TWM643260U - High performance level shifting circuit - Google Patents

High performance level shifting circuit Download PDF

Info

Publication number
TWM643260U
TWM643260U TW112200238U TW112200238U TWM643260U TW M643260 U TWM643260 U TW M643260U TW 112200238 U TW112200238 U TW 112200238U TW 112200238 U TW112200238 U TW 112200238U TW M643260 U TWM643260 U TW M643260U
Authority
TW
Taiwan
Prior art keywords
node
pmos transistor
gate
potential
signal
Prior art date
Application number
TW112200238U
Other languages
Chinese (zh)
Inventor
余建政
吳明學
黃聖源
李泓毅
Original Assignee
修平學校財團法人修平科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 修平學校財團法人修平科技大學 filed Critical 修平學校財團法人修平科技大學
Priority to TW112200238U priority Critical patent/TWM643260U/en
Publication of TWM643260U publication Critical patent/TWM643260U/en

Links

Images

Abstract

本創作提出一種高效能電位轉換器電路,其係由一輸入電路(1)、一栓鎖電路(2)、一輸出控制電晶體(3)以及一輸出控制電晶體(4)所組成,其中,該輸入電路(1)係用來提供差動輸入信號;該栓鎖電路(2)係用來做為保存轉換的輸出電位;該輸出控制電晶體(3)係用來下拉該第一節點(N1)的電位;該輸出控制電晶體(4)係用來下拉該第二節點(N2)的電位。 This creation proposes a high-efficiency potential converter circuit, which is composed of an input circuit (1), a latch circuit (2), an output control transistor (3) and an output control transistor (4), wherein the input circuit (1) is used to provide a differential input signal; the latch circuit (2) is used to store the converted output potential; the output control transistor (3) is used to pull down the potential of the first node ( N1 ); the output control transistor ( 4 ) is used to pull down the potential of the second node ( N2 ) .

本創作所提出之高效能電位轉換器電路,不但能快速地將第一信號轉換為一第二信號,同時亦能有效地抑制上拉路徑與下拉路徑的互相競爭,進而降低功率消耗。 The high-efficiency potential converter circuit proposed in this invention can not only quickly convert the first signal into a second signal, but also effectively suppress the competition between the pull-up path and the pull-down path, thereby reducing power consumption.

Description

高效能電位轉換器電路 High-efficiency potential shifter circuit

本創作提出一種高效能電位轉換器電路,其係由一輸入電路(1)、一栓鎖電路(2)、一輸出控制電晶體(3)以及一輸出控制電晶體(4)所組成,以求快速獲得精確電壓位準轉換,同時亦能有效降低功率消耗之電子電路。 This creation proposes a high-efficiency potential converter circuit, which is composed of an input circuit (1), a latch circuit (2), an output control transistor (3) and an output control transistor (4), in order to quickly obtain accurate voltage level conversion and effectively reduce the power consumption of the electronic circuit.

電位轉換器係一種用來溝通不同的積體電路(Integrated Circuit,簡稱IC)之間的信號傳遞之電子電路。在許多應用中,當應用系統需將信號從電壓位準較低的核心邏輯傳送到電壓位準較高的週邊裝置時,電位轉換器就負責將低電壓工作信號轉換成高電壓工作信號。 A potential converter is an electronic circuit used to communicate signals between different integrated circuits (IC for short). In many applications, when the application system needs to transmit signals from the core logic with a lower voltage level to peripheral devices with a higher voltage level, the potential converter is responsible for converting the low-voltage operating signal into a high-voltage operating signal.

第1圖係顯示一先前技藝(prior art)之一閂鎖型電位轉換器電路,其係使用一第一PMOS(P-channel metaloxide semiconductor,P通道金屬氧化物半導體)電晶體(MP1)、一第二PMOS電晶體(MP2)、一第一NMOS(N-channel metal oxide semiconductor,N通道金屬氧化物半導體)電晶體(MN1)、一第二NMOS電晶體(MN2)及一反相器(INV)來構成一電位轉換器電路,其中,該反相器(INV)的偏壓是第二高電位電壓(VDDL)及地 (GND),而第一信號(V(IN))的電位亦在地(GND)與第二高電位電壓(VDDL)之間。第一信號(V(IN))及經過反相器(INV)輸出的反相輸入電壓信號分別連接至第一NMOS電晶體(MN1)及第二NMOS電晶體(MN2)的閘極(gate)。因此,在同一時間內,第一NMOS電晶體(MN1)及第二NMOS電晶體(MN2)之中只有一個會導通(ON)。此外,由於第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的交叉耦合(cross-coupled)方式,使得當電位轉換器的輸出(OUT)處於一個穩定的狀態時,閂鎖型的電位轉換器中沒有靜態電流(static current)產生。尤其,當第一NMOS電晶體(MN1)關閉(OFF)而第二NMOS電晶體(MN2)導通(ON)時,第一PMOS電晶體(MP1)的閘極電位被拉降(pull down)並使得第一PMOS電晶體(MP1)導通,以致拉升(pull up)第二PMOS電晶體(MP2)的閘極電位而關閉第二PMOS電晶體(MP2);再者,當第一NMOS電晶體(MN1)導通而第二NMOS電晶體(MN2)關閉時,第二PMOS電晶體(MP2)的閘極電位被拉降並使得第二PMOS電晶體(MP2)導通,以致拉升第一PMOS電晶體(MP1)的閘極電位而關閉第一PMOS電晶體(MP1)。因此,在第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)之間或第二PMOS電晶體(MP2)和第二NMOS電晶體(MN2)之間就不會存在一個電流路徑。 Figure 1 shows a latch-type potential converter circuit of a prior art, which uses a first PMOS (P-channel metal oxide semiconductor, P channel metal oxide semiconductor) transistor (MP1), a second PMOS transistor (MP2), a first NMOS (N-channel metal oxide semiconductor, N channel metal oxide semiconductor) transistor (MN1), a second NMOS transistor (MN 2) and an inverter (INV) to form a potential converter circuit, wherein the bias voltage of the inverter (INV) is the second high potential voltage (VDDL) and the ground (GND), and the potential of the first signal (V(IN)) is also between the ground (GND) and the second high potential voltage (VDDL). The first signal (V(IN)) and the inverted input voltage signal output by the inverter (INV) are respectively connected to the gates of the first NMOS transistor (MN1) and the second NMOS transistor (MN2). Therefore, at the same time, only one of the first NMOS transistor ( MN1 ) and the second NMOS transistor ( MN2 ) is turned on (ON). In addition, due to the cross-coupled method of the first PMOS transistor (MP1) and the second PMOS transistor (MP2), when the output (OUT) of the level shifter is in a stable state, no static current is generated in the latch type level shifter. Especially, when the first NMOS transistor (MN1) is turned off (OFF) and the second NMOS transistor (MN2) is turned on (ON), the gate potential of the first PMOS transistor (MP1) is pulled down (pull down) and the first PMOS transistor (MP1) is turned on, so that the gate potential of the second PMOS transistor (MP2) is pulled up (pull up) to turn off the second PMOS transistor (MP2); moreover, when the first NMOS transistor (MN 1) When the second NMOS transistor (MN2) is turned off, the gate potential of the second PMOS transistor (MP2) is pulled down and the second PMOS transistor (MP2) is turned on, so that the gate potential of the first PMOS transistor (MP1) is pulled up and the first PMOS transistor (MP1) is turned off. Therefore, there will not be a current path between the first PMOS transistor (MP1) and the first NMOS transistor (MN1) or between the second PMOS transistor (MP2) and the second NMOS transistor (MN2).

