal layer substrates One of the four metal core component subassemblies 202 is clamped. The hybrid PCB 300 includes a composite layer 270-2 that sandwiches two single metal layer substrates mi on one side of the core material subassembly 202. The hybrid 16 M436298 PCB 3 00 further encloses the upper/twist two single metal layer substrates 270-1 which are missing the core metal sub-assembly on the other side of the core member. 2. The embodiment shown in Fig. 7 and the actual example of Fig. 6 are removed except for the removal of the outer hybrid layer. In other embodiments, the upper single-metal layer carrier or one of the upper ones can also be removed. In many embodiments, the construction of the PCB of Figure 7 can be modified in a manner similar to that described above for the hybrid PCB of Figure 6. Figure 8 is a cross-sectional view of a hybrid printed circuit board 400 in accordance with an embodiment of the present invention, comprising a six-figure single metal layer substrate (470-1, 470-2) sandwiched including an active A core subassembly 402 of the device 4〇6. In addition to the core subassembly 4〇2 including the active device 4〇6 of the embodiment, and the upper single metal layer substrate 470-2 includes an additional micro via 450, which forms a stacked via for connecting to the active In addition to device 406, the hybrid PCB 400 shown in Figure 8 is similar to the embodiment of Figure 5. The active device 406 can be a transistor, an integrated circuit, or other active device that is commonly used in conjunction with printed circuit boards. In the embodiment shown in Figure 8, the hybrid PCB 400 includes a separate active device 4〇6. Additional active devices and additional through holes can be used in other embodiments to support a variety of different desired connections. In many embodiments, the hybrid pCB of Figure 8 can be modified in a manner similar to that described above for the hybrid PCBs of Figures 4a, 4b, 4c, 5 and 6. In one embodiment, the active device can be located on or within the single metal layer substrate. In other embodiments, the active device can be located on or in any of a single metal layer substrate and a core material subassembly. 17 M436298 Figure 9 is a cross-sectional view of a hybrid printed circuit board 500 in accordance with an embodiment of the present invention, comprising two 3g drawings of a single metal shore material (570-1J70-2) clamped to include A core material subassembly 502 of an active device 5〇6. In addition to including an additional through hole 584 for connecting the active device 5〇6, which is further implemented in the core material subassembly 502 in FIG. 8, the PCB system shown in FIG. 9 is substantially the same as the first 8 figures are similar. Among other points of view, the function of the hybrid PCB of Fig. 9 can be modified as in the case of the hybrid peg of Fig. 8. Figure 10 is a cross-sectional view of a printed circuit board assembly 600 in accordance with an embodiment of the present invention including a resected area separating the flexible region 6〇6 of the assembly from the hard section (602, 604) . The through holes 6 〇 8 are capable of providing electrical interconnection between different flexural, rigid and hard and flexible layers. In many embodiments, the board assembly 600 can be formed using any of the fabrication procedures described herein, including, for example, the separate lamination procedures described above in Figures 3a through 3g, 4a through 4c. Conventional laminating procedures, including sequential laminating procedures, require a significant amount of processing steps that can damage a pull-up or hard-flexible substrate during the manufacturing process. More specifically, conventional processing steps such as electrical bonding, cleaning, wiping, and planarization can damage flexible or rigid-flexible substrates and cause problems associated with a slight positioning tolerance. In accordance with the fabrication procedures described herein, the circuit board assembly 600' can be formed while avoiding or significantly reducing the repetitive steps commonly used in many conventional programs' including, for example, invasive plating, cleaning, wiping, and planarization processing steps. Although the above description contains many specific embodiments of the present invention, it should not be construed as a limitation of the present invention. Therefore, the scope of the novel is not limited to the embodiments shown, but is defined by the scope of the appended claims and their equivalents. For example, the fabrication procedures described herein can be used in conjunction with a number of techniques including, but not limited to, flip chip, microelectromechanical systems (MEMS) circuits, ceramic packages, organic packages, high density substrates, ball grid array (BGA) based Materials, rigid substrates, flexible substrates, and hard-flex substrates. In some embodiments, the microvias described herein may be referred to as Z-axis interconnects. In the above embodiment, the circuit board assembly is formed using through holes, through holes, micro via holes, blind via holes or other through holes. In other embodiments, these vias can be interchangeably used' and/or can be replaced with other suitable vias well known in the art. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart of a sequential lamination process for fabricating a printed circuit board having laminated vias, including sequential lamination and electro-minening steps. Figure 2 is a flow diagram of a sequential lamination process for fabricating a printed circuit board having laminated vias in accordance with an embodiment of the present invention, including a separate lamination process. Figures 3a-3g show a procedure for fabricating a single metal layer substrate for a separate lamination cycle or treatment with stacked (or staggered) microvias in accordance with an embodiment of the present invention. In the program. Figure 4a is a cross-sectional exploded view of one of the hybrid printed circuit boards according to an embodiment of the present invention. The four-layered M19298 metal layer substrate comprising four 3a~3g patterns and two An untouched single metal layer substrate catastrophes a core material sub-assembly. Figure 4b is a cross-sectional