M408068 五、新型說明: 【新型所屬之技術領域】 本創作係有關於一種散熱模組,尤指一種具有減少熱 阻’以有效提升熱傳效率之散熱模組。 【先前技術】 如今,在電腦產業中,為將發熱電子元件(如中央處理 器、南北橋晶片)產生之熱量有效散發,通常採用方法係將 被動式的散熱器緊祖地貼設於發熱電子元件溢熱表面,以 協助發熱電子元件散熱,故保證發熱電子元件能夠在適當 溫度下運作。 而習知的散熱器一般分為一體式散熱器以及將散熱鰭 片組接於基座而成之嵌接式散熱器二種;其中一體式散熱 器其主要係具有一基座,該基座之一側得直接接觸發熱 源,相反之另一側則延伸設有散熱鰭片,用以將基座吸收 之熱源向外散發;所述嵌接式散熱器請參閱第1A、1B圖, 該散熱器1係包括一基座1〇及複數散熱鰭片12,該基座 10具有複數凹槽101,該等凹槽1〇1係凹設形成在該基座 10的一側上,其用以供該等散熱鰭片12插設;而該基座 10的另一侧則貼設於對應的一發熱元件14(如中央處理 器、南北橋晶片)上’用以吸收發熱元件14所產生的熱量。 前述每一散熱鰭片12具有一吸熱端121及一從該吸熱 端121延伸之散熱端122,該吸熱端121係容置固定在該 凹槽101内’以與該基座1〇構成所述散熱模組1,所以當 發熱元件14產生熱量時,該基座1〇會吸收該發熱元件 其上的熱量,引導至該等凹槽1〇1内對應的吸熱端12ι上, 使該等吸熱端121將接收的熱量傳遞給該等散熱端, 然後透過該等散熱端122將其上的熱量向外擴散散熱。 雖上述兩種習知之散熱器皆可對發熱元件14達到散 熱目的,但其散果並不彰顯,詳細說明如后:原因習知散 熱模組1對該發熱元件14散熱時,必需透過該基座1〇傳 遞熱量,使得發熱元件14的熱量是將由基座1〇再間接傳 遞至該等散熱鰭片12上,以導致熱傳導過程會產生熱阻現 象,所以俾使造成整體熱傳效率不佳,相對的勢必會影響 到整體散熱效果。 以上所述,習知具有下列缺點: 1. 熱傳效率不佳; 2. 因需透過該基座傳遞熱量,以導致會產生熱阻; 3·散熱效能不佳。 是以,要如何解決上述習用之問題與缺失,即為本案 之創作人與從事此行業之侧_職欲研究改善之方向 所在者。 【新型内容】 爰此,為有效解決上述之問題,本創作之主要目的在 提供-種具有減少熱阻,以提升熱傳效率之散熱模組。 本創作之次要目的’係提供一種具有達到絕佳的散熱 效果之散熱模組。 為達上述目的,本創作係提供一種散熱模組,係包括 一基座具有複數溝槽及一底部,該等溝槽係貫穿該基座; 及一散熱鰭片組係具有複數散熱鰭片,該每一散熱鰭片具 有一散熱端及一從該散熱端延伸之吸熱端,該吸熱端係對 應貫穿該溝槽且彎折貼設於該底部,以與該基座結合一體 構成所述散熱模組;所以透過本創作之該等散熱鰭月之吸 熱端直接吸附熱量以將其直接傳遞至散熱端散熱,藉以減 少熱阻及提升熱傳效率,以有效達到絕佳之散熱效果。 【實施方式】 本創作之上述目的及其結構與功能上的特性,將依據 所附圖式之較佳實施例予以說明。 本創作係一種散熱模組’請參閱第2A、3、4圖係顯示 本創作之第一較佳實施例之示意圖,該散熱模組2係包括 一基座21及一散熱鰭片組22’該基座21具有複數溝槽2Π 及一底部213,該等溝槽211係貫穿該基座21,亦即該等 溝槽211係貫設形成在該基座21上,且其排列方式係為如 第2A圖呈等距間隔排列設置,或如第2B圖呈不等距間隔 排列設置。 前述散熱鰭片組22具有複數散熱鰭片221,該每一散 熱鰭片221具有一散熱端223及一吸熱端224,該等散熱 鰭片221之散熱端223共同界定一取熱部226,用以將吸 收的熱量與外面空氣作熱交換散熱,該吸熱端224係對應 貫穿該溝槽211且彎折貼設於該底部213,即該等散熱_ 片221之吸熱端224朝對應溝槽211貫穿,並突出於對應 的溝槽211外’並利用機械加工(諸如滾乳加工或沖麗加 M408068 工方式等)使前述突出在溝槽211外的吸熱端现彎折, 而緊貼靠在該基座21的底部213,以令該等散熱韓片221 月=與該基座21結合成一體’進而構成所述散熱模組心 9、"參閱第2A、3圖’從圖3中觀之前述突出於該溝槽 211外的吸熱端224係與散熱鰭片221呈垂直,且該等散 熱韓片221的吸熱端224共同界定—吸熱部挪,該吸敎 部227係貼設於-發熱元件3(如中央處理器、南北橋晶 片、顯不處理晶片或其他發熱源)上,其用以將吸收該發埶 讀3所產生的熱量後,直接傳遞至其上的散熱部咖對 外擴散散熱。 因此透過本創作之散_片221的吸熱部挪直接將 吸附的熱量引導至其上散熱部226散熱的設計,俾使有效 減少熱阻及又可提升整_熱傳鱗,進而有效達到絕佳 之散熱效果者。 »月參閱第5 6、7 ®係顯示補作之第二較佳實施例 示意圖,職佳實施_結構及連結_及其元件符號大 致與前述第-較佳實施相同,故在此不麟贅述,其兩者 不同處在於:祕散熱 2更包含至少—熱f %,並前 述基座21更包含複數結合槽24及至少一凹槽烈,盆中該 等結合槽24伽設形成麵應該· 211絲座外側 之間’其用以提供對應的吸熱端224相插設固定,以輔助 固定該等散熱㈣22卜該凹槽25係凹設在該底部213, 且對應連通該溝槽211,令該吸熱端故彎折貼設於對應 的凹槽25内。 6 於該較佳實施前述凹槽25係以喃凹槽25匹配四隻 熱管26做說明,但並不侷限於此,於具體實施時,使用者 可以事先根據散熱空間及散熱效果的需求,選擇設計該凹 槽25及熱管26的數量,合先陳明。 +續參閱第6圖,輔以參閱第7圖,前述熱管26具有一 f备發端261及-冷凝端262 ’其中該冷凝端262係穿設前 述散熱部226 ’亦即冷凝端262 —端依序穿接該等散熱端 223,而該蒸發端261係容設固定在對應凹槽25内且其 具有-第-側2611及-第二側2612,該第一侧2611係緊 貼靠該等吸_ 224(即前述吸熱部227),該第二侧2612 則與對應的發熱元件3相貼設。 所以當發熱元件3產生熱量時,前述熱管26之蒸發端 261會將吸收到的熱量傳送至該冷凝端脱上,使冷凝端 262將接收的熱量傳遞給穿接其上的散熱部咖對夕;擴散 散熱’同-時間該吸熱部227也會吸收並分擔該蒸發端加 其上部分熱量’即前述吸熱部227將吸附的部分敎量直接 地傳送到該散熱部226上,賴透過該散熱部226、縣上 的熱量與外面线作熱交_達職熱縣,因此,使得 有效達到雙重吸熱的效果,且又可避免熱阻產生,進而= 效達到提升整體的熱傳效率以及絕佳的散熱效果。 以上所述,本創作相較於習知具有下列之優點: L具有提升熱傳效率; 2. 具有避免熱阻的產生; 3. 具有絕佳的散熱效果。 淮以上所述者,僅係本創作 已,舉凡利用本創作上述之方狀可J亍之實施例而 之變化,皆應包含於本案之= 【圖式簡單說明】 第1A圖係習知之纽合立體示意圖; 第1β圖係f知之組合剖面立體示意圖; 圖圖係本創作之第-較佳實施例之另-組合立體示意 係本創作之第2A圖之組合剖面示意圖; 第4圖係本創作之+ 第5 錢狀麵立細意圖; '、補作之$二難實之 第6圖係本創作之μ ± 粒不思圖’ 圖; 第一較佳實施例之組合局部剖面示意 第7圖係本創作之第二較佳實施例之分解立體示意圖。 【主要元件符號說明】 散熱模組 . 基座 2 吸熱部 … 227 溝槽 ·.. 21 結合槽 … 24 底部 ·.. 211 凹槽 … 25 .·. 213 熱管 • · · Op 散熱鰭片組 26 散熱鰭片 ...22 蒸發端 … 261 ...221 第一侧 .·. 