TWI815532B - Light sensor - Google Patents

Light sensor Download PDF

Info

Publication number
TWI815532B
TWI815532B TW111124605A TW111124605A TWI815532B TW I815532 B TWI815532 B TW I815532B TW 111124605 A TW111124605 A TW 111124605A TW 111124605 A TW111124605 A TW 111124605A TW I815532 B TWI815532 B TW I815532B
Authority
TW
Taiwan
Prior art keywords
light
sensing element
color resistor
protective layer
film transistor
Prior art date
Application number
TW111124605A
Other languages
Chinese (zh)
Other versions
TW202332023A (en
Inventor
陳銘宇
陳宗漢
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to CN202211510464.8A priority Critical patent/CN115799241A/en
Publication of TW202332023A publication Critical patent/TW202332023A/en
Application granted granted Critical
Publication of TWI815532B publication Critical patent/TWI815532B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Abstract

A light sensor includes a substrate, a gate line, a data line, a thin-film transistor, a light sensing element, a common line, a first color resist, and a light conversion material layer. The gate line is located over the substrate. The data line is located over the substrate. A gate of the thin-film transistor is electrically connected to the gate line. A drain of the thin-film transistor is electrically connected to the data line. A lower electrode of the light sensing element is electrically connected to a source of the thin-film transistor. The common line is located over the substrate and electrically connected to an upper electrode of the light sensing element. The first color resist is located over the thin-film transistor, and the light sensing element is surrounded by the first color resist in a top view. The light sensing element is located on the first color resist.

Description

光感測器light sensor

本揭露係有關於一種光感測器。The present disclosure relates to a light sensor.

光感測器普遍應用於智慧型手機、筆記型電腦或平板電腦等電子裝置。除此之外,光感測器也應用於醫療診斷工具。舉例來說,配置以接收X光的X光光感測器可將通過人體組織的X光轉換為可視化影像。如何提出一種可以增進可見光於光感測器的光感測元件中的準直性以大幅提升影像的品質問題的光感測器,是目前業界亟欲投入研發資源解決的問題之一。Light sensors are commonly used in electronic devices such as smartphones, laptops or tablets. In addition, light sensors are also used in medical diagnostic tools. For example, an X-ray sensor configured to receive X-rays can convert X-rays passing through human tissue into a visual image. How to come up with a light sensor that can improve the collimation of visible light in the light sensing element of the light sensor to greatly improve the quality of the image is one of the problems that the industry is currently eager to invest in research and development resources to solve.

有鑑於此,本揭露之一目的在於提出一種可有解決上述問題的光感測器。In view of this, one purpose of the present disclosure is to provide a light sensor that can solve the above problems.

為了達到上述目的,依據本揭露之一實施方式,一種光感測器包含基板、閘極線、資料線、薄膜電晶體、光感測元件、共通電極線、第一色阻以及光轉換材料層。閘極線位於基板上方。資料線位於基板上方。薄膜電晶體的閘極電性連接閘極線。薄膜電晶體的汲極電性連接資料線。光感測元件的下電極電性連接薄膜電晶體的源極。共通電極線位於基板上方,並電性連接光感測元件的上電極。第一色阻位於薄膜電晶體上方,且由俯視觀之,第一色阻圍繞光感測元件。光轉換材料層位於第一色阻上。In order to achieve the above object, according to an embodiment of the present disclosure, a light sensor includes a substrate, a gate line, a data line, a thin film transistor, a light sensing element, a common electrode line, a first color resistor, and a light conversion material layer . The gate lines are located above the substrate. The data lines are located above the substrate. The gate of the thin film transistor is electrically connected to the gate line. The drain electrode of the thin film transistor is electrically connected to the data line. The lower electrode of the light sensing element is electrically connected to the source of the thin film transistor. The common electrode line is located above the substrate and is electrically connected to the upper electrode of the light sensing element. The first color resistor is located above the thin film transistor, and when viewed from above, the first color resistor surrounds the light sensing element. The light conversion material layer is located on the first color resistor.

於本揭露的一或多個實施方式中,第一色阻係紅色光阻。In one or more embodiments of the present disclosure, the first color resist is a red photoresist.

於本揭露的一或多個實施方式中,第一色阻係藍色光阻。In one or more embodiments of the present disclosure, the first color resist is a blue photoresist.

於本揭露的一或多個實施方式中,光轉換材料層包含鉈(Tl)摻雜的碘化銫(CsI)材料。In one or more embodiments of the present disclosure, the light conversion material layer includes a thallium (Tl)-doped cesium iodide (CsI) material.

於本揭露的一或多個實施方式中,光轉換材料層設置為能夠將X射線轉換為在500奈米與600奈米之間之波長範圍內之可見光。In one or more embodiments of the present disclosure, the light conversion material layer is configured to convert X-rays into visible light in a wavelength range between 500 nanometers and 600 nanometers.

於本揭露的一或多個實施方式中,第一色阻對於波長範圍內之可見光之平均穿透率小於50%。In one or more embodiments of the present disclosure, the average transmittance of the first color resistor for visible light in the wavelength range is less than 50%.

於本揭露的一或多個實施方式中,光轉換材料層在光感測元件正上方之上表面低於光轉換材料層在第一色阻正上方之上表面。In one or more embodiments of the present disclosure, the upper surface of the light conversion material layer directly above the light sensing element is lower than the upper surface of the light conversion material layer directly above the first color resistor.

於本揭露的一或多個實施方式中,光轉換材料層在光感測元件正上方之上表面高於光轉換材料層在第一色阻正上方之上表面。In one or more embodiments of the present disclosure, the upper surface of the light conversion material layer directly above the light sensing element is higher than the upper surface of the light conversion material layer directly above the first color resistor.

於本揭露的一或多個實施方式中,光感測器還包含透明有機保護層設置於光轉換材料層與光感測元件之間。In one or more embodiments of the present disclosure, the light sensor further includes a transparent organic protective layer disposed between the light conversion material layer and the light sensing element.

於本揭露的一或多個實施方式中,透明有機保護層之折射率大於第一色阻之折射率。In one or more embodiments of the present disclosure, the refractive index of the transparent organic protective layer is greater than the refractive index of the first color resist.

於本揭露的一或多個實施方式中,透明有機保護層至少部分位於光感測元件正上方,並與第一色阻之上表面齊平。In one or more embodiments of the present disclosure, the transparent organic protective layer is at least partially located directly above the light sensing element and flush with the upper surface of the first color resistor.

於本揭露的一或多個實施方式中,透明有機保護層具有第一部分位於第一色阻正上方,以及第二部分位於光感測元件正上方。In one or more embodiments of the present disclosure, the transparent organic protective layer has a first portion located directly above the first color resistor, and a second portion located directly above the light sensing element.

於本揭露的一或多個實施方式中,光感測器還包含無機保護層設置於第一色阻與透明有機保護層之間。In one or more embodiments of the present disclosure, the photo sensor further includes an inorganic protective layer disposed between the first color resist and the transparent organic protective layer.

於本揭露的一或多個實施方式中,無機保護層之折射率大於透明有機保護層之折射率。In one or more embodiments of the present disclosure, the refractive index of the inorganic protective layer is greater than the refractive index of the transparent organic protective layer.

於本揭露的一或多個實施方式中,光感測器還包含第二色阻至少部分位於光感測元件正上方,第二色阻對於在500奈米與600奈米之間之波長範圍內之可見光之平均穿透率大於90%。In one or more embodiments of the present disclosure, the photo sensor further includes a second color resistor located at least partially directly above the photo sensing element. The second color resistor is suitable for a wavelength range between 500 nanometers and 600 nanometers. The average transmittance of visible light inside is greater than 90%.

綜上所述,在本揭露之光感測器中,由於光感測器包含光轉換材料層,使得入射至光感測器的X射線可以轉換為在約500奈米與約600奈米之間的波長範圍內之可見光。在本揭露之光感測器中,由於第一色阻位於薄膜電晶體上方,且由俯視觀之第一色阻係圍繞光感測元件,使得藉由光轉換材料層轉換後的可見光進入光感測元件之準直性得以提升。在本揭露之光感測器中,由於第一色阻以及第二色阻為半透明,使得製造者可以更方便地利用雷射光修復損壞的電路。藉由本揭露的光感測器,可見光進入光感測元件的準直性可以提升以提升影像品質,並達到便於修復電路的功效。To sum up, in the light sensor of the present disclosure, since the light sensor includes a light conversion material layer, the X-rays incident on the light sensor can be converted into wavelengths between about 500 nanometers and about 600 nanometers. Visible light within the wavelength range. In the light sensor of the present disclosure, since the first color resistor is located above the thin film transistor, and the first color resistor is surrounded by the light sensing element when viewed from above, the visible light converted by the light conversion material layer enters the light sensor. The collimation of the sensing element is improved. In the light sensor of the present disclosure, since the first color resistor and the second color resistor are translucent, the manufacturer can more conveniently use laser light to repair damaged circuits. With the light sensor of the present disclosure, the collimation of visible light entering the light sensing element can be improved to improve image quality and facilitate circuit repair.

以上所述僅係用以闡述本揭露所欲解決的問題、解決問題的技術手段、及其產生的功效等等,本揭露之具體細節將在下文的實施方式及相關圖式中詳細介紹。The above is only used to describe the problems to be solved by the present disclosure, the technical means to solve the problems, the effects thereof, etc. The specific details of the present disclosure will be introduced in detail in the following implementation modes and related drawings.

以下將以圖式揭露本揭露之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本揭露。也就是說,在本揭露部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。在所有圖式中相同的標號將用於表示相同或相似的元件。A plurality of implementation manners of the present disclosure will be disclosed below with drawings. For clarity of explanation, many practical details will be explained together in the following description. However, it should be understood that these practical details should not be used to limit the disclosure. That is to say, in some implementations of the present disclosure, these practical details are not necessary. In addition, for the sake of simplifying the drawings, some commonly used structures and components will be illustrated in a simple schematic manner in the drawings. The same reference numbers will be used throughout the drawings to refer to the same or similar elements.