然而,上述習知電位轉換器在第二PMOS電晶體(MP2)趨近於導通(或關閉)與在第二NMOS電晶體(MN2)趨近於關閉(或導通)的過程中,對於輸出端(OUT)上的電位之拉升及拉 降有互相競爭(contention)的現象,因此第二信號(V(OUT))在轉變成低電位時速度較慢。此外,考慮當第一信號(V(IN))由0伏特改變至1.8伏特時,第一NMOS電晶體(MN1)導通,而第二PMOS電晶體(MP2)的閘極變為低電位,使得第二PMOS電晶體(MP2)導通。所以,輸出為一第一高電位電壓(VDDH)。但是,由於0伏特無法瞬間轉換至1.8伏特,因此,在轉換期間的較低第一信號(V(IN))可能無法使第一PMOS電晶體(MP1)、第二PMOS電晶體(MP2)、第一NMOS電晶體(MN1)及第二NMOS電晶體(MN2)達到完全導通或完全關閉,如此會造成在第一高電位電壓(VDDH)與地(GND)之間存在一靜態電流(static current),此靜態電流會增加功率的損耗。 However, the above-mentioned conventional level converter has a negative effect on the pull-up and pull-up of the potential on the output terminal (OUT) when the second PMOS transistor (MP2) tends to be turned on (or turned off) and when the second NMOS transistor (MN2) is tended to be turned off (or turned on). There is a phenomenon of contention between the voltages and voltages, so the second signal (V(OUT)) is slower when it transitions to a low voltage level. In addition, consider that when the first signal (V(IN)) changes from 0 volts to 1.8 volts, the first NMOS transistor (MN1) is turned on, and the gate of the second PMOS transistor (MP2) becomes a low potential, so that the second PMOS transistor (MP2) is turned on. Therefore, the output is a first high potential voltage (VDDH). However, since 0 volts cannot be instantly converted to 1.8 volts, the lower first signal (V(IN)) during the conversion period may not make the first PMOS transistor (MP1), the second PMOS transistor (MP2), the first NMOS transistor (MN1) and the second NMOS transistor (MN2) fully turned on or completely turned off, which will cause a static current between the first high potential voltage (VDDH) and the ground (GND). increased power loss.

再者,閂鎖型的電位轉換器的性能是受到第一高電位電壓(VDDH)的影響,由於第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘-源極電壓為第一高電位電壓(VDDH),而第一NMOS電晶體(MN1)和第二NMOS電晶體(MN2)的閘-源極電壓是第二高電位電壓(VDDL)。因此,限制了可以使閂鎖型電位轉換器正常運作的第一高電位電壓(VDDH)的範圍。 Furthermore, the performance of the latch-type potential converter is affected by the first high potential voltage (VDDH), because the gate-source voltages of the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are the first high potential voltage (VDDH), while the gate-source voltages of the first NMOS transistor (MN1) and the second NMOS transistor (MN2) are the second high potential voltage (VDDL). Therefore, the range of the first high potential voltage (VDDH) in which the latch-type level shifter can operate normally is limited.

第2圖係顯示另一先前技藝之一鏡像型電位轉換器電路,該電位轉換器藉由將第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘極連接在一起並連接到第一PMOS電晶體(MP1)的汲極,使得第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)形成電流鏡電路,第一PMOS電晶體(MP1)是處於飽和區, 並且其閘極電壓使得飽和電流等於流入第一NMOS電晶體(MN1)之電流,而流經第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)之電流亦相等。由於鏡像型的電位轉換器的性能是由第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)的電流來決定,因此,即使輸出的第一高電位電壓(VDDH)改變,電位轉換器的性能也不會有太大的改變。因此,鏡像型的電位轉換器可以適用在各種輸出電壓電路。 Figure 2 shows another prior art mirror-type potential shifter circuit. The potential shifter connects the gates of the first PMOS transistor (MP1) and the second PMOS transistor (MP2) together and to the drain of the first PMOS transistor (MP1), so that the first PMOS transistor (MP1) and the second PMOS transistor (MP2) form a current mirror circuit. The first PMOS transistor (MP1) is in a saturation region. And its gate voltage makes the saturation current equal to the current flowing into the first NMOS transistor (MN1), and the current flowing through the first PMOS transistor (MP1) and the second PMOS transistor (MP2) is also equal. Since the performance of the mirror-type potential converter is determined by the currents of the first PMOS transistor (MP1) and the first NMOS transistor (MN1), even if the output first high potential voltage (VDDH) changes, the performance of the potential converter will not change much. Therefore, the mirror-type potential converter can be applied to various output voltage circuits.

