TWM531694U - Voltage level converter - Google Patents
Voltage level converter Download PDFInfo
- Publication number
- TWM531694U TWM531694U TW104220972U TW104220972U TWM531694U TW M531694 U TWM531694 U TW M531694U TW 104220972 U TW104220972 U TW 104220972U TW 104220972 U TW104220972 U TW 104220972U TW M531694 U TWM531694 U TW M531694U
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- transistor
- nmos transistor
- node
- drain
- Prior art date
Links
Landscapes
- Logic Circuits (AREA)
Description
本創作係有關一種電壓位準轉換器,尤指利用一振幅轉換電路(1)、一電位控制電晶體(2)以及另一電位控制電晶體(3)所組成,以求獲得精確電壓位準轉換且有效地降低功率消耗之電子電路。 The present invention relates to a voltage level converter, especially comprising an amplitude conversion circuit (1), a potential control transistor (2) and another potential control transistor (3) for obtaining a precise voltage level. An electronic circuit that converts and effectively reduces power consumption.
電壓位準轉換器係一種用來溝通不同的積體電路(Integrated Circuit,簡稱IC)之間的信號傳遞之電子電路。在許多應用中,當應用系統需將信號從電壓位準較低的核心邏輯傳送到電壓位準較高的週邊裝置時,電壓位準轉換器就負責將低電壓工作信號轉換成高電壓工作信號。 A voltage level converter is an electronic circuit used to communicate signal transmission between different integrated circuits (ICs). In many applications, when an application system needs to transfer a signal from a core logic with a lower voltage level to a peripheral device with a higher voltage level, the voltage level converter is responsible for converting the low voltage operation signal into a high voltage operation signal. .
第1圖係顯示一先前技藝(prior art)之一閂鎖型電壓位準轉換器電路,其係使用一第一PMOS(P-channel metal oxide semiconductor,P通道金屬氧化物半導體)電晶體(MP1)、一第二PMOS電晶體(MP2)、一第一NMOS(N-channel metal oxide semiconductor,N通道金屬氧化物半導體)電晶體(MN1)、一第二NMOS電晶體(MN2)及一反相器(INV)來構成一電壓位準轉換器電路,其中,該反相器(INV)的偏壓是第二高電位電壓(VDDL)及地(GND),而輸入電壓(V(IN))的電位亦在地(GND)與第二高電位電壓(VDDL)之間。輸入電壓(V(IN))及經過反相器(INV)輸出的反相輸入電壓信號分別連接至第一NMOS電晶體(MN1)及第二NMOS電晶體(MN2)的閘極(gate)。因 此,在同一時間內,第一NMOS電晶體(MN1)及第二NMOS電晶體(MN2)之中只有一個會導通(ON)。此外,由於第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的交叉耦合(cross-coupled)方式,使得當電壓位準轉換器的輸出(OUT)處於一個穩定的狀態時,閂鎖型的電壓位準轉換器中沒有靜態電流(static current)產生。尤其,當第一NMOS電晶體(MN1)關閉(OFF)而第二NMOS電晶體(MN2)導通(ON)時,第一PMOS電晶體(MP1)的閘極電位被拉降(pull down)並使得第一PMOS電晶體(MP1)導通,以致拉升(pull up)第二PMOS電晶體(MP2)的閘極電位而關閉第二PMOS電晶體(MP2);再者,當第一NMOS電晶體(MN1)導通而第二NMOS電晶體(MN2)關閉時,第二PMOS電晶體(MP2)的閘極電位被拉降並使得第二PMOS電晶體(MP2)導通,以致拉升第一PMOS電晶體(MP1)的閘極電位而關閉第一PMOS電晶體(MP1)。因此,在第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)之間或第二PMOS電晶體(MP2)和第二NMOS電晶體(MN2)之間就不會存在一個電流路徑。 Figure 1 shows a prior art latch-type voltage level converter circuit using a first PMOS (P-channel metal oxide semiconductor) transistor (MP1). a second PMOS transistor (MP2), a first NMOS (N-channel metal oxide semiconductor) transistor (MN1), a second NMOS transistor (MN2), and an inverting phase The inverter (INV) constitutes a voltage level converter circuit, wherein the bias voltage of the inverter (INV) is the second high potential voltage (VDDL) and the ground (GND), and the input voltage (V(IN)) The potential is also between ground (GND) and the second high potential voltage (VDDL). The input voltage (V(IN)) and the inverted input voltage signal output through the inverter (INV) are connected to the gates of the first NMOS transistor (MN1) and the second NMOS transistor (MN2), respectively. because Thus, at the same time, only one of the first NMOS transistor (MN1) and the second NMOS transistor (MN2) is turned ON. In addition, due to the cross-coupled manner of the first PMOS transistor (MP1) and the second PMOS transistor (MP2), when the output (OUT) of the voltage level converter is in a stable state, the latch There is no static current generated in the lock type voltage level converter. In particular, when the first NMOS transistor (MN1) is turned off (OFF) and the second NMOS transistor (MN2) is turned "ON", the gate potential of the first PMOS transistor (MP1) is pulled down and Making the first PMOS transistor (MP1) turn on, so as to pull up the gate potential of the second PMOS transistor (MP2) to turn off the second PMOS transistor (MP2); further, when the first NMOS transistor When (MN1) is turned on and the second NMOS transistor (MN2) is turned off, the gate potential of the second PMOS transistor (MP2) is pulled down and the second PMOS transistor (MP2) is turned on, so that the first PMOS is pulled up. The gate potential of the crystal (MP1) turns off the first PMOS transistor (MP1). Therefore, there is no current path between the first PMOS transistor (MP1) and the first NMOS transistor (MN1) or between the second PMOS transistor (MP2) and the second NMOS transistor (MN2).