2611 M408068 散熱端 … 223 第二侧 …2612 吸熱端 … 224 冷凝端 … 262 散熱部 … 226 發熱元件 … 3M408068 V. New Description: [New Technology Field] This creation is about a heat dissipation module, especially a heat dissipation module with reduced heat resistance to effectively improve heat transfer efficiency. [Prior Art] Nowadays, in the computer industry, in order to effectively dissipate the heat generated by the heat-generating electronic components (such as the central processing unit, the north-south bridge chip), the passive heat sink is affixed to the heat-generating electronic components. The heat-absorbing surface helps to dissipate heat from the heat-generating electronic components, thus ensuring that the heat-generating electronic components can operate at an appropriate temperature. The conventional heat sink is generally divided into an integrated heat sink and an embedded heat sink formed by assembling the heat sink fins to the base; wherein the integrated heat sink mainly has a base, and the base One side has direct contact with the heat source, and the other side has a heat dissipating fin extending to dissipate the heat source absorbed by the pedestal; the embedded heat sink is shown in FIGS. 1A and 1B. The heat sink 1 includes a base 1 〇 and a plurality of heat dissipation fins 12 . The base 10 has a plurality of grooves 101 , and the grooves 1 凹 1 are recessed on one side of the base 10 for use. The other side of the susceptor 10 is attached to a corresponding heating element 14 (such as a central processing unit, a north-south bridge chip) to absorb the heat generating component 14 The heat. Each of the heat dissipation fins 12 has a heat absorption end 121 and a heat dissipation end 122 extending from the heat absorption end 121. The heat absorption end 121 is received in the groove 101 to form the same as the base 1 The heat dissipation module 1 is such that when the heat generating component 14 generates heat, the susceptor 1 absorbing the heat on the heat generating component and guiding it to the corresponding heat absorbing end 12 ι of the recesses 1 〇 1 to make the heat absorbing. The end 121 transmits the received heat to the heat dissipating ends, and then dissipates heat from the heat dissipating end 122 to the outside. Although the above two conventional heat sinks can achieve the purpose of dissipating heat to the heat generating component 14, the scattered effect is not obvious, and the detailed description is as follows: the reason is that the heat radiating module 1 needs to transmit the heat to the heat generating component 14 through the base. The heat transfer of the heating element 14 causes the heat of the heating element 14 to be indirectly transferred from the susceptor 1 to the heat dissipating fins 12, thereby causing thermal resistance during the heat conduction process, so that the overall heat transfer efficiency is poor. Relatively, it will inevitably affect the overall heat dissipation effect. As mentioned above, the conventional disadvantages are as follows: 1. The heat transfer efficiency is not good; 2. The heat is transmitted through the base to cause thermal resistance; 3. The heat dissipation performance is poor. Therefore, how to solve the above problems and problems in the past, that is, the creator of the case and the direction of the research and improvement of the side of the industry. [New content] In order to effectively solve the above problems, the main purpose of this creation is to provide a heat dissipation module with reduced thermal resistance to improve heat transfer efficiency. The secondary purpose of this creation is to provide a thermal module that achieves excellent heat dissipation. To achieve the above objective, the present invention provides a heat dissipation module comprising a base having a plurality of grooves and a bottom, the grooves extending through the base; and a heat dissipation fin assembly having a plurality of heat dissipation fins. Each of the heat dissipating fins has a heat dissipating end and a heat absorbing