然而,當第一NMOS電晶體(MN1)導通而第二NMOS電晶體(MN2)關閉時,第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘極電位被拉降,使得第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)都導通。如此,在第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)之間會產生一個靜態電流路徑。 However, when the first NMOS transistor (MN1) is turned on and the second NMOS transistor (MN2) is turned off, the gate potentials of the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are pulled down, so that both the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are turned on. In this way, a static current path is generated between the first PMOS transistor (MP1) and the first NMOS transistor (MN1).

有鑑於閂鎖型的電位轉換器在其輸出端上的電位有互相競爭的現象,本創作之主要目的係提出一種高效能電位轉換器電路,其不但能精確且快速地將第一信號轉換為一第二信號,並且可有效地降低功率消耗。 In view of the fact that the potentials of the latch-type potential converters compete with each other on their output terminals, the main purpose of this invention is to propose a high-performance potential converter circuit, which can not only convert the first signal into a second signal accurately and quickly, but also effectively reduce power consumption.

本創作提出一種高效能電位轉換器電路,其係由一輸入電路(1)、一栓鎖電路(2)、一輸出控制電晶體(3)以及一輸出控制電晶體(4)所組成,其中,該輸入電路(1)係用來提供差動輸入信號;該栓鎖電路(2)係用來做為保存轉換的輸出電位;該輸出控制電晶體(3)係用來下拉該第一節點(N1)的電位;該輸出控制電晶體(4)係用來 下拉該第二節點(N2)的電位。 This creation proposes a high-efficiency potential converter circuit, which is composed of an input circuit (1), a latch circuit (2), an output control transistor (3) and an output control transistor (4), wherein the input circuit (1) is used to provide a differential input signal; the latch circuit (2) is used to store the converted output potential; the output control transistor (3) is used to pull down the potential of the first node (N1); the output control transistor (4) is used to The potential of the second node (N2) is pulled down.

由模擬結果證實,本創作所提出之高效能電位轉換器電路,不但能精確且快速地將第一信號轉換為一第二信號,並且兼具電路結構簡單以及有利於裝置之小型化等多重功效,同時亦能有效地抑制上拉路徑與下拉路徑的互相競爭,進而降低功率消耗。 The simulation results prove that the high-efficiency potential converter circuit proposed by this invention can not only convert the first signal into a second signal accurately and quickly, but also has multiple functions such as simple circuit structure and favorable device miniaturization. At the same time, it can also effectively suppress the competition between the pull-up path and the pull-down path, thereby reducing power consumption.

1:輸入電路 1: Input circuit

2:栓鎖電路 2: Latch circuit

3:輸出控制電晶體 3: Output control transistor

4:輸出控制電晶體 4: Output control transistor

N1:第一節點 N1: the first node

N2:第二節點 N2: second node

N3:第三節點 N3: the third node

N4:第四節點 N4: the fourth node

MP1:第一PMOS電晶體 MP1: The first PMOS transistor

MP2:第二PMOS電晶體 MP2: The second PMOS transistor

MP3:第三PMOS電晶體 MP3: The third PMOS transistor

MP4:第四PMOS電晶體 MP4: The fourth PMOS transistor

I1:第一反相器 I1: the first inverter

MN1:第一NMOS電晶體 MN1: the first NMOS transistor

MN2:第二NMOS電晶體 MN2: The second NMOS transistor

MN3:第三NMOS電晶體 MN3: The third NMOS transistor

MN4:第四NMOS電晶體 MN4: The fourth NMOS transistor

GND:地 GND: ground

IN:第一輸入端 IN: the first input terminal

V(IN):第一信號 V(IN): the first signal

OUT:輸出端 OUT: output terminal

V(OUT):第二信號 V(OUT): the second signal

OUTB:反相輸出端 OUTB: Inverted output terminal

INB:第二輸入端 INB: the second input terminal

VDDH:第一高電源供應電壓 VDDH: the first high power supply voltage

VDDL:第二高電源供應電壓 VDDL: The second highest power supply voltage

第1圖 係顯示第一先前技藝中電位轉換器之電路圖;第2圖 係顯示第二先前技藝中電位轉換器之電路圖;第3圖 係顯示本創作較佳實施例之高效能電位轉換器電路之電路圖; Fig. 1 shows the circuit diagram of the potential converter in the first prior art; Fig. 2 shows the circuit diagram of the potential converter in the second prior art; Fig. 3 shows the circuit diagram of the high-efficiency potential converter circuit of the preferred embodiment of the present invention;