然而,上述習知電壓位準轉換器在第二PMOS電晶體(MP2)趨近於導通(或關閉)與在第二NMOS電晶體(MN2)趨近於關閉(或導通)的過程中,對於輸出節點(OUT)上的電位之拉升及拉降有互相競爭(contention)的現象,因此輸出電壓信號(V(OUT))在轉變成低電位時速度較慢。此外,考慮當輸入電壓(V(IN))由0伏特改變至1.8伏特時,第一NMOS電晶體(MN1)導通,而第二PMOS電晶體(MP2)的閘極變為低電位,使得第二PMOS電晶體(MP2)導通。所以,輸出為一第一高電位電壓(VDDH)。但是,由於0伏特無法瞬間轉換至1.8伏特,因此,在轉換期間的較低輸入電壓(V(IN))可能無法使第一PMOS電晶體(MP1)、第二PMOS電晶體(MP2)、第一NMOS電晶體 (MN1)及第二NMOS電晶體(MN2)達到完全導通或完全關閉,如此會造成在第一高電位電壓(VDDH)與地(GND)之間存在一靜態電流(static current),此靜態電流會增加功率的損耗。 However, the above-described conventional voltage level converter is in the process of approaching (or turning off) the second PMOS transistor (MP2) and approaching (or turning on) the second NMOS transistor (MN2), The pull-up and pull-down of the potential on the output node (OUT) have a contention, so the output voltage signal (V(OUT)) is slower when it is converted to a low potential. Further, considering that when the input voltage (V(IN)) is changed from 0 volts to 1.8 volts, the first NMOS transistor (MN1) is turned on, and the gate of the second PMOS transistor (MP2) becomes low, so that The two PMOS transistors (MP2) are turned on. Therefore, the output is a first high potential voltage (VDDH). However, since 0 volts cannot be instantaneously converted to 1.8 volts, the lower input voltage (V(IN)) during the conversion may not enable the first PMOS transistor (MP1), the second PMOS transistor (MP2), NMOS transistor (MN1) and the second NMOS transistor (MN2) are fully turned on or completely turned off, which causes a static current between the first high potential voltage (VDDH) and ground (GND). Will increase the power loss.
再者,閂鎖型的電壓位準轉換器的性能是受到第一高電位電壓(VDDH)的影響,由於第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘-源極電壓為第一高電位電壓(VDDH),而第一NMOS電晶體(MN1)和第二NMOS電晶體(MN2)的閘-源極電壓是第二高電位電壓(VDDL)。因此,限制了可以使閂鎖型電壓位準轉換器正常運作的第一高電位電壓(VDDH)的範圍。 Furthermore, the performance of the latch type voltage level converter is affected by the first high potential voltage (VDDH) due to the gate-source of the first PMOS transistor (MP1) and the second PMOS transistor (MP2). The voltage is the first high potential voltage (VDDH), and the gate-source voltages of the first NMOS transistor (MN1) and the second NMOS transistor (MN2) are the second high potential voltage (VDDL). Therefore, the range of the first high potential voltage (VDDH) that can make the latch type voltage level converter operate normally is limited.
