TWI804731B - 半導體裝置 - Google Patents

半導體裝置 Download PDF

Info

Publication number
TWI804731B
TWI804731B TW109117438A TW109117438A TWI804731B TW I804731 B TWI804731 B TW I804731B TW 109117438 A TW109117438 A TW 109117438A TW 109117438 A TW109117438 A TW 109117438A TW I804731 B TWI804731 B TW I804731B
Authority
TW
Taiwan
Prior art keywords
doped regions
semiconductor device
semiconductor substrate
doped region
conductivity type
Prior art date
Application number
TW109117438A
Other languages
English (en)
Other versions
TW202145588A (zh
Inventor
黃紹璋
許凱傑
陳俊智
陳立凡
李慶和
林庭佑
林功凱
周業甯
宋建憲
楊曉瑩
許建祺
曾富群
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW109117438A priority Critical patent/TWI804731B/zh
Publication of TW202145588A publication Critical patent/TW202145588A/zh
Application granted granted Critical
Publication of TWI804731B publication Critical patent/TWI804731B/zh

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Bipolar Transistors (AREA)
  • Noodles (AREA)

Abstract

一種半導體裝置,包括半導體基底、蕭基層、複數個第一摻雜區、複數個第二摻雜區、第一導電層以及第二導電層。半導體基底具有第一導電類型,蕭基層設置在半導體基底上。第一摻雜區以及第二摻雜區具有第二導電類型,並且設置於半導體基底內。第一摻雜區相互平行地沿著第一方向延伸,第二摻雜區相互平行地沿著第二方向延伸且橫跨第一摻雜區,並共同於半導體基底內定義出複數個網格區。第一導電層設置在蕭基層上,而第二導電層則設置在半導體基底下。

Description

半導體裝置
本發明是關於一種半導體裝置,且特別是關於一種具有蕭基二極體(Schottky diode)元件的半導體裝置。
蕭基二極體元件係由金屬與半導體接面構成的二極體元件,且由於其啟動電壓較PN二極體元件為低,加上反應速度較快,因此目前廣泛地應用在電源轉換電路(power converter)上。然而,習用蕭基二極體元件亦有其缺點,例如是對元件施予逆向偏壓時,電流滲漏較為嚴重等問題。因此,如何改良習用蕭基二極體元件以符合實務上的需求仍為目前業界所面臨的課題。
本發明之一目的在於改善前述蕭基二極體元件的缺點,解決習用技術所面臨的問題。
為達上述目的,本發明提供一種半導體裝置,其包括一半導體基底、一蕭基層、複數個第一摻雜區、複數個第二摻雜區、一第一導電層以及一第二導電層。該半導體基底具有一第一導電類型,而該 蕭基層係設置在該半導體基底上。該些第一摻雜區,具有一第二導電類型並且設置於該半導體基底內,該些第一摻雜區相互平行地沿著一第一方向延伸。其中,該第二導電類型與該第一導電類型互補。該些第二摻雜區具有該第二導電類型並且設置於該半導體基底內。該些第二摻雜區相互平行地沿著一第二方向延伸且橫跨該些第一摻雜區,該些第一摻雜區與該些第二摻雜區共同於該半導體基底內定義出複數個網格區。該第一導電層設置在該蕭基層上,而該第二導電層則設置在該半導體基底下。