在圖式中,為了清楚起見,放大了層、膜、面板、區域等的厚度。在整個說明書中,相同的圖式標記表示相同的元件。應當理解,當諸如層、膜、區域或基板的元件被稱為在另一元件「上」或「連接到」另一元件時,其可以直接在另一元件上或與另一元件連接,或者中間元件可以也存在。相反,當元件被稱為「直接在另一元件上」或「直接連接到」另一元件時,不存在中間元件。如本文所使用的,「連接」可以指物理及/或電性連接。再者,「電性連接」或「耦合」係可為二元件間存在其它元件。In the drawings, the thickness of layers, films, panels, regions, etc., are exaggerated for clarity. Throughout this specification, the same drawing numbers refer to the same elements. It will be understood that when an element such as a layer, film, region or substrate is referred to as being "on" or "connected to" another element, it can be directly on or connected to the other element, or Intermediate elements may also be present. In contrast, when an element is referred to as being "directly on" or "directly connected to" another element, there are no intervening elements present. As used herein, "connected" may refer to physical and/or electrical connections. Furthermore, "electrical connection" or "coupling" may mean the presence of other components between the two components.

應當理解,儘管術語「第一」、「第二」、「第三」等在本文中可以用於描述各種元件、部件、區域、層及/或部分,但是這些元件、部件、區域、及/或部分不應受這些術語的限制。這些術語僅用於將一個元件、部件、區域、層或部分與另一個元件、部件、區域、層或部分區分開。因此,下面討論的「第一元件」、「部件」、「區域」、「層」或「部分」可以被稱為第二元件、部件、區域、層或部分而不脫離本文的教導。It will be understood that, although the terms "first," "second," "third," etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, and/or sections or parts thereof shall not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a "first element," "component," "region," "layer" or "section" discussed below could be termed a second element, component, region, layer or section without departing from the teachings herein.

這裡使用的術語僅僅是為了描述特定實施例的目的,而不是限制性的。如本文所使用的,除非內容清楚地指示,否則單數形式「一」、「一個」和「該」旨在包括複數形式,包括「至少一個」。「或」表示「及/或」。如本文所使用的,術語「及/或」包括一個或多個相關所列項目的任何和所有組合。還應當理解,當在本說明書中使用時,術語「包括」及/或「包括」指定所述特徵、區域、整體、步驟、操作、元件的存在及/或部件,但不排除一個或多個其它特徵、區域整體、步驟、操作、元件、部件及/或其組合的存在或添加。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms including "at least one" unless the content clearly dictates otherwise. "Or" means "and/or". As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. It will also be understood that when used in this specification, the terms "comprises" and/or "includes" designate the presence of stated features, regions, integers, steps, operations, elements and/or components but do not exclude one or more The presence or addition of other features, regions, steps, operations, elements, parts and/or combinations thereof.

此外,諸如「下」或「底部」和「上」或「頂部」的相對術語可在本文中用於描述一個元件與另一元件的關係,如圖所示。應當理解,相對術語旨在包括除了圖中所示的方位之外的裝置的不同方位。例如,如果一個附圖中的裝置翻轉,則被描述為在其他元件的「下」側的元件將被定向在其他元件的「上」側。因此,示例性術語「下」可以包括「下」和「上」的取向,取決於附圖的特定取向。類似地,如果一個附圖中的裝置翻轉,則被描述為在其它元件「下方」或「下方」的元件將被定向為在其它元件「上方」。因此,示例性術語「下面」或「下面」可以包括上方和下方的取向。Additionally, relative terms, such as "lower" or "bottom" and "upper" or "top," may be used herein to describe one element's relationship to another element as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation illustrated in the figures. For example, if the device in one of the figures is turned over, elements described as "below" other elements would then be oriented "above" the other elements. Thus, the exemplary term "lower" may include both "lower" and "upper" orientations, depending on the particular orientation of the drawing. Similarly, if the device in one of the figures is turned over, elements described as "below" or "beneath" other elements would then be oriented "above" the other elements. Thus, the exemplary terms "below" or "lower" may include both superior and inferior orientations.

本文使用的「約」、「近似」、或「實質上」包括所述值和在本領域普通技術人員確定的特定值的可接受的偏差範圍內的平均值,考慮到所討論的測量和與測量相關的誤差的特定數量(即,測量系統的限制)。例如,「約」可以表示在所述值的一個或多個標準偏差內,或±30%、±20%、±10%、±5%內。再者,本文使用的「約」、「近似」或「實質上」可依光學性質、蝕刻性質或其它性質,來選擇較可接受的偏差範圍或標準偏差,而可不用一個標準偏差適用全部性質。As used herein, "about," "approximately," or "substantially" includes the stated value and the average within an acceptable range of deviations from the particular value as determined by one of ordinary skill in the art, taking into account the measurements in question and the A specific amount of error associated with a measurement (i.e., the limitations of the measurement system). For example, "about" may mean within one or more standard deviations of the stated value, or within ±30%, ±20%, ±10%, ±5%. Furthermore, "about", "approximately" or "substantially" used in this article can be used to select a more acceptable deviation range or standard deviation based on optical properties, etching properties or other properties, and one standard deviation does not apply to all properties. .

除非另有定義,本文使用的所有術語(包括技術和科學術語)具有與本發明所屬領域的普通技術人員通常理解的相同的含義。將進一步理解的是,諸如在通常使用的字典中定義的那些術語應當被解釋為具有與它們在相關技術和本發明的上下文中的含義一致的含義,並且將不被解釋為理想化的或過度正式的意義,除非本文中明確地這樣定義。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms such as those defined in commonly used dictionaries should be construed to have meanings consistent with their meanings in the context of the relevant technology and the present invention, and are not to be construed as idealistic or excessive Formal meaning, unless expressly defined as such herein.

請參考第1圖。第1圖為根據本揭露之一實施方式之光感測器100的俯視圖。如第1圖所示,在本實施方式中,光感測器100包含薄膜電晶體110、光感測元件120、第一色阻130、閘極線M1、源極/汲極區域M2、資料線M3、共通電極線M4以及開口O BP1。薄膜電晶體110包含閘極G。薄膜電晶體110的閘極G連接至閘極線M1。光感測元件120進一步包含PIN二極體121、上電極122以及下電極123。資料線M3還連接至薄膜電晶體110。共通電極線M4連接至光感測元件120。在一些實施方式中,資料線M3平行於共通電極線M4,並且閘極線M1垂直於資料線M3以及共通電極線M4。以如第1圖所示的視角俯視觀之,第一色阻130圍繞光感測元件120並覆蓋薄膜電晶體110。光感測器100的具體結構將在下文更詳細說明。在一些實施方式中,光感測元件120可以是光電二極體(Photodiode)。 Please refer to picture 1. FIG. 1 is a top view of a light sensor 100 according to an embodiment of the present disclosure. As shown in Figure 1, in this embodiment, the photo sensor 100 includes a thin film transistor 110, a photo sensing element 120, a first color resistor 130, a gate line M1, a source/drain region M2, a data Line M3, common electrode line M4 and opening O BP1 . The thin film transistor 110 includes a gate G. The gate G of the thin film transistor 110 is connected to the gate line M1. The light sensing element 120 further includes a PIN diode 121, an upper electrode 122 and a lower electrode 123. Data line M3 is also connected to thin film transistor 110 . The common electrode line M4 is connected to the light sensing element 120 . In some embodiments, the data line M3 is parallel to the common electrode line M4, and the gate line M1 is perpendicular to the data line M3 and the common electrode line M4. Viewed from a top view as shown in FIG. 1 , the first color resistor 130 surrounds the light sensing element 120 and covers the thin film transistor 110 . The specific structure of the photo sensor 100 will be described in more detail below. In some embodiments, the light sensing element 120 may be a photodiode.

請參考第2圖。第2圖為根據本揭露之一實施方式之基於第1圖的剖面線I-I’之光感測器100的剖面圖。如第2圖所示,在本實施方式中,光感測器100包含基板S、薄膜電晶體110、光感測元件120、第一色阻130、光轉換材料層140、透明有機保護層150、閘極線M1、源極/汲極區域M2、資料線M3以及共通電極線M4。如第2圖所示,薄膜電晶體110包含閘極G、閘極絕緣層GSN、源極/汲極區域M2以及通道層AS。在一些實施方式中,閘極絕緣層GSN覆蓋基板S以及閘極G。在一些實施方式中,通道層AS位於閘極絕緣層GSN上。如第2圖所示,源極/汲極區域M2包含源極M2S以及汲極M2D。在一些實施方式中,源極M2S以及汲極M2D位於通道層AS上。如第2圖所示,光感測元件120包含PIN二極體121、上電極122以及下電極123。上電極122位於PIN二極體121上。下電極123設置於PIN二極體121下並電性連接源極M2S。資料線M3位於基板S上方,並電性連接汲極M2D。共通電極線M4位於基板S上方,並電性連接上電極122。Please refer to picture 2. Figure 2 is a cross-sectional view of the photo sensor 100 taken along the section line I-I' of Figure 1 according to an embodiment of the present disclosure. As shown in FIG. 2 , in this embodiment, the photo sensor 100 includes a substrate S, a thin film transistor 110 , a photo sensing element 120 , a first color resistor 130 , a light conversion material layer 140 , and a transparent organic protective layer 150 , gate line M1, source/drain area M2, data line M3 and common electrode line M4. As shown in FIG. 2 , the thin film transistor 110 includes a gate G, a gate insulating layer GSN, a source/drain region M2 and a channel layer AS. In some embodiments, the gate insulation layer GSN covers the substrate S and the gate G. In some embodiments, the channel layer AS is located on the gate insulation layer GSN. As shown in FIG. 2 , the source/drain region M2 includes a source M2S and a drain M2D. In some implementations, the source M2S and the drain M2D are located on the channel layer AS. As shown in FIG. 2 , the light sensing element 120 includes a PIN diode 121 , an upper electrode 122 and a lower electrode 123 . The upper electrode 122 is located on the PIN diode 121. The lower electrode 123 is disposed under the PIN diode 121 and is electrically connected to the source M2S. The data line M3 is located above the substrate S and is electrically connected to the drain M2D. The common electrode line M4 is located above the substrate S and is electrically connected to the upper electrode 122 .

