M359156 五、新型說明: 【新型所屬之技術領域】 本創作係有關一種用於低輸入電壓之電壓位準轉換器,尤指利用一第一反 相器、一第二反相器、一第三反相器、一電流鏡電路、一第一開關電晶體、一第 二開關電晶體、一控制電晶體以及一拉降電晶體所組成,以求獲得精確電壓位準 . 轉換且具有低功率消耗之電子電路。 _·.【先前技術】 • 電壓位準轉換器係一種用來溝通不同的積體電路(Integrated Circuit,簡稱1C) 鲁之間的信號傳遞之電子電路。在許多應用中,當應用系統需將信號從電壓位準 較低的核心邏輯傳送到電壓位準較高的週邊裝置時,電壓位準轉換器就負責將 低電壓工作信號轉換成高電壓工作信號。 ' ' 第1圖係顯示一先前技藝(priorart)之一閂鎖型電位轉換器電路,其係使用一 第一PMOS(P-cliaimel metal oxide semiconductor,P通道金屬氧化物半導體)電晶 體(MP1)、一第二PMOS電晶體(MP2)、一第一metal 〇xide semiconductor ’ N通道金屬氧化物半導體)電晶體(MN1)、一第二胃仍電晶體 (MN2)及一反相器(INV)來構成一電位轉換器電路,其中,該反相器(INV)的偏壓 是第二高電位電壓(VDDL)及地(GND),而輸入電壓(v(IN))的電位亦在地(GND) 與第二高電位電壓(VDDL)之間。輸入電壓(V(IN))及經過反相器(INV)輪出的反 鲁相輸入電壓信號分別連接至第一 NMOS電晶體(MN1)及第二NM〇s電晶體(MN2) 的閘極(gate)。因此’在同一時間内,第一nm〇S電晶體(MN1)及第二NMOS電晶 ^ 體之中只有一個會導通(ON)。此外,由於第一pm〇S電晶體(MP1)和第二 PMOS電晶體(MP2)的交叉耦合(cross_coupied)方式,使得當電位轉換器的輸出 (out)處於一個穩定的狀態時,閂鎖型的電位轉換器中沒有靜態電流(static current)產生。尤其,當第一NMOS電晶體(MN1)關閉(〇FF)而第二NMOS電晶體 (MN2)導通(ON)時,第一PMOS電晶體(MP1)的閘極電位被拉降_丨doWn)並使得 第一PMOS電晶體(MP1)導通,以致拉升(pUu Up)第二pM0S電晶體(Mp2)的閘極 電位而關閉第二PMOS電晶體(MP2);再者,當第一NMOS電晶體(MN1)導通而 第二丽〇8電晶體(MN2)關閉時’第二PMOS電晶體(MP2)的閘極電位被拉降並 3 M359156 使得第j^PMOS電晶體(MP2)導通,以致拉升第一PMOS電晶體(MP1)的閘極電位 而關閉第一PMOS電晶體(MP1)。因此,在第一PM〇s電晶體(MP1)和第一Ncvios 電晶體_丨)之間或第二PMOS電晶體(MP2)和第二NMOS電晶體(MN2)之間就 不會存在一個電流路徑。 然而,上述習知電位轉換器在第:PM〇s電晶體(MP2)趨近於導通(或關閉) 與在第:NMOS電晶體(MN2)趨近於關閉(或導通)的過程中,對於輸出節點(〇υτ) 上的電位之拉升及拉降有互相競爭(contenti〇n)的現象,因此輸出電壓信號 ' (V(0UT))在轉變成低電位時速度較慢。此外,考慮當輸入電壓(V(IN))由0伏特改 變至1.8伏特時,第一NMOS電晶體(MN1)導通,而第^PMOS電晶體(MP2)的閘 極變為低電位,使得第二PMOS電晶體(MP2)導通。所以,輸出為一第一高電位 電壓(VDDH)。但是,由於〇伏特無法瞬間轉換至18伏特,因此,在轉換期間的 較低輸入電壓(V(IN))可能無法使第一PM0S電晶體(MP1)、第二pM〇s電晶體 (MP2)、第一NMOS電晶體(MN1)及第二丽〇8電晶體(MN2)達到完全導通或完 全關閉,如此會造成在第一高電位電壓(VDDH)與地(GND)之間存在一靜態電流 (static current),此靜態電流會增加功率的損耗。 再者,閂鎖型的電位轉換器的性能是受到第一高電位電壓(yDDH)的影響, 由於第一 PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘-源極電壓為第一 高電位電壓(VDDH),而第一 :NM〇S電晶體(MN1)和第二NM〇s電晶體_2) 的閘-源極電壓是第二高電位電壓(VDDL)。因此,限制了可以使閂鎖型電位轉換 φ器正常運作的第一高電位電壓(VDDH)的範圍。 ' 第2圖係顯示另一先前技藝之一鏡像型電位轉換器電路,該電位轉換器藉由 -將第一PM0S電晶體(MP1)和第二PMOS電晶體(MP2)的閘極連接在一起並連接 到第一PMOS電晶體(MP1)的沒極,使得第一pm〇S電晶體(Μρι)和第二pM〇s電 曰曰體(MP2)形成電流鏡電路,第一PMOS電晶體(MP1)是處於飽和區,並且其閘 極電壓使得飽和電流等於流入第一NMOS電晶體(MN1)之電流,而流經第一 PMOS電晶體(MP1)和第二PMOS電晶體(MP2)之電流亦相等。由於鏡像型的電位 轉換器的性能是由第一 PMOS電晶體(MP1)和第一NMOS電晶體胃^的電流來 決定,因此,即使輸出的第一高電位電壓(VDDH)改變,電位轉換器的性能也不 會有太大的改變。因此,鏡像型的電位轉換器可以適用在各種輸出電壓電路。 然而,當第一NMOS電晶體(MN1)導通而第二nm〇s電晶體(麵2)關閉時, 4 M359156 第一 PMOS電晶體(MP1)和第:PM0S電晶體(贈)的閘極電位被拉降,使得第一 PMOS電晶體(MP1)和第:PM〇s電晶體(Mp2)都導通。如此,在第一腦 體_)和第-NM〇S電晶體_1}之間會產生一個靜態電流路徑。 日日 有4ά於此本創作之主要目的係提出一種新穎架構之電壓位準轉換器,立 不但能精確且快辆將帛-信雜縣—_二錢,並^ 轉換器具妓低之功率絲。 似壓位羊 【新型内容】 本創作提出-種用於低輸入電壓之電壓位準轉換器,其係由一第一反相器 (II)、-第二反相H(I2)、一第三反相器⑼、一電流鏡電路⑴、一第一開關電^ 體(2)、-第二開關電晶體⑶、—控制電晶體⑷以及—拉降電晶體⑺所組1 中’該第一反相_)係用以控制該第一開關電晶體⑵之導通(〇n)或關閉(邮、 該第,反相器(12则以控制該第二開關電晶體(3)之導通㈣或義該第三 反相器⑼係用以控制該控制電晶體⑷之導通(〇n)或關閉(〇均;該電流鏡電路⑴ 係用來做為電壓位準控制;該控制電晶體⑷係用以控制該電流鏡電路⑴之導 或關_,以便有效減少功補耗;而該拉降電晶體⑶伽來提供—放 徑,以便將輸出端(OUT)之電位拉降至地(gnd)。 由模擬結果證實’本創作所提出之用於低輸入電壓之電壓位準轉換器, 但能精確且快速地鄕—錢無為m並且兼具魏結顧單 用的電晶體數量較知及有概裝置之小型化衫重功效,科雜有效地 少功率消耗。 【實施方式】 根據十述之目的,本創作提出一種用於低輸入電壓之電壓位準轉換器,如 第3圖所示,其係由—第—反相器(11)、一第二反相器⑼、—第三反相器⑼、 -電流鏡電路(1)、-第-開關電晶體(2)、—第二開關電晶體(3)、—控制電B 以及-^降電晶體(5)所組成;其中,該第一反相器(11)係用以接受該輪曰;^ (V(IN))信號’並控制該第一開關電晶體⑺之導通㈣或關閉㈣;該第二反相器 (12)係用以提供該第二輸入端(細)的反相信號,並控制該第二開關電晶體⑶ 通㈣或關閉該第三反相器(13 )係用以反相該第二節點⑽)的—輸出信號, 5 M359156 並控制該控制電晶體(4)之導通㈣或關閉(〇ff);該電流鏡電路⑴係用來做為電壓 位準控制之用’其係由-第- PMOS電晶體(Mpl)和一第三pM〇s電晶體(Mp3) 所組成,其中,該第一 PM0S電晶體(MP1)的源極連接至第一高電位電壓,閘極 與没極連接至該第一節點(N1)以及該第三pM0S電晶體(MP3)之閘極;該第三 PMOS電晶體(MP3)的源極連接至第一高電位電壓(ydDH),其閘極連接至該第一 PMOS電晶體(MP1)之閘極與汲極以及該第一節點⑺丨),而其汲極則連接至該第 .