end extending from the heat dissipating end. The heat absorbing end is correspondingly penetrated through the groove and is bent and attached to the bottom to integrally form the heat dissipation with the base. Modules; therefore, through the heat-absorbing end of the heat-dissipating fins of the present invention, the heat is directly absorbed to directly transfer heat to the heat-dissipating end, thereby reducing thermal resistance and improving heat transfer efficiency, so as to effectively achieve excellent heat dissipation. [Embodiment] The above object of the present invention, as well as its structural and functional features, will be described in accordance with the preferred embodiments of the drawings. The present invention is a heat dissipation module. Please refer to FIGS. 2A, 3 and 4 for a schematic view showing a first preferred embodiment of the present invention. The heat dissipation module 2 includes a base 21 and a heat dissipation fin set 22'. The pedestal 21 has a plurality of trenches 2 Π and a bottom portion 213. The trenches 211 are formed through the susceptor 21, that is, the trenches 211 are formed on the pedestal 21, and the arrangement is For example, FIG. 2A is arranged at equal intervals, or as shown in FIG. 2B at unequal intervals. The heat dissipation fins 22 have a plurality of heat dissipation fins 221, and each of the heat dissipation fins 221 has a heat dissipation end 223 and a heat absorption end 224. The heat dissipation ends 223 of the heat dissipation fins 221 collectively define a heat extraction portion 226. The heat-absorbing end 224 is heat-exchanged with the outside air, and the heat-absorbing end 224 is correspondingly inserted through the groove 211 and is bent and attached to the bottom 213, that is, the heat-absorbing end 224 of the heat-dissipating sheet 221 faces the corresponding groove 211. Throughout and protruding beyond the corresponding groove 211' and using mechanical processing (such as the squeezing process or the squeezing process, etc.), the heat absorbing end protruding outside the groove 211 is now bent, and is closely attached to The bottom portion 213 of the pedestal 21 is such that the heat-dissipating Korean film 221 months is integrated with the susceptor 21 to form the heat-dissipating module core 9, and "see 2A, 3" from FIG. The heat absorbing end 224 protruding from the outside of the groove 211 is perpendicular to the heat dissipating fin 221, and the heat absorbing end 224 of the heat dissipating Korean film 221 is defined by the heat absorbing portion, and the sucking portion 227 is attached to the absorbing portion 227. - heating element 3 (such as central processing unit, north-south bridge chip, display processing chip or He heat source) on which will be absorbed to the amount of heat generated by the skillfulness 3 read, directly transferred to the heat radiating portion on which the coffee outside dissipating. Therefore, the heat absorbing portion of the scatter sheet 221 of the present invention directly guides the heat of adsorption to the heat dissipation portion 226, so that the heat resistance can be effectively reduced and the _ heat transfer scale can be improved, thereby effectively achieving excellent performance. The heat dissipation effect. </ br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> The difference between the two is that the secret heat dissipation 2 further includes at least the heat f%, and the base 21 further includes a plurality of coupling grooves 24 and at least one groove. The coupling grooves 24 are formed in the basin to form a surface. The outer side of the wire holder is configured to provide a corresponding heat absorbing end 224 to be inserted and fixed to assist in fixing the heat dissipation (four) 22. The groove 25 is recessed in the bottom portion 213, and the groove 211 is correspondingly connected. The heat absorbing end is bent and attached to the corresponding groove 25. 