第2圖係顯示另一先前技藝之一鏡像型電壓位準轉換器電路,該電壓位準轉換器藉由將第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘極連接在一起並連接到第一PMOS電晶體(MP1)的汲極,使得第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)形成電流鏡電路,第一PMOS電晶體(MP1)是處於飽和區,並且其閘極電壓使得飽和電流等於流入第一NMOS電晶體(MN1)之電流,而流經第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)之電流亦相等。由於鏡像型的電壓位準轉換器的性能是由第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)的電流來決定,因此,即使輸出的第一高電位電壓(VDDH)改變,電壓位準轉換器的性能也不會有太大的改變。因此,鏡像型的電壓位準轉換器可以適用在各種輸出電壓電路。 Figure 2 is a diagram showing another prior art mirror type voltage level converter circuit for connecting the gates of the first PMOS transistor (MP1) and the second PMOS transistor (MP2) Connected to the drain of the first PMOS transistor (MP1) together such that the first PMOS transistor (MP1) and the second PMOS transistor (MP2) form a current mirror circuit, and the first PMOS transistor (MP1) is The saturation region, and its gate voltage, causes the saturation current to be equal to the current flowing into the first NMOS transistor (MN1), and the current flowing through the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are also equal. Since the performance of the mirror type voltage level converter is determined by the currents of the first PMOS transistor (MP1) and the first NMOS transistor (MN1), even if the output first high potential voltage (VDDH) changes, The performance of the voltage level converter will not change much. Therefore, the mirror type voltage level converter can be applied to various output voltage circuits.
然而,當第一NMOS電晶體(MN1)導通而第二NMOS電晶體(MN2)關閉時,第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘極電 位被拉降,使得第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)都導通。如此,在第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)之間會產生一個靜態電流路徑。 However, when the first NMOS transistor (MN1) is turned on and the second NMOS transistor (MN2) is turned off, the gates of the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are electrically charged. The bit is pulled down so that both the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are turned on. As such, a quiescent current path is generated between the first PMOS transistor (MP1) and the first NMOS transistor (MN1).
有鑑於此,本創作之主要目的係提出一種電壓位準轉換器,其不但能精確且快速地將第一信號轉換為一第二信號,並且可有效地減少漏電流,進而降低功率消耗。 In view of this, the main purpose of the present invention is to propose a voltage level converter that not only accurately and quickly converts a first signal into a second signal, but also effectively reduces leakage current, thereby reducing power consumption.
本創作提出一種電壓位準轉換器,其係由一振幅轉換電路(1)、一電位控制電晶體(2)以及另一電位控制電晶體(3)所組成,其中,該振幅轉換電路(1)係用來做為電位轉換;該電位控制電晶體(2)係用以拉升該第一節點(N1)之電壓位準;而該電位控制電晶體(3)係用以拉升該第二節點(N2)之電壓位準。 The present invention proposes a voltage level converter which is composed of an amplitude conversion circuit (1), a potential control transistor (2) and another potential control transistor (3), wherein the amplitude conversion circuit (1) Is used as a potential conversion; the potential control transistor (2) is used to pull up the voltage level of the first node (N1); and the potential control transistor (3) is used to pull up the first The voltage level of the two nodes (N2).
由模擬結果證實,本創作所提出之電壓位準轉換器,不但能精確且快速地將第一信號轉換為一第二信號,並且兼具電路結構簡單以及有利於裝置之小型化等多重功效,同時亦能有效地減少功率損耗。 It is confirmed by the simulation results that the voltage level converter proposed by the present invention not only can accurately and quickly convert the first signal into a second signal, but also has multiple functions such as simple circuit structure and miniaturization of the device. At the same time, it can effectively reduce power loss.