請繼續參考第2圖。如第2圖所示,在本實施方式中,透明有機保護層150位於薄膜電晶體110以及光感測元件120上方。第一色阻130位於薄膜電晶體110上方,並具有開口O。在一些實施方式中,如第2圖所示,第一色阻130係位於透明有機保護層150上。如第2圖所示,開口O係對應於光感測元件120。光轉換材料層140位於第一色阻130上,並填充開口O。如第2圖所示,第一色阻130具有上表面130a,並且透明有機保護層150具有上表面150a。在一些實施方式中,如第2圖所示,第一色阻130的上表面130a高於透明有機保護層150的上表面150a。Please continue to refer to Figure 2. As shown in FIG. 2 , in this embodiment, the transparent organic protective layer 150 is located above the thin film transistor 110 and the light sensing element 120 . The first color resistor 130 is located above the thin film transistor 110 and has an opening O. In some embodiments, as shown in FIG. 2 , the first color resistor 130 is located on the transparent organic protective layer 150 . As shown in FIG. 2 , the opening O corresponds to the light sensing element 120 . The light conversion material layer 140 is located on the first color resistor 130 and fills the opening O. As shown in FIG. 2, the first color resistor 130 has an upper surface 130a, and the transparent organic protective layer 150 has an upper surface 150a. In some embodiments, as shown in FIG. 2 , the upper surface 130 a of the first color resistor 130 is higher than the upper surface 150 a of the transparent organic protective layer 150 .

在一些實施方式中,PIN二極體121包含非晶矽(Amorphous Silicon)。在PIN二極體121包含非晶矽的實施方式中,由於PIN二極體121中的非晶矽對於在約500奈米與約600奈米之間的波長範圍內的光(例如,綠色光)的光電轉換率較佳,因此,光轉換材料層140可以設置為能夠將X射線轉換為在約500奈米與約600奈米之間之波長範圍內的可見光L。在一些實施方式中,可見光L為綠色光。在一些實施方式中,第一色阻130可以是例如紅色光阻或藍色光阻的半透明色阻。在一些實施方式中,第一色阻130對於在約500奈米與約600奈米之間的波長範圍內的可見光L(例如,綠色光)之平均穿透率小於約50%。在一些實施方式中,光轉換材料層140的材料可以是例如鉈(Tl)摻雜的碘化銫(CsI)或其他類似的材料。In some embodiments, the PIN diode 121 includes amorphous silicon. In embodiments in which PIN diode 121 includes amorphous silicon, since the amorphous silicon in PIN diode 121 is sensitive to light in a wavelength range between about 500 nanometers and about 600 nanometers (eg, green light) ) has a better photoelectric conversion rate. Therefore, the light conversion material layer 140 may be configured to be able to convert X-rays into visible light L in a wavelength range between about 500 nanometers and about 600 nanometers. In some embodiments, visible light L is green light. In some embodiments, the first color resistor 130 may be a translucent color resistor such as a red photoresist or a blue photoresist. In some embodiments, the first color resistor 130 has an average transmittance of less than about 50% for visible light L (eg, green light) in a wavelength range between about 500 nanometers and about 600 nanometers. In some embodiments, the material of the light conversion material layer 140 may be, for example, thallium (Tl) doped cesium iodide (CsI) or other similar materials.

藉由前述結構配置,當來自外界的X射線入射光感測器100時,光轉換材料層140將X射線轉換為可見光L。通過第一色阻130的可見光L將受到第一色阻130的吸收而無法抵達位於第一色阻130下方的光感測元件120。通過開口O的可見光L則可以抵達光感測元件120。光感測元件120接收可見光L之後藉由PIN二極體121產生電流,此電流將自光感測元件120流向薄膜電晶體110,通過薄膜電晶體110到資料線M3。藉此,設置有具有對應於光感測元件120的開口O的第一色阻130之光感測器100可以增加可見光L被光感測元件120接收的準直性,進而提升影像的品質。With the aforementioned structural configuration, when X-rays from the outside enter the photo sensor 100, the light conversion material layer 140 converts the X-rays into visible light L. The visible light L passing through the first color resistor 130 will be absorbed by the first color resistor 130 and cannot reach the light sensing element 120 located below the first color resistor 130 . The visible light L passing through the opening O can reach the light sensing element 120 . After the light sensing element 120 receives the visible light L, a current is generated through the PIN diode 121. This current will flow from the light sensing element 120 to the thin film transistor 110, and through the thin film transistor 110 to the data line M3. Thereby, the photo sensor 100 provided with the first color resistor 130 corresponding to the opening O of the photo sensing element 120 can increase the collimation of the visible light L received by the photo sensing element 120, thereby improving the quality of the image.

在一些實施方式中,基板S的材料可以是例如玻璃或其他類似的材料。在一些實施方式中,閘極絕緣層GSN的材料可以是例如氮化矽(Si xN y)或其他類似的材料。在一些實施方式中,通道層AS的材料可以是例如非晶矽(Amorphous Silicon)或其他類似的材料。在一些實施方式中,透明有機保護層150的材料可以是例如聚四氟乙烯(Perfluoroalkoxy;PFA)或其他類似的材料。 In some embodiments, the material of the substrate S may be, for example, glass or other similar materials. In some embodiments, the material of the gate insulating layer GSN may be, for example, silicon nitride ( SixNy ) or other similar materials. In some embodiments, the material of the channel layer AS may be, for example, amorphous silicon or other similar materials. In some embodiments, the material of the transparent organic protective layer 150 may be, for example, polytetrafluoroethylene (Perfluoroalkoxy; PFA) or other similar materials.

在一些實施方式中,光轉換材料層140係藉由例如蒸鍍或其他類似的方法來形成。In some embodiments, the light conversion material layer 140 is formed by, for example, evaporation or other similar methods.

在一些實施方式中,如第2圖所示,光感測器100進一步包含阻障層BP1、阻障層BP2、阻障層BP3、阻障層BP4、鈍化層PV以及保護層PL。阻障層BP1、阻障層BP2、阻障層BP3以及阻障層BP4設置為位於金屬層與半導體層之間的絕緣層。如第2圖所示,在一些實施方式中,阻障層BP1位於閘極絕緣層GSN與光感測元件120之間。在一些實施方式中,阻障層BP1具有開口O BP1設置為形成PIN二極體121於其上。在一些實施方式中,阻障層BP2位於薄膜電晶體110與資料線M3之間以及光感測元件120與共通電極線M4之間。在一些實施方式中,阻障層BP3位於資料線M3與透明有機保護層150之間以及光感測元件120與共通電極線M4之間。在一些實施方式中,阻障層BP4位於資料線M3與透明有機保護層150之間以及共通電極線M4與透明有機保護層150之間。鈍化層PV配置以使金屬層的表面變得不易氧化,進而達到延緩金屬層腐蝕的功效。在一些實施方式中,如第2圖所示,鈍化層PV位於薄膜電晶體110與資料線M3之間以及光感測元件120與共通電極線M4之間。保護層PL配置以保護位於其下方的薄膜電晶體110以及光感測元件120。在一些實施方式中,保護層PL位於薄膜電晶體110與資料線M3之間以及光感測元件120與共通電極線M4之間。 In some embodiments, as shown in FIG. 2 , the photo sensor 100 further includes a barrier layer BP1, a barrier layer BP2, a barrier layer BP3, a barrier layer BP4, a passivation layer PV and a protective layer PL. Barrier layer BP1, barrier layer BP2, barrier layer BP3 and barrier layer BP4 are provided as insulating layers located between the metal layer and the semiconductor layer. As shown in FIG. 2 , in some embodiments, the barrier layer BP1 is located between the gate insulating layer GSN and the light sensing element 120 . In some embodiments, barrier layer BP1 has opening O BP1 disposed to form PIN diode 121 thereon. In some embodiments, the barrier layer BP2 is located between the thin film transistor 110 and the data line M3 and between the light sensing element 120 and the common electrode line M4. In some embodiments, the barrier layer BP3 is located between the data line M3 and the transparent organic protective layer 150 and between the light sensing element 120 and the common electrode line M4. In some embodiments, the barrier layer BP4 is located between the data line M3 and the transparent organic protective layer 150 and between the common electrode line M4 and the transparent organic protective layer 150 . The passivation layer PV is configured to make the surface of the metal layer less susceptible to oxidation, thus achieving the effect of delaying corrosion of the metal layer. In some embodiments, as shown in FIG. 2 , the passivation layer PV is located between the thin film transistor 110 and the data line M3 and between the light sensing element 120 and the common electrode line M4. The protective layer PL is configured to protect the thin film transistor 110 and the light sensing element 120 located below it. In some embodiments, the protective layer PL is located between the thin film transistor 110 and the data line M3 and between the light sensing element 120 and the common electrode line M4.

請參考第3圖。第3圖為根據本揭露之一實施方式之光感測器100A的俯視圖。如第3圖所示,在本實施方式中,光感測器100A包含薄膜電晶體110、光感測元件120、第一色阻130、閘極線M1、資料線M3、共通電極線M4以及第二色阻130G。以如第3圖所示的視角俯視觀之,第一色阻130圍繞光感測元件120並覆蓋薄膜電晶體110。第二色阻130G覆蓋光感測元件120。光感測器100A的具體結構將在下文更詳細說明。Please refer to picture 3. FIG. 3 is a top view of the light sensor 100A according to an embodiment of the present disclosure. As shown in FIG. 3 , in this embodiment, the photo sensor 100A includes a thin film transistor 110 , a photo sensing element 120 , a first color resistor 130 , a gate line M1 , a data line M3 , a common electrode line M4 and The second color resistance is 130G. Viewed from a top view as shown in FIG. 3 , the first color resistor 130 surrounds the light sensing element 120 and covers the thin film transistor 110 . The second color resistor 130G covers the light sensing element 120 . The specific structure of the photo sensor 100A will be described in more detail below.