6 In the preferred embodiment, the groove 25 is configured by matching the four heat pipes 26 with the groove 25, but is not limited thereto. In the specific implementation, the user can select according to the heat dissipation space and the heat dissipation effect. The number of the groove 25 and the heat pipe 26 is designed to be combined. +Continuously referring to FIG. 6 , with reference to FIG. 7 , the heat pipe 26 has a standby end 261 and a condensation end 262 ′, wherein the condensation end 262 passes through the heat dissipation portion 226 ′, that is, the condensation end 262 — The heat dissipation end 223 is sequentially received, and the evaporation end 261 is received and fixed in the corresponding groove 25 and has a first side 2611 and a second side 2612. The first side 2611 is closely attached to the first side 2611. The suction side 224 (i.e., the heat absorbing portion 227) is attached to the corresponding heat generating element 3. Therefore, when the heat generating component 3 generates heat, the evaporation end 261 of the heat pipe 26 transmits the absorbed heat to the condensing end, so that the condensing end 262 transfers the received heat to the heat sink portion that is connected thereto. The diffusion heat absorbing portion 227 also absorbs and shares the evaporation end plus the upper portion of the heat portion ′, that is, the heat absorbing portion 227 directly transmits the adsorbed portion of the enthalpy to the heat dissipation portion 226, and the heat dissipation portion 226 is transmitted through the heat dissipation portion 226. Department 226, the heat in the county and the outside line for hot _ to the hot county, so that the effect of double heat absorption, and can avoid the occurrence of thermal resistance, and then improve the overall heat transfer efficiency and excellent Cooling effect. As described above, the present invention has the following advantages over the prior art: L has improved heat transfer efficiency; 2. has the effect of avoiding thermal resistance; 3. has excellent heat dissipation effect. The above mentioned above is only the original creation, and any changes made by the embodiment of the above-mentioned square shape can be included in the case = [Simple description of the drawing] Figure 1 is a schematic cross-sectional view of a combination of the first and second embodiments of the present invention; Figure 4 is a schematic cross-sectional view of the second embodiment of the present invention; The creation of the +5th money-like face is intended; ', the complement of the two difficult to the sixth picture is the creation of the μ ± grain not thinking' figure; the first preferred embodiment of the combination of partial section diagram 7 The drawings are exploded perspective views of a second preferred embodiment of the present invention. [Main component symbol description] Thermal module. Base 2 Heat sink... 227 Groove ·.. 21 Bonding groove... 24 Bottom ·.. 211 Groove... 25 ... 213 Heat pipe • · · Op Heat sink fin set 26 Cooling fins...22 Evaporating end... 261 ...221 First side.·. 2611 M408068 Heat sink... 223 Second side...2612 Heat sink... 224 Condensing end... 262 Heat sink... 226 Heating element... 3