100、300、400、500:半導體裝置
110:半導體基底
111:上表面
113:下表面
115:矽基材
117:磊晶矽層
130:蕭基層
150、170:導電層
190:摻雜區
190a:空乏區
210:防護結構
350、351:插塞
390:摻雜區
390a:網格區
391:第一摻雜區
393:第二摻雜區
395:第三摻雜區
590:摻雜區
590a:網格區
591:第一摻雜區
593:第二摻雜區
B:虛線框
D1:第一方向
D2:第二方向
D3:第三方向
D4:第四方向
E1、E2:半導體裝置逆向漏電流的程度
g1、g2、g3:間隔
θ:交角
第1圖為半導體裝置一對比實施例的俯視示意圖。
第2圖為第1圖沿著切線A-A’的剖面示意圖。
第3圖為半導體裝置之第一實施例的俯視示意圖。
第4圖為第3圖沿著切線A-A’的剖面示意圖。
第5圖為對比實施例與第一實施例的電腦模擬結果示意圖。
第6圖為第3圖中虛線框B的放大示意圖。
第7圖繪示本發明第二實施例中插塞的另一設置態樣的示意圖。
第8圖為半導體裝置之第三實施例的俯視示意圖。
第9圖為第8圖中虛線框B的放大示意圖。
第10圖繪示本發明第四實施例中半導體裝置的示意圖。
為使熟習本發明所屬技術領域之一般技藝者能更進一步了 解本發明,下文特列舉本發明之數個較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。並且,熟習本發明所屬技術領域之一般技藝者亦能在不脫離本發明的精神下,參考以下所舉實施例,而將數個不同實施例中的特徵進行替換、重組、混合以完成其他實施例。
本發明中針對「第一部件形成在第二部件上或上方」的敘述,其可以是指「第一部件與第二部件直接接觸」,也可以是指「第一部件與第二部件之間另存在有其他部件」,致使第一部件與第二部件並不直接接觸。此外,本發明中的各種實施例可能使用重複的元件符號和/或文字註記。使用這些重複的元件符號與文字註記是為了使敘述更簡潔和明確,而非用以指示不同的實施例及/或配置之間的關聯性。另外,針對本發明中所提及的空間相關的敘述詞彙,例如:「在...之下」、「在...之上」、「低」、「高」、「下方」、「上方」、「之下」、「之上」、「底」、「頂」和類似詞彙時,為便於敘述,其用法均在於描述圖式中一個部件或特徵與另一個(或多個)部件或特徵的相對關係。除了圖式中所顯示的擺向外,這些空間相關詞彙也用來描述半導體裝置在製作過程中、使用中以及操作時的可能擺向。舉例而言,當半導體裝置被旋轉180度時,原先設置於其他部件「上方」的某部件便會變成設置於其他部件「下方」。因此,隨著半導體裝置的擺向的改變(旋轉90度或其它角度),用以描述其擺向的空間相關敘述亦應透過對應的方式予以解釋。
雖然本發明使用第一、第二、第三等用詞,以敘述種種元件、 部件、區域、層、及/或區塊(section),但應了解此等元件、部件、區域、層、及/或區塊不應被此等用詞所限制。此等用詞僅是用以區分某一元件、部件、區域、層、及/或區塊與另一個元件、部件、區域、層、及/或區塊,其本身並不意含及代表該元件有任何之前的序數,也不代表某一元件與另一元件的排列順序、或是製造方法上的順序。因此,在不背離本發明之具體實施例之範疇下,下列所討論之第一元件、部件、區域、層、或區塊亦可以第二元件、部件、區域、層、或區塊等詞稱之。
本發明中所提及的「約」或「實質上」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」或「實質上」的情況下,仍可隱含「約」或「實質上」之含義。