根據上述之目的,本創作提出一種高效能電位轉換器電路,如第3圖所示,其係由一輸入電路(1)、一栓鎖電路(2)、一輸出控制電晶體(3)以及一輸出控制電晶體(4)所組成,其中,該輸入電路(1)係用來提供差動輸入信號;該栓鎖電路(2)係用來做為保存轉換的輸出電位;該輸出控制電晶體(3)係用來下拉該第一節點(N1)的電位;該輸出控制電晶體(4)係用來下拉該第二節點(N2)的電位;該輸入電路(1)係耦接於該第一輸入端(IN),用來提供差動輸入信號;其係由一第一NMOS電晶體(MN1)、一第二NMOS電晶體(MN2)以及一第一反相器(I1)所組成,其中,該第一NMOS電晶體(MN1)的源極連接至地(GND),其閘極連接至該第一輸入端(IN),而其汲極則連接至該第三節點(N3);該第二NMOS電晶體(MN2)的源極連接 至地(GND),其閘極連接至該第二輸入端(INB),而其汲極則連接至該第四節點(N4);該第一反相器(I1)耦接於該第一輸入端(IN),用以接受該第一信號(V(IN)),並提供該第一信號(V(IN))的反相信號;該栓鎖電路(2)係耦接於該第一高電源供應電壓(VDDH)以及一輸入電路(1),用來做為保存轉換的輸出電位;其係由一第一PMOS電晶體(MP1)、一第二PMOS電晶體(MP2)、一第三PMOS電晶體(MP3)以及一第四PMOS電晶體(MP4)所組成,其中,該第一PMOS電晶體(MP1)的源極連接至該第一高電源供應電壓(VDDH),其閘極連接至該第四節點(N4),而其汲極則與該第一節點(N1)相連接;該第二PMOS電晶體(MP2)的源極連接至該第一高電源供應電壓(VDDH),其閘極連接至該第三節點(N3),而其汲極則與該第二節點(N2)相連接;該第三PMOS電晶體(MP3)的源極連接至該第一節點(N1),其閘極連接至該第一輸入端(IN),而其汲極則與該第三節點(N3)相連接;該第四PMOS電晶體(MP4)的源極連接至該第二節點(N2),其閘極連接至該第二輸入端(INB),而其汲極則與該第四節點(N4)相連接;該輸出控制電晶體(3)係由一第三NMOS電晶體(MN3)所組成,其源極連接至地(GND),其閘極連接至該第一輸入端(IN),而其汲極則與該第一節點(N1)相連接;該輸出控制電晶體(4)係由一第四NMOS電晶體(MN4)所組成,其源極連接至地(GND),其閘極連接至該第二輸入端(INB),而其汲極則與該第二節點(N2)相連接;該第一高電源供應電壓(VDDH)係用以提供該高效能電位轉換器電路所需之第一高電源 電壓,該第二高電源供應電壓(VDDL)係用以提供該高效能電位轉換器電路所需之第二高電源電壓,該第二高電源供應電壓(VDDL)之位準係小於該第一高電源供應電壓(VDDH)之位準,該第一信號為介於0伏特及1.2伏特間的矩形波,而該第二信號則為介於0伏特及1.8伏特間的對應波形,該第一高電源供應電壓(VDDH)為1.8伏特,而該第二高電源供應電壓(VDDL)為1.2伏特,該第一信號(V(IN))為介於0伏特及1.2伏特間的矩形波,該第二信號(V(OUT))則為介於0伏特及1.8伏特間的對應波形。 According to the above-mentioned purpose, this creation proposes a high-efficiency potential converter circuit, as shown in Figure 3, which is composed of an input circuit (1), a latch circuit (2), an output control transistor (3) and an output control transistor (4), wherein the input circuit (1) is used to provide differential input signals; the latch circuit (2) is used to store the converted output potential; the output control transistor (3) is used to pull down the potential of the first node (N1); the output control transistor (4) is Used to pull down the potential of the second node (N2); the input circuit (1) is coupled to the first input terminal (IN) to provide a differential input signal; it is composed of a first NMOS transistor (MN1), a second NMOS transistor (MN2) and a first inverter (I1), wherein the source of the first NMOS transistor (MN1) is connected to the ground (GND), its gate is connected to the first input terminal (IN), and its drain is connected to The third node (N3); the source connection of the second NMOS transistor (MN2) to ground (GND), its gate is connected to the second input terminal (INB), and its drain is connected to the fourth node (N4); the first inverter (I1) is coupled to the first input terminal (IN) to receive the first signal (V(IN)) and provide an inverted signal of the first signal (V(IN)); the latch circuit (2) is coupled to the first high power supply voltage (VDDH) and an input circuit (1), used as a storage switch Output potential; it is composed of a first PMOS transistor (MP1), a second PMOS transistor (MP2), a third PMOS transistor (MP3) and a fourth PMOS transistor (MP4), wherein the source of the first PMOS transistor (MP1) is connected to the first high power supply voltage (VDDH), its gate is connected to the fourth node (N4), and its drain is connected to the first node (N1); the source of the second PMOS transistor (MP2) connected to the first high power supply voltage (VDDH), its gate is connected to the third node (N3), and its drain is connected to the second node (N2); the source of the third PMOS transistor (MP3) is connected to the first node (N1), its gate is connected to the first input terminal (IN), and its drain is connected to the third node (N3); the source of the fourth PMOS transistor (MP4) is connected to the second node (N2), and its gate is connected to The second input terminal (INB), and its drain is connected to the fourth node (N4); the output control transistor (3) is composed of a third NMOS transistor (MN3), its source is connected to the ground (GND), its gate is connected to the first input terminal (IN), and its drain is connected to the first node (N1); the output control transistor (4) is composed of a fourth NMOS transistor (MN4), and its source is connected to the ground (G ND), its gate is connected to the second input terminal (INB), and its drain is connected to the second node (N2); the first high power supply voltage (VDDH) is used to provide the first high power required by the high-performance potential converter circuit Voltage, the second high power supply voltage (VDDL) is used to provide the second high power supply voltage required by the high-performance potential converter circuit, the level of the second high power supply voltage (VDDL) is lower than the level of the first high power supply voltage (VDDH), the first signal is a rectangular wave between 0 volts and 1.2 volts, and the second signal is a corresponding waveform between 0 volts and 1.8 volts, the first high power supply voltage (VDDH) is 1.8 volts, and the The second high power supply voltage (VDDL) is 1.2V, the first signal (V(IN)) is a rectangular wave between 0V and 1.2V, and the second signal (V(OUT)) is a corresponding waveform between 0V and 1.8V.