1‧‧‧振幅轉換電路 1‧‧‧Amplitude conversion circuit
2‧‧‧電位控制電晶體 2‧‧‧potential control transistor
3‧‧‧電位控制電晶體 3‧‧‧potential control transistor
I1‧‧‧第一反相器 I1‧‧‧First Inverter
N1‧‧‧第一節點 N1‧‧‧ first node
N2‧‧‧第二節點 N2‧‧‧ second node
MP1‧‧‧第一PMOS電晶體 MP1‧‧‧First PMOS transistor
MP2‧‧‧第二PMOS電晶體 MP2‧‧‧second PMOS transistor
MP3‧‧‧第三PMOS電晶體 MP3‧‧‧ Third PMOS transistor
MP4‧‧‧第四PMOS電晶體 MP4‧‧‧fourth PMOS transistor
MN1‧‧‧第一NMOS電晶體 MN1‧‧‧First NMOS transistor
MN2‧‧‧第二NMOS電晶體 MN2‧‧‧Second NMOS transistor
MN3‧‧‧第三NMOS電晶體 MN3‧‧‧ Third NMOS transistor
MN4‧‧‧第四NMOS電晶體 MN4‧‧‧4th NMOS transistor
IN‧‧‧第一輸入端 IN‧‧‧ first input
V(IN)‧‧‧第一信號 V(IN)‧‧‧first signal
INB‧‧‧第二輸入端 INB‧‧‧ second input
OUT‧‧‧輸出端 OUT‧‧‧ output
GND‧‧‧地 GND‧‧‧
V(OUT)‧‧‧第二信號 V(OUT)‧‧‧second signal
VDDH‧‧‧第一高電位電壓 VDDH‧‧‧first high potential voltage
VDDL‧‧‧第二高電位電壓 VDDL‧‧‧ second high potential voltage
第1圖 係顯示第一先前技藝中電壓位準轉換器之電路圖;第2圖 係顯示第二先前技藝中電壓位準轉換器之電路圖;第3圖 係顯示本創作較佳實施例之電壓位準轉換器之電路圖;第4圖 係顯示本創作較佳實施例之第一信號及第二信號之暫態分析時序圖; 1 is a circuit diagram showing a voltage level converter in a first prior art; FIG. 2 is a circuit diagram showing a voltage level converter in a second prior art; and FIG. 3 is a voltage level showing a preferred embodiment of the present invention. a circuit diagram of a quasi-converter; FIG. 4 is a timing diagram showing transient analysis of the first signal and the second signal of the preferred embodiment of the present invention;
根據上述之目的,本創作提出一種電壓位準轉換器,如第3圖所示,其係由一振幅轉換電路(1)、一電位控制電晶體(2)以及一電位控制電晶體(3)所組成,其中,該振幅轉換電路(1)係用來做為電位轉換;該電位控制電晶體(2)係用以拉升該第一節點(N1)之電壓位準;該電位控制電晶體(3)係用以拉升該第二節點(N2)之電壓位準;該振幅轉換電路(1)係耦接於該第一電源電壓以及地(GND),用來做為電位轉換之用;其係由一第一PMOS電晶體(MP1)、一第二PMOS電晶體(MP2)、一第一NMOS電晶體(MN1)、一第二NMOS電晶體(MN2)、一第三NMOS電晶體(MN3)、一第四NMOS電晶體(MN4)以及一第一反相器(I1)所組成,其中,該第一PMOS電晶體(MP1)的源極連接至第一高電位電壓(VDDH),其閘極連接至該第二節點(N2),而其汲極則與該第一節點(N1)相連接;該第二PMOS電晶體(MP2)的源極連接至第一高電位電壓(VDDH),其閘極連接至該第一節點(N1),而其汲極則與該第二節點(N2)相連接;該第一NMOS電晶體(MN1)的源極連接至該第三NMOS電晶體(MN3)的汲極,其閘極連接至該第二節點(N2),而其汲極則與該第一節點(N1)相連接;該第二NMOS電晶體(MN2)的源極連接至該第四NMOS電晶體(MN4)的汲極,其閘極連接至該第一節點(N1),而其汲極則與該第二節點(N2)相連接;該第三NMOS電晶體(MN3)的源極連接至地(GND),其閘極連接至該第一輸入端(IN),而其汲極則與該第一NMOS電晶體(MN1)的源極相連接;該第四 NMOS電晶體(MN4)的源極連接至地(GND),其閘極連接至該第二輸入端(INB),而其汲極則與該第二NMOS電晶體(MN2)的源極相連接;而該第一反相器(I1)係用以接受該第一信號(V(IN)),並提供該第二輸入端(INB)一個與該第一信號(V(IN))反相的信號;該電位控制電晶體(2)係由一第三PMOS電晶體(MP3)所組成,其源極連接至第一高電位電壓(VDDH),其閘極連接至該第一輸入端(IN),而其汲極則與該第一節點(N1)相連接;該電位控制電晶體(3)係由一第四PMOS電晶體(MP4)所組成,其源極連接至第一高電位電壓(VDDH),其閘極連接至該第二輸入端(INB),而其汲極則與該第二節點(N2)相連接;該第一電源電壓係用以提供該電壓位準轉換器所需之第一高電位電壓(VDDH),該第二電源電壓係用以提供該電壓位準轉換器所需之第二高電位電壓(VDDL),該第二高電位電壓(VDDL)之位準係小於該第一高電位電壓(VDDH)之位準,該第一信號為介於0伏特及1.2伏特間的矩形波,而該第二信號則為介於0伏特及1.8伏特間的對應波形,該第一高電位電壓(VDDH)為1.8伏特,而該第二高電位電壓(VDDL)為1.2伏特,該第一信號(V(IN))為介於0伏特及1.2伏特間的矩形波,該第二信號(V(OUT))則為介於0伏特及1.8伏特間的對應波形。。 