請參考第4圖。第4圖為根據本揭露之一實施方式之基於第3圖的剖面線II-II’以及剖面線III-III’之光感測器100A的剖面圖。如第4圖所示,在光感測器100A的結構配置與光感測器100的結構配置大致相似。光感測器100A與光感測器100的不同之處在於光感測器100A進一步包含第二色阻130G,第二色阻130G係至少部分位於光感測元件120正上方,而光感測器100A不包含透明有機保護層150。Please refer to Figure 4. Figure 4 is a cross-sectional view of the photo sensor 100A based on the section line II-II' and the section line III-III' of Figure 3 according to an embodiment of the present disclosure. As shown in FIG. 4 , the structural configuration of the photo sensor 100A is substantially similar to the structural configuration of the photo sensor 100 . The difference between the photo sensor 100A and the photo sensor 100 is that the photo sensor 100A further includes a second color resistor 130G. The second color resistor 130G is at least partially located directly above the photo sensing element 120, and the photo sensor 100A further includes a second color resistor 130G. Device 100A does not include transparent organic protective layer 150.

請繼續參考第4圖。如第4圖所示,在一些實施方式中,第一色阻130位於薄膜電晶體110上方,並具有開口O。如第4圖所示,開口O係對應於光感測元件120。在一些實施方式中,如第4圖所示,第二色阻130G位於第一色阻130的開口O中。在一些實施方式中,第二色阻130G的材料可以是綠色光阻。在一些實施方式中,第二色阻130G對於在約500奈米與約600奈米之間的波長範圍內的可見光L(例如,綠色光)之平均穿透率大於約90%。Please continue to refer to Figure 4. As shown in FIG. 4 , in some embodiments, the first color resistor 130 is located above the thin film transistor 110 and has an opening O. As shown in FIG. 4 , the opening O corresponds to the light sensing element 120 . In some embodiments, as shown in FIG. 4 , the second color resistor 130G is located in the opening O of the first color resistor 130 . In some embodiments, the material of the second color resist 130G may be green photoresist. In some embodiments, the average transmittance of the second color resistor 130G for visible light L (eg, green light) in a wavelength range between about 500 nanometers and about 600 nanometers is greater than about 90%.

藉由前述結構配置,當來自外界的X射線入射光感測器100A時,光轉換材料層140將X射線轉換為可見光L。通過第一色阻130的可見光L將受到第一色阻130的吸收而無法抵達位於第一色阻130下方的光感測元件120。通過第二色阻130G的可見光L則可以越過第二色阻130G抵達光感測元件120。光感測元件120接收可見光L之後藉由PIN二極體121產生電流,此電流將自光感測元件120流向薄膜電晶體110,通過薄膜電晶體110到資料線M3。藉此,設置有第一色阻130以及至少部分位於光感測元件120正上方的第二色阻130G之光感測器100A可以增加可見光L被光感測元件120接收的準直性,進而提升影像的品質。With the aforementioned structural configuration, when X-rays from the outside enter the photo sensor 100A, the light conversion material layer 140 converts the X-rays into visible light L. The visible light L passing through the first color resistor 130 will be absorbed by the first color resistor 130 and cannot reach the light sensing element 120 located below the first color resistor 130 . The visible light L passing through the second color resistor 130G can pass through the second color resistor 130G and reach the light sensing element 120 . After the light sensing element 120 receives the visible light L, a current is generated through the PIN diode 121. This current will flow from the light sensing element 120 to the thin film transistor 110, and through the thin film transistor 110 to the data line M3. Thereby, the light sensor 100A provided with the first color resistor 130 and the second color resistor 130G at least partially located directly above the light sensing element 120 can increase the collimation of the visible light L received by the light sensing element 120, and thereby Improve image quality.

請參考第5圖。第5圖為根據本揭露之一實施方式之光感測器100以及光感測器100R的俯視圖。如第5圖所示,在本實施方式中,光感測器100以及光感測器100R包含薄膜電晶體110、光感測元件120、第一色阻130、閘極線M1、資料線M3以及共通電極線M4。以如第5圖所示的視角俯視觀之,第一色阻130圍繞光感測器100的光感測元件120並覆蓋薄膜電晶體110,而第一色阻130覆蓋光感測器100R的薄膜電晶體110以及光感測元件120。光感測器100以及光感測器100R的具體結構將在下文更詳細說明。Please refer to Figure 5. FIG. 5 is a top view of the photo sensor 100 and the photo sensor 100R according to an embodiment of the present disclosure. As shown in FIG. 5 , in this embodiment, the photo sensor 100 and the photo sensor 100R include a thin film transistor 110 , a photo sensing element 120 , a first color resistor 130 , a gate line M1 , and a data line M3 and common electrode line M4. Viewed from a top view as shown in FIG. 5 , the first color resistor 130 surrounds the light sensing element 120 of the photo sensor 100 and covers the thin film transistor 110 , and the first color resistor 130 covers the photo sensor 100R. Thin film transistor 110 and light sensing element 120 . The specific structures of the photo sensor 100 and the photo sensor 100R will be described in more detail below.

請參考第6圖。第6圖為根據本揭露之一實施方式之基於第5圖的剖面線IV-IV’以及剖面線V-V’之光感測器100以及光感測器100R的剖面圖。如第5圖以及第6圖所示,光感測器100以及光感測器100R的結構配置與第1圖以及第2圖所示的光感測器100的結構配置大致相似。第5圖以及第6圖中的光感測器100R與光感測器100的不同之處在於光感測器100R的第一色阻130覆蓋了薄膜電晶體110以及光感測元件120,而光感測器100的第一色阻130僅覆蓋薄膜電晶體110。Please refer to Figure 6. Figure 6 is a cross-sectional view of the photo sensor 100 and the photo sensor 100R based on the section line IV-IV' and the section line V-V' of Figure 5 according to an embodiment of the present disclosure. As shown in FIGS. 5 and 6 , the structural configuration of the photo sensor 100 and the photo sensor 100R is substantially similar to the structural configuration of the photo sensor 100 shown in FIGS. 1 and 2 . The difference between the photo sensor 100R in Figures 5 and 6 and the photo sensor 100 is that the first color resistor 130 of the photo sensor 100R covers the thin film transistor 110 and the photo sensing element 120, and The first color resistor 130 of the photo sensor 100 only covers the thin film transistor 110 .

在一些實施方式中,光感測器100R可以用作光感測器100的參考像素。舉例來說,在佈滿數個光感測器100以及光感測器100R的面板中,光感測器100R可以設置於上述面板的週邊區域以作為位於面板中央的數個光感測器100的參考像素。如第6圖所示,由於光感測器100R的第一色阻130係整面覆蓋,使得可見光L無法越過光感測器100R的第一色阻130進而被光感測元件120接收。光感測器100R設置為使可見光L無法穿透,以作為上述面板中的暗態像素,從而使光感測器100可以與例如光感測器100R這樣的參考像素進行比對,以執行色彩校正的操作。In some implementations, photo sensor 100R may be used as a reference pixel for photo sensor 100 . For example, in a panel covered with several photo sensors 100 and 100R, the photo sensors 100R can be disposed in the peripheral area of the panel as several photo sensors 100 located in the center of the panel. reference pixels. As shown in FIG. 6 , since the first color resistor 130 of the photo sensor 100R covers the entire surface, the visible light L cannot pass through the first color resistor 130 of the photo sensor 100R and then be received by the photo sensing element 120 . The photo sensor 100R is configured to prevent visible light L from penetrating, serving as a dark pixel in the above-mentioned panel, so that the photo sensor 100 can be compared with a reference pixel such as the photo sensor 100R to perform color processing. corrective operation.

藉由前述結構配置,當來自外界的X射線入射光感測器100時,光轉換材料層140將X射線轉換為可見光L。通過第一色阻130的可見光L將受到第一色阻130的吸收而無法抵達位於第一色阻130下方的光感測元件120。通過開口O的可見光L則可以抵達光感測元件120。光感測元件120接收可見光L之後藉由PIN二極體121產生電流,此電流將自光感測元件120流向薄膜電晶體110,通過薄膜電晶體110到資料線M3。藉此,設置有第一色阻130以及至少部分位於光感測元件120正上方的第二色阻130G之光感測器100可以增加可見光L被光感測元件120接收的準直性,進而提升影像的品質。而當來自外界的X射線入射光感測器100R時,光轉換材料層140將X射線轉換為可見光L。當可見光L通過第一色阻130時將受到第一色阻130的吸收而無法抵達位於第一色阻130下方的光感測元件120,以作為光感測器100的參考像素,進而達到校正色彩的目的。With the aforementioned structural configuration, when X-rays from the outside enter the photo sensor 100, the light conversion material layer 140 converts the X-rays into visible light L. The visible light L passing through the first color resistor 130 will be absorbed by the first color resistor 130 and cannot reach the light sensing element 120 located below the first color resistor 130 . The visible light L passing through the opening O can reach the light sensing element 120 . After the light sensing element 120 receives the visible light L, a current is generated through the PIN diode 121. This current will flow from the light sensing element 120 to the thin film transistor 110, and through the thin film transistor 110 to the data line M3. Thereby, the light sensor 100 provided with the first color resistor 130 and the second color resistor 130G at least partially located directly above the light sensing element 120 can increase the collimation of the visible light L received by the light sensing element 120, and thereby Improve image quality. When X-rays from the outside enter the light sensor 100R, the light conversion material layer 140 converts the X-rays into visible light L. When the visible light L passes through the first color resistor 130, it will be absorbed by the first color resistor 130 and cannot reach the light sensing element 120 located below the first color resistor 130, which serves as a reference pixel of the light sensor 100 to achieve correction. The purpose of color.

