TW202332068A - Sensing device and fabricating method of the same - Google Patents

Sensing device and fabricating method of the same Download PDF

Info

Publication number
TW202332068A
TW202332068A TW111120409A TW111120409A TW202332068A TW 202332068 A TW202332068 A TW 202332068A TW 111120409 A TW111120409 A TW 111120409A TW 111120409 A TW111120409 A TW 111120409A TW 202332068 A TW202332068 A TW 202332068A
Authority
TW
Taiwan
Prior art keywords
layer
sensing device
electrode
substrate
semiconductor layer
Prior art date
Application number
TW111120409A
Other languages
Chinese (zh)
Other versions
TWI812253B (en
Inventor
張家銘
陳瑞沛
蔡佳修
陳俊霖
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to CN202210911635.1A priority Critical patent/CN115101550A/en
Priority to US17/888,509 priority patent/US20230230996A1/en
Publication of TW202332068A publication Critical patent/TW202332068A/en
Application granted granted Critical
Publication of TWI812253B publication Critical patent/TWI812253B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Abstract

A sensing device includes a substrate, a switching element, a sensing element and a common electrode. The switching element is disposed on the substrate and includes a source electrode. The sensing element is disposed at one side of the switching element and includes a lower electrode, a photoelectric conversion layer and an upper electrode. The lower electrode is electrically connected to the source electrode. The photoelectric conversion layer is disposed on the lower electrode. The upper electrode is disposed on the photoelectric conversion layer. The common electrode is electrically connected to the upper electrode and belongs to the same film layer as the source electrode. A fabricating method of a sensing device is also provided.

Description

感測裝置及其製造方法Sensing device and manufacturing method thereof

本發明是有關於一種感測裝置及其製造方法。The invention relates to a sensing device and a manufacturing method thereof.

光感測器因其出色的性能,已被廣泛應用於安檢、工業檢測及醫療診察等領域。舉例而言,在醫療診察方面,X射線感測器可用於人體胸腔、血管、牙齒等之影像擷取。一般而言,此類感測器主要包括薄膜電晶體(thin film transistor,TFT)以及PIN二極體(PIN diode),其中PIN二極體可將光能轉換成電訊號,而薄膜電晶體則用於讀取PIN二極體所測得的電訊號。Due to its excellent performance, light sensors have been widely used in fields such as security inspection, industrial inspection and medical diagnosis. For example, in medical diagnosis, X-ray sensors can be used to capture images of human chest, blood vessels, teeth, etc. Generally speaking, this type of sensor mainly includes thin film transistor (thin film transistor, TFT) and PIN diode (PIN diode), wherein PIN diode can convert light energy into electrical signal, and thin film transistor is Used to read the electrical signal measured by the PIN diode.

傳統上,此類感測器的製造流程是在製作完薄膜電晶體之後再製作PIN二極體。由於薄膜電晶體與PIN二極體是先後個別製作,造成製程光罩數多、製程步驟繁複且耗時冗長。因此,如何整合薄膜電晶體與PIN二極體的製作流程實為目前極具挑戰性的研發課題之一。Traditionally, the manufacturing process for this type of sensor is to fabricate the PIN diode after the thin film transistor. Since thin film transistors and PIN diodes are manufactured individually one after the other, the number of masks in the manufacturing process is large, the manufacturing process steps are complicated and time-consuming. Therefore, how to integrate the manufacturing process of thin film transistors and PIN diodes is one of the most challenging research and development topics at present.

本發明提供一種感測裝置,具有整合開關元件與感測元件的結構。The invention provides a sensing device with a structure integrating a switching element and a sensing element.

本發明提供一種感測裝置,具有良好的可靠度。The invention provides a sensing device with good reliability.

本發明提供一種感測裝置的製造方法,能夠整合開關元件與感測元件的製作流程且簡化感測裝置的製程步驟,而且提供具有良好可靠度的感測裝置。The invention provides a manufacturing method of a sensing device, which can integrate the manufacturing process of a switching element and a sensing element, simplify the manufacturing steps of the sensing device, and provide a sensing device with good reliability.

本發明的一個實施例提出一種感測裝置,包括:基板;開關元件,位於基板上,且包括源極;感測元件,位於開關元件的一側,且包括:下電極,電性連接源極;光電轉換層,位於下電極上;以及上電極,位於光電轉換層上;以及共用電極,電性連接上電極,且與源極屬於相同膜層。One embodiment of the present invention proposes a sensing device, comprising: a substrate; a switching element located on the substrate and including a source; a sensing element located on one side of the switching element and comprising: a lower electrode electrically connected to the source the photoelectric conversion layer is located on the lower electrode; the upper electrode is located on the photoelectric conversion layer; and the common electrode is electrically connected to the upper electrode and belongs to the same film layer as the source.

本發明的一個實施例提出一種感測裝置,包括:基板;開關元件,位於基板上,且包括:半導體層;以及閘極,環繞半導體層;以及感測元件,位於基板上,且包括:下電極;上電極,重疊下電極;以及光電轉換層,位於上電極與下電極之間。An embodiment of the present invention proposes a sensing device, comprising: a substrate; a switching element located on the substrate and comprising: a semiconductor layer; and a gate electrode surrounding the semiconductor layer; and a sensing element located on the substrate and comprising: an electrode; an upper electrode overlapping the lower electrode; and a photoelectric conversion layer located between the upper electrode and the lower electrode.

本發明的一個實施例提出一種感測裝置的製造方法,包括:形成半導體層於基板之上;形成第一絕緣層於半導體層上;形成毯覆的導體層於第一絕緣層及基板上;形成毯覆的半導體疊層於導體層上;形成毯覆的透明電極層於半導體疊層上;圖案化透明電極層以形成上電極;圖案化半導體疊層以形成光電轉換層;以及圖案化導體層以形成下電極及頂閘極。An embodiment of the present invention provides a method for manufacturing a sensing device, including: forming a semiconductor layer on a substrate; forming a first insulating layer on the semiconductor layer; forming a blanket conductive layer on the first insulating layer and the substrate; forming a blanketed semiconductor stack on the conductor layer; forming a blanketed transparent electrode layer on the semiconductor stack; patterning the transparent electrode layer to form an upper electrode; patterning the semiconductor stack to form a photoelectric conversion layer; and patterning the conductor layer to form the bottom electrode and top gate.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.

在附圖中,為了清楚起見,放大了層、膜、面板、區域等的厚度。在整個說明書中,相同的附圖標記表示相同的元件。應當理解,當諸如層、膜、區域或基板的元件被稱為在另一元件「上」或「連接到」另一元件時,其可以直接在另一元件上或與另一元件連接,或者中間元件可以也存在。相反地,當元件被稱為「直接在另一元件上」或「直接連接到」另一元件時,不存在中間元件。如本文所使用的,「連接」可以指物理及/或電性連接。再者,「電性連接」或「耦接」可為二元件間存在其它元件。In the drawings, the thickness of layers, films, panels, regions, etc., are exaggerated for clarity. Throughout the specification, the same reference numerals denote the same elements. It will be understood that when an element such as a layer, film, region, or substrate is referred to as being "on" or "connected to" another element, it can be directly on or connected to the other element, or Intermediate elements may also be present. In contrast, when an element is referred to as being "directly on" or "directly connected to" another element, there are no intervening elements present. As used herein, "connected" may refer to physical and/or electrical connection. Furthermore, "electrically connected" or "coupled" may mean that other elements exist between two elements.

應當理解,儘管術語「第一」、「第二」、「第三」等在本文中可以用於描述各種元件、部件、區域、層及/或部分,但是這些元件、部件、區域、層及/或部分不應受這些術語的限制。這些術語僅用於將一個元件、部件、區域、層或部分與另一個元件、部件、區域、層或部分區分開。因此,下面討論的第一「元件」、「部件」、「區域」、「層」或「部分」可以被稱為第二元件、部件、區域、層或部分而不脫離本文的教導。It should be understood that although the terms "first", "second", "third", etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and and/or parts should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first "element," "component," "region," "layer" or "section" discussed below could be termed a second element, component, region, layer or section without departing from the teachings herein.

這裡使用的術語僅僅是為了描述特定實施例的目的,而不是限制性的。如本文所使用的,除非內容清楚地指示,否則單數形式「一」、「一個」和「該」旨在包括複數形式,包括「至少一個」或表示「及/或」。如本文所使用的,術語「及/或」包括一個或多個相關所列項目的任何和所有組合。還應當理解,當在本說明書中使用時,術語「包含」及/或「包括」指定所述特徵、區域、整體、步驟、操作、元件及/或部件的存在,但不排除一個或多個其它特徵、區域、整體、步驟、操作、元件、部件及/或其組合的存在或添加。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms "a", "an" and "the" are intended to include plural forms including "at least one" or meaning "and/or" unless the content clearly dictates otherwise. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. It should also be understood that when used in this specification, the terms "comprising" and/or "comprising" designate the existence of said features, regions, integers, steps, operations, elements and/or components, but do not exclude one or more Existence or addition of other features, regions, integers, steps, operations, elements, parts and/or combinations thereof.

此外,諸如「下」或「底部」和「上」或「頂部」的相對術語可在本文中用於描述一個元件與另一元件的關係,如圖所示。應當理解,相對術語旨在包括除了圖中所示的方位之外的裝置的不同方位。例如,如果一個附圖中的裝置翻轉,則被描述為在其他元件的「下」側的元件將被定向在其他元件的「上」側。因此,示例性術語「下」可以包括「下」和「上」的取向,取決於附圖的特定取向。類似地,如果一個附圖中的裝置翻轉,則被描述為在其它元件「下」或「下方」的元件將被定向為在其它元件「上方」。因此,示例性術語「下」或「下方」可以包括上方和下方的取向。Additionally, relative terms such as "lower" or "bottom" and "upper" or "top" may be used herein to describe one element's relationship to another element as shown in the figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the figures. For example, if the device in one of the figures is turned over, elements described as being on the "lower" side of other elements would then be oriented on "upper" sides of the other elements. Thus, the exemplary term "below" can encompass both an orientation of "below" and "upper," depending on the particular orientation of the drawing. Similarly, if the device in one of the figures is turned over, elements described as "below" or "beneath" other elements would then be oriented "above" the other elements. Thus, the exemplary terms "below" or "beneath" can encompass both an orientation of above and below.