請再參閱第3圖,現在考慮第一信號(V(IN))為邏輯低位準(0伏特)時,高效能電位轉換器電路的穩態操作情形:第一輸入端(IN)上的邏輯低位準同時傳送到該第一NMOS電晶體(MN1)的閘極、該第三NMOS電晶體(MN3)的閘極、該第三PMOS電晶體(MP3)的閘極以及一第一反相器(I1)的輸入端,使得該第一NMOS電晶體(MN1)和該第三NMOS電晶體(MN3)都截止(OFF),該第三PMOS電晶體(MP3)導通(ON),而該第一反相器(I1)傳送邏輯高位準(VDDL)到該第二NMOS電晶體(MN2)的閘極、該第四NMOS電晶體(MN4)的閘極以及該第四PMOS電晶體(MP4)的閘極,使得該第二NMOS電晶體(MN2)和該第四NMOS電晶體(MN4)都導通(ON),該第四PMOS電晶體(MP4)截止(OFF),此時,由於該第四NMOS電晶體(MN4)導通,該第四PMOS電晶體(MP4)截止(OFF),該第二節點(N2)的電位會被拉降至一邏輯低位準(0伏特)並由該輸出端(OUT)輸出,由於該第四PMOS電晶體(MP4)截止,該第二NMOS電晶體(MN2)導通(ON),該第四節點(N4)的電位會被拉降至一邏輯低位準(0伏特),而該第四節點(N4)上的邏輯低位準使得該第一PMOS電晶體(MP1)導通(ON),此時由於該第一PMOS電晶體(MP1) 導通(ON),該第一節點(N1)的電位會被拉升至一邏輯高位準並由該反相輸出端(OUTB)輸出,由於該第三PMOS電晶體(MP3)也導通,而該第一NMOS電晶體(MN1)截止(OFF),因此,該第三節點(N3)的電位會被拉升至一邏輯高位準,該第三節點(N3)的邏輯高位準使得該第二PMOS電晶體(MP2)截止,由於該第二PMOS電晶體(MP2)和該第四PMOS電晶體(MP4)都截止,而該第四NMOS電晶體(MN4)導通,因此,該第二節點(N2)的電位將維持在邏輯低位準(0伏特),亦即,輸出端(OUT)的電位會維持在一邏輯低位準(0伏特)的穩態值。質言之,第一信號(V(IN))為邏輯低位準(0伏特)時,經過高效能電位轉換器電路轉換成具邏輯低位準(0伏特)的第二信號,由輸出端(OUT)輸出。 Please refer to FIG. 3 again, and now consider the steady-state operation of the high-efficiency potential shifter circuit when the first signal (V(IN)) is at a logic low level (0 volts): the logic low level on the first input terminal (IN) is simultaneously transmitted to the gate of the first NMOS transistor (MN1), the gate of the third NMOS transistor (MN3), the gate of the third PMOS transistor (MP3) and the input terminal of a first inverter (I1), so that the first NMOS transistor (MN1) and the third NMOS transistor (MN3) are both off (OFF), the third PMOS transistor (MP3) is turned on (ON), and the first inverter (I1) transmits a logic high level (VDDL) to the gate of the second NMOS transistor (MN2), the gate of the fourth NMOS transistor (MN4) and the gate of the fourth PMOS transistor (MP4), so that the second NMOS transistor (MN2) and the fourth All NMOS transistors (MN4) are turned on (ON), and the fourth PMOS transistor (MP4) is turned off (OFF). At this time, because the fourth NMOS transistor (MN4) is turned on, the fourth PMOS transistor (MP4) is turned off (OFF), and the potential of the second node (N2) will be pulled down to a logic low level (0 volts) and output from the output terminal (OUT). Since the fourth PMOS transistor (MP4) is turned off, the second NMOS transistor (MN2) conduction (ON), the potential of the fourth node (N4) will be pulled down to a logic low level (0 volts), and the logic low level on the fourth node (N4) makes the first PMOS transistor (MP1) conduction (ON), at this time due to the first PMOS transistor (MP1) Turning on (ON), the potential of the first node (N1) will be pulled up to a logic high level and output by the inverting output terminal (OUTB). Since the third PMOS transistor (MP3) is also turned on, and the first NMOS transistor (MN1) is turned off (OFF), therefore, the potential of the third node (N3) will be pulled up to a logic high level. The logic high level of the third node (N3) makes the second PMOS transistor ( MP2) off, because the second Both the PMOS transistor (MP2) and the fourth PMOS transistor (MP4) are turned off, and the fourth NMOS transistor (MN4) is turned on. Therefore, the potential of the second node (N2) will be maintained at a logic low level (0 volts), that is, the potential of the output terminal (OUT) will be maintained at a steady state value of a logic low level (0 volts). In other words, when the first signal (V(IN)) is at a logic low level (0 volts), it is converted into a second signal with a logic low level (0 volts) by a high-efficiency potential shifter circuit, and output from the output terminal (OUT).