請參考第7圖。第7圖為根據本揭露之一實施方式之光感測器100B的剖面圖。如第7圖所示,光感測器100B的結構配置與光感測器100的結構配置大致相似。光感測器100B與光感測器100的不同之處,在於光感測器100B的透明有機保護層150位於第一色阻130上並填充開口O。透明有機保護層150具有第一部分位於第一色阻130正上方,以及具有第二部分位於光感測元件120正上方。在一些實施方式中,透明有機保護層150的折射率係大於第一色阻130的折射率。並且,如第7圖所示,第一色阻130的上表面130a高於透明有機保護層150的上表面150a。光轉換材料層140位於透明有機保護層150上,並設置為能夠將X射線轉換為在約500奈米與約600奈米之間之波長範圍內的可見光L。Please refer to Figure 7. FIG. 7 is a cross-sectional view of a light sensor 100B according to an embodiment of the present disclosure. As shown in FIG. 7 , the structural configuration of the photo sensor 100B is substantially similar to the structural configuration of the photo sensor 100 . The difference between the photo sensor 100B and the photo sensor 100 is that the transparent organic protective layer 150 of the photo sensor 100B is located on the first color resistor 130 and fills the opening O. The transparent organic protective layer 150 has a first portion located directly above the first color resistor 130 and a second portion located directly above the light sensing element 120 . In some embodiments, the refractive index of the transparent organic protective layer 150 is greater than the refractive index of the first color resistor 130 . Moreover, as shown in FIG. 7 , the upper surface 130 a of the first color resistor 130 is higher than the upper surface 150 a of the transparent organic protective layer 150 . The light conversion material layer 140 is located on the transparent organic protective layer 150 and is configured to convert X-rays into visible light L in a wavelength range between about 500 nanometers and about 600 nanometers.

藉由前述結構配置,設置有位於第一色阻130上的透明有機保護層150之光感測器100B可以增加可見光L被光感測元件120接收的準直性,進而提升影像的品質。Through the aforementioned structural configuration, the photo sensor 100B provided with the transparent organic protective layer 150 on the first color resistor 130 can increase the collimation of the visible light L received by the photo sensing element 120, thereby improving the quality of the image.

請參考第8圖。第8圖為根據本揭露之一實施方式之光感測器100C的剖面圖。如第8圖所示,光感測器100C的結構配置與光感測器100B的結構配置大致相似。光感測器100C與光感測器100B的不同之處,在於光感測器100C進一步包含無機保護層160。無機保護層160位於第一色阻130以及透明有機保護層150之間。透明有機保護層150位於無機保護層160上並填充第一色阻130的開口O。Please refer to Figure 8. Figure 8 is a cross-sectional view of a light sensor 100C according to an embodiment of the present disclosure. As shown in FIG. 8 , the structural configuration of the photo sensor 100C is substantially similar to the structural configuration of the photo sensor 100B. The difference between the photo sensor 100C and the photo sensor 100B is that the photo sensor 100C further includes an inorganic protective layer 160 . The inorganic protective layer 160 is located between the first color resistor 130 and the transparent organic protective layer 150 . The transparent organic protective layer 150 is located on the inorganic protective layer 160 and fills the opening O of the first color resistor 130 .

在一些實施方式中,如第8圖所示,無機保護層160的折射率係大於透明有機保護層150的折射率。在一些實施方式中,無機保護層160的折射率大於透明有機保護層150的折射率以及第一色阻130的折射率,並且透明有機保護層150的折射率大於第一色阻130的折射率。由於無機保護層160的折射率與第一色阻130的折射率之間的差異比起透明有機保護層150的折射率與第一色阻130的折射率之間的差異更大,因此可見光L自透明有機保護層150進入無機保護層160再抵達第一色阻130時,可見光L可以被第一色阻130反射而被光感測元件120接收。In some embodiments, as shown in FIG. 8 , the refractive index of the inorganic protective layer 160 is greater than the refractive index of the transparent organic protective layer 150 . In some embodiments, the refractive index of the inorganic protective layer 160 is greater than the refractive index of the transparent organic protective layer 150 and the refractive index of the first color resistor 130 , and the refractive index of the transparent organic protective layer 150 is greater than the refractive index of the first color resistor 130 . Since the difference between the refractive index of the inorganic protective layer 160 and the first color resistor 130 is greater than the difference between the refractive index of the transparent organic protective layer 150 and the first color resistor 130 , the visible light L When the visible light L enters the inorganic protective layer 160 from the transparent organic protective layer 150 and then reaches the first color resistor 130, the visible light L can be reflected by the first color resistor 130 and received by the light sensing element 120.

藉由前述結構配置,當來自外界的X射線入射光感測器100C時,光轉換材料層140將X射線轉換為可見光L。由於無機保護層160的折射率大於透明有機保護層150的折射率,並且透明有機保護層150的折射率大於第一色阻130的折射率,所以自透明有機保護層150進入無機保護層160再抵達第一色阻130的可見光L將受到第一色阻130的反射而抵達位於第一色阻130下方的光感測元件120。通過開口O的可見光L則可以抵達光感測元件120。光感測元件120接收可見光L之後藉由PIN二極體121產生電流,此電流將自光感測元件120流向薄膜電晶體110,通過薄膜電晶體110到資料線M3。藉此,設置有位於第一色阻130上的透明有機保護層150之光感測器100C可以增加可見光L被光感測元件120接收的準直性,進而提升影像的品質。With the aforementioned structural configuration, when X-rays from the outside enter the photo sensor 100C, the light conversion material layer 140 converts the X-rays into visible light L. Since the refractive index of the inorganic protective layer 160 is greater than the refractive index of the transparent organic protective layer 150 , and the refractive index of the transparent organic protective layer 150 is greater than the refractive index of the first color resistor 130 , the inorganic protective layer 160 enters the inorganic protective layer 160 from the transparent organic protective layer 150 and then The visible light L reaching the first color resistor 130 will be reflected by the first color resistor 130 and reach the light sensing element 120 located below the first color resistor 130 . The visible light L passing through the opening O can reach the light sensing element 120 . After the light sensing element 120 receives the visible light L, a current is generated through the PIN diode 121. This current will flow from the light sensing element 120 to the thin film transistor 110, and through the thin film transistor 110 to the data line M3. Thereby, the photo sensor 100C provided with the transparent organic protective layer 150 on the first color resistor 130 can increase the collimation of the visible light L received by the photo sensing element 120, thereby improving the quality of the image.

在一些實施方式中,無機保護層160的材料可以是例如氮化矽(Si xN y)或其他類似的材料。 In some embodiments, the material of the inorganic protective layer 160 may be, for example, silicon nitride ( SixNy ) or other similar materials.

請參考第9圖。第9圖為根據本揭露之一實施方式之光感測器100D的剖面圖。如第9圖所示,光感測器100D的結構配置與光感測器100的結構配置大致相似。光感測器100D與光感測器100的不同之處,在於光感測器100D中的第一色阻130的上表面130a與透明有機保護層150的上表面150a齊平。換言之,在本揭露中,上表面130a也可以設置為高於上表面150a(如第2圖所示),上表面130a也可以設置為低於上表面150a(如第7圖所示)。Please refer to Figure 9. Figure 9 is a cross-sectional view of a light sensor 100D according to an embodiment of the present disclosure. As shown in FIG. 9 , the structural configuration of the photo sensor 100D is substantially similar to the structural configuration of the photo sensor 100 . The difference between the photo sensor 100D and the photo sensor 100 is that the upper surface 130 a of the first color resistor 130 in the photo sensor 100 D is flush with the upper surface 150 a of the transparent organic protective layer 150 . In other words, in the present disclosure, the upper surface 130a can also be set higher than the upper surface 150a (as shown in FIG. 2), and the upper surface 130a can also be set lower than the upper surface 150a (as shown in FIG. 7).

請參考第10圖。第10圖為根據本揭露之一實施方式之光感測器100E的剖面圖。如第10圖所示,光感測器100E的結構配置與光感測器100的結構配置大致相似。光感測器100E與光感測器100的不同之處,在於光感測器100E的透明有機保護層150位於第一色阻130的開口O中,並且光感測器100E的光轉換材料層140具有位在不同高度的上表面140a以及上表面140b。在一些實施方式中,上表面140a係位在第一色阻130的正上方,並且上表面140b係位在光感測元件120的正上方。如第10圖所示,光感測器100E的第一色阻130具有上表面130a,並且透明有機保護層150具有上表面150a。在一些實施方式中,如第10圖所示,第一色阻130的上表面130a高於透明有機保護層150的上表面150a。Please refer to Figure 10. Figure 10 is a cross-sectional view of a light sensor 100E according to an embodiment of the present disclosure. As shown in FIG. 10 , the structural configuration of the photo sensor 100E is substantially similar to the structural configuration of the photo sensor 100 . The difference between the photo sensor 100E and the photo sensor 100 is that the transparent organic protective layer 150 of the photo sensor 100E is located in the opening O of the first color resistor 130, and the light conversion material layer of the photo sensor 100E 140 has an upper surface 140a and an upper surface 140b located at different heights. In some embodiments, the upper surface 140a is located directly above the first color resistor 130, and the upper surface 140b is located directly above the light sensing element 120. As shown in FIG. 10 , the first color resistor 130 of the photo sensor 100E has an upper surface 130a, and the transparent organic protective layer 150 has an upper surface 150a. In some embodiments, as shown in FIG. 10 , the upper surface 130a of the first color resistor 130 is higher than the upper surface 150a of the transparent organic protective layer 150 .

在一些實施方式中,如第10圖所示,上表面140b係低於上表面140a。由於上表面140a以及上表面140b具有高度上的差異,因此可見光L可以透過由上表面140a以及上表面140b所產生的位於光轉換材料層140表面的特殊形態(morphology),以達到形成像素化閃爍體(pixelated scintillator)的目的,可見光L從而可以更容易被光感測元件120接收。In some embodiments, as shown in Figure 10, upper surface 140b is lower than upper surface 140a. Since the upper surface 140a and the upper surface 140b have height differences, the visible light L can pass through the special morphology on the surface of the light conversion material layer 140 generated by the upper surface 140a and the upper surface 140b to form pixelated flicker. (pixelated scintillator), the visible light L can be more easily received by the light sensing element 120 .