According to the above purpose, the present invention proposes a voltage level converter, as shown in FIG. 3, which is composed of an amplitude conversion circuit (1), a potential control transistor (2) and a potential control transistor (3). The amplitude conversion circuit (1) is used for potential conversion; the potential control transistor (2) is used to pull up the voltage level of the first node (N1); the potential control transistor (3) is used to pull up the voltage level of the second node (N2); the amplitude conversion circuit (1) is coupled to the first power voltage and ground (GND) for use as a potential conversion It is composed of a first PMOS transistor (MP1), a second PMOS transistor (MP2), a first NMOS transistor (MN1), a second NMOS transistor (MN2), and a third NMOS transistor. (MN3), a fourth NMOS transistor (MN4) and a first inverter (I1), wherein the source of the first PMOS transistor (MP1) is connected to the first high potential voltage (VDDH) a gate connected to the second node (N2) and a drain connected to the first node (N1); a source of the second PMOS transistor (MP2) connected to the first high potential voltage ( VDDH), a gate is connected to the first node (N1), and a drain is connected to the second node (N2); a source of the first NMOS transistor (MN1) is connected to the third NMOS transistor (MN3) a drain whose gate is connected to the second node (N2) and whose drain is connected to the first node (N1); the source of the second NMOS transistor (MN2) is connected to the first a drain of a four NMOS transistor (MN4) having a gate connected to the first node (N1) and a drain connected to the second node (N2); the third NMOS transistor (MN3) The source is connected to the ground (GND), the gate thereof is connected to the first input terminal (IN), and the drain thereof is connected to the source of the first NMOS transistor (MN1); The source of the NMOS transistor (MN4) is connected to the ground (GND), the gate thereof is connected to the second input terminal (INB), and the drain thereof is connected to the source of the second NMOS transistor (MN2). And the first inverter (I1) is configured to receive the first signal (V(IN)) and provide the second input terminal (INB) to be inverted from the first signal (V(IN)) The potential control transistor (2) is composed of a third PMOS transistor (MP3) whose source is connected to a first high potential voltage (VDDH) whose gate is connected to the first input terminal ( IN), and its drain is connected to the first node (N1); the potential control transistor (3) is composed of a fourth PMOS transistor (MP4) whose source is connected to the first high potential a voltage (VDDH) whose gate is connected to the second input terminal (INB) and whose drain is connected to the second node (N2); the first power supply voltage is used to provide the voltage level converter a first high potential voltage (VDDH) required to provide a second high potential voltage (VDDL) required by the voltage level converter, the second high potential voltage (VDDL) The standard is less than the first high potential voltage (V DDH), the first signal is a rectangular wave between 0 volts and 1.2 volts, and the second signal is a corresponding waveform between 0 volts and 1.8 volts, the first high potential voltage (VDDH) Is 1.8 volts, and the second high potential voltage (VDDL) is 1.2 volts, the first signal (V(IN)) is a rectangular wave between 0 volts and 1.2 volts, and the second signal (V(OUT) )) is the corresponding waveform between 0 volts and 1.8 volts. .