二節點(N2);該第一開關電晶體(2)係由一第一 NMOS電晶體(MN1)所組成,=源 '·-極與第二電晶體(MN2)之源極相連接至地(GND),其閘極用以接受^入 電壓(V(IN))的反相化號,而其汲極則連接至第一節點⑽);該第二開關電晶體⑶ 係由一第二NMOS電晶體(MN2)所組成,其源極與第一 NMOS電晶體(MN1)之 •源極相連接至地(GND),其閘極用以接受第二輸入端(膽)的反相電壓信號,而 其汲極則連接至第一節點(N1);該控制電晶體係用以控制該電流鏡電路(1)之導 通㈣或__) ’·其係tM(Mp2)所組成,其雜連接至第一 高電位電壓(VDDH),其閘極連接至輸出端(OUT),而其汲極則與第一 pM〇s電晶 體(MP1)的閘極以及第三PM0S電晶體(MP3)的閘極相連接至第一節點…丨);= 該控制電晶體(4)導通時,可以提供一第一高電位電壓(VDDH)給第一 pM〇s電 晶體(MP1)的閘極以及第三PM0S電晶體(MP3)的閘極,如此可以減少第三pM〇s 電晶體(MP3)上的漏電流,以減少電壓位準轉換器的功率消耗;而該拉降電晶體 (5)係用以提供一放電路徑,以便將輸出端(OUT)之電位拉降至地(GND);其係由 •—第三NMOS電晶體_3)所組成,其源極連接至地(GND),其閘極用以接受第 - 二輸入端(_)的反相電壓信號,而其汲極則連接至第二節點(^2)。 • 請再參閱第3圖,現在考慮輸入電壓(V(IN))為低電位(0伏特)時,電壓位準 轉換器的穩態操作情形:第一輸入端(IN)上的信號是低電位,第二輸入端(INB) 上的信號是高電位’使得第一 NMOS電晶體(MN1)導通,此時,在第一 pM〇s 電晶體(MP1)至第一 NMOS電晶體(MN1)之電流路徑上將會有電流流過,而在第 三PMOS電晶體(MP3)上會有鏡像電流產生;經過第二反相器⑼輸出的低電位 電壓將第二NMOS電晶體(_2)以及第三NMOS電晶體(MN3)都關閉,因此, 由第二PMOS電晶體(MP2)產生的鏡像電流會將第二節點@2)的電位拉升至第 —高電位電壓(VDDH),而輸出端(OUT)的電位被拉降至一低電位,使得連接至 輪出端(OUT)的第二PMOS電晶體(MP2)導通,而將第—PM〇s電晶體(Mpiw 6 M359156 閘極以及第三PMOS電晶體(MP3)的閘極電壓拉升至第一高電位電壓(VDDH), 因此,可以減少第三PMOS電晶體(MP3)上的漏電流。 再考慮輸入電壓(V(IN))為第二高電位電壓(1.8伏特)時,電廢位準轉換器的 穩態操作情形:第一輸入端(IN)上的信號是高電位,第二輸入端(j^b)上的信號 疋低電位’使得第一 NMOS電晶體(MN1)關閉,此時,第一 pM〇s電晶體(MP1) 至第一 NMOS電晶體(MN1)之電流路控將會因第一 NM〇s電晶體(_ι)關閉而 沒有電流流過,因此,在第三PMOS電晶體(MP3)上也不會有鏡像電流產生;而 經過第二反相器(12)輸出的高電位電壓使得第二NMOS電晶體(臟2)以及第三 NMOS電晶體_3)都導通,由於第三NM〇s電曰曰曰體_3)的源極接地(gnd「 其没極連接到第二節點_,因此,第二節點㈣的電位被拉降至一低電位,而 >輸出端(OUT)的電位被拉升至一高電位,並將連接至M359156 V. New description: [New technical field] This is a voltage level converter for low input voltage, especially using a first inverter, a second inverter, and a third An inverter, a current mirror circuit, a first switching transistor, a second switching transistor, a control transistor, and a pull-down transistor for obtaining a precise voltage level. Conversion and low power consumption Electronic circuit. _·. [Prior Art] • The voltage level converter is an electronic circuit used to communicate the signal transmission between different integrated circuits (Integrated Circuits, 1C). In many applications, when an application system needs to transfer a signal from a core logic with a lower voltage level to a peripheral device with a higher voltage level, the voltage level converter is responsible for converting the low voltage operation signal into a high voltage operation signal. . ' ' Fig. 1 shows a prior art latch-type potential converter circuit using a first PMOS (P-cliaimel metal oxide semiconductor) transistor (MP1) a second PMOS transistor (MP2), a first metal 〇xide semiconductor 'N-channel metal oxide semiconductor' transistor (MN1), a second stomach still transistor (MN2), and an inverter (INV) To form a potential converter circuit, wherein the bias voltage of the inverter (INV) is the second high potential voltage (VDDL) and the ground (GND), and the potential of the input voltage (v(IN)) is also at the ground ( GND) is between the second high potential voltage (VDDL). The input voltage (V(IN)) and the anti-ruth phase input voltage signal that is rotated by the inverter (INV) are respectively connected to the gates of the first NMOS transistor (MN1) and the second NM 〇s transistor (MN2) (gate). Therefore, at the same time, only one of the first nm 〇S