藉由前述結構配置,當來自外界的X射線入射光感測器100E時,光轉換材料層140將X射線轉換為可見光L。由於上表面140b低於上表面140a,使得可見光L更容易匯集以抵達第一色阻130以及透明有機保護層150,並隨後抵達光感測元件120。光感測元件120接收可見光L之後藉由PIN二極體121產生電流,此電流將自光感測元件120流向薄膜電晶體110,通過薄膜電晶體110到資料線M3。藉此,設置有具有表面高度的變化的光轉換材料層140之光感測器100E可以增加可見光L被光感測元件120接收的準直性,進而提升影像的品質。With the aforementioned structural configuration, when X-rays from the outside enter the photo sensor 100E, the light conversion material layer 140 converts the X-rays into visible light L. Since the upper surface 140b is lower than the upper surface 140a, the visible light L is more easily collected to reach the first color resistor 130 and the transparent organic protective layer 150, and then reaches the light sensing element 120. After the light sensing element 120 receives the visible light L, a current is generated through the PIN diode 121. This current will flow from the light sensing element 120 to the thin film transistor 110, and through the thin film transistor 110 to the data line M3. Thereby, the light sensor 100E provided with the light conversion material layer 140 with changes in surface height can increase the collimation of the visible light L received by the light sensing element 120, thereby improving the quality of the image.

請參考第11圖。第11圖為根據本揭露之一實施方式之光感測器100F的剖面圖。如第11圖所示,光感測器100F的結構配置與光感測器100E的結構配置大致相似。光感測器100F與光感測器100E的不同之處,在於光感測器100F的透明有機保護層150填充第一色阻130的開口O,並且透明有機保護層150相對於第一色阻130突出。如第11圖所示,光感測器100F的光轉換材料層140具有位在不同高度的上表面140a以及上表面140b,並且上表面140a係位在第一色阻130的正上方,並且上表面140b係位在光感測元件120的正上方。如第11圖所示,光感測器100F的第一色阻130具有上表面130a,並且透明有機保護層150具有上表面150a。在一些實施方式中,如第11圖所示,第一色阻130的上表面130a低於透明有機保護層150的上表面150a。Please refer to Figure 11. FIG. 11 is a cross-sectional view of a light sensor 100F according to an embodiment of the present disclosure. As shown in FIG. 11 , the structural configuration of the photo sensor 100F is substantially similar to the structural configuration of the photo sensor 100E. The difference between the photo sensor 100F and the photo sensor 100E is that the transparent organic protective layer 150 of the photo sensor 100F fills the opening O of the first color resistor 130, and the transparent organic protective layer 150 is opposite to the first color resistor. 130 stands out. As shown in Figure 11, the light conversion material layer 140 of the photo sensor 100F has an upper surface 140a and an upper surface 140b located at different heights, and the upper surface 140a is located directly above the first color resistor 130, and the upper surface 140a is located directly above the first color resistor 130. Surface 140b is located directly above the light sensing element 120. As shown in FIG. 11, the first color resistor 130 of the photo sensor 100F has an upper surface 130a, and the transparent organic protective layer 150 has an upper surface 150a. In some embodiments, as shown in FIG. 11 , the upper surface 130 a of the first color resistor 130 is lower than the upper surface 150 a of the transparent organic protective layer 150 .

在一些實施方式中,如第11圖所示,上表面140b係高於上表面140a。由於上表面140a以及上表面140b具有高度上的差異,因此可見光L可以透過由上表面140a以及上表面140b所產生的位於光轉換材料層140表面的特殊形態(morphology),以達到形成像素化閃爍體(pixelated scintillator)的目的,可見光L從而可以更容易被光感測元件120接收。In some embodiments, as shown in Figure 11, upper surface 140b is higher than upper surface 140a. Since the upper surface 140a and the upper surface 140b have height differences, the visible light L can pass through the special morphology on the surface of the light conversion material layer 140 generated by the upper surface 140a and the upper surface 140b to form pixelated flicker. (pixelated scintillator), the visible light L can be more easily received by the light sensing element 120 .

藉由前述結構配置,當來自外界的X射線入射光感測器100F時,光轉換材料層140將X射線轉換為可見光L。由於上表面140b高於上表面140a,使得可見光L更容易匯集以抵達第一色阻130以及透明有機保護層150,並隨後抵達光感測元件120。光感測元件120接收可見光L之後藉由PIN二極體121產生電流,此電流將自光感測元件120流向薄膜電晶體110,通過薄膜電晶體110到資料線M3。藉此,設置有具有表面高度的變化的光轉換材料層140之光感測器100F可以增加可見光L被光感測元件120接收的準直性,進而提升影像的品質。With the aforementioned structural configuration, when X-rays from the outside enter the photo sensor 100F, the light conversion material layer 140 converts the X-rays into visible light L. Since the upper surface 140b is higher than the upper surface 140a, the visible light L is more easily collected to reach the first color resistor 130 and the transparent organic protective layer 150, and then reaches the light sensing element 120. After the light sensing element 120 receives the visible light L, a current is generated through the PIN diode 121. This current will flow from the light sensing element 120 to the thin film transistor 110, and through the thin film transistor 110 to the data line M3. Thereby, the light sensor 100F provided with the light conversion material layer 140 with changes in surface height can increase the collimation of the visible light L received by the light sensing element 120, thereby improving the quality of the image.

請參考第12圖以及第13圖。第12圖為根據本揭露之一實施方式之利用雷射光LS修復光感測器100的俯視圖。第13圖為根據本揭露之一實施方式之基於第12圖的剖面線VI-VI’的利用雷射光LS修復光感測器100的剖面圖。需要說明的是,由於第12圖以及第13圖的光感測器100的結構配置與第1圖以及第2圖的光感測器100的結構配置相同,故以下不再針對光感測器100的元件贅述。如第12圖以及第13圖所示,當光感測器100由於元件之間產生問題(例如,漏電問題)造成故障損壞,舉例來說,當薄膜電晶體110以及光感測元件120發生異常而使得面板的像素無法正常顯示時,製造者可以利用雷射光LS沿著從薄膜電晶體110至光感測元件120的路徑P LS執行修復光感測器100的電路之操作。需要說明的是,如第12圖以及第13圖所示的光感測器100的修復電路之操作同樣可以應用於光感測器100A至光感測器100F以及光感測器100R。由於光感測器100、光感測器100A至光感測器100F以及光感測器100R皆設置有半透明的第一色阻130和/或第二色阻130G,使得製造者可以觀測到其內部的狀態,以利製造者直接針對發生問題的部位利用雷射光LS執行修復電路之操作。 Please refer to Figure 12 and Figure 13. FIG. 12 is a top view of the photo sensor 100 repaired using laser light LS according to an embodiment of the present disclosure. FIG. 13 is a cross-sectional view of the optical sensor 100 repaired using laser light LS based on the section line VI-VI' in FIG. 12 according to an embodiment of the present disclosure. It should be noted that since the structural configuration of the photo sensor 100 in FIGS. 12 and 13 is the same as the structural configuration of the photo sensor 100 in FIGS. 1 and 2 , no further description of the photo sensor will be given below. The components of 100 are repeated. As shown in Figures 12 and 13, when the photo sensor 100 is damaged due to problems between components (for example, leakage problems), for example, when the thin film transistor 110 and the photo sensing element 120 are abnormal. When the pixels of the panel cannot display normally, the manufacturer can use laser light LS to repair the circuit of the photo sensor 100 along the path P LS from the thin film transistor 110 to the photo sensing element 120 . It should be noted that the operation of the repair circuit of the photo sensor 100 shown in FIGS. 12 and 13 can also be applied to the photo sensors 100A to 100F and the photo sensor 100R. Since the photo sensor 100, the photo sensors 100A to 100F and the photo sensor 100R are all provided with the translucent first color resistor 130 and/or the second color resistor 130G, the manufacturer can observe Its internal state facilitates the manufacturer to use laser light LS to repair the circuit directly at the location where the problem occurs.

由以上對於本揭露之具體實施方式之詳述,可以明顯地看出,在本揭露之光感測器中,由於光感測器包含光轉換材料層,使得入射至光感測器的X射線可以轉換為在約500奈米與約600奈米之間的波長範圍內之可見光。在本揭露之光感測器中,由於第一色阻位於薄膜電晶體上方,且由俯視觀之第一色阻係圍繞光感測元件,使得藉由光轉換材料層轉換後的可見光進入光感測元件之準直性得以提升。在本揭露之光感測器中,由於第一色阻以及第二色阻為半透明,使得製造者可以更方便地利用雷射光修復損壞的電路。藉由本揭露的光感測器,可見光進入光感測元件的準直性可以提升以提升影像品質,並達到便於修復電路的功效。From the above detailed description of the specific embodiments of the present disclosure, it can be clearly seen that in the photo sensor of the present disclosure, since the photo sensor includes a light conversion material layer, the X-rays incident on the photo sensor Can be converted into visible light in a wavelength range between about 500 nanometers and about 600 nanometers. In the light sensor of the present disclosure, since the first color resistor is located above the thin film transistor, and the first color resistor is surrounded by the light sensing element when viewed from above, the visible light converted by the light conversion material layer enters the light sensor. The collimation of the sensing element is improved. In the light sensor of the present disclosure, since the first color resistor and the second color resistor are translucent, the manufacturer can more conveniently use laser light to repair damaged circuits. With the light sensor of the present disclosure, the collimation of visible light entering the light sensing element can be improved to improve image quality and facilitate circuit repair.

雖然本揭露已以實施方式揭露如上,然其並不用以限定本揭露,任何熟習此技藝者,在不脫離本揭露的精神和範圍內,當可作各種的更動與潤飾,因此本揭露的保護範圍當視後附的申請專利範圍所界定者為準。Although the disclosure has been disclosed in the above embodiments, it is not intended to limit the disclosure. Anyone skilled in the art can make various changes and modifications without departing from the spirit and scope of the disclosure. Therefore, the protection of the disclosure is The scope shall be determined by the appended patent application scope.