請再參閱第3圖,現在考慮第一信號(V(IN))為低電位(0伏特)時,電壓位準轉換器的穩態操作情形:第一輸入端(IN)上的低電位同時傳送到第一反相器(I1)的輸入端、第三NMOS電晶體(MN3)以及第三PMOS電晶體(MP3)的閘極,使得該第三NMOS電晶體(MN3)關閉、第三PMOS電晶體(MP3)導通,此時該第一節點(N1)的電位被拉升至一高電位;而該第一反相 器(I1)傳送第二高電位電壓(VDDL)到第四NMOS電晶體(MN4)和第四PMOS電晶體(MP4)的閘極,使得第四NMOS電晶體(MN4)導通、第四PMOS電晶體(MP4)關閉,由於該第一節點(N1)的高電位使得第二PMOS電晶體(MP2)關閉、第二NMOS電晶體(MN2)導通,此時,由於第二NMOS電晶體(MN2)和第四NMOS電晶體(MN4)都導通,因此,該第二節點(N2)的電位會被拉降至一低電位(0伏特)的穩態值,再者,該第二節點(N2)上的低電位傳送到第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)的閘極,使得第一PMOS電晶體(MP1)導通、第一NMOS電晶體(MN1)關閉,由於第一PMOS電晶體(MP1)和第三PMOS電晶體(MP3)都導通,第一NMOS電晶體(MN1)和第三NMOS電晶體(MN3)都關閉,因此,第一節點(N1)的電位會被拉升至一第一高電位電壓(VDDH),而由於第二NMOS電晶體(MN2)和第四NMOS電晶體(MN4)都導通,第二PMOS電晶體(MP2)和第四PMOS電晶體(MP4)都關閉,因此,第二節點(N2)的電位將維持在低電位(0伏特),因此,輸出端(OUT)的電位會被拉降至一低電位(0伏特)的穩態值。質言之,第一信號(V(IN))為低電位(0伏特)時,經過電壓位準轉換器轉換成具低電位(0伏特)的第二信號,由輸出端(OUT)輸出。 Please refer to Figure 3 again. Now consider the steady-state operation of the voltage level converter when the first signal (V(IN)) is low (0 volts): the low potential at the first input (IN) Transmitting to the input of the first inverter (I1), the third NMOS transistor (MN3), and the gate of the third PMOS transistor (MP3), so that the third NMOS transistor (MN3) is turned off, the third PMOS The transistor (MP3) is turned on, at which time the potential of the first node (N1) is pulled up to a high potential; and the first inversion The device (I1) transmits a second high potential voltage (VDDL) to the gates of the fourth NMOS transistor (MN4) and the fourth PMOS transistor (MP4) such that the fourth NMOS transistor (MN4) is turned on, and the fourth PMOS is turned on The crystal (MP4) is turned off, the second PMOS transistor (MP2) is turned off and the second NMOS transistor (MN2) is turned on due to the high potential of the first node (N1), at this time, due to the second NMOS transistor (MN2) And the fourth NMOS transistor (MN4) is turned on, therefore, the potential of the second node (N2) is pulled down to a low potential (0 volt) steady state value, and further, the second node (N2) The upper low potential is transmitted to the gates of the first PMOS transistor (MP1) and the first NMOS transistor (MN1) such that the first PMOS transistor (MP1) is turned on and the first NMOS transistor (MN1) is turned off due to the A PMOS transistor (MP1) and a third PMOS transistor (MP3) are both turned on, and the first NMOS transistor (MN1) and the third NMOS transistor (MN3) are both turned off, so that the potential of the first node (N1) is Is pulled up to a first high potential voltage (VDDH), and since both the second NMOS transistor (MN2) and the fourth NMOS transistor (MN4) are turned on, the second PMOS transistor (MP2) and the fourth PMOS transistor (MP4) are all off, therefore, Potential of the second node (N2) will be maintained at a low potential (0 volts), and therefore, the output terminal (OUT) will be pulled down to the potential of a low potential (0 volt) steady-state value. In other words, when the first signal (V(IN)) is low (0 volts), it is converted into a second signal with a low potential (0 volt) by a voltage level converter, and is outputted by the output terminal (OUT).