請參照第1圖及第2圖所示,其繪示本發明第一實施例中半導體裝置100的示意圖,其中,第1圖為半導體裝置100的一俯視示意圖,第2圖則為半導體裝置100的一剖面示意圖。首先,如第1圖及第2圖所示,半導體裝置100包括一半導體基底110,例如是具有第一導電類型(如N型)的半導體基底,但不以此為限。在本實施例中,半導體基底110具有一上表面111與一下表面113,並且包括一矽基材115以及一磊晶矽層117,其中,磊晶矽層117設置於矽基材115上,且矽基材115以及磊晶矽層117皆具有第一導電類型(如N型),而矽基材115的摻雜濃度係高於磊晶矽層117的摻雜濃度。然而,在另一實施例中,半導體 基底110的材質不以前述為限,還可包括其它合適的半導體材質所構成的單層或複合層的半導體基底。此外,在一實施例中,磊晶矽層117的厚度還可視半導體裝置100的耐壓需求加以調整,舉例來說,當磊晶矽層117的厚度愈厚時,可具有較佳的耐壓能力,以提升後續所形成蕭基二極體元件的耐壓能力。
半導體基底110的上表面111上依序設置有一蕭基層(Schottky layer)130以及一導電層150,而基底110的下表面113上則設置另一導電層170,以構成本發明的蕭基二極體元件。其中,蕭基層130係實體接觸下方的磊晶矽層117,使得蕭基層130和磊晶矽層117間可產生蕭基接面(Schottky junction)。蕭基層130可包括一金屬材質,如鈦(titanium)、鎳(nickel)、鉑(platinum)、鋁(aluminum)或其組合,或是包含一金屬矽化物材質,如矽化鈦(titanium silicide,TiSi2)、矽化鎳(nickel silicide,Ni2Si)等,但不以此為限。在另一實施例中,蕭基層130還可依據實際產品所需而為一單一導電層或是一複合導電層。而導電層150以及導電層170則可分別包括鈦、鎳、鋁等金屬材質,但不以此為限。由此,位在上表面111上的導電層150與半導體基底110之間可構成蕭基接觸,而位在下表面113上的導電層170與半導體基底110之間則可構成歐姆接觸(ohmic contact),使得導電層150與導電層170可分別做為該蕭基二極體元件的陽極(anode)與陰極(cathode)。此外,該蕭基二極體元件的外圍還可另環設一防護結構210,以避免該蕭基二極體元件與鄰近元件之間發生電性上的干擾。在一實施例中,防護結構210例如是形成在半導體基底110內的一摻雜區(未繪示),其具有一第二導電類型(如P型),該第二導電類型係與該第一導電類型 互補,並且該摻雜區的摻雜濃度較佳係大於磊晶矽層117的摻雜濃度。
此外,該蕭基二極體元件還包括複數個摻雜區190,係設置於半導體基底110內(即本實施例中的磊晶矽層117內),並位於蕭基層130的下方。摻雜區190係設置在鄰近上表面111的位置,直接接觸上方的蕭基層130,並且,摻雜區190係具有該第二導電類型(如P型)。在本實施例中,各摻雜區190在如第1圖所示的一俯視圖中例如是分別沿著一第一方向D1延伸,並互相平行地並排於一第二方向D2上,且具有相同的間隔g1,而第二方向D2例如是垂直於第一方向D1,但不以此為限。此外,半導體裝置100還包括複數個插塞(未繪示),該些插塞是形成在導電層150之上,並且全面地且均勻地設置在摻雜區190或半導體基底110的所有表面上,以形成電性連接。
在此設置下,各摻雜區190與半導體基底110(即本實施例中的磊晶矽層117)之間即會形成一PN接面(未繪示)。當該蕭基二極體元件承受一逆向偏壓(reverse bias,-V)時,該PN接面會相應地擴大其空乏區(depletion region)190a,使得各摻雜區190對應所產生的空乏區190a的範圍可相互接觸、重疊,如第2圖所示。空乏區190a具有承受逆向偏壓的能力,因此可有效提升半導體裝置100的崩潰電壓(breakdown voltage),以改善該蕭基二極體元件逆向漏電流的問題。因此,本實施例的半導體裝置100即可具有較佳的元件效能。