100,100A,100B,100C,100D,100E,100F,100R:光感測器 110:薄膜電晶體 120:光感測元件 121:PIN二極體 122:上電極 123:下電極 130:第一色阻 130G:第二色阻 130a,140a,140b,150a:上表面 140:光轉換材料層 150:透明有機保護層 160:無機保護層 AS:通道層 BP1,BP2,BP3,BP4:阻障層 G:閘極 GSN:閘極絕緣層 I-I’,II-II’,III-III’,IV-IV’,V-V’,VI-VI’:剖面線 L:可見光 LS:雷射光 M1:閘極線 M2:源極/汲極區域 M2D:汲極 M2S:源極 M3:資料線 M4:共通電極線 O,O BP1:開口 PL:保護層 P LS:路徑 PV:鈍化層 S:基板 100, 100A, 100B, 100C, 100D, 100E, 100F, 100R: Photo sensor 110: Thin film transistor 120: Photo sensing element 121: PIN diode 122: Upper electrode 123: Lower electrode 130: First color resistor 130G: Second color resistor 130a, 140a, 140b, 150a: Upper surface 140: Light conversion material layer 150: Transparent organic protective layer 160: Inorganic protective layer AS: Channel layer BP1, BP2, BP3, BP4: Barrier layer G: Gate GSN: Gate insulation layer I-I', II-II', III-III', IV-IV', V-V', VI-VI': Section line L: Visible light LS: Laser light M1: Gate Pole line M2: Source/Drain area M2D: Drain M2S: Source M3: Data line M4: Common electrode line O, O BP1 : Opening PL: Protective layer P LS : Path PV: Passivation layer S: Substrate

為讓本揭露之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: 第1圖繪示根據本揭露之一實施方式之光感測器的俯視圖。 第2圖繪示根據本揭露之一實施方式之光感測器的剖面圖。 第3圖繪示根據本揭露之一實施方式之光感測器的俯視圖。 第4圖繪示根據本揭露之一實施方式之光感測器的剖面圖。 第5圖繪示根據本揭露之一實施方式之光感測器的俯視圖。 第6圖繪示根據本揭露之一實施方式之光感測器的剖面圖。 第7圖繪示根據本揭露之一實施方式之光感測器的剖面圖。 第8圖繪示根據本揭露之一實施方式之光感測器的剖面圖。 第9圖繪示根據本揭露之一實施方式之光感測器的剖面圖。 第10圖繪示根據本揭露之一實施方式之光感測器的剖面圖。 第11圖繪示根據本揭露之一實施方式之光感測器的剖面圖。 第12圖繪示根據本揭露之一實施方式之利用雷射光修復光感測器的俯視圖。 第13圖繪示根據本揭露之一實施方式之利用雷射光修復光感測器的剖面圖。 In order to make the above and other objects, features, advantages and embodiments of the present disclosure more obvious and understandable, the accompanying drawings are described as follows: Figure 1 illustrates a top view of a light sensor according to an embodiment of the present disclosure. Figure 2 illustrates a cross-sectional view of a light sensor according to an embodiment of the present disclosure. FIG. 3 illustrates a top view of a light sensor according to an embodiment of the present disclosure. FIG. 4 illustrates a cross-sectional view of a light sensor according to an embodiment of the present disclosure. FIG. 5 illustrates a top view of a light sensor according to an embodiment of the present disclosure. FIG. 6 illustrates a cross-sectional view of a light sensor according to an embodiment of the present disclosure. FIG. 7 illustrates a cross-sectional view of a light sensor according to an embodiment of the present disclosure. Figure 8 illustrates a cross-sectional view of a light sensor according to an embodiment of the present disclosure. Figure 9 illustrates a cross-sectional view of a light sensor according to an embodiment of the present disclosure. Figure 10 illustrates a cross-sectional view of a light sensor according to an embodiment of the present disclosure. FIG. 11 illustrates a cross-sectional view of a light sensor according to an embodiment of the present disclosure. FIG. 12 illustrates a top view of a photo sensor repaired using laser light according to an embodiment of the present disclosure. Figure 13 illustrates a cross-sectional view of a photo sensor repaired using laser light according to an embodiment of the present disclosure.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in order of storage institution, date and number) without Overseas storage information (please note in order of storage country, institution, date, and number) without

100:光感測器 110:薄膜電晶體 120:光感測元件 121:PIN二極體 122:上電極 123:下電極 130:第一色阻 130a,150a:上表面 140:光轉換材料層 150:透明有機保護層 AS:通道層 BP1,BP2,BP3,BP4:阻障層 G:閘極 GSN:閘極絕緣層 L:可見光 M2:源極/汲極區域 M2D:汲極 M2S:源極 M3:資料線 M4:共通電極線 O,O BP1:開口 PL:保護層 PV:鈍化層 S:基板 100: Photo sensor 110: Thin film transistor 120: Photo sensing element 121: PIN diode 122: Upper electrode 123: Lower electrode 130: First color resistor 130a, 150a: Upper surface 140: Light conversion material layer 150 :Transparent organic protective layer AS: Channel layer BP1, BP2, BP3, BP4: Barrier layer G: Gate GSN: Gate insulation layer L: Visible light M2: Source/drain area M2D: Drain M2S: Source M3 :Data line M4: Common electrode line O, O BP1 : Opening PL: Protective layer PV: Passivation layer S: Substrate

Claims (14)

一種光感測器,包含:一基板;一閘極線,位於該基板上方;一資料線,位於該基板上方;一薄膜電晶體,該薄膜電晶體的一閘極電性連接該閘極線,該薄膜電晶體的一汲極電性連接該資料線;一光感測元件,該光感測元件的一下電極電性連接該薄膜電晶體的一源極;一共通電極線,位於該基板上方,並電性連接該光感測元件的一上電極;一第一色阻,位於該薄膜電晶體上方,且由俯視觀之,該第一色阻圍繞該光感測元件;以及一光轉換材料層,位於該第一色阻上,且該光轉換材料層設置為能夠將一X射線轉換為在500奈米與600奈米之間之一波長範圍內之一可見光。 A light sensor includes: a substrate; a gate line located above the substrate; a data line located above the substrate; a thin film transistor, a gate of the thin film transistor is electrically connected to the gate line , a drain electrode of the thin film transistor is electrically connected to the data line; a light sensing element, a lower electrode of the light sensing element is electrically connected to a source electrode of the thin film transistor; a common electrode line is located on the substrate Above, and electrically connected to an upper electrode of the light sensing element; a first color resistor, located above the thin film transistor, and viewed from above, the first color resistor surrounds the light sensing element; and a light The conversion material layer is located on the first color resistor, and the light conversion material layer is configured to convert an X-ray into visible light in a wavelength range between 500 nanometers and 600 nanometers. 如請求項1所述之光感測器,其中該第一色阻係一紅色光阻。 The light sensor of claim 1, wherein the first color resistor is a red photoresist. 如請求項1所述之光感測器,其中該第一色阻係一藍色光阻。 The light sensor of claim 1, wherein the first color resistor is a blue photoresist. 如請求項1所述之光感測器,其中該光轉 換材料層包含鉈摻雜的碘化銫材料。 The light sensor as claimed in claim 1, wherein the light transfer The replacement material layer includes thallium-doped cesium iodide material. 如請求項1所述之光感測器,其中該第一色阻對於該波長範圍內之該可見光之一平均穿透率小於50%。 The light sensor of claim 1, wherein the first color resistor has an average transmittance of less than 50% for the visible light in the wavelength range. 如請求項1所述之光感測器,其中該光轉換材料層在該光感測元件正上方之一上表面低於該光轉換材料層在該第一色阻正上方之一上表面。 The light sensor of claim 1, wherein an upper surface of the light conversion material layer directly above the light sensing element is lower than an upper surface of the light conversion material layer directly above the first color resistor. 如請求項1所述之光感測器,其中該光轉換材料層在該光感測元件正上方之一上表面高於該光轉換材料層在該第一色阻正上方之一上表面。 The light sensor of claim 1, wherein an upper surface of the light conversion material layer directly above the light sensing element is higher than an upper surface of the light conversion material layer directly above the first color resistor. 如請求項1所述之光感測器,進一步包含一透明有機保護層設置於該光轉換材料層與該光感測元件之間。 The light sensor of claim 1, further comprising a transparent organic protective layer disposed between the light conversion material layer and the light sensing element. 如請求項8所述之光感測器,其中該透明有機保護層之一折射率大於該第一色阻之一折射率。 The light sensor of claim 8, wherein the refractive index of the transparent organic protective layer is greater than the refractive index of the first color resistor. 如請求項8所述之光感測器,其中該透明有機保護層至少部分位於該光感測元件正上方,並與該第一色阻之一上表面齊平。 The light sensor of claim 8, wherein the transparent organic protective layer is at least partially located directly above the light sensing element and flush with an upper surface of the first color resistor. 如請求項8所述之光感測器,其中該透明有機保護層具有一第一部分位於該第一色阻正上方,以及一第二部分位於該光感測元件正上方。 The light sensor of claim 8, wherein the transparent organic protective layer has a first portion located directly above the first color resistor, and a second portion located directly above the light sensing element. 如請求項8所述之光感測器,進一步包含一無機保護層設置於該第一色阻與該透明有機保護層之間。 The light sensor of claim 8, further comprising an inorganic protective layer disposed between the first color resistor and the transparent organic protective layer. 如請求項12所述之光感測器,其中該無機保護層之一折射率大於該透明有機保護層之一折射率。 The light sensor of claim 12, wherein the refractive index of the inorganic protective layer is greater than the refractive index of the transparent organic protective layer. 如請求項1所述之光感測器,進一步包含一第二色阻至少部分位於該光感測元件正上方,該第二色阻對於在500奈米與600奈米之間之一波長範圍內之一可見光之一平均穿透率大於90%。 The light sensor of claim 1, further comprising a second color resistor located at least partially directly above the light sensing element, the second color resistor is suitable for a wavelength range between 500 nanometers and 600 nanometers. The average transmittance of one of the visible lights is greater than 90%.
TW111124605A 2022-01-19 2022-06-30 Light sensor TWI815532B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211510464.8A CN115799241A (en) 2022-01-19 2022-11-29 Optical sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263300734P 2022-01-19 2022-01-19
US63/300,734 2022-01-19

Publications (2)

Publication Number Publication Date
TW202332023A TW202332023A (en) 2023-08-01
TWI815532B true TWI815532B (en) 2023-09-11

Family

ID=88559046

Family Applications (9)