再考慮第一信號(V(IN))為邏輯高位準(VDDL)時,高效能電位轉換器電路的穩態操作情形:第一輸入端(IN)上的邏輯高位準(VDDL)同時傳送到該第一反相器(I1)的輸入端、該第一NMOS電晶體(MN1)的閘極、該第三NMOS電晶體(MN3)的閘極以及該第三PMOS電晶體(MP3)的閘極,使得該第一NMOS電晶體(MN1)和該第三NMOS電晶體(MN3)都導通(ON),該第三PMOS電晶體(MP3)截止(OFF),此時,由於該第三NMOS電晶體(MN3)導通,該第一節點(N1)的電位會被拉降至一邏輯低位準(0伏特)並由該反相輸出端(OUTB)輸出,由於該第一NMOS電晶體(MN1)導通,該第三節點(N3)的電位亦被拉降至一邏輯低位準(0伏特),該第三節點(N3)上的邏輯低位準使得該第二PMOS電晶體(MP2)導通,而該第一反相器(I1)傳送邏輯低位準到該第二NMOS電晶體(MN2)的閘極、該第四NMOS電晶體(MN4)的閘極以及該第四PMOS電晶體(MP4)的閘極,使得該第二NMOS電 晶體(MN2)和該第四NMOS電晶體(MN4)都截止(OFF),該第四PMOS電晶體(MP4)導通(ON),此時,由於該第二PMOS電晶體(MP2)導通(ON),而該第四NMOS電晶體(MN4)截止(OFF),該第二節點(N2)的電位會被拉升至一邏輯高位準並由該輸出端(OUT)輸出,由於該第四PMOS電晶體(MP4)也導通(ON),因此,該第四節點(N4)的電位會被拉升至一邏輯高位準,該第四節點(N4)的邏輯高位準使得該第一PMOS電晶體(MP1)截止,此時由於該第一PMOS電晶體(MP1)和該第三PMOS電晶體(MP3)都截止,而該第一NMOS電晶體(MN1)導通,因此,該第三節點(N3)的電位將會維持在一邏輯低位準(0伏特),此時由於該第二PMOS電晶體(MP2)和該第四PMOS電晶體(MP4)都導通,而該第二NMOS電晶體(MN2)截止,因此,輸出端(OUT)的電位會維持在一邏輯高位準的穩態值。質言之,第一信號(V(IN))為一邏輯高位準(VDDL)時,經過高效能電位轉換器電路轉換成具第一高電源供應電壓(VDDH)的第二信號,由輸出端(OUT)輸出。 Considering again when the first signal (V(IN)) is a logic high level (VDDL), the steady-state operation situation of the high-efficiency potential shifter circuit: the logic high level (VDDL) on the first input terminal (IN) is simultaneously transmitted to the input terminal of the first inverter (I1), the gate of the first NMOS transistor (MN1), the gate of the third NMOS transistor (MN3) and the gate of the third PMOS transistor (MP3), so that the first NMOS transistor (M N1) and the third NMOS transistor (MN3) are both turned on (ON), and the third PMOS transistor (MP3) is turned off (OFF). At this time, because the third NMOS transistor (MN3) is turned on, the potential of the first node (N1) will be pulled down to a logic low level (0 volts) and output from the inverting output terminal (OUTB). Low level (0 volts), the logic low level on the third node (N3) makes the second PMOS transistor (MP2) conduction, and the first inverter (I1) transmits logic low level to the gate of the second NMOS transistor (MN2), the gate of the fourth NMOS transistor (MN4) and the gate of the fourth PMOS transistor (MP4), so that the second NMOS transistor Both the crystal (MN2) and the fourth NMOS transistor (MN4) are turned off (OFF), and the fourth PMOS transistor (MP4) is turned on (ON). At this time, since the second PMOS transistor (MP2) is turned on (ON), and the fourth NMOS transistor (MN4) is turned off (OFF), the potential of the second node (N2) will be pulled up to a logic high level and output from the output terminal (OUT), because the fourth PMOS transistor (MP4) is also turned on (ON), therefore, the potential of the fourth node (N4) will be pulled up to a logic high level, and the logic high level of the fourth node (N4) will cause the first PMOS transistor (MP1) to be turned off. At this time, because the first PMOS transistor (MP1) and the third PMOS transistor (MP3) are turned off, and the first NMOS transistor (MN1) is turned on, the potential of the third node (N3) will be maintained at a logic low level (0 volts). Both the OS transistor ( MP2 ) and the fourth PMOS transistor ( MP4 ) are turned on, and the second NMOS transistor ( MN2 ) is turned off. Therefore, the potential of the output terminal ( OUT ) will maintain a steady state value of a logic high level. In other words, when the first signal (V(IN)) is at a logic high level (VDDL), it is converted into a second signal with the first high power supply voltage (VDDH) by a high-efficiency potential shifter circuit, and is output from the output terminal (OUT).

綜上所述,該第一信號(V(IN))為邏輯低位準(0伏特)時,該第二信號(V(OUT))亦為邏輯低位準(0伏特);而該第一信號(V(IN))為邏輯高位準(VDDL)時,該第二信號(V(OUT))為第一高電源供應電壓(VDDH)。如此,電壓位準轉換的目的便實現。 In summary, when the first signal (V(IN)) is at a logic low level (0 volts), the second signal (V(OUT)) is also at a logic low level (0 volts); and when the first signal (V(IN)) is at a logic high level (VDDL), the second signal (V(OUT)) is a first high power supply voltage (VDDH). In this way, the purpose of voltage level conversion is achieved.

本創作所提出之高效能電位轉換器電路經由Spice暫態分析模擬結果可証實,其不但能快速且精確地將第一信號轉換為一第二信號,並且可有效地減少輸出端(OUT)的上拉路徑與下拉路徑之間的互相競爭,進而降低功率損耗。 The high-efficiency potential shifter circuit proposed in this creation can be verified by the Spice transient analysis simulation results. It can not only quickly and accurately convert the first signal to a second signal, but also effectively reduce the competition between the pull-up path and the pull-down path of the output terminal (OUT), thereby reducing power loss.

雖然本創作特別揭露並描述了所選之最佳實施 例,但舉凡熟悉本技術之人士可明瞭任何形式或是細節上可能的變化均未脫離本創作的精神與範圍。因此,所有相關技術範疇內之改變都包括在本創作之申請專利範圍內。 While this creation specifically discloses and describes selected best practice For example, those who are familiar with the technology can understand that any possible changes in form or details do not depart from the spirit and scope of the creation. Therefore, all changes in the relevant technical categories are included in the patent application scope of this creation.

1:輸入電路 1: Input circuit

2:栓鎖電路 2: Latch circuit

3:輸出控制電晶體 3: Output control transistor

4:輸出控制電晶體 4: Output control transistor

N1:第一節點 N1: the first node

N2:第二節點 N2: second node

N3:第三節點 N3: the third node

N4:第四節點 N4: the fourth node

MP1:第一PMOS電晶體 MP1: The first PMOS transistor

MP2:第二PMOS電晶體 MP2: The second PMOS transistor

MP3:第三PMOS電晶體 MP3: The third PMOS transistor

MP4:第四PMOS電晶體 MP4: The fourth PMOS transistor

I1:第一反相器 I1: the first inverter

MN1:第一NMOS電晶體 MN1: the first NMOS transistor

MN2:第二NMOS電晶體 MN2: The second NMOS transistor

MN3:第三NMOS電晶體 MN3: The third NMOS transistor

MN4:第四NMOS電晶體 MN4: The fourth NMOS transistor

GND:地 GND: ground

IN:第一輸入端 IN: the first input terminal

V(IN):第一信號 V(IN): the first signal

OUT:輸出端 OUT: output terminal

V(OUT):第二信號 V(OUT): the second signal

OUTB:反相輸出端 OUTB: Inverted output terminal

INB:第二輸入端 INB: the second input terminal

VDDH:第一高電源供應電壓 VDDH: the first high power supply voltage

VDDL:第二高電源供應電壓 VDDL: The second highest power supply voltage

Claims (8)