考慮到所討論的測量和與測量相關的誤差的特定數量(即,測量系統的限制),本文使用的「約」、「近似」、或「實質上」包括所述值和在本領域普通技術人員確定的特定值的可接受的偏差範圍內的平均值。例如,「約」可以表示在所述值的一個或多個標準偏差內,或±30%、±20%、±10%、±5%內。再者,本文使用的「約」、「近似」、或「實質上」可依光學性質、蝕刻性質或其它性質,來選擇較可接受的偏差範圍或標準偏差,而可不用一個標準偏差適用全部性質。The terms "about," "approximately," or "substantially" as used herein include stated values and those within ordinary skill in the art, taking into account the measurements in question and the specific amount of error associated with the measurements (i.e., limitations of the measurement system). The average value within an acceptable range of deviation from a specified value as determined by a human being. For example, "about" can mean within one or more standard deviations of the stated value, or within ±30%, ±20%, ±10%, ±5%. Furthermore, "about", "approximately", or "substantially" used herein may select a more acceptable range of deviation or standard deviation based on optical properties, etching properties or other properties, and may not use one standard deviation to apply to all nature.

除非另有定義,本文使用的所有術語(包括技術和科學術語)具有與本發明所屬領域的普通技術人員通常理解的相同的含義。將進一步理解的是,諸如在通常使用的字典中定義的那些術語應當被解釋為具有與它們在相關技術和本發明的上下文中的含義一致的含義,並且將不被解釋為理想化的或過度正式的意義,除非本文中明確地這樣定義。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms such as those defined in commonly used dictionaries should be interpreted to have meanings consistent with their meanings in the context of the relevant art and the present invention, and will not be interpreted as idealized or excessive formal meaning, unless expressly so defined herein.

本文參考作為理想化實施例的示意圖的截面圖來描述示例性實施例。因此,可以預期到作為例如製造技術及/或公差的結果的圖示的形狀變化。因此,本文所述的實施例不應被解釋為限於如本文所示的區域的特定形狀,而是包括例如由製造導致的形狀偏差。例如,示出或描述為平坦的區域通常可以具有粗糙及/或非線性特徵。此外,所示的銳角可以是圓的。因此,圖中所示的區域本質上是示意性的,並且它們的形狀不是旨在示出區域的精確形狀,並且不是旨在限制權利要求的範圍。Exemplary embodiments are described herein with reference to cross section illustrations that are schematic illustrations of idealized embodiments. Accordingly, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances are to be expected. Thus, embodiments described herein should not be construed as limited to the particular shapes of regions as illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, a region shown or described as flat, may, typically, have rough and/or non-linear features. Additionally, acute corners shown may be rounded. Thus, the regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region and are not intended to limit the scope of the claims.

圖1A至圖1G是依照本發明一實施例的感測裝置10的製造方法的步驟流程的局部剖面示意圖及局部上視示意圖。以下,配合圖1A至圖1G說明感測裝置10的製造方法。1A to 1G are partial cross-sectional schematic diagrams and partial top schematic diagrams of the steps of the manufacturing method of the sensing device 10 according to an embodiment of the present invention. Hereinafter, the manufacturing method of the sensing device 10 will be described with reference to FIG. 1A to FIG. 1G .

請參照圖1A,在一些實施例中,可以先形成底閘極BG以及掃描線SL於基板110上。基板110可以是剛性基板,例如玻璃基板、石英基板或矽基板,但不限於此。在其他實施例中,基板110可以是可撓性基板,例如聚合物基板或塑膠基板。在本文中,基板110的法線方向可以是垂直於基板110的表面111的方向Dz,且方向Dz可以垂直於方向Dx以及方向Dy。Referring to FIG. 1A , in some embodiments, the bottom gate BG and the scan line SL may be formed on the substrate 110 first. The substrate 110 may be a rigid substrate, such as a glass substrate, a quartz substrate or a silicon substrate, but is not limited thereto. In other embodiments, the substrate 110 may be a flexible substrate, such as a polymer substrate or a plastic substrate. Herein, the normal direction of the substrate 110 may be a direction Dz perpendicular to the surface 111 of the substrate 110 , and the direction Dz may be perpendicular to the direction Dx and the direction Dy.

舉例而言,底閘極BG以及掃描線SL的形成方法可以包括以下步驟。首先,在基板110上形成導電層(未繪示)。繼之,利用微影製程,在導電層上形成圖案化光阻(未繪示)。接著,利用圖案化光阻作為罩幕,來對導電層進行蝕刻製程,以形成底閘極BG以及掃描線SL。之後,移除圖案化光阻。For example, the method for forming the bottom gate BG and the scan line SL may include the following steps. First, a conductive layer (not shown) is formed on the substrate 110 . Then, a patterned photoresist (not shown) is formed on the conductive layer by using a lithography process. Next, the conductive layer is etched by using the patterned photoresist as a mask to form the bottom gate BG and the scan line SL. Afterwards, the patterned photoresist is removed.

舉例而言,底閘極BG以及掃描線SL的材料可以包括金屬,例如鉻(Cr)、金(Au)、銀(Ag)、銅(Cu)、錫(Sn)、鉛(Pb)、鉿(Hf)、鎢(W)、鉬(Mo)、釹(Nd)、鈦(Ti)、鉭(Ta)、鋁(Al)、鋅(Zn)、或上述金屬的任意組合之合金、或上述金屬及/或合金之疊層,但不限於此。底閘極BG以及掃描線SL也可以使用其他導電材料,例如:金屬的氮化物、金屬的氧化物、金屬的氮氧化物、金屬與其它導電材料的堆疊層、或是其它具有導電性質之材料。For example, the material of the bottom gate BG and the scan line SL may include metals such as chromium (Cr), gold (Au), silver (Ag), copper (Cu), tin (Sn), lead (Pb), hafnium (Hf), tungsten (W), molybdenum (Mo), neodymium (Nd), titanium (Ti), tantalum (Ta), aluminum (Al), zinc (Zn), or alloys of any combination of the above metals, or the above Laminations of metals and/or alloys, but not limited thereto. The bottom gate BG and the scan line SL can also use other conductive materials, such as: metal nitride, metal oxide, metal oxynitride, stacked layers of metal and other conductive materials, or other materials with conductive properties .

請參照圖1B(a),在本實施例中,可以形成毯覆的絕緣層120於基板110之上,絕緣層120可以使用化學氣相沉積法或其他合適的方法形成,藉以阻隔基板110中的雜質。在一些實施例中,絕緣層120可以覆蓋底閘極BG以及掃描線SL,以避免不必要的電性連接。絕緣層120的材質可以包括透明的絕緣材料,例如氧化矽、氮化矽、氮氧化矽、有機聚合物或上述材料的疊層,但本發明不以此為限。Please refer to FIG. 1B(a). In this embodiment, a blanket insulating layer 120 can be formed on the substrate 110. The insulating layer 120 can be formed by chemical vapor deposition or other suitable methods to isolate the substrate 110. of impurities. In some embodiments, the insulating layer 120 may cover the bottom gate BG and the scan line SL to avoid unnecessary electrical connection. The material of the insulating layer 120 may include a transparent insulating material, such as silicon oxide, silicon nitride, silicon oxynitride, organic polymer or a stack of the above materials, but the present invention is not limited thereto.

接著,請參照圖1B(a)及圖1B(b),形成半導體層CH於基板110以及絕緣層120上。在一些實施例中,半導體層CH可以部分重疊底閘極BG,且半導體層CH與底閘極BG於基板110上的正投影可以呈現十字交叉的圖案。舉例而言,半導體層CH在方向Dx上的長度Lc可以大於底閘極BG在方向Dx上的寬度Wg,且半導體層CH在方向Dy上的寬度Wc可以小於底閘極BG在方向Dy上的長度Lb,且方向Dx大致垂直於方向Dy,使得底閘極BG在方向Dy上的兩端部B1、B2於基板110上的正投影在半導體層CH於基板110上的正投影之外。Next, referring to FIG. 1B(a) and FIG. 1B(b), a semiconductor layer CH is formed on the substrate 110 and the insulating layer 120 . In some embodiments, the semiconductor layer CH may partially overlap the bottom gate BG, and the orthographic projection of the semiconductor layer CH and the bottom gate BG on the substrate 110 may present a cross pattern. For example, the length Lc of the semiconductor layer CH in the direction Dx may be greater than the width Wg of the bottom gate BG in the direction Dx, and the width Wc of the semiconductor layer CH in the direction Dy may be smaller than the width Wg of the bottom gate BG in the direction Dy. length Lb, and the direction Dx is substantially perpendicular to the direction Dy, so that the orthographic projection of the two ends B1 and B2 of the bottom gate BG in the direction Dy on the substrate 110 is outside the orthographic projection of the semiconductor layer CH on the substrate 110 .

半導體層CH的形成方法可以包括以下步驟:首先,在絕緣層120上形成毯覆的半導體材料層(未繪示);接著,利用微影製程,在半導體材料層上形成圖案化光阻(未繪示);繼之,利用圖案化光阻作為罩幕,來對半導體材料層進行蝕刻製程,以形成半導體層CH;之後,移除圖案化光阻。The method for forming the semiconductor layer CH may include the following steps: firstly, forming a blanket semiconductor material layer (not shown) on the insulating layer 120; then, forming a patterned photoresist (not shown) on the semiconductor material layer by using a lithography shown); then, use the patterned photoresist as a mask to perform an etching process on the semiconductor material layer to form the semiconductor layer CH; after that, remove the patterned photoresist.