transistor (MN1) and the second NMOS transistor can be turned ON. In addition, due to the cross-coupied manner of the first pm 〇S transistor (MP1) and the second PMOS transistor (MP2), when the output of the potential converter is in a stable state, the latch type There is no static current generated in the potential converter. In particular, when the first NMOS transistor (MN1) is turned off (〇FF) and the second NMOS transistor (MN2) is turned on (ON), the gate potential of the first PMOS transistor (MP1) is pulled down _丨doWn) And causing the first PMOS transistor (MP1) to be turned on, so as to pull up (pUu Up) the gate potential of the second pMOS transistor (Mp2) to turn off the second PMOS transistor (MP2); further, when the first NMOS is When the crystal (MN1) is turned on and the second MN8 transistor (MN2) is turned off, the gate potential of the second PMOS transistor (MP2) is pulled down and 3 M359156 turns on the first PMOS transistor (MP2). The gate potential of the first PMOS transistor (MP1) is pulled up to turn off the first PMOS transistor (MP1). Therefore, there is no current between the first PM〇s transistor (MP1) and the first Ncvios transistor_丨 or between the second PMOS transistor (MP2) and the second NMOS transistor (MN2). path. However, the above conventional potential converter is in the process of: PM〇s transistor (MP2) approaching (or turning off) and in the process of: NMOS transistor (MN2) approaching off (or turning on), The pull-up and pull-down of the potential on the output node (〇υτ) have a competing (contenti〇n) phenomenon, so the output voltage signal '(V(0UT)) is slower when it transitions to a low potential. Further, considering that when the input voltage (V(IN)) is changed from 0 volts to 1.8 volts, the first NMOS transistor (MN1) is turned on, and the gate of the PMOS transistor (MP2) becomes low, so that The two PMOS transistors (MP2) are turned on. Therefore, the output is a first high potential voltage (VDDH). However, since volts cannot be instantaneously converted to 18 volts, the lower input voltage (V(IN)) during the conversion may not enable the first PMOS transistor (MP1), the second pM 〇s transistor (MP2). The first NMOS transistor (MN1) and the second MN8 transistor (MN2) are fully turned on or completely turned off, which causes a quiescent current between the first high potential voltage (VDDH) and the ground (GND). (static current), this quiescent current increases the power loss. Furthermore, the performance of the latch type potential converter is affected by the first high potential voltage (yDDH), since the gate-source voltages of the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are The first high potential voltage (VDDH), and the gate-source voltage of the first: NM〇S transistor (MN1) and the second NM〇s transistor_2) is the second high potential voltage (VDDL). Therefore, the range of the first high potential voltage (VDDH) which can make the latch type potential conversion φ device operate normally is limited. 