一種高效能電位轉換器電路,用以將一第一信號(V(IN))轉換為一第二信號(V(OUT)),其包括:一第一節點(N1),用以將一第一PMOS電晶體(MP1)的汲極、一第三PMOS電晶體(MP3)的源極以及一第三NMOS電晶體(MN3)的汲極連接在一起;一第二節點(N2),用以將一第二PMOS電晶體(MP2)的汲極、一第四PMOS電晶體(MP4)的源極以及一第四NMOS電晶體(MN4)的汲極連接在一起;一第三節點(N3),用以將該第二PMOS電晶體(MP2)的閘極、該第三PMOS電晶體(MP3)的汲極以及一第一NMOS電晶體(MN1)的汲極連接在一起;一第四節點(N4),用以將該第一PMOS電晶體(MP1)的閘極、該第四PMOS電晶體(MP4)的汲極以及一第二NMOS電晶體(MN2)的汲極連接在一起;一第一輸入端(IN),耦接於該第一NMOS電晶體(MN1)的閘極、該第三NMOS電晶體(MN3)的閘極、該第三PMOS電晶體(MP3)的閘極以及一第一反相器(I1)的輸入端,用以提供一第一信號(V(IN));一第二輸入端(INB),耦接於該第二NMOS電晶體(MN2)的閘極、該第四NMOS電晶體(MN4)的閘極、該第四PMOS電晶體(MP4)的閘極以及該第一反相器(I1)的輸出端,用以提供該第一信號(V(IN))的反相信號(V(INB)); 一輸出端(OUT),耦接於該第二節點(N2),用以輸出該第二信號(V(OUT));一反相輸出端(OUTB),耦接於該第一節點(N1),用以輸出該第二信號(V(OUT))的反相信號;一第一高電源供應電壓(VDDH),耦接於該第一PMOS電晶體(MP1)以及該第二PMOS電晶體(MP2)的源極,用以提供該電位轉換器電路所需之第一高電源電壓;一第二高電源供應電壓(VDDL),耦接於該第一反相器(I1)的源極,用以提供該電位轉換器電路所需之第二高電源電壓,該第二高電源供應電壓(VDDL)之電位係小於該第一高電源供應電壓(VDDH)之電位;一輸入電路(1),耦接於該第一輸入端(IN),用來提供差動輸入信號;一栓鎖電路(2),耦接於該第一高電源供應電壓(VDDH)以及一輸入電路(1),用來做為保存轉換的輸出電位;一輸出控制電晶體(3),耦接於該第一輸入端(IN),用以下拉該第一節點(N1)的電位;以及一輸出控制電晶體(4),耦接於第二輸入端(INB),用以下拉該第二節點(N2)的電位。 A high-efficiency potential converter circuit for converting a first signal (V(IN)) into a second signal (V(OUT)), comprising: a first node (N1) for connecting a drain of a first PMOS transistor (MP1), a source of a third PMOS transistor (MP3) and a drain of a third NMOS transistor (MN3); a second node (N2) for connecting a drain of a second PMOS transistor (MP2) to a fourth PMOS transistor The source of the crystal (MP4) and the drain of a fourth NMOS transistor (MN4) are connected together; a third node (N3) is used to connect the gate of the second PMOS transistor (MP2), the drain of the third PMOS transistor (MP3) and the drain of a first NMOS transistor (MN1); a fourth node (N4) is used for connecting the gate of the first PMOS transistor (MP1), the drain of the fourth PMOS transistor (MP4) and a second The drains of the NMOS transistors (MN2) are connected together; a first input terminal (IN), coupled to the gate of the first NMOS transistor (MN1), the gate of the third NMOS transistor (MN3), the gate of the third PMOS transistor (MP3) and an input terminal of a first inverter (I1), for providing a first signal (V(IN)); a second input terminal (INB), coupled to the second NMOS transistor (MN2) The gate of the fourth NMOS transistor (MN4), the gate of the fourth PMOS transistor (MP4) and the output terminal of the first inverter (I1) are used to provide an inversion signal (V(INB)) of the first signal (V(IN)); An output terminal (OUT), coupled to the second node (N2), for outputting the second signal (V(OUT)); an inverting output terminal (OUTB), coupled to the first node (N1), for outputting an inverse signal of the second signal (V(OUT)); a first high power supply voltage (VDDH), coupled to the sources of the first PMOS transistor (MP1) and the second PMOS transistor (MP2), for providing the first high power required by the potential converter circuit Voltage; a second high power supply voltage (VDDL), coupled to the source of the first inverter (I1), in order to provide the second high power supply voltage required by the potential converter circuit, the potential of the second high power supply voltage (VDDL) is lower than the potential of the first high power supply voltage (VDDH); an input circuit (1), coupled to the first input terminal (IN), for providing differential input signals; a latch circuit (2), coupled to the first high power supply voltage (VDDH) and an input The circuit (1) is used to store the converted output potential; an output control transistor (3) is coupled to the first input terminal (IN) to pull down the potential of the first node (N1); and an output control transistor (4) is coupled to the second input terminal (INB) to pull down the potential of the second node (N2). 如申請專利範圍第1項所述的高效能電位轉換器電路,其中該輸入電路(1)包括:一第一NMOS電晶體(MN1),其源極連接至地(GND),其閘極連 接至該第一輸入端(IN),而其汲極則連接至該第三節點(N3);一第二NMOS電晶體(MN2),其源極連接至地(GND),其閘極連接至該第二輸入端(INB),而其汲極則連接至該第四節點(N4);以及一第一反相器(I1),耦接於該第一輸入端(IN),用以接受該第一信號(V(IN)),並提供一個與該第一信號(V(IN))反相的信號。 As the high-efficiency potential converter circuit described in item 1 of the scope of patent application, wherein the input circuit (1) includes: a first NMOS transistor (MN1), its source is connected to the ground (GND), and its gate is connected to connected to the first input terminal (IN), and its drain is connected to the third node (N3); a second NMOS transistor (MN2), its source connected to the ground (GND), its gate connected to the second input terminal (INB), and its drain connected to the fourth node (N4); and a first inverter (I1), coupled to the first input terminal (IN), for receiving the first signal (V(IN)), and providing a signal ( V(IN)) Inverted signal. 如申請專利範圍第2項所述的高效能電位轉換器電路,其中該栓鎖電路(2)包括:一第一PMOS電晶體(MP1),其源極連接至該第一高電源供應電壓(VDDH),其閘極連接至該第四節點(N4),而其汲極則與該第一節點(N1)相連接;一第二PMOS電晶體(MP2),其源極連接至該第一高電源供應電壓(VDDH),其閘極連接至該第三節點(N3),而其汲極則與該第二節點(N2)相連接;一第三PMOS電晶體(MP3),其源極連接至該第一節點(N1),其閘極連接至該第一輸入端(IN),而其汲極則與該第三節點(N3)相連接;以及一第四PMOS電晶體(MP4),其源極連接至該第二節點(N2),其閘極連接至該第二輸入端(INB),而其汲極則與該第四節點(N4)相連接。 As the high-efficiency potential converter circuit described in item 2 of the scope of patent application, wherein the latch circuit (2) includes: a first PMOS transistor (MP1), whose source is connected to the first high power supply voltage (VDDH), whose gate is connected to the fourth node (N4), and whose drain is connected to the first node (N1); a second PMOS transistor (MP2), whose source is connected to the first high power supply voltage (VDDH), and whose gate is connected to the third node (N3) , and its drain is connected to the second node (N2); a third PMOS transistor (MP3), its source is connected to the first node (N1), its gate is connected to the first input terminal (IN), and its drain is connected to the third node (N3); and a fourth PMOS transistor (MP4), its source is connected to the second node (N2), its gate is connected to the second input terminal (INB), and its drain is connected to the fourth node (N4) connect. 如申請專利範圍第3項所述的高效能電位轉換器電路,其中該輸出控制電晶體(3)係由一第三NMOS電晶體(MN3)所組成,其源極連接至 地(GND),其閘極連接至該第一輸入端(IN),而其汲極則與該第一節點(N1)相連接。 As the high-efficiency potential converter circuit described in item 3 of the scope of patent application, wherein the output control transistor (3) is composed of a third NMOS transistor (MN3), its source is connected to Ground (GND), the gate of which is connected to the first input terminal (IN), and the drain of which is connected to the first node (N1). 如申請專利範圍第4項所述的高效能電位轉換器電路,其中該輸出控制電晶體(4)係由一第四NMOS電晶體(MN4)所組成,其源極連接至地(GND),其閘極連接至該第二輸入端(INB),而其汲極則與該第二節點(N2)相連接。 The high-efficiency potential shifter circuit described in item 4 of the scope of the patent application, wherein the output control transistor (4) is composed of a fourth NMOS transistor (MN4), its source is connected to the ground (GND), its gate is connected to the second input terminal (INB), and its drain is connected to the second node (N2). 如申請專利範圍第1項所述的高效能電位轉換器電路,其中該第一信號(V(IN))的振幅為0伏特至該第二高電源供應電壓(VDDL)之間。 The high-efficiency potential shifter circuit as described in claim 1 of the patent application, wherein the amplitude of the first signal (V(IN)) is between 0 volts and the second high power supply voltage (VDDL). 如申請專利範圍第6項所述的高效能電位轉換器電路,其中該第二信號(V(OUT))的振幅為0伏特至該第一高電源供應電壓(VDDH)之間。 The high-efficiency potential shifter circuit as described in claim 6 of the patent application, wherein the amplitude of the second signal (V(OUT)) is between 0 volts and the first high power supply voltage (VDDH). 如申請專利範圍第2項所述的高效能電位轉換器電路,其中該第一反相器(I1)的電壓源為該第二高電源供應電壓(VDDL)。 The high-efficiency potential shifter circuit as described in claim 2 of the patent application, wherein the voltage source of the first inverter (I1) is the second high power supply voltage (VDDL).
TW112200238U 2023-01-09 2023-01-09 High performance level shifting circuit TWM643260U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112200238U TWM643260U (en) 2023-01-09 2023-01-09 High performance level shifting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112200238U TWM643260U (en) 2023-01-09 2023-01-09 High performance level shifting circuit