半導體層CH的材質可以包括金屬氧化物半導體材料,例如:銦鎵鋅氧化物(InGaZnO,IGZO)、銦鋅氧化物(InZnO,IZO)、銦鎵氧化物(InGaO,IGO)、銦錫氧化物(InSnO,ITO)、銦鎵鋅錫氧化物(InGaZnSnO,IGZTO)、鎵鋅錫氧化物(GaZnSnO,GZTO)、鎵鋅氧化物(GaZnO,GZO)、鋅錫氧化物(ZnSnO,ZTO)及銦錫鋅氧化物(InSnZnO,ITZO)中之至少一者,但不限於此。The material of the semiconductor layer CH may include metal oxide semiconductor materials, for example: indium gallium zinc oxide (InGaZnO, IGZO), indium zinc oxide (InZnO, IZO), indium gallium oxide (InGaO, IGO), indium tin oxide (InSnO, ITO), indium gallium zinc tin oxide (InGaZnSnO, IGZTO), gallium zinc tin oxide (GaZnSnO, GZTO), gallium zinc oxide (GaZnO, GZO), zinc tin oxide (ZnSnO, ZTO) and indium At least one of tin zinc oxides (InSnZnO, ITZO), but not limited thereto.

請參照圖1C(a),接著,形成絕緣層121、131於基板110之上,其中絕緣層121可以覆蓋底閘極BG以及掃描線SL,絕緣層131可以包覆半導體層CH,且絕緣層131可以重疊掃描線SL上的絕緣層121。絕緣層121、131的形成方法可以包括以下步驟。首先,在絕緣層120及半導體層CH上形成毯覆絕緣層(未繪示)。繼之,利用微影製程,在上述毯覆絕緣層上形成圖案化光阻(未繪示)。接著,利用圖案化光阻作為罩幕,來對上述毯覆絕緣層以及絕緣層120進行蝕刻製程,以形成絕緣層121、131。之後,移除圖案化光阻。上述毯覆絕緣層可以使用化學氣相沉積法或其他合適的方法形成,且上述毯覆絕緣層的材質可以包括透明的絕緣材料,例如氧化矽、氮化矽、氮氧化矽、有機聚合物或上述材料的疊層,但本發明不以此為限。在一些實施例中,絕緣層121、131可以在同一道蝕刻製程中形成,但不限於此。Please refer to FIG. 1C(a), and then, form insulating layers 121, 131 on the substrate 110, wherein the insulating layer 121 can cover the bottom gate BG and the scanning line SL, the insulating layer 131 can cover the semiconductor layer CH, and the insulating layer 131 may overlap the insulating layer 121 on the scan line SL. The method for forming the insulating layers 121 and 131 may include the following steps. Firstly, a blanket insulating layer (not shown) is formed on the insulating layer 120 and the semiconductor layer CH. Then, a patterned photoresist (not shown) is formed on the blanket insulating layer by using a lithography process. Next, the blanket insulating layer and the insulating layer 120 are etched by using the patterned photoresist as a mask to form the insulating layers 121 and 131 . Afterwards, the patterned photoresist is removed. The above-mentioned blanket insulating layer can be formed by chemical vapor deposition or other suitable methods, and the material of the above-mentioned blanket insulating layer can include transparent insulating materials, such as silicon oxide, silicon nitride, silicon oxynitride, organic polymer or Lamination of the above materials, but the present invention is not limited thereto. In some embodiments, the insulating layers 121 and 131 can be formed in the same etching process, but not limited thereto.

請參照圖1C(b),在一些實施例中,底閘極BG在方向Dy上的兩端部B1、B2於基板110上的正投影可以在絕緣層121、131於基板110上的正投影之外,換句話說,絕緣層121、131可以不重疊、且暴露出底閘極BG的兩端部B1、B2。Please refer to FIG. 1C(b), in some embodiments, the orthographic projections of the two ends B1 and B2 of the bottom gate BG in the direction Dy on the substrate 110 can be the orthographic projections of the insulating layers 121 and 131 on the substrate 110 In addition, in other words, the insulating layers 121 and 131 may not overlap and expose the two ends B1 and B2 of the bottom gate BG.

請參照圖1D,接著,形成毯覆的導體層140於絕緣層131及基板110上、形成毯覆的半導體疊層150於導體層140上、以及形成毯覆的透明電極層160於半導體疊層150上。導體層140、半導體疊層150以及透明電極層160可以使用化學氣相沉積法、物理氣相沉積法或其他合適的方法形成。Please refer to FIG. 1D, and then, form a blanketed conductive layer 140 on the insulating layer 131 and the substrate 110, form a blanketed semiconductor stack 150 on the conductive layer 140, and form a blanketed transparent electrode layer 160 on the semiconductor stacked layer. 150 on. The conductor layer 140 , the semiconductor stack 150 and the transparent electrode layer 160 may be formed by chemical vapor deposition, physical vapor deposition or other suitable methods.

舉例而言,導體層140的材料可以包括金屬,例如鉻(Cr)、金(Au)、銀(Ag)、銅(Cu)、錫(Sn)、鉛(Pb)、鉿(Hf)、鎢(W)、鉬(Mo)、釹(Nd)、鈦(Ti)、鉭(Ta)、鋁(Al)、鋅(Zn)、或上述金屬的任意組合之合金、或上述金屬及/或合金之疊層,但不限於此。導體層140也可以包含其他導電材料,例如:金屬的氮化物、金屬的氧化物、金屬的氮氧化物、金屬與其它導電材料的堆疊層、或是其它具有導電性質之材料。For example, the material of the conductor layer 140 may include metals such as chromium (Cr), gold (Au), silver (Ag), copper (Cu), tin (Sn), lead (Pb), hafnium (Hf), tungsten (W), molybdenum (Mo), neodymium (Nd), titanium (Ti), tantalum (Ta), aluminum (Al), zinc (Zn), or alloys of any combination of the above metals, or the above metals and/or alloys stacks, but not limited to this. The conductive layer 140 may also include other conductive materials, such as metal nitrides, metal oxides, metal oxynitrides, stacked layers of metals and other conductive materials, or other materials with conductive properties.

在一些實施例中,半導體疊層150可以包括依序形成於導體層140上的N型半導體材料層、本質半導體材料層以及P型半導體材料層。舉例而言,本質半導體材料層例如是使用矽甲烷(SiH 4)及氫氣(H 2)作為反應氣體且藉由電漿增強化學氣相沉積(PECVD)製程沉積的本質非晶矽。N型半導體材料層例如是使用磷化氫(PH 3)、氫氣(H 2)與矽甲烷(SiH 4)作為反應氣體所形成的摻雜磷(P)的非晶矽。P型半導體材料層例如是使用硼酸三甲酯、氫氣(H 2)與矽甲烷(SiH 4)作為反應氣體所形成的摻雜硼(B)的非晶矽,但本發明不以此為限。 In some embodiments, the semiconductor stack 150 may include an N-type semiconductor material layer, an intrinsic semiconductor material layer, and a P-type semiconductor material layer sequentially formed on the conductor layer 140 . For example, the intrinsic semiconductor material layer is intrinsic amorphous silicon deposited by plasma enhanced chemical vapor deposition (PECVD) using silane (SiH 4 ) and hydrogen (H 2 ) as reactive gases. The N-type semiconductor material layer is, for example, phosphorus (P)-doped amorphous silicon formed by using phosphine (PH 3 ), hydrogen (H 2 ) and silane (SiH 4 ) as reaction gases. The P-type semiconductor material layer is, for example, boron (B)-doped amorphous silicon formed by using trimethyl borate, hydrogen (H 2 ) and silane (SiH 4 ) as reaction gases, but the present invention is not limited thereto. .

透明電極層160的材質可以包括銦錫氧化物、銦鋅氧化物、鋁鋅氧化物(AlZO)、鋁銦氧化物(AlInO)、氧化銦(InO)、氧化鎵(GaO)、奈米碳管、奈米銀顆粒、厚度小於60奈米(nm)的金屬或合金、有機透明導電材料、或其它適合的透明導電材料。The material of the transparent electrode layer 160 may include indium tin oxide, indium zinc oxide, aluminum zinc oxide (AlZO), aluminum indium oxide (AlInO), indium oxide (InO), gallium oxide (GaO), carbon nanotubes , nano silver particles, metals or alloys with a thickness less than 60 nanometers (nm), organic transparent conductive materials, or other suitable transparent conductive materials.

請參照圖1E,接著,圖案化透明電極層160,以於半導體疊層150上形成上電極TE。詳細而言,圖案化透明電極層160可以包括以下步驟。首先,利用微影製程,在透明電極層160上形成圖案化光阻(未繪示)。接著,利用圖案化光阻作為罩幕,來對透明電極層160進行濕式蝕刻製程,以形成上電極TE。濕式蝕刻製程使用的蝕刻液例如草酸或鋁酸,但不限於此。之後,移除圖案化光阻。Referring to FIG. 1E , next, the transparent electrode layer 160 is patterned to form the upper electrode TE on the semiconductor stack 150 . In detail, patterning the transparent electrode layer 160 may include the following steps. First, a patterned photoresist (not shown) is formed on the transparent electrode layer 160 by using a photolithography process. Next, a wet etching process is performed on the transparent electrode layer 160 by using the patterned photoresist as a mask to form the upper electrode TE. The etchant used in the wet etching process is, for example, but not limited to oxalic acid or aluminate. Afterwards, the patterned photoresist is removed.

接著,圖案化半導體疊層150以形成光電轉換層PN。舉例而言,圖案化半導體疊層150可以包括以下步驟。首先,利用微影製程,在上電極TE及半導體疊層150上形成圖案化光阻(未繪示)。接著,利用圖案化光阻作為罩幕,來對半導體疊層150進行乾式蝕刻製程,以形成光電轉換層PN。乾式蝕刻製程使用的蝕刻氣體包括例如六氟化硫(SF 6)與氯氣(Cl 2)等氣體,但不限於此。之後,移除圖案化光阻。 Next, the semiconductor stack 150 is patterned to form a photoelectric conversion layer PN. For example, patterning the semiconductor stack 150 may include the following steps. First, a patterned photoresist (not shown) is formed on the upper electrode TE and the semiconductor stack 150 by using a lithography process. Next, a dry etching process is performed on the semiconductor stack 150 by using the patterned photoresist as a mask to form the photoelectric conversion layer PN. The etching gas used in the dry etching process includes gases such as sulfur hexafluoride (SF 6 ) and chlorine gas (Cl 2 ), but is not limited thereto. Afterwards, the patterned photoresist is removed.