'Fig. 2 shows another mirror type potential converter circuit of another prior art, which connects the gates of the first PMOS transistor (MP1) and the second PMOS transistor (MP2) by - And connected to the pole of the first PMOS transistor (MP1), so that the first pm 〇S transistor (Μρι) and the second pM 〇s 曰曰 body (MP2) form a current mirror circuit, the first PMOS transistor ( MP1) is in a saturation region, and its gate voltage is such that the saturation current is equal to the current flowing into the first NMOS transistor (MN1), and the current flowing through the first PMOS transistor (MP1) and the second PMOS transistor (MP2) Equally equal. Since the performance of the mirror type potential converter is determined by the current of the first PMOS transistor (MP1) and the first NMOS transistor stomach, the potential converter is changed even if the output first high potential voltage (VDDH) is changed. The performance will not change much. Therefore, the mirror type potential converter can be applied to various output voltage circuits. However, when the first NMOS transistor (MN1) is turned on and the second nm 〇s transistor (face 2) is turned off, the gate potential of the 4 M359156 first PMOS transistor (MP1) and the PMOS transistor (send) Pulled down so that both the first PMOS transistor (MP1) and the PM: PM transistor (Mp2) are turned on. Thus, a quiescent current path is generated between the first brain _) and the -NM 〇S transistor_1}. The main purpose of this creation is to propose a novel structure of voltage level converter, which can not only accurately and quickly drive the 帛-信信县—_二钱, and . Like a pressure sheep [new content] This creation proposes a voltage level converter for low input voltage, which is composed of a first inverter (II), a second reverse phase H (I2), a first a three-inverter (9), a current mirror circuit (1), a first switching transistor (2), a second switching transistor (3), a control transistor (4), and a pull-down transistor (7) in the group 1 An inversion _) is used to control the conduction (〇n) or turn off of the first switching transistor (2) (mail, the first, the inverter (12 to control the conduction of the second switching transistor (3) (4) Or the third inverter (9) is used to control the conduction (〇n) or the off (〇) of the control transistor (4); the current mirror circuit (1) is used as a voltage level control; the control transistor (4) Is used to control the conduction or shutdown of the current mirror circuit (1), so as to effectively reduce the power compensation; and the pull-down transistor (3) gamma provides a path to pull the potential of the output (OUT) to ground (gnd It is confirmed by the simulation results that 'the voltage level level converter for low input voltage proposed by this creation can be accurately and quickly 鄕---------------------- The number of transistors used alone is more important than the miniaturized shirts of the device, and the power is effectively reduced. [Embodiment] According to the purpose of the tenth, the present invention proposes a voltage level for a low input voltage. The converter, as shown in Fig. 3, is composed of - a first inverter (11), a second inverter (9), a third inverter (9), a current mirror circuit (1), - the first a switching transistor (2), a second switching transistor (3), a control transistor B, and a -^lowering transistor (5); wherein the first inverter (11) is adapted to receive the wheel ^;^ (V(IN)) signal 'and controls the conduction (four) or off (four) of