Publications (1)

Publication Number Publication Date
TWM643260U true TWM643260U (en) 2023-07-01

Family

ID=88148083

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112200238U TWM643260U (en) 2023-01-09 2023-01-09 High performance level shifting circuit

Country Status (1)

Country Link
TW (1) TWM643260U (en)

Similar Documents

Publication Publication Date Title
TWM616390U (en) Low power voltage level shifter
TWM598009U (en) Voltage level shifter having output control circuit
TWM586017U (en) Low power level shifter circuit
TWM576365U (en) Low power voltage level converter
TWM576366U (en) Level conversion circuit with auxiliary circuit
TWM643260U (en) High performance level shifting circuit
TWM565921U (en) Voltage level shifter
TWM531694U (en) Voltage level converter
TWM639384U (en) High-speed low-power level shifter circuit for integrated circuits having multiple power supplies
TWM626417U (en) High-speed low-power level shifter circuit
TWM647689U (en) High speed voltage level converter with low power consumption
TWM598007U (en) High performance voltage level converter
TWM643204U (en) Level conversion circuit for converting a small-amplitude input signal
TWM625120U (en) Voltage level converter with leakage current reduction
TWM626414U (en) Voltage level converter with stack transistors
TWM645482U (en) High speed voltage level converter having low power consumption
TWM626307U (en) Contention-reduced level converting circuit
TWM649184U (en) Low voltage to high voltage signal level translator with improved performance
TWM599059U (en) Voltage level shifter having output buffer circuit
TWM628446U (en) Contention-free level converting circuit for data receiving circuit
TWM627595U (en) Voltage level conversion circuit exhibiting reduced power consumption
TWM618862U (en) Voltage level shifter with low power consumption
TWM587403U (en) Voltage level converter with low-power consumption
TWM601491U (en) Voltage level shifter with low power consumption
TWM628475U (en) Low power and high performance voltage level converting circuit