在一些實施例中,圖案化透明電極層160與圖案化半導體疊層150可以使用相同的光罩。由於圖案化透明電極層160是使用濕式蝕刻製程,因此,在濕式蝕刻製程的過程中,蝕刻液還會移除透明電極層160在圖案化光阻的邊緣下側的部分,使得在濕式蝕刻製程之後形成的上電極TE的尺寸Wt會小於圖案化光阻的尺寸。另外,由於圖案化半導體疊層150是使用乾式蝕刻製程,因此,在乾式蝕刻製程之後形成的光電轉換層PN的尺寸Wp會近似於或等於圖案化光阻的尺寸,使得上電極TE的尺寸Wt會小於光電轉換層PN的尺寸Wp。In some embodiments, the patterned transparent electrode layer 160 and the patterned semiconductor stack 150 may use the same photomask. Since the patterned transparent electrode layer 160 uses a wet etching process, during the wet etching process, the etchant will also remove the portion of the transparent electrode layer 160 below the edge of the patterned photoresist, so that the wet The size Wt of the top electrode TE formed after the etching process is smaller than the size of the patterned photoresist. In addition, since the patterned semiconductor stack 150 uses a dry etching process, the size Wp of the photoelectric conversion layer PN formed after the dry etching process will be similar to or equal to the size of the patterned photoresist, so that the size Wt of the upper electrode TE will be smaller than the size Wp of the photoelectric conversion layer PN.

值得注意的是,在形成以及圖案化半導體疊層150的過程中,半導體層CH完全被覆蓋於毯覆的導體層140之下,如此一來,毯覆的導體層140能夠有效阻隔反應氣體中的氫離子(H+)與半導體層CH,以防止氫離子進入半導體層CH中影響半導體層CH的性質,進而避免感測裝置10的可靠度受到影響。It is worth noting that during the process of forming and patterning the semiconductor stack 150, the semiconductor layer CH is completely covered under the blanketed conductor layer 140, so that the blanketed conductor layer 140 can effectively block the reactive gas Hydrogen ions (H+) and the semiconductor layer CH are used to prevent the hydrogen ions from entering the semiconductor layer CH and affecting the properties of the semiconductor layer CH, thereby preventing the reliability of the sensing device 10 from being affected.

請參照圖1F(a),接著,圖案化導體層140以形成下電極BE以及頂閘極TG。圖案化導體層140可以包括以下步驟。首先,利用微影製程,在導體層140之上形成圖案化光阻(未繪示)。接著,利用圖案化光阻作為罩幕,來對導體層140進行蝕刻製程,以形成下電極BE以及頂閘極TG。換句話說,下電極BE與頂閘極TG屬於相同膜層。之後,移除圖案化光阻。Referring to FIG. 1F(a), then, the conductive layer 140 is patterned to form the bottom electrode BE and the top gate TG. Patterning the conductor layer 140 may include the following steps. First, a patterned photoresist (not shown) is formed on the conductive layer 140 by using a lithography process. Next, the conductive layer 140 is etched by using the patterned photoresist as a mask to form the bottom electrode BE and the top gate TG. In other words, the bottom electrode BE and the top gate TG belong to the same film layer. Afterwards, the patterned photoresist is removed.

請參照圖1F(b),在一些實施例中,頂閘極TG還可以沿著絕緣層131的兩相對側壁W31、W32以及絕緣層121的兩相對側壁W21、W22向下延伸至底閘極BG的兩端部B1、B2,使得頂閘極TG的兩端部T1、T2可以分別實體連接底閘極BG的兩端部B1、B2而構成環狀閘極GE,且閘極GE可以環繞半導體層CH,閘極GE的中心軸可以沿著半導體層CH的長度Lc的延伸方向(即方向Dx)延伸。在一些實施例中,閘極GE的中心軸可以落入半導體層CH中。在某些實施例中,閘極GE的中心軸可以重疊半導體層CH在方向Dx上的中心軸。Referring to FIG. 1F(b), in some embodiments, the top gate TG can also extend down to the bottom gate along the two opposite sidewalls W31, W32 of the insulating layer 131 and the two opposite sidewalls W21, W22 of the insulating layer 121. The two ends B1 and B2 of BG enable the two ends T1 and T2 of the top gate TG to be physically connected to the two ends B1 and B2 of the bottom gate BG respectively to form a ring-shaped gate GE, and the gate GE can surround The central axis of the semiconductor layer CH and the gate GE may extend along the extending direction of the length Lc of the semiconductor layer CH (ie, the direction Dx). In some embodiments, the central axis of the gate GE may fall into the semiconductor layer CH. In some embodiments, the central axis of the gate GE may overlap the central axis of the semiconductor layer CH in the direction Dx.

在一些實施例中,在形成頂閘極TG之後,還可以進行摻雜製程。摻雜製程可以利用頂閘極TG作為罩幕,來對半導體層CH進行摻雜。在摻雜製程之後,半導體層CH中重疊頂閘極TG的區域可以成為通道區Cc,半導體層CH中未重疊頂閘極TG的區域可以成為汲極區C1及源極區C2,且汲極區C1及源極區C2可以具有較通道區Cc低的電阻。舉例而言,摻雜製程可以將氫元素植入半導體層CH的汲極區C1及源極區C2中,使得半導體層CH的汲極區C1及源極區C2的載子遷移率上升。在一些實施例中,摻雜製程可以是氫電漿處理。在一些實施例中,半導體層CH的汲極區C1及源極區C2能夠分別與後續形成的汲極以及源極之間形成歐姆(ohmic)接觸。In some embodiments, after forming the top gate TG, a doping process may also be performed. In the doping process, the top gate TG can be used as a mask to dope the semiconductor layer CH. After the doping process, the region overlapping the top gate TG in the semiconductor layer CH can become the channel region Cc, and the region not overlapping the top gate TG in the semiconductor layer CH can become the drain region C1 and the source region C2, and the drain Region C1 and source region C2 may have lower resistance than channel region Cc. For example, the doping process can implant hydrogen into the drain region C1 and the source region C2 of the semiconductor layer CH, so that the carrier mobility of the drain region C1 and the source region C2 of the semiconductor layer CH increases. In some embodiments, the doping process may be hydrogen plasma treatment. In some embodiments, the drain region C1 and the source region C2 of the semiconductor layer CH can respectively form ohmic contacts with the subsequently formed drain and source.

請參照圖1G,接著,形成絕緣層170於基板110之上。絕緣層170的形成方法可以包括以下步驟。首先,利用化學氣相沉積法或其他適合的方式,在基板110上形成介電材料層(未繪示)。接著,利用微影製程,在介電材料層上形成圖案化光阻(未繪示)。繼之,利用圖案化光阻作為罩幕,來對於介電材料層進行蝕刻製程,以形成具有通孔V1、V2、V3、V4的絕緣層170。之後,移除圖案化光阻。在本實施例中,通孔V1、V2可以進一步貫穿絕緣層131,以分別暴露出半導體層CH的汲極區C1及源極區C2,且通孔V3可以暴露出下電極BE,通孔V4可以暴露出上電極TE。Referring to FIG. 1G , next, an insulating layer 170 is formed on the substrate 110 . The forming method of the insulating layer 170 may include the following steps. Firstly, a dielectric material layer (not shown) is formed on the substrate 110 by chemical vapor deposition or other suitable methods. Next, a patterned photoresist (not shown) is formed on the dielectric material layer by using a lithography process. Then, the dielectric material layer is etched by using the patterned photoresist as a mask to form the insulating layer 170 having the via holes V1 , V2 , V3 , and V4 . Afterwards, the patterned photoresist is removed. In this embodiment, the through holes V1 and V2 can further penetrate the insulating layer 131 to respectively expose the drain region C1 and the source region C2 of the semiconductor layer CH, and the through hole V3 can expose the bottom electrode BE, and the through hole V4 The upper electrode TE may be exposed.

接著,形成汲極DE、源極SE、共用電極CM以及資料線DL於絕緣層170上,其中汲極DE通過通孔V1電性連接至半導體層CH的汲極區C1,源極SE通過通孔V2電性連接至半導體層CH的源極區C2,源極SE還通過通孔V3電性連接至下電極BE,共用電極CM位於上電極TE上,且共用電極CM通過通孔V4電性連接至上電極TE。由於共用電極CM與汲極DE、源極SE以及資料線DL可以在同一道製程中形成,因此能夠減少製程光罩數,從而簡化製程步驟。Next, the drain electrode DE, the source electrode SE, the common electrode CM and the data line DL are formed on the insulating layer 170, wherein the drain electrode DE is electrically connected to the drain region C1 of the semiconductor layer CH through the via hole V1, and the source electrode SE is electrically connected to the drain electrode region C1 of the semiconductor layer CH through the via hole V1. The hole V2 is electrically connected to the source region C2 of the semiconductor layer CH, the source SE is also electrically connected to the lower electrode BE through the through hole V3, the common electrode CM is located on the upper electrode TE, and the common electrode CM is electrically connected through the through hole V4 Connect to top electrode TE. Since the common electrode CM, the drain electrode DE, the source electrode SE and the data line DL can be formed in the same process, the number of process masks can be reduced, thereby simplifying the process steps.

圖1G是依照本發明一實施例的感測裝置10的局部剖面示意圖。在本實施例中,感測裝置10可以包括:基板110、開關元件180、感測元件190以及共用電極CM,且開關元件180、感測元件190以及共用電極CM皆設置於基板110之上。感測元件190例如是PIN二極體(PIN diode),用以將光能轉換成電子訊號。開關元件180例如是薄膜電晶體,用以讀取感測元件190測得的訊號。FIG. 1G is a schematic partial cross-sectional view of a sensing device 10 according to an embodiment of the invention. In this embodiment, the sensing device 10 may include: a substrate 110 , a switching element 180 , a sensing element 190 and a common electrode CM, and the switching element 180 , the sensing element 190 and the common electrode CM are all disposed on the substrate 110 . The sensing element 190 is, for example, a PIN diode (PIN diode), which is used to convert light energy into an electronic signal. The switching element 180 is, for example, a thin film transistor, and is used to read the signal detected by the sensing element 190 .