然而,本領域具有通常知識者應可輕易了解,為能滿足實際產品需求的前提下,本發明的半導體裝置亦可能有其它態樣,而不限 於前述。舉例來說,在其他實施例中,亦可選擇使該第一導電類型為P型,該第二導電類型為N型,以獲得不同型態之半導體裝置。下文將進一步針對半導體裝置的其他實施例或變化型進行說明。且為簡化說明,以下說明主要針對各實施例不同之處進行詳述,而不再對相同之處作重覆贅述。此外,本發明之各實施例中相同之元件係以相同之標號進行標示,以利於各實施例間互相對照。
根據本發明的另一實施例,係提供一種半導體裝置,其可進一步平衡在順向偏壓(+V)下驅動電流(Ion)越大,以及在逆向偏壓下截止電流(Ioff)越小的需求,而獲得更佳的元件效能。請參照第3圖至第6圖所示,其繪示本發明第二實施例中半導體裝置300的示意圖,其中,第3圖為半導體裝置300的一俯視示意圖,第4圖則為半導體裝置300的一剖面示意圖,而第6圖則為半導體裝置300部分放大的示意圖。半導體裝置300的結構大體上與前述第一實施例所述半導體裝置100相同,同樣包括半導體基底110(包含矽基材115以及磊晶矽層117)、蕭基層130、導電層150、另一導電層170以及防護結構210等,以構成一蕭基二極體元件,相同之處容不再贅述。本實施例與前述實施例的主要差異在於,該蕭基二極體元件包括沿著不同方向延伸且相互交錯的複數個摻雜區390。
詳細來說,該蕭基二極體元件的摻雜區390同樣係設置於半導體基底110內(即本實施例中的磊晶矽層117內),鄰近上表面111並直接接觸上方的蕭基層130。摻雜區390具有該第二導電類型(如P型),並且包含複數個第一摻雜區391,各第一摻雜區391例如是分別沿著第 二方向D2延伸的條狀摻雜區,以互相平行地並排於第一方向D1上而具有相同的間隔g3。摻雜區390還包含複數個第二摻雜區393,各第二摻雜區393例如是分別沿著第一方向D1延伸的條狀摻雜區,以互相平行地並排於第二方向D2。此外,第二摻雜區393可橫跨第一摻雜區391而可在半導體基底110內定義出複數個網格區390a,如第3圖所示。第一摻雜區391與第二摻雜區393可具有相同的摻雜濃度,並且,各第二摻雜區393之間亦可具有相同的間隔g2,如第3圖以及第4圖所示。在本實施例中,各第二摻雜區393之間的間隔g2可選擇與各第一摻雜區391之間的間隔g3相同,使得各網格區390a可略呈一正方形,但不以此為限。此外,在本實施例中,半導體裝置300還包括複數個插塞350,插塞350係形成在導電層150之上。在一實施例中,插塞350例如是全面地且均勻地分布於摻雜區390(包含第一摻雜區391以及第二摻雜區393)或半導體基底110的所有表面上,如第6圖所示,以形成電性連接。
需特別說明的是,第一摻雜區391以及第二摻雜區393分別沿著不同的方向D1、D2延伸而可相互交錯,使得該蕭基二極體元件的摻雜區390在如第3圖所示的一俯視圖下可整體呈現一網格狀(waffle type)結構。在此設置下,摻雜區390與半導體基底110(即本實施例中的磊晶矽層117)之間仍會產生一PN接面(未繪示)。並且,當蕭基二極體元件承受一逆向偏壓時,該PN接面所產生的空乏區(未繪示)則會同時相應地往第一方向D1以及第二方向D2上擴張,因此,相對於前述實施例所產生的空乏區190a,本實施例所產生的該空乏區可具有較大的涵蓋範圍。在此情況下,即使減少設置在同一方向上的摻雜區390的數量,仍可使所產生的該空乏區彼此接觸、重疊。舉例來說,在 本實施例中,同是設置在第一方向D1的第二摻雜區393,其整體數量可明顯少於前述實施例中的摻雜區190,由此,各第二摻雜區393之間的間隔g2可大於各摻雜區190之間的間隔g1,如第3圖以及第4圖所示。另外,第一摻雜區391的數量可選擇與第二摻雜區393的數量相同或不同,其具體設置數量可根據不同的元件需求加以調整,而不限於第3圖所示的數量。較佳地,第一摻雜區391的數量係等同於第二摻雜區393的數量,且間隔g3的數值係相同於間隔g2的數值時,藉此,可在第一摻雜區391和第二摻雜區393的頂面面積總和為一定值的情況下,產生面積較大的空乏區,以有效降低逆向偏壓下的截止電流。