再考慮第一信號(V(IN))為第二高電位電壓(1.2伏特)時,電壓位準轉換器的穩態操作情形:第一輸入端(IN)上的第二高電位電壓(VDDL)同時傳送到第一反相器(I1)的輸入端、第三NMOS電晶體(MN3)以及第三PMOS電晶體(MP3)的閘極,使得該第三NMOS電晶體(MN3)導通、第三PMOS電晶體(MP3)關閉,而該第一反相器(I1)傳送一低電位到第四NMOS電晶體(MN4)和第四PMOS電晶體(MP4)的閘極,使得第四NMOS電晶體 (MN4)關閉、第四PMOS電晶體(MP4)導通,此時由於第四PMOS電晶體(MP4)導通,該第二節點(N2)的電位會被拉升至一高電位;而該第二節點(N2)的高電位使得第一PMOS電晶體(MP1)關閉、第一NMOS電晶體(MN1)導通,此時由於第一NMOS電晶體(MN1)和第三NMOS電晶體(MN3)都導通,因此,該第一節點(N1)的電位會被拉降至一低電位(0伏特)的穩態值,再者,該第一節點(N1)上的低電位傳送到第二PMOS電晶體(MP2)和第二NMOS電晶體(MN2)的閘極,使得第二PMOS電晶體(MP2)導通、第二NMOS電晶體(MN2)關閉,由於第二PMOS電晶體(MP2)和第四PMOS電晶體(MP4)都導通,第二NMOS電晶體(MN2)和第四NMOS電晶體(MN4)都關閉,因此,第二節點(N2)的電位將維持在第一高電位電壓(VDDH),而第一節點(N1)的電位維持在低電位(0伏特),因此,輸出端(OUT)的電位會被拉升至一第一高電位電壓(VDDH)的穩態值。質言之,第一信號(V(1N))為第二高電位電壓(1.2伏特)時,經過電壓位準轉換器轉換成具第一高電位電壓(1.8伏特)的第二信號,由輸出端(OUT)輸出。 Considering the steady state operation of the voltage level converter when the first signal (V(IN)) is the second high potential voltage (1.2 volts): the second high potential voltage at the first input (IN) (VDDL) Simultaneously transmitting to the input terminal of the first inverter (I1), the third NMOS transistor (MN3), and the gate of the third PMOS transistor (MP3), so that the third NMOS transistor (MN3) is turned on, The three PMOS transistors (MP3) are turned off, and the first inverter (I1) transmits a low potential to the gates of the fourth NMOS transistor (MN4) and the fourth PMOS transistor (MP4), so that the fourth NMOS is Crystal (MN4) is turned off, the fourth PMOS transistor (MP4) is turned on, and at this time, since the fourth PMOS transistor (MP4) is turned on, the potential of the second node (N2) is pulled up to a high potential; and the second The high potential of the node (N2) causes the first PMOS transistor (MP1) to be turned off and the first NMOS transistor (MN1) to be turned on, at which time both the first NMOS transistor (MN1) and the third NMOS transistor (MN3) are turned on. Therefore, the potential of the first node (N1) is pulled down to a low potential (0 volt) steady state value, and the low potential at the first node (N1) is transferred to the second PMOS transistor. (MP2) and the gate of the second NMOS transistor (MN2) such that the second PMOS transistor (MP2) is turned on and the second NMOS transistor (MN2) is turned off due to the second PMOS transistor (MP2) and the fourth PMOS The transistor (MP4) is turned on, and the second NMOS transistor (MN2) and the fourth NMOS transistor (MN4) are both turned off. Therefore, the potential of the second node (N2) is maintained at the first high potential voltage (VDDH). While the potential of the first node (N1) is maintained at a low potential (0 volts), the potential of the output terminal (OUT) is pulled up to a steady state value of a first high potential voltage (VDDH). In a word, when the first signal (V(1N)) is the second high potential voltage (1.2 volts), it is converted into a second signal having a first high potential voltage (1.8 volts) by the voltage level converter, and the output is output. End (OUT) output.
綜上所述,第一信號(V(IN))為低電位(0伏特)時,第二信號(V(OUT))亦為低電位(0伏特);而第一信號(V(IN))為第二高電位電壓(1.2伏特)時,第二信號(V(OUT))為第一高電位電壓(1.8伏特)。如此,電壓位準轉換的目的便實現。 In summary, when the first signal (V(IN)) is low (0 volts), the second signal (V(OUT)) is also low (0 volts); and the first signal (V(IN)) When the second high potential voltage (1.2 volts) is, the second signal (V(OUT)) is the first high potential voltage (1.8 volts). Thus, the purpose of voltage level conversion is achieved.
本創作所提出之電壓位準轉換器之Spice暫態分析模擬結果,如第4圖所示,由該模擬結果可証實,本創作所提出之電壓位準轉換器,其不但仍能快速且精確地將第一信號轉換為一第二信號,並且能有效地降低功率的損耗。 The result of the Spice transient analysis of the voltage level converter proposed by this work, as shown in Fig. 4, can be confirmed by the simulation results. The voltage level converter proposed by the present invention can not only be fast and accurate. The first signal is converted into a second signal, and the power loss can be effectively reduced.