開關元件180至少包括源極SE。舉例而言,在本實施例中,開關元件180可以包括半導體層CH、源極SE、汲極DE以及頂閘極TG,其中絕緣層121位於半導體層CH與基板110之間,絕緣層131位於半導體層CH與頂閘極TG之間,絕緣層170位於源極SE以及汲極DE與頂閘極TG之間,絕緣層131、170位於源極SE以及汲極DE與半導體層CH之間,且汲極DE電性連接半導體層CH的汲極區C1,源極SE電性連接半導體層CH的源極區C2。因此,開關元件180可以是頂閘極型薄膜電晶體。The switching element 180 includes at least a source SE. For example, in this embodiment, the switching element 180 may include a semiconductor layer CH, a source SE, a drain DE, and a top gate TG, wherein the insulating layer 121 is located between the semiconductor layer CH and the substrate 110, and the insulating layer 131 is located between Between the semiconductor layer CH and the top gate TG, the insulating layer 170 is located between the source SE and the drain DE and the top gate TG, and the insulating layers 131 and 170 are located between the source SE and the drain DE and the semiconductor layer CH, The drain DE is electrically connected to the drain region C1 of the semiconductor layer CH, and the source SE is electrically connected to the source region C2 of the semiconductor layer CH. Therefore, the switching element 180 may be a top gate type thin film transistor.

在一些實施例中,開關元件180可以包括半導體層CH、源極SE、汲極DE、頂閘極TG以及底閘極BG,其中半導體層CH位於底閘極BG與頂閘極TG之間,絕緣層121位於底閘極BG與半導體層CH之間,絕緣層131位於半導體層CH與頂閘極TG之間,絕緣層170位於源極SE以及汲極DE與頂閘極TG之間,絕緣層131、170位於源極SE以及汲極DE與半導體層CH之間,半導體層CH位於底閘極BG與頂閘極TG之間,且汲極DE電性連接半導體層CH的汲極區C1,源極SE電性連接半導體層CH的源極區C2。因此,開關元件180可以是雙閘極型薄膜電晶體。In some embodiments, the switch element 180 may include a semiconductor layer CH, a source SE, a drain DE, a top gate TG, and a bottom gate BG, wherein the semiconductor layer CH is located between the bottom gate BG and the top gate TG, The insulating layer 121 is located between the bottom gate BG and the semiconductor layer CH, the insulating layer 131 is located between the semiconductor layer CH and the top gate TG, the insulating layer 170 is located between the source SE and the drain DE and the top gate TG, and is insulated The layers 131 and 170 are located between the source SE and the drain DE and the semiconductor layer CH, the semiconductor layer CH is located between the bottom gate BG and the top gate TG, and the drain DE is electrically connected to the drain region C1 of the semiconductor layer CH , the source SE is electrically connected to the source region C2 of the semiconductor layer CH. Therefore, the switching element 180 may be a double gate thin film transistor.

在一些實施例中,開關元件180可以包括半導體層CH、源極SE、汲極DE以及底閘極BG,其中絕緣層121位於底閘極BG與半導體層CH之間,絕緣層131、170位於源極SE以及汲極DE與半導體層CH之間,且汲極DE電性連接半導體層CH的汲極區C1,源極SE電性連接半導體層CH的源極區C2。因此,開關元件180可以是底閘極型薄膜電晶體。In some embodiments, the switching element 180 may include a semiconductor layer CH, a source SE, a drain DE, and a bottom gate BG, wherein the insulating layer 121 is located between the bottom gate BG and the semiconductor layer CH, and the insulating layers 131 and 170 are located between Between the source SE, the drain DE and the semiconductor layer CH, the drain DE is electrically connected to the drain region C1 of the semiconductor layer CH, and the source SE is electrically connected to the source region C2 of the semiconductor layer CH. Therefore, the switching element 180 may be a bottom gate thin film transistor.

在本實施例中,感測元件190可以位於開關元件180的一側,且感測元件190可以包括上電極TE、下電極BE以及光電轉換層PN,其中上電極TE重疊下電極BE,上電極TE與下電極BE彼此電性獨立,且光電轉換層PN位於上電極TE與下電極BE之間;下電極BE電性連接至源極SE,且下電極BE與頂閘極TG屬於相同膜層;上電極TE電性連接至共用電極CM,且共用電極CM與源極SE屬於相同膜層。如此一來,感測裝置10能夠具有整合開關元件180與感測元件190的結構。In this embodiment, the sensing element 190 may be located on one side of the switching element 180, and the sensing element 190 may include an upper electrode TE, a lower electrode BE, and a photoelectric conversion layer PN, wherein the upper electrode TE overlaps the lower electrode BE, and the upper electrode TE and the bottom electrode BE are electrically independent from each other, and the photoelectric conversion layer PN is located between the top electrode TE and the bottom electrode BE; the bottom electrode BE is electrically connected to the source SE, and the bottom electrode BE and the top gate TG belong to the same film layer ; The upper electrode TE is electrically connected to the common electrode CM, and the common electrode CM and the source SE belong to the same film layer. In this way, the sensing device 10 can have a structure integrating the switching element 180 and the sensing element 190 .

在一些實施例中,光電轉換層PN設置於下電極BE上,且光電轉換層PN可以完全重疊下電極BE。換句話說,光電轉換層PN於基板110的正投影可以完全落入下電極BE於基板110的正投影。在一些實施例中,光電轉換層PN的側壁與下電極BE的側壁之間的間距S1可以為2μm至5μm,例如約3μm或約4μm。在一些實施例中,上電極TE可以完全重疊光電轉換層PN。換句話說,上電極TE於基板110的正投影可以完全落入光電轉換層PN於基板110的正投影。在某些實施例中,上電極TE的側壁與光電轉換層PN的側壁之間的間距S2可以為0.5μm至3μm,例如約1μm或約2μm。In some embodiments, the photoelectric conversion layer PN is disposed on the lower electrode BE, and the photoelectric conversion layer PN may completely overlap the lower electrode BE. In other words, the orthographic projection of the photoelectric conversion layer PN on the substrate 110 may completely fall into the orthographic projection of the bottom electrode BE on the substrate 110 . In some embodiments, the distance S1 between the sidewall of the photoelectric conversion layer PN and the sidewall of the bottom electrode BE may be 2 μm to 5 μm, for example, about 3 μm or about 4 μm. In some embodiments, the upper electrode TE may completely overlap the photoelectric conversion layer PN. In other words, the orthographic projection of the upper electrode TE on the substrate 110 can completely fall into the orthographic projection of the photoelectric conversion layer PN on the substrate 110 . In some embodiments, the distance S2 between the sidewall of the upper electrode TE and the sidewall of the photoelectric conversion layer PN may be 0.5 μm to 3 μm, for example, about 1 μm or about 2 μm.

在一些實施例中,感測裝置10還可以包括掃描線SL,掃描線SL可以電性連接底閘極BG,且掃描線SL可與底閘極BG屬於相同膜層。另外,感測裝置10還可以包括資料線DL,資料線DL可電性連接至汲極DE,且資料線DL可與源極SE及汲極DE屬於相同膜層。如此一來,掃描線SL與資料線DL之間至少存在絕緣層121、131、170,因此能夠增大掃描線SL與資料線DL於交叉處的間距,藉以降低掃描線SL及資料線DL的寄生電容,進而改善靜電放電(ESD)的問題。在一些實施例中,在基板110的法線方向Dz上,掃描線SL與資料線DL之間的間距S3為3,000-12,000Å,較佳為5,000-10,000Å,例如約6,000Å或8,000Å,但本發明不限於此。In some embodiments, the sensing device 10 may further include a scan line SL, the scan line SL may be electrically connected to the bottom gate BG, and the scan line SL and the bottom gate BG may belong to the same film layer. In addition, the sensing device 10 may further include a data line DL, which may be electrically connected to the drain DE, and the data line DL may belong to the same film layer as the source SE and the drain DE. In this way, there are at least insulating layers 121, 131, and 170 between the scan line SL and the data line DL, so the distance between the scan line SL and the data line DL at the intersection can be increased, thereby reducing the distance between the scan line SL and the data line DL. Parasitic capacitance, thereby improving the problem of electrostatic discharge (ESD). In some embodiments, in the normal direction Dz of the substrate 110, the distance S3 between the scan line SL and the data line DL is 3,000-12,000 Å, preferably 5,000-10,000 Å, such as about 6,000 Å or 8,000 Å, But the present invention is not limited thereto.

以下,使用圖2A至圖2C繼續說明本發明的其他實施例,並且,沿用圖1A至圖1G的實施例的元件標號與相關內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明,可參考前述實施例,在此不贅述。In the following, other embodiments of the present invention are continued to be described using FIGS. 2A to 2C , and the component numbers and related contents of the embodiment in FIGS. 1A to 1G are used, wherein the same or similar symbols are used to represent the same or similar components, And the description of the same technical content is omitted. For the description of omitted parts, reference may be made to the foregoing embodiments, and details are not repeated here.

圖2A是依照本發明一實施例的感測裝置20的局部上視示意圖。圖2B是沿圖2A的剖面線A-A’所作的剖面示意圖。圖2C是沿圖2A的剖面線B-B’所作的剖面示意圖。為了使圖式的表達較為簡潔,圖2A省略了基板110以及絕緣層121、131、170。FIG. 2A is a schematic partial top view of a sensing device 20 according to an embodiment of the invention. Fig. 2B is a schematic cross-sectional view taken along the section line A-A' of Fig. 2A. Fig. 2C is a schematic cross-sectional view taken along the section line B-B' of Fig. 2A. In order to make the drawing more concise, the substrate 110 and the insulating layers 121 , 131 , 170 are omitted in FIG. 2A .

在本實施例中,感測裝置20可以包括:基板110、開關元件280、感測元件190以及共用電極CM,且開關元件280、感測元件190以及共用電極CM皆設置於基板110之上。感測元件190包括上電極TE、下電極BE以及光電轉換層PN,其中上電極TE重疊下電極BE,光電轉換層PN位於上電極TE與下電極BE之間。下電極BE可以通過例如通孔V31電性連接開關元件280的源極SE。共用電極CM位於上電極TE上,且上電極TE可以通過例如通孔V41電性連接共用電極CM。In this embodiment, the sensing device 20 may include: a substrate 110 , a switching element 280 , a sensing element 190 and a common electrode CM, and the switching element 280 , the sensing element 190 and the common electrode CM are all disposed on the substrate 110 . The sensing element 190 includes an upper electrode TE, a lower electrode BE and a photoelectric conversion layer PN, wherein the upper electrode TE overlaps the lower electrode BE, and the photoelectric conversion layer PN is located between the upper electrode TE and the lower electrode BE. The bottom electrode BE may be electrically connected to the source SE of the switch element 280 through, for example, the via hole V31 . The common electrode CM is located on the upper electrode TE, and the upper electrode TE may be electrically connected to the common electrode CM through, for example, the via hole V41.