如此,摻雜區390整體的涵蓋面積(即P型摻雜區的涵蓋範圍)可相對地縮小;相應地,未設置摻雜區390的半導體基底110(即本實施例中的磊晶矽層117)的涵蓋面積(即N型基底的涵蓋範圍)則可相對地提升,與前述實施例中的半導體裝置100相比較例如可提升約10%至20%左右,較佳為11%,但不以此為限。由此,本實施例的半導體裝置300可因應半導體基底110的涵蓋面積的提升而在順向偏壓下獲得更大的驅動電流,並且,可在逆向偏壓下透過摻雜區390有效的涵蓋面積而盡可能地降低截止電流,進而獲得更佳的元件效能。請參考第5圖所示,透過電腦模擬逆向電壓狀態下,由半導體裝置100(E1)與半導體裝置300(E2)逆向漏電流的程度,可得知本實施例的半導體裝置300確實可有效降低逆向漏電流的問題。
此外,在本實施例的半導體裝置300中,插塞350的設置方式並不以前述為限,而可有其他設置態樣。舉例來說,在大幅減少摻雜 區390涵蓋面積的前提下,還可同步地減少插塞350設置的範圍,例如可選擇在摻雜區390所產生的該空乏區較不完整的區域內不設置任何插塞,以增加該區域的電阻,輔助該區域承受逆向偏壓的能力。如第7圖所示,在另一實施態樣中,插塞350可選擇均勻地設置在摻雜區390(包含第一摻雜區391以及第二摻雜區393)的所有表面上,以及設置在鄰近摻雜區390的半導體基底110的表面上,以形成電性連接。而距離摻雜區390較遠的半導體基底110,例如是網格區390a的中心部分,則可選擇不設置任何插塞,以增加該部分的電阻。
請參照第8圖至第9圖所示,其繪示本發明第三實施例中半導體裝置400的俯視示意圖。本實施例中的半導體裝置400的結構大體上與前述第二實施例所述的半導體裝置300相同,同樣包括半導體基底110(包含矽基材115以及磊晶矽層117)、蕭基層130、導電層150、另一導電層170以及防護結構210等,以構成一蕭基二極體元件,相同之處容不再贅述。本實施例與前述實施例的主要差異在於,該蕭基二極體元件還包括複數個第三摻雜區395。
具體來說,第三摻雜區395同樣係設置於半導體基底110內(即本實施例中的磊晶矽層117內)鄰近上表面111的位置,並具有該第二導電類型(如P型)。需注意的是,在如第8圖所示的一俯視圖中,各第三摻雜區395較佳係分別位在各網格區390a內,並且分離於第一摻雜區391以及第二摻雜區393,以確保當該蕭基二極體元件承受一逆向偏壓時,由摻雜區390(包含第一摻雜區391、第二摻雜區393以及第三摻雜區395)的PN接面所產生的空乏區(未繪示)可相互接觸、重疊, 而能有效降低逆向漏電流的問題。另一方面,雖然額外增設了第三摻雜區395,本實施例中摻雜區390整體的涵蓋面積相較於前述對比實施例中摻雜區190的涵蓋面積仍係相對地縮小。換言之,在本實施例中,未設置摻雜區390(包含第一摻雜區391、第二摻雜區393以及第三摻雜區395)的半導體基底110(即本實施例中的磊晶矽層117)的涵蓋面積則可相對地提升,與前述實施例中的半導體裝置100相比較例如可提升約1%至5%左右,較佳為2%,但不以此為限。另一方面,本實施例的插塞351則可選擇全面地且均勻地設置在摻雜區390(包含第一摻雜區391、第二摻雜區393以及第三摻雜區395)及半導體基底110的所有表面上,如第9圖所示,但不以此為限。
由此,本實施例的半導體裝置400可因應半導體基底110的涵蓋面積的提升,而在相同的順向偏壓下獲得較大的驅動電流,並且,更有效地藉由設置第三摻雜區395,致使摻雜區390整體具有較大的涵蓋面積,而可大幅降低截止電流,進而獲得更佳的元件效能。