exploded view of a hybrid printed circuit board according to one embodiment of the present invention, comprising six etched single metal layer substrates shown in Figure 3g sandwiching a core material Assembly. Figure 4c is a cross-sectional exploded view of a hybrid printed circuit board according to one embodiment of the present invention, comprising six single metal layer substrates in a pre-compressed form as shown in Figure 3g. Core material sub-assembly. Figure 5 is a cross-sectional view of the completed hybrid printed circuit board of Figure 4b or 4c. Figure 6 is a cross-sectional view of a hybrid printed circuit board according to an embodiment of the present invention, comprising an external hybrid layer sandwiching two single sides on a side of a four-layer metal core assembly Metal layer substrate. Figure 7 is a cross-sectional view of a hybrid printed circuit board according to an embodiment of the present invention, comprising a hybrid layer adhered to two single metal layer bases sandwiching a four-layer metal core assembly One of the materials. Figure 8 is a cross-sectional view of a hybrid printed circuit board according to an embodiment of the present invention, comprising six single metal layer substrates shown in Figure 3g sandwiching a core material including an active device Sub-assembly. Figure 9 is a cross-sectional view of a hybrid printed circuit board according to an embodiment of the present invention, comprising six single metal layer substrates shown in Figure 3g sandwiching a core material including an active device Sub-assembly. Figure 10 is a cross-sectional view of a hybrid printed circuit board in accordance with an embodiment of the present invention including a cut-away region separating the flexible portion of the assembly from the hard section 20 M436298. [Main component symbol description] 10...double-sided substrate 200...mixed printed circuit board 10a...copper pig 10b...core material 11..copper foil liner 20..resist 30.. Laminating Adhesive 40... Protective Film 50.. Through Hole/Micro Through Hole 60.. Conductive Paste 70... Single Metal Layer Carrier 70-1... Single Metal Layer Substrate 70-2.··Single Metal Layer substrate 80-1...upper assembly 80-2...lower assembly 100-1...mixed printed circuit board 100-2...hybrid printed circuit board 100-3...hybrid printed circuit board 100 -4...mixed printed circuit board 102.. core material subassembly 104...through hole 150.. microvia 151.. microvia 202.. core subassembly 204.. Hole 250.. .Stacked micro-vias 270-1...single metal layer substrate 270-2.. combination layer 284.. micro-via 300...mixed printed circuit board 400.. mixed printed circuit board 402.. Core material sub-assembly 406.. Active device 450.. microvia 470-1... single metal layer substrate 470-2... single metal layer substrate 500.. mixed printed circuit board 502. .. core material sub-assembly 504.. through hole 506.. active device 550.. micro-via 570-1... single metal layer substrate 570-2... single Base metal layer 584 .. The vias 21 M436298 600 ... ... The printed circuit board assembly 606 of the flexible region 602 ... 608 ... hard segments through hole 604 ... Stiff section 22
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100219970U TWM436298U (en) | 2011-10-24 | 2011-10-24 | Printed circuit boards |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100219970U TWM436298U (en) | 2011-10-24 | 2011-10-24 | Printed circuit boards |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM436298U true TWM436298U (en) | 2012-08-21 |
Family
ID=47048770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100219970U TWM436298U (en) | 2011-10-24 | 2011-10-24 | Printed circuit boards |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM436298U (en) |
-
2011
- 2011-10-24 TW TW100219970U patent/TWM436298U/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8863379B2 (en) | Methods of manufacturing printed circuit boards using parallel processes to interconnect with subassemblies | |
KR100338908B1 (en) | Printed circuit board and electronic components | |
TWI233771B (en) | Flexible rigid printed circuit board and method of fabricating the board | |
KR100782407B1 (en) | Method for manufacturing circuit board | |
WO2008105867A1 (en) | Methods to produce high density, multilayer printed wiring boards from parallel-fabricated circuits and filled vias | |
EP2327282B1 (en) | Additional functionality single lammination stacked via with plated through holes for multilayer printed circuit boards | |
US10973133B2 (en) | Sacrificial structure with dummy core and two sections of separate material thereon for manufacturing component carriers | |
KR101694575B1 (en) | Methods of manufacturing printed circuit boards using parallel processes to interconnect with subassemblies | |
TW201424501A (en) | Package structure and method for manufacturing same | |
TW201406222A (en) | Multilayer printed circuit board and method for manufacturing same | |
JP2004079773A (en) | Multilayer printed wiring substrate and its production method | |
KR101205464B1 (en) | Method for manufacturing a printed circuit board | |
JP2001068856A (en) | Insulation resin sheet and its manufacture | |
JP2003318550A (en) | Laminated wiring board and multilayer wiring assembly, and method for manufacturing the same | |
JP3738536B2 (en) | Method for manufacturing printed wiring board | |
TWM436298U (en) | Printed circuit boards | |
TW201318500A (en) | Methods of manufacturing printed circuit boards using parallel processes to interconnect with subassemblies | |
JP2004214393A (en) | Method for producing multilayer wiring board | |
JP2010258081A (en) | Method for manufacturing printed board | |
JP2001308521A (en) | Method for manufacturing multilayered circuit board | |
JP2004214273A (en) | Method for manufacturing single side lamination wiring board | |
JP2007329244A (en) | Method of manufacturing laminated circuit wiring board | |
JP2001144445A (en) | Method for producing multilayer printed wiring board | |
JP2004207266A (en) | Method for manufacturing connection substrate and multilayer wiring board | |
KR101088062B1 (en) | A build-up printed circuit board of stack type using bump structure and manufacturing method of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4K | Annulment or lapse of a utility model due to non-payment of fees |