圖2A至圖2C所示的感測裝置20與如圖1G所示的感測裝置10的主要差異在於:感測裝置20的開關元件280至少包括半導體層CH以及閘極GE,且閘極GE環繞半導體層CH。The main difference between the sensing device 20 shown in FIGS. 2A to 2C and the sensing device 10 shown in FIG. 1G is that the switching element 280 of the sensing device 20 includes at least a semiconductor layer CH and a gate GE, and the gate GE surrounding the semiconductor layer CH.

舉例而言,在本實施例中,開關元件280可以包括半導體層CH、源極SE、汲極DE以及閘極GE,且閘極GE可以包括頂閘極TG以及底閘極BG。絕緣層121、131將半導體層CH包覆於其間,且絕緣層121位於底閘極BG與半導體層CH之間,絕緣層131位於半導體層CH與頂閘極TG之間。絕緣層170位於源極SE以及汲極DE與頂閘極TG之間,且絕緣層131、170位於源極SE與半導體層CH之間以及汲極DE與半導體層CH之間。半導體層CH中重疊頂閘極TG的區域為通道區Cc,半導體層CH中未重疊頂閘極TG的區域為汲極區C1及源極區C2,通道區Cc連接汲極區C1與源極區C2,且汲極區C1及源極區C2可以具有較通道區Cc低的電阻。汲極DE可以通過通孔V11電性連接汲極區C1,且源極SE可以通過通孔V21電性連接源極區C2。For example, in this embodiment, the switch element 280 may include a semiconductor layer CH, a source SE, a drain DE and a gate GE, and the gate GE may include a top gate TG and a bottom gate BG. The insulating layers 121 and 131 wrap the semiconductor layer CH therebetween, and the insulating layer 121 is located between the bottom gate BG and the semiconductor layer CH, and the insulating layer 131 is located between the semiconductor layer CH and the top gate TG. The insulating layer 170 is located between the source SE and the drain DE and the top gate TG, and the insulating layers 131 and 170 are located between the source SE and the semiconductor layer CH and between the drain DE and the semiconductor layer CH. The region overlapping the top gate TG in the semiconductor layer CH is the channel region Cc, the region not overlapping the top gate TG in the semiconductor layer CH is the drain region C1 and the source region C2, and the channel region Cc connects the drain region C1 and the source The region C2, and the drain region C1 and the source region C2 may have lower resistance than the channel region Cc. The drain DE can be electrically connected to the drain region C1 through the through hole V11 , and the source SE can be electrically connected to the source region C2 through the through hole V21 .

具體而言,半導體層CH沿著方向Dx可以具有長度Lc,半導體層CH沿著方向Dy具有寬度Wc,且方向Dx大致垂直於方向Dy。頂閘極TG位於絕緣層131上,頂閘極TG在方向Dy上的長度Lt及底閘極BG在方向Dy上的長度Lb皆大於半導體層CH的寬度Wc,且底閘極BG的長度Lb大於頂閘極TG的長度Lt,因此,頂閘極TG可以沿著方向Dy延伸而橫跨半導體層CH的兩側,且頂閘極TG還可以沿著絕緣層121、131的兩側側壁向下延伸至底閘極BG,使得頂閘極TG實體連接底閘極BG而構成環狀閘極GE,且頂閘極TG以及底閘極BG環繞半導體層CH。如此一來,閘極GE能夠有助於在光電轉換層PN的形成過程中阻止反應氣體中的氫離子進入半導體層CH中,使得感測裝置20具有良好的可靠度。此外,環狀閘極GE還能夠提升半導體層CH的載子遷移率(carrier mobility),例如使半導體層CH的載子遷移率提升2倍。如此一來,感測裝置20能夠提供更高的影格速率(frame rate),例如提供高於7Hz的高頻率動態感測畫面。Specifically, the semiconductor layer CH may have a length Lc along a direction Dx, the semiconductor layer CH has a width Wc along a direction Dy, and the direction Dx is substantially perpendicular to the direction Dy. The top gate TG is located on the insulating layer 131, the length Lt of the top gate TG in the direction Dy and the length Lb of the bottom gate BG in the direction Dy are both greater than the width Wc of the semiconductor layer CH, and the length Lb of the bottom gate BG is greater than the length Lt of the top gate TG, therefore, the top gate TG can extend along the direction Dy to cross both sides of the semiconductor layer CH, and the top gate TG can also extend along the two side walls of the insulating layers 121, 131 extending down to the bottom gate BG, so that the top gate TG is physically connected to the bottom gate BG to form a ring-shaped gate GE, and the top gate TG and the bottom gate BG surround the semiconductor layer CH. In this way, the gate GE can help prevent hydrogen ions in the reaction gas from entering the semiconductor layer CH during the formation of the photoelectric conversion layer PN, so that the sensing device 20 has good reliability. In addition, the ring gate GE can also increase the carrier mobility of the semiconductor layer CH, for example, increase the carrier mobility of the semiconductor layer CH by 2 times. In this way, the sensing device 20 can provide a higher frame rate, for example, provide high-frequency dynamic sensing images higher than 7 Hz.

在一些實施例中,在方向Dy上,底閘極BG的側壁與頂閘極TG的側壁之間的間距S4可以是0至3μm,例如約1μm或約2μm。在某些實施例中,環狀閘極GE的中心軸可以位於半導體層CH中。In some embodiments, in the direction Dy, the distance S4 between the sidewall of the bottom gate BG and the sidewall of the top gate TG may be 0 to 3 μm, for example about 1 μm or about 2 μm. In some embodiments, the central axis of the ring gate GE may be located in the semiconductor layer CH.

在一些實施例中,頂閘極TG及底閘極BG在方向Dx上具有寬度Wg,且寬度Wg可以是2μm至10μm,例如4μm、6μm或8μm。在一些實施例中,頂閘極TG於基板110的正投影與源極SE於基板110的正投影之間的最小間距S5可以是0至5μm,較佳是1μm至3μm,例如約1.5μm、2μm或2.5μm。In some embodiments, the top gate TG and the bottom gate BG have a width Wg in the direction Dx, and the width Wg may be 2 μm to 10 μm, such as 4 μm, 6 μm or 8 μm. In some embodiments, the minimum distance S5 between the orthographic projection of the top gate TG on the substrate 110 and the orthographic projection of the source SE on the substrate 110 may be 0 to 5 μm, preferably 1 μm to 3 μm, such as about 1.5 μm, 2μm or 2.5μm.

綜上所述,本發明的感測裝置的製造方法藉由以同一膜層來形成共用電極及源極,且以同一膜層來形成下電極與頂閘極,因此能夠整合開關元件與感測元件的製作流程,使得感測裝置具有整合開關元件與感測元件的結構,且能夠減少製程光罩數及簡化製程步驟。再者,本發明的感測裝置的製造方法利用毯覆的導體層來阻隔氫離子,能夠有效防止氫離子進入半導體層,以免影響感測裝置的可靠度。另外,本發明的感測裝置具有降低的掃描線及資料線寄生電容,因此還能夠改善ESD。此外,本發明的感測裝置還利用環狀閘極來防止氫離子進入半導體層,使得感測裝置能夠具有良好的可靠度。To sum up, the manufacturing method of the sensing device of the present invention forms the common electrode and the source electrode with the same film layer, and forms the bottom electrode and the top gate electrode with the same film layer, so the switching element and the sensing device can be integrated. The manufacturing process of the element enables the sensing device to have a structure integrating the switching element and the sensing element, and can reduce the number of process masks and simplify the process steps. Furthermore, the manufacturing method of the sensing device of the present invention uses the blanketed conductive layer to block hydrogen ions, which can effectively prevent hydrogen ions from entering the semiconductor layer, so as not to affect the reliability of the sensing device. In addition, the sensing device of the present invention has reduced scan line and data line parasitic capacitance, and thus can also improve ESD. In addition, the sensing device of the present invention also utilizes the ring gate to prevent hydrogen ions from entering the semiconductor layer, so that the sensing device can have good reliability.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention should be defined by the scope of the appended patent application.

10, 20:感測裝置 110:基板 111:表面 120, 121, 131, 170:絕緣層 140:導體層 150:半導體疊層 160:透明電極層 180, 280:開關元件 190:感測元件 A-A’, B-B’:剖面線 B1, B2, T1, T2:端部 BE:下電極 BG:底閘極 C1:汲極區 C2:源極區 Cc:通道區 CH:半導體層 CM:共用電極 DE:汲極 DL:資料線 Dx, Dy, Dz:方向 GE:閘極 Lb, Lc, Lt:長度 PN:光電轉換層 S1, S2, S3, S4:間距 S5:最小間距 SE:源極 SL:掃描線 TE:上電極 TG:頂閘極 V1, V2, V3, V4:通孔 V11, V21, V31, V41:通孔 W21, W22, W31, W32:側壁 Wg, Wc:寬度 Wp, Wt:尺寸 10, 20: Sensing device 110: Substrate 111: surface 120, 121, 131, 170: insulation layer 140: conductor layer 150: Semiconductor stack 160: transparent electrode layer 180, 280: switching elements 190: sensing element A-A', B-B': hatching B1, B2, T1, T2: ends BE: Bottom electrode BG: bottom gate C1: drain area C2: source region Cc: channel area CH: semiconductor layer CM: common electrode DE: drain DL: data line Dx, Dy, Dz: directions GE: Gate Lb, Lc, Lt: Length PN: photoelectric conversion layer S1, S2, S3, S4: Spacing S5: Minimum spacing SE: source SL: scan line TE: upper electrode TG: top gate V1, V2, V3, V4: through holes V11, V21, V31, V41: Through hole W21, W22, W31, W32: side walls Wg, Wc: Width Wp, Wt: size

圖1A至圖1G是依照本發明一實施例的感測裝置10的製造方法的步驟流程的局部剖面示意圖及局部上視示意圖,其中,圖1G是依照本發明一實施例的感測裝置10的局部剖面示意圖。 圖2A是依照本發明一實施例的感測裝置20的局部上視示意圖。 圖2B是沿圖2A的剖面線A-A’所作的剖面示意圖。 圖2C是沿圖2A的剖面線B-B’所作的剖面示意圖。 1A to FIG. 1G are partial cross-sectional schematic diagrams and partial top view schematic diagrams of the steps of the manufacturing method of the sensing device 10 according to an embodiment of the present invention, wherein FIG. 1G is a schematic diagram of the sensing device 10 according to an embodiment of the present invention. Partial cross-sectional schematic diagram. FIG. 2A is a schematic partial top view of a sensing device 20 according to an embodiment of the invention. Fig. 2B is a schematic cross-sectional view taken along the section line A-A' of Fig. 2A. Fig. 2C is a schematic cross-sectional view taken along the section line B-B' of Fig. 2A.