Application Number Title Priority Date Filing Date
TW111118430A TW202332072A (en) 2022-01-19 2022-05-17 Sensing device
TW111120409A TWI812253B (en) 2022-01-19 2022-06-01 Sensing device and fabricating method of the same
TW111120548A TWI812256B (en) 2022-01-19 2022-06-02 Sensing device
TW111121419A TW202332021A (en) 2022-01-19 2022-06-09 Sensing device
TW111122700A TWI810979B (en) 2022-01-19 2022-06-17 Sensing device and method for fabricating the same
TW111124605A TWI815532B (en) 2022-01-19 2022-06-30 Light sensor
TW111128196A TW202332073A (en) 2022-01-19 2022-07-27 Light sensor
TW111130632A TWI814537B (en) 2022-01-19 2022-08-15 Light sensor
TW111131034A TWI823522B (en) 2022-01-19 2022-08-17 Light sensing device and method for making light sensing device

Family Applications Before (5)

Application Number Title Priority Date Filing Date
TW111118430A TW202332072A (en) 2022-01-19 2022-05-17 Sensing device
TW111120409A TWI812253B (en) 2022-01-19 2022-06-01 Sensing device and fabricating method of the same
TW111120548A TWI812256B (en) 2022-01-19 2022-06-02 Sensing device
TW111121419A TW202332021A (en) 2022-01-19 2022-06-09 Sensing device
TW111122700A TWI810979B (en) 2022-01-19 2022-06-17 Sensing device and method for fabricating the same

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW111128196A TW202332073A (en) 2022-01-19 2022-07-27 Light sensor
TW111130632A TWI814537B (en) 2022-01-19 2022-08-15 Light sensor
TW111131034A TWI823522B (en) 2022-01-19 2022-08-17 Light sensing device and method for making light sensing device

Country Status (2)

Country Link
CN (1) CN117525097A (en)
TW (9) TW202332072A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110673380A (en) * 2019-09-09 2020-01-10 昆山龙腾光电股份有限公司 Display panel, manufacturing method thereof and display device
US20210216744A1 (en) * 2020-01-15 2021-07-15 Innolux Corporation Electronic Device and Manufacturing Method Thereof
US20210233973A1 (en) * 2019-01-04 2021-07-29 Boe Technology Group Co., Ltd. Array substrate, electroluminescent panel and display device
US20210334504A1 (en) * 2020-11-30 2021-10-28 Xiamen Tianma Micro-Electronics Co., Ltd. Display panel and display device

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070003784A (en) * 2003-12-15 2007-01-05 코닌클리케 필립스 일렉트로닉스 엔.브이. Active matrix pixel device with photo sensor
JP4308170B2 (en) * 2005-06-10 2009-08-05 本田技研工業株式会社 Image sensor
JP2008153427A (en) * 2006-12-18 2008-07-03 Hitachi Displays Ltd High sensitive optical sensor element and optical sensor device using it
JP5240748B2 (en) * 2007-02-19 2013-07-17 独立行政法人科学技術振興機構 Infrared detector
CN101546907B (en) * 2008-03-25 2011-09-14 中华映管股份有限公司 Electrostatic protection circuit and active-element array substrate
US20090278121A1 (en) * 2008-05-08 2009-11-12 Tpo Displays Corp. System for displaying images and fabrication method thereof
CN101494256B (en) * 2009-02-26 2011-01-05 友达光电股份有限公司 X ray sensor and manufacturing method thereof
CN101866917B (en) * 2010-05-24 2012-01-25 友达光电股份有限公司 Active element array substrate and repair method thereof
EP2518755B1 (en) * 2011-04-26 2014-10-15 FEI Company In-column detector for particle-optical column
CN102790067B (en) * 2012-07-26 2014-12-10 北京京东方光电科技有限公司 Sensor and manufacturing method thereof
TWI450653B (en) * 2012-12-06 2014-08-21 Wintek Corp Contact pad structure
TWM472311U (en) * 2013-10-09 2014-02-11 Giantplus Technology Co Ltd The light sensor
US20160013243A1 (en) * 2014-03-10 2016-01-14 Dpix, Llc Photosensor arrays for detection of radiation and process for the preparation thereof
WO2015141777A1 (en) * 2014-03-20 2015-09-24 シャープ株式会社 Light detection device
TWI540469B (en) * 2014-04-01 2016-07-01 原相科技股份有限公司 Electronic device with high electrostatic protection
CN106537486B (en) * 2014-07-31 2020-09-15 株式会社半导体能源研究所 Display device and electronic device
AU2015309697A1 (en) * 2014-08-29 2017-03-23 The University Of Western Australia Stimulating an optical sensor using optical radiation pressure
KR101573166B1 (en) * 2015-01-30 2015-12-02 하이디스 테크놀로지 주식회사 Digital x-ray detector and method for manufacturing the x-ray detector
US10306168B2 (en) * 2015-05-04 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, imaging system, and electronic device
WO2017115225A2 (en) * 2015-12-28 2017-07-06 Semiconductor Energy Laboratory Co., Ltd. Flexible device, display device, and manufacturing methods thereof
CN108701701A (en) * 2016-02-29 2018-10-23 夏普株式会社 Photoelectric conversion device
TWI608600B (en) * 2016-08-04 2017-12-11 力晶科技股份有限公司 Image sensor and related fabrication method
US20180145124A1 (en) * 2016-11-21 2018-05-24 Samsung Display Co., Ltd. Flexible display device
KR20190028194A (en) * 2017-09-08 2019-03-18 엘지디스플레이 주식회사 Array substrate for x-ray detector, x-ray detector including the same and the manufacturing method thereof
CN107623011A (en) * 2017-10-12 2018-01-23 友达光电股份有限公司 Thin-film transistor array base-plate and X-ray detector for X-ray detector
KR102522110B1 (en) * 2017-11-29 2023-04-13 엘지디스플레이 주식회사 Organic light emitting display device
KR102407978B1 (en) * 2017-11-29 2022-06-13 엘지디스플레이 주식회사 Display Device
KR102493828B1 (en) * 2017-12-22 2023-01-30 엘지디스플레이 주식회사 Digital x-ray detector
CN108807556B (en) * 2018-06-11 2021-01-29 京东方科技集团股份有限公司 Optical sensing device, manufacturing method thereof, display device and display equipment
US20190393278A1 (en) * 2018-06-26 2019-12-26 Innolux Corporation Display device
JP7185481B2 (en) * 2018-10-18 2022-12-07 浜松ホトニクス株式会社 Radiation imaging device
US11133345B2 (en) * 2018-11-16 2021-09-28 Sharp Kabushiki Kaisha Active matrix substrate, X-ray imaging panel with the same, and method of manufacturing the same
TWI702582B (en) * 2019-04-03 2020-08-21 元太科技工業股份有限公司 Display panel, display apparatus and method of fabricating display panel
US11710760B2 (en) * 2019-06-21 2023-07-25 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, electronic device, and manufacturing method of display device
CN110444553B (en) * 2019-08-14 2021-12-24 京东方科技集团股份有限公司 Photosensitive device, manufacturing method thereof, detection substrate and array substrate
CN110783355A (en) * 2019-10-31 2020-02-11 京东方科技集团股份有限公司 Detection panel, manufacturing method thereof and detection device
CN210443558U (en) * 2019-11-26 2020-05-01 京东方科技集团股份有限公司 Photoelectric sensor, display panel and display device
CN210429817U (en) * 2019-11-26 2020-04-28 北京京东方传感技术有限公司 Flat panel detector
FR3105577B1 (en) * 2019-12-18 2021-12-31 St Microelectronics Crolles 2 Sas Image sensor intended to receive illumination from a rear face, and method for acquiring a corresponding luminous flux

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210233973A1 (en) * 2019-01-04 2021-07-29 Boe Technology Group Co., Ltd. Array substrate, electroluminescent panel and display device
CN110673380A (en) * 2019-09-09 2020-01-10 昆山龙腾光电股份有限公司 Display panel, manufacturing method thereof and display device
US20210216744A1 (en) * 2020-01-15 2021-07-15 Innolux Corporation Electronic Device and Manufacturing Method Thereof
US20210334504A1 (en) * 2020-11-30 2021-10-28 Xiamen Tianma Micro-Electronics Co., Ltd. Display panel and display device

Also Published As

Publication number Publication date
TW202332022A (en) 2023-08-01
TWI823522B (en) 2023-11-21
TWI810979B (en) 2023-08-01
TW202332068A (en) 2023-08-01
TW202332073A (en) 2023-08-01
TWI812256B (en) 2023-08-11
TW202332024A (en) 2023-08-01
TW202332027A (en) 2023-08-01
TW202332026A (en) 2023-08-01
TW202332072A (en) 2023-08-01
TW202332023A (en) 2023-08-01
TW202332021A (en) 2023-08-01
TWI814537B (en) 2023-09-01
TW202332066A (en) 2023-08-01
TWI812253B (en) 2023-08-11
CN117525097A (en) 2024-02-06

Similar Documents

Publication Publication Date Title
KR101350795B1 (en) Thin film transistor array substrate for x-ray detector
JP4867766B2 (en) Liquid crystal device, image sensor, and electronic device
TWI532157B (en) Solid-state imaging device and electronic apparatus
TWI354823B (en) Display device, manufacturing method thereof, cont
US8937363B2 (en) Solid-state imaging device and electronic apparatus
CN105308669A (en) Substrate for display device, and display device using same
US10817089B2 (en) Display component and method for manufacturing the same, display device
JP2007094098A (en) Liquid crystal display device and electronic equipment
TWI655786B (en) Optical device
JP2007114315A (en) Display device
US8558185B2 (en) Digital radiographic detector array including spacers and methods for same
KR20110063374A (en) Coplanar high fill factor pixel architecture
US8637828B2 (en) Radiation detection element
TW200905285A (en) Display panel and its application
JP2007316243A (en) Display device and method for controlling the same
JP2024513414A (en) Display panels, display modules, and electronic devices
JPWO2019215986A1 (en) Image sensor and manufacturing method of image sensor
TWI815532B (en) Light sensor
US20070181816A1 (en) Anisotropic conductive film, x-ray flat panel detector, infrared flat panel detector and display device
WO2010058629A1 (en) Liquid crystal display device and electronic device
JP2009048145A (en) Liquid crystal device, image sensor, and electronic device
CN115799241A (en) Optical sensor
TWM582725U (en) Solar cell and display including the same
US20120037905A1 (en) Display device and electronic equipment
TWM528522U (en) Photo-sensing apparatus