the first switching transistor (7); the second inverter (12) is used to provide the inverse of the second input (thin) Phase signal, and controlling the second switching transistor (3) to pass (four) or turn off the third inverter (13) to invert the second node (10) - output signal, 5 M359156 and control the control transistor ( 4) conduction (four) or off (〇 ff); the current mirror circuit (1) is used for voltage level control 'the system of - PMOS transistor (Mpl) and a third pM 〇s transistor (Mp3) Forming, wherein the source of the first PMOS transistor (MP1) is connected to the first high potential voltage, and the gate and the gate are connected to the first node (N1) and the gate of the third pMOS transistor (MP3) a source of the third PMOS transistor (MP3) connected to the first high potential voltage (ydDH), a gate connected to the gate and the drain of the first PMOS transistor (MP1) and the first node (7) 丨), and its drain is connected to the second node (N2); the first switching transistor (2) is composed of a first NMOS transistor (MN1), = source '·-pole and The source of the second transistor (MN2) is connected to ground (GND), the gate is used to accept the inversion voltage of the voltage (V(IN)), and the drain is connected to the first node (10). The second switching transistor (3) is composed of a second NMOS transistor (MN2) whose source is connected to the source of the first NMOS transistor (MN1) to ground (GND), and its gate An inverted voltage signal for receiving the second input terminal (bile), and a drain electrode connected to the first node (N1); the control transistor system is used to control the conduction (4) or _ of the current mirror circuit (1) _) '· Its system tM (Mp2) is composed of Connected to the first high potential voltage (VDDH), its gate is connected to the output (OUT), and its drain is connected to the gate of the first pM〇s transistor (MP1) and the third PMOS transistor (MP3) The gate phase is connected to the first node...丨);= When the control transistor (4) is turned on, a first high potential voltage (VDDH) can be supplied to the gate of the first pM〇s transistor (MP1) and The gate of the third PM0S transistor (MP3), which can reduce the leakage current on the third pM〇s transistor (MP3) to reduce the power consumption of the voltage level converter; and the pull-down transistor (5) Used to provide a discharge path to pull the potential of the output (OUT) to ground (GND); it consists of a • third NMOS transistor _3) whose source is connected to ground (GND) Its gate is used to receive the inverted voltage signal of the second input (_), and its drain is connected to the second node (^2). • Please refer to Figure 3 again. Now consider the steady-state operation of the voltage level converter when the input voltage (V(IN)) is low (0 volts): the signal at the first input (IN) is low. The potential, the signal at the second input (INB) is high, such that the first NMOS transistor (MN1) is turned on, at this time, at the first pM〇s transistor (MP1) to the first NMOS transistor (MN1) There will be a current flowing through the current path, and a mirror current will be generated on the third PMOS transistor (MP3); the low potential voltage outputted through the second inverter (9) will be the second NMOS transistor (_2) and The third NMOS transistor (MN3) is turned off, so the mirror current generated by the second PMOS transistor (MP2) pulls the potential of the second node @2) to the first high potential voltage (VDDH), and the output The potential of the terminal (OUT) is pulled down to a low potential, so that the second PMOS transistor (MP2) connected to the wheel terminal (OUT) is turned on, and the first PM〇s transistor (Mpiw 6 M359156 gate and The gate voltage of the third PMOS transistor (MP3) is pulled up to the first high potential voltage (VDDH), so that the leakage current on the third PMOS transistor (MP3) can be reduced. Considering the steady-state operating condition of the electrical waste level converter when the input voltage (V(IN)) is the second high potential voltage (1.8 volts): the signal at the first input (IN) is high, the second input The signal on the terminal (j^b) is low-potential' such that the first NMOS transistor (MN1) is turned off, and at this time, the current path of the first pM〇s transistor (MP1) to the first NMOS transistor (MN1) There will be no current flowing due to the first NM〇s transistor (_ι) being turned off, therefore, no mirror current will be generated on the third PMOS transistor (MP3); and passing through the second inverter (12) The output high potential voltage causes the second NMOS transistor (dirty 2) and the third NMOS transistor _3) to be turned on, since the source of the third NM〇s electric body _3) is grounded (gnd "it is not The pole is connected to the second node _, so the potential of the second node (four) is pulled down to a low potential, and the potential of the output terminal (OUT) is pulled up to a high potential and will be connected to
電晶體(MP2)關閉。 J ^ MUS U上所述,輸入電壓(V_為低電位(〇伏特)時 CUT))為第-識卿·3伏特)。如此,電壓位準轉換的目的便實現。 【圖式簡單說明】 2示Γί前技藝中電壓位準轉換器之電路圖; 技#中電壓位準轉換器之電路圖; 1第4圖係顯示本創作較佳實施例之輸入電壓仲 序圖; "〜及輸出電壓信號之暫態分析時 【主要元件符號說明】 1 3 5 12 Ν1 電流鏡電路 第二開關電晶體 拉降電晶體 第一反相器 第一節點 2 4 II 13 Ν2 第一開關電晶體 控制電晶體 第一反相器 第三反相器 第二節點 7 M359156 MPl 第一 PMOS電晶體 MP2 第二PMOS電晶體 MP3 第三PMOS電晶體 MN1 第一 NMOS電晶體 MN2 第二NMOS電晶體 MN3 第三NMOS電晶體 IN 第一輸入端 INB 第二輸入端 OUT 輸出端 V(OUT) 輸出電壓 V(IN) 輸入電壓 VDDH 第一高電位電壓 VDDL 第二高電位電壓The transistor (MP2) is turned off. As described on J ^ MUS U, the input voltage (CUT when the V_ is low (〇V)) is the first -3 volts. Thus, the purpose of voltage level conversion is achieved. [Simple diagram of the diagram] 2 shows the circuit diagram of the voltage level converter in the prior art; the circuit diagram of the voltage level converter in the technology#; Fig. 4 shows the input voltage sequence diagram of the preferred embodiment of the present invention; "~ and transient analysis of output voltage signal [main component symbol description] 1 3 5 12 Ν1 current mirror circuit second switch transistor pull-down transistor first inverter first node 2 4 II 13 Ν 2 first Switching transistor control transistor first inverter third inverter second node 7 M359156 MP1 first PMOS transistor MP2 second PMOS transistor MP3 third PMOS transistor MN1 first NMOS transistor MN2 second NMOS Crystal MN3 Third NMOS transistor IN First input INB Second input OUT Output V(OUT) Output voltage V(IN) Input voltage VDDH First high potential voltage VDDL Second high potential voltage