雖然本創作特別揭露並描述了所選之最佳實施例,但舉凡熟悉本技術之人士可明瞭任何形式或是細節上可能的變化均未脫離本創作的精神與範圍。因此,所有相關技術範疇內之改變都包括在本創作之申請專利範圍內。 Although the present invention has been particularly described and described in detail, it is understood by those skilled in the art that the present invention may be modified in any form or detail without departing from the spirit and scope of the present invention. Therefore, all changes in the relevant technical scope are included in the scope of the patent application of this creation.
1‧‧‧振幅轉換電路 1‧‧‧Amplitude conversion circuit
2‧‧‧電位控制電晶體 2‧‧‧potential control transistor
3‧‧‧電位控制電晶體 3‧‧‧potential control transistor
I1‧‧‧第一反相器 I1‧‧‧First Inverter
N1‧‧‧第一節點 N1‧‧‧ first node
N2‧‧‧第二節點 N2‧‧‧ second node
MP1‧‧‧第一PMOS電晶體 MP1‧‧‧First PMOS transistor
MP2‧‧‧第二PMOS電晶體 MP2‧‧‧second PMOS transistor
MP3‧‧‧第三PMOS電晶體 MP3‧‧‧ Third PMOS transistor
MP4‧‧‧第四PMOS電晶體 MP4‧‧‧fourth PMOS transistor
MN1‧‧‧第一NMOS電晶體 MN1‧‧‧First NMOS transistor
MN2‧‧‧第二NMOS電晶體 MN2‧‧‧Second NMOS transistor
MN3‧‧‧第三NMOS電晶體 MN3‧‧‧ Third NMOS transistor
MN4‧‧‧第四NMOS電晶體 MN4‧‧‧4th NMOS transistor
IN‧‧‧第一輸入端 IN‧‧‧ first input
V(IN)‧‧‧第一信號 V(IN)‧‧‧first signal
INB‧‧‧第二輸入端 INB‧‧‧ second input
OUT‧‧‧輸出端 OUT‧‧‧ output
GND‧‧‧地 GND‧‧‧
V(OUT)‧‧‧第二信號 V(OUT)‧‧‧second signal
VDDH‧‧‧第一高電位電壓 VDDH‧‧‧first high potential voltage
VDDL‧‧‧第二高電位電壓 VDDL‧‧‧ second high potential voltage
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104220972U TWM531694U (en) | 2015-12-29 | 2015-12-29 | Voltage level converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104220972U TWM531694U (en) | 2015-12-29 | 2015-12-29 | Voltage level converter |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM531694U true TWM531694U (en) | 2016-11-01 |
Family
ID=57852317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104220972U TWM531694U (en) | 2015-12-29 | 2015-12-29 | Voltage level converter |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM531694U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI817389B (en) * | 2022-03-15 | 2023-10-01 | 智原科技股份有限公司 | Level shifter and electronic device |
-
2015
- 2015-12-29 TW TW104220972U patent/TWM531694U/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI817389B (en) * | 2022-03-15 | 2023-10-01 | 智原科技股份有限公司 | Level shifter and electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWM616390U (en) | Low power voltage level shifter | |
TWM586017U (en) | Low power level shifter circuit | |
TWM598009U (en) | Voltage level shifter having output control circuit | |
TWM531694U (en) | Voltage level converter | |
TWM576366U (en) | Level conversion circuit with auxiliary circuit | |
TWM576365U (en) | Low power voltage level converter | |
TWM565921U (en) | Voltage level shifter | |
TWM517481U (en) | Voltage level converter | |
TWM598007U (en) | High performance voltage level converter | |
TWM576363U (en) | Potential converter to reduce competition | |
TWM536817U (en) | Voltage level shifter | |
TWM551788U (en) | Voltage level shifter | |
TWM643260U (en) | High performance level shifting circuit | |
TWM626417U (en) | High-speed low-power level shifter circuit | |
TWM528555U (en) | Voltage level converter | |
TWM625120U (en) | Voltage level converter with leakage current reduction | |
TWM565915U (en) | Voltage level converter | |
TWM565914U (en) | Voltage level shifter | |
TWM538183U (en) | Voltage level converter | |
TWM626307U (en) | Contention-reduced level converting circuit | |
TWM626414U (en) | Voltage level converter with stack transistors | |
TWM639384U (en) | High-speed low-power level shifter circuit for integrated circuits having multiple power supplies | |
TWM599059U (en) | Voltage level shifter having output buffer circuit | |
TWM587403U (en) | Voltage level converter with low-power consumption | |
TWM628446U (en) | Contention-free level converting circuit for data receiving circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4K | Annulment or lapse of a utility model due to non-payment of fees |