10:感測裝置 10: Sensing device

110:基板 110: Substrate

111:表面 111: surface

121,131,170:絕緣層 121,131,170: insulating layer

180:開關元件 180: switch element

190:感測元件 190: sensing element

BE:下電極 BE: Bottom electrode

BG:底閘極 BG: bottom gate

C1:汲極區 C1: drain area

C2:源極區 C2: source region

Cc:通道區 Cc: channel area

CH:半導體層 CH: semiconductor layer

CM:共用電極 CM: common electrode

DE:汲極 DE: drain

DL:資料線 DL: data line

Dx,Dz:方向 Dx, Dz: direction

PN:光電轉換層 PN: photoelectric conversion layer

S1,S2,S3:間距 S1, S2, S3: Spacing

SE:源極 SE: source

SL:掃描線 SL: scan line

TE:上電極 TE: upper electrode

TG:頂閘極 TG: top gate

V1,V2,V3,V4:通孔 V1, V2, V3, V4: through holes

Claims (19)

一種感測裝置,包括: 基板; 開關元件,位於所述基板上,且包括源極; 感測元件,位於所述開關元件的一側,且包括: 下電極,電性連接所述源極; 光電轉換層,位於所述下電極上;以及 上電極,位於所述光電轉換層上;以及 共用電極,電性連接所述上電極,且與所述源極屬於相同膜層。 A sensing device comprising: Substrate; a switching element on the substrate and including a source; The sensing element is located on one side of the switching element and includes: a lower electrode electrically connected to the source; a photoelectric conversion layer located on the lower electrode; and an upper electrode located on the photoelectric conversion layer; and The common electrode is electrically connected to the upper electrode and belongs to the same film layer as the source. 如請求項1所述的感測裝置,其中所述開關元件還包括頂閘極,且所述頂閘極與所述下電極屬於相同膜層。The sensing device according to claim 1, wherein the switching element further includes a top gate, and the top gate and the bottom electrode belong to the same film layer. 如請求項2所述的感測裝置,其中所述開關元件還包括半導體層及底閘極,且所述半導體層位於所述底閘極與所述頂閘極之間。The sensing device according to claim 2, wherein the switching element further includes a semiconductor layer and a bottom gate, and the semiconductor layer is located between the bottom gate and the top gate. 如請求項3所述的感測裝置,其中所述底閘極以及所述頂閘極環繞所述半導體層。The sensing device as claimed in claim 3, wherein the bottom gate and the top gate surround the semiconductor layer. 如請求項1所述的感測裝置,還包括資料線,且所述資料線與所述源極屬於相同膜層。The sensing device according to claim 1 further includes a data line, and the data line and the source electrode belong to the same film layer. 如請求項5所述的感測裝置,還包括掃描線,且在所述基板的法線方向上,所述掃描線與所述資料線之間的間距為3,000-12,000Å。The sensing device according to claim 5 further includes a scanning line, and the distance between the scanning line and the data line is 3,000-12,000 Å in the normal direction of the substrate. 如請求項1所述的感測裝置,其中所述光電轉換層完全重疊所述下電極,且所述上電極完全重疊所述光電轉換層。The sensing device according to claim 1, wherein the photoelectric conversion layer completely overlaps the lower electrode, and the upper electrode completely overlaps the photoelectric conversion layer. 一種感測裝置,包括: 基板; 開關元件,位於所述基板上,且包括: 半導體層;以及 閘極,環繞所述半導體層;以及 感測元件,位於所述基板上,且包括: 下電極; 上電極,重疊所述下電極;以及 光電轉換層,位於所述上電極與所述下電極之間。 A sensing device comprising: Substrate; A switching element is located on the substrate and includes: a semiconductor layer; and a gate surrounding the semiconductor layer; and The sensing element is located on the substrate and includes: lower electrode; an upper electrode overlapping the lower electrode; and The photoelectric conversion layer is located between the upper electrode and the lower electrode. 如請求項8所述的感測裝置,其中所述閘極包括頂閘極及底閘極,且所述頂閘極與所述下電極屬於相同膜層。The sensing device as claimed in claim 8, wherein the gate includes a top gate and a bottom gate, and the top gate and the bottom electrode belong to the same film layer. 如請求項9所述的感測裝置,還包括掃描線,且所述掃描線與所述底閘極屬於相同膜層。The sensing device according to claim 9 further includes a scan line, and the scan line and the bottom gate belong to the same film layer. 如請求項8所述的感測裝置,其中所述開關元件還包括源極,且所述源極電性連接所述半導體層與所述下電極。The sensing device as claimed in claim 8, wherein the switching element further includes a source, and the source is electrically connected to the semiconductor layer and the lower electrode. 如請求項11所述的感測裝置,其中所述閘極於所述基板的正投影與所述源極於所述基板的正投影之間的最小間距為0至5μm。The sensing device according to claim 11, wherein the minimum distance between the orthographic projection of the gate on the substrate and the orthographic projection of the source on the substrate is 0 to 5 μm. 如請求項11所述的感測裝置,還包括共用電極,電性連接所述上電極,且與所述源極屬於相同膜層。The sensing device according to claim 11 further includes a common electrode electrically connected to the upper electrode and belonging to the same film layer as the source. 一種感測裝置的製造方法,包括: 形成半導體層於基板之上; 形成第一絕緣層於所述半導體層上; 形成毯覆的導體層於所述第一絕緣層及所述基板上; 形成毯覆的半導體疊層於所述導體層上; 形成毯覆的透明電極層於所述半導體疊層上; 圖案化所述透明電極層以形成上電極; 圖案化所述半導體疊層以形成光電轉換層;以及 圖案化所述導體層以形成下電極及頂閘極。 A method of manufacturing a sensing device, comprising: forming a semiconductor layer on the substrate; forming a first insulating layer on the semiconductor layer; forming a blanket conductor layer on the first insulating layer and the substrate; forming a blanket semiconductor stack on the conductor layer; forming a blanket transparent electrode layer on the semiconductor stack; patterning the transparent electrode layer to form an upper electrode; patterning the semiconductor stack to form a photoelectric conversion layer; and The conductive layer is patterned to form a bottom electrode and a top gate. 如請求項14所述的感測裝置的製造方法,還包括在所述形成半導體層之前形成底閘極及掃描線於所述基板上。The method for manufacturing a sensing device according to claim 14, further comprising forming a bottom gate and a scan line on the substrate before forming the semiconductor layer. 如請求項15所述的感測裝置的製造方法,其中所述頂閘極實體連接所述底閘極。The method for manufacturing a sensing device as claimed in claim 15, wherein the top gate is physically connected to the bottom gate. 如請求項15所述的感測裝置的製造方法,其中所述頂閘極及所述底閘極環繞所述半導體層。The method for manufacturing a sensing device as claimed in claim 15, wherein the top gate and the bottom gate surround the semiconductor layer. 如請求項14所述的感測裝置的製造方法,還包括在所述圖案化所述導體層之後形成第二絕緣層於所述基板之上,且所述第二絕緣層的多個通孔分別露出所述半導體層的兩端、所述下電極以及所述上電極。The method for manufacturing a sensing device according to claim 14, further comprising forming a second insulating layer on the substrate after patterning the conductive layer, and a plurality of through holes in the second insulating layer Two ends of the semiconductor layer, the lower electrode and the upper electrode are respectively exposed. 如請求項18所述的感測裝置的製造方法,還包括在所述形成第二絕緣層之後形成源極、汲極、共用電極以及資料線於所述第二絕緣層上,且所述源極電性連接所述半導體層的一端與所述下電極,所述汲極電性連接所述半導體層的另一端,所述共用電極電性連接所述上電極。The method for manufacturing a sensing device according to claim 18, further comprising forming a source, a drain, a common electrode, and a data line on the second insulating layer after forming the second insulating layer, and the source The electrode is electrically connected to one end of the semiconductor layer and the lower electrode, the drain is electrically connected to the other end of the semiconductor layer, and the common electrode is electrically connected to the upper electrode.
TW111120409A 2022-01-19 2022-06-01 Sensing device and fabricating method of the same TWI812253B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210911635.1A CN115101550A (en) 2022-01-19 2022-07-27 Sensing device and manufacturing method thereof
US17/888,509 US20230230996A1 (en) 2022-01-19 2022-08-16 Sensing device and fabricating method of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263300734P 2022-01-19 2022-01-19
US63/300,734 2022-01-19

Publications (2)

Publication Number Publication Date
TW202332068A true TW202332068A (en) 2023-08-01
TWI812253B TWI812253B (en) 2023-08-11

Family

ID=88559046

Family Applications (10)

Application Number Title Priority Date Filing Date
TW111118430A TW202332072A (en) 2022-01-19 2022-05-17 Sensing device
TW111120409A TWI812253B (en) 2022-01-19 2022-06-01 Sensing device and fabricating method of the same
TW111120548A TWI812256B (en) 2022-01-19 2022-06-02 Sensing device
TW111121419A TW202332021A (en) 2022-01-19 2022-06-09 Sensing device
TW111122700A TWI810979B (en) 2022-01-19 2022-06-17 Sensing device and method for fabricating the same
TW111124605A TWI815532B (en) 2022-01-19 2022-06-30 Light sensor
TW111128196A TW202332073A (en) 2022-01-19 2022-07-27 Light sensor
TW111130632A TWI814537B (en) 2022-01-19 2022-08-15 Light sensor
TW111131034A TWI823522B (en) 2022-01-19 2022-08-17 Light sensing device and method for making light sensing device
TW111140706A TWI831439B (en) 2022-01-19 2022-10-26 Optical sensor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW111118430A TW202332072A (en) 2022-01-19 2022-05-17 Sensing device

Family Applications After (8)

Application Number Title Priority Date Filing Date
TW111120548A TWI812256B (en) 2022-01-19 2022-06-02 Sensing device
TW111121419A TW202332021A (en) 2022-01-19 2022-06-09 Sensing device
TW111122700A TWI810979B (en) 2022-01-19 2022-06-17 Sensing device and method for fabricating the same
TW111124605A TWI815532B (en) 2022-01-19 2022-06-30 Light sensor
TW111128196A TW202332073A (en) 2022-01-19 2022-07-27 Light sensor
TW111130632A TWI814537B (en) 2022-01-19 2022-08-15 Light sensor
TW111131034A TWI823522B (en) 2022-01-19 2022-08-17 Light sensing device and method for making light sensing device
TW111140706A TWI831439B (en) 2022-01-19 2022-10-26 Optical sensor

Country Status (2)

Country Link
CN (1) CN117525097A (en)
TW (10) TW202332072A (en)

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1697993A2 (en) * 2003-12-15 2006-09-06 Koninklijke Philips Electronics N.V. Active matrix pixel device with photo sensor
JP4308170B2 (en) * 2005-06-10 2009-08-05 本田技研工業株式会社 Image sensor
JP2008153427A (en) * 2006-12-18 2008-07-03 Hitachi Displays Ltd High sensitive optical sensor element and optical sensor device using it
JP5240748B2 (en) * 2007-02-19 2013-07-17 独立行政法人科学技術振興機構 Infrared detector
CN101546907B (en) * 2008-03-25 2011-09-14 中华映管股份有限公司 Electrostatic protection circuit and active-element array substrate
US20090278121A1 (en) * 2008-05-08 2009-11-12 Tpo Displays Corp. System for displaying images and fabrication method thereof
CN101494256B (en) * 2009-02-26 2011-01-05 友达光电股份有限公司 X ray sensor and manufacturing method thereof
US20100224878A1 (en) * 2009-03-05 2010-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20100224880A1 (en) * 2009-03-05 2010-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN101866917B (en) * 2010-05-24 2012-01-25 友达光电股份有限公司 Active element array substrate and repair method thereof
KR101812099B1 (en) * 2010-08-25 2017-12-28 삼성디스플레이 주식회사 Sensor array substrate, display device comprising the same
EP2518755B1 (en) * 2011-04-26 2014-10-15 FEI Company In-column detector for particle-optical column
CN102790067B (en) * 2012-07-26 2014-12-10 北京京东方光电科技有限公司 Sensor and manufacturing method thereof
TWI450653B (en) * 2012-12-06 2014-08-21 Wintek Corp Contact pad structure
TWM472311U (en) * 2013-10-09 2014-02-11 Giantplus Technology Co Ltd The light sensor
US20160013243A1 (en) * 2014-03-10 2016-01-14 Dpix, Llc Photosensor arrays for detection of radiation and process for the preparation thereof
WO2015141777A1 (en) * 2014-03-20 2015-09-24 シャープ株式会社 Light detection device
TWI540469B (en) * 2014-04-01 2016-07-01 原相科技股份有限公司 Electronic device with high electrostatic protection
KR102533396B1 (en) * 2014-07-31 2023-05-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device
US10088498B2 (en) * 2014-08-29 2018-10-02 Panorama Synergy Ltd Stimulating an optical sensor using optical radiation pressure
KR101573166B1 (en) * 2015-01-30 2015-12-02 하이디스 테크놀로지 주식회사 Digital x-ray detector and method for manufacturing the x-ray detector
DE112016001033T5 (en) * 2015-03-03 2017-12-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for producing the same or display device with the same
US10306168B2 (en) * 2015-05-04 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, imaging system, and electronic device
WO2017115225A2 (en) * 2015-12-28 2017-07-06 Semiconductor Energy Laboratory Co., Ltd. Flexible device, display device, and manufacturing methods thereof
WO2017150295A1 (en) * 2016-02-29 2017-09-08 シャープ株式会社 Photoelectric conversion device
TWI608600B (en) * 2016-08-04 2017-12-11 力晶科技股份有限公司 Image sensor and related fabrication method
US20180145124A1 (en) * 2016-11-21 2018-05-24 Samsung Display Co., Ltd. Flexible display device
KR20190028194A (en) * 2017-09-08 2019-03-18 엘지디스플레이 주식회사 Array substrate for x-ray detector, x-ray detector including the same and the manufacturing method thereof
CN107623011A (en) * 2017-10-12 2018-01-23 友达光电股份有限公司 Thin-film transistor array base-plate and X-ray detector for X-ray detector
KR102522110B1 (en) * 2017-11-29 2023-04-13 엘지디스플레이 주식회사 Organic light emitting display device
KR102407978B1 (en) * 2017-11-29 2022-06-13 엘지디스플레이 주식회사 Display Device
KR102493828B1 (en) * 2017-12-22 2023-01-30 엘지디스플레이 주식회사 Digital x-ray detector
CN108807556B (en) * 2018-06-11 2021-01-29 京东方科技集团股份有限公司 Optical sensing device, manufacturing method thereof, display device and display equipment
US20190393278A1 (en) * 2018-06-26 2019-12-26 Innolux Corporation Display device
JP7185481B2 (en) * 2018-10-18 2022-12-07 浜松ホトニクス株式会社 Radiation imaging device
US11133345B2 (en) * 2018-11-16 2021-09-28 Sharp Kabushiki Kaisha Active matrix substrate, X-ray imaging panel with the same, and method of manufacturing the same
CN109728060B (en) * 2019-01-04 2021-02-02 京东方科技集团股份有限公司 Array substrate, electroluminescent panel and display device
TWI702582B (en) * 2019-04-03 2020-08-21 元太科技工業股份有限公司 Display panel, display apparatus and method of fabricating display panel
US11710760B2 (en) * 2019-06-21 2023-07-25 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, electronic device, and manufacturing method of display device
CN110444553B (en) * 2019-08-14 2021-12-24 京东方科技集团股份有限公司 Photosensitive device, manufacturing method thereof, detection substrate and array substrate
CN110673380B (en) * 2019-09-09 2021-10-15 昆山龙腾光电股份有限公司 Display panel, manufacturing method thereof and display device
CN110783355A (en) * 2019-10-31 2020-02-11 京东方科技集团股份有限公司 Detection panel, manufacturing method thereof and detection device
CN210429817U (en) * 2019-11-26 2020-04-28 北京京东方传感技术有限公司 Flat panel detector
CN210443558U (en) * 2019-11-26 2020-05-01 京东方科技集团股份有限公司 Photoelectric sensor, display panel and display device
FR3105577B1 (en) * 2019-12-18 2021-12-31 St Microelectronics Crolles 2 Sas Image sensor intended to receive illumination from a rear face, and method for acquiring a corresponding luminous flux
CN113204983A (en) * 2020-01-15 2021-08-03 群创光电股份有限公司 Electronic device with light sensing element and related manufacturing method
CN112379794B (en) * 2020-11-30 2023-10-27 厦门天马微电子有限公司 Display panel and display device

Also Published As

Publication number Publication date
TWI831439B (en) 2024-02-01
TWI812253B (en) 2023-08-11
TWI812256B (en) 2023-08-11
TW202332023A (en) 2023-08-01
TW202332073A (en) 2023-08-01
TW202332066A (en) 2023-08-01
TW202332072A (en) 2023-08-01
TWI823522B (en) 2023-11-21
CN117525097A (en) 2024-02-06
TW202332026A (en) 2023-08-01
TW202332024A (en) 2023-08-01
TW202332027A (en) 2023-08-01
TW202332021A (en) 2023-08-01
TWI810979B (en) 2023-08-01
TW202332022A (en) 2023-08-01
TWI814537B (en) 2023-09-01
TWI815532B (en) 2023-09-11

Similar Documents

Publication Publication Date Title
US8759832B2 (en) Semiconductor device and electroluminescent device and method of making the same
JP5209146B2 (en) Semiconductor device and manufacturing method thereof
TWI538210B (en) Semiconductor device and manufacturing method thereof
US20150295092A1 (en) Semiconductor device
US20140120657A1 (en) Back Channel Etching Oxide Thin Film Transistor Process Architecture
US9224869B2 (en) Semiconductor device and method for manufacturing same
US11637132B2 (en) Active matrix substrate and method for manufacturing same
TW201401523A (en) Semiconductor device and manufacturing method thereof
US11804496B2 (en) Transistor device, manufacturing method thereof, display substrate and display device
KR20140031671A (en) Thin film transistor and manufacturing method thereof
US10340392B2 (en) Semiconductor device including mark portion and production method for same
US9252284B2 (en) Display substrate and method of manufacturing a display substrate
KR20150010065A (en) Method of forming an oxide semiconductor device, and method of manufacturing a display device having an oxide semiconductor device
CN111276527A (en) Display panel and manufacturing method thereof
US20230230996A1 (en) Sensing device and fabricating method of the same
CN106104810A (en) Semiconductor device and manufacture method thereof
TWI596793B (en) Optical sensing apparatus and method for fabricating the same
TWI812253B (en) Sensing device and fabricating method of the same
CN104380474B (en) Semiconductor device and its manufacture method
US9496287B2 (en) Semiconductor device and production method therefor
TW201342628A (en) Active device and manufacturing method thereof
TWI798830B (en) Thin film transistor
CN115117108A (en) Sensing device
KR20140148031A (en) Thin film transistor substrate and Method of manufacturing the same
CN116207131A (en) Thin film transistor and preparation method thereof