請參照第10圖所示,其繪示本發明第四實施例中半導體裝置500的俯視示意圖。本實施例中的半導體裝置500的結構大體上與前述第二實施例所述半導體裝置300相同,同樣包括半導體基底110(包含矽基材115以及磊晶矽層117)、蕭基層130、導電層150、另一導電層170以及防護結構210等,以構成一蕭基二極體元件,相同之處容不再贅述。本實施例與前述實施例的主要差異在於,該蕭基二極體元件包括沿著不同的兩方向D3、D4延伸且相互交錯的複數個摻雜區590,並且兩方向D3、D4彼此相交但不垂直。
具體來說,該蕭基二極體元件的摻雜區590包含複數個第一摻雜區591,各第一摻雜區591例如是分別沿著第三方向D3延伸的條狀摻雜區,以互相平行地並排於第四方向D4上。摻雜區590還包含複數個第二摻雜區593,各第二摻雜區593例如是分別沿著第四方向D4延伸的條狀摻雜區,以互相平行地並排於第三方向D3上,橫跨第一摻雜區591而可定義出複數個網格區590a,如第10圖所示。需注意的是,第三方向D3以及第四方向D4彼此相交但不垂直,其間的交角θ例如是大於零度且小於90度的銳角,較佳是約為60度左右,但不以此為限。由此,各網格區590a在如第10圖所示的一俯視圖中可略呈一平行四邊形,而摻雜區590仍可整體呈現一網格狀結構,但不以此為限。
在此設置下,當本實施例的該蕭基二極體元件承受逆向偏壓時,摻雜區590所產生的空乏區(未繪示)仍會同時往第三方向D3以及第四方向D4上擴張,而可具有相對較大的涵蓋範圍。因此,在本實施例中,摻雜區590的整體設置範圍可相對地縮小,相應地,未設置摻雜區590的半導體基底110(即本實施例中的磊晶矽層117)的涵蓋面積則可相對地提升,與前述實施例中的半導體裝置100相比較同樣可提升約10%至20%左右,較佳為11%,但不以此為限。至此,本實施例的半導體裝置500可因應半導體基底110的涵蓋面積的提升而在順向偏壓下獲得更大的驅動電流,並且,可在逆向偏壓下透過摻雜區590有效的涵蓋面積而盡可能地降低截止電流,進而獲得更佳的元件效能。
整體來說,本發明的半導體裝置係透過在N型半導體基底中 設置網格狀或者相互交錯的P型摻雜區,來平衡該N型半導體基底相對於該P型摻雜區的涵蓋面積,進而同時達到該半導體裝置在順向偏壓下的驅動電流越大,以及在逆向偏壓下的截止電流越小的元件需求。換言之,該N型半導體基底的涵蓋面積係決定該半導體裝置於順向偏壓下的驅動電流,當該N型半導體基底的涵蓋面積越大,則該半導體裝置於順向偏壓下的驅動電流越大;而該P型摻雜區的涵蓋面積則決定該半導體裝置於逆向偏壓下的截止電流,當該P型摻雜區的涵蓋面積越大,則該半導體裝置於逆向偏壓下的截止電流越小。因此,本發明的半導體裝置可利用調整N型半導體基底相對於該P型摻雜區的涵蓋面積,並且設置分別往不同方向延伸且相互交錯的該P型摻雜區,進一步配合插塞的設置範圍,而達到實際所需的元件效能。
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
210:防護結構
300:半導體裝置
390:摻雜區
390a:網格區
391:第一摻雜區
393:第二摻雜區
B:虛線框
D1:第一方向
D2:第二方向
g2、g3:間隔

Claims (9)

  1. 一種半導體裝置,包含:一半導體基底,該半導體基底具有一第一導電類型;一蕭基層,設置在該半導體基底上;複數個第一摻雜區,具有一第二導電類型並且設置於該半導體基底內,該第二導電類型與該第一導電類型互補,該些第一摻雜區相互平行地沿著一第一方向延伸;複數個第二摻雜區,具有該第二導電類型並且設置於該半導體基底內,該些第二摻雜區相互平行地沿著一第二方向延伸且橫跨該些第一摻雜區,該些第一摻雜區與該些第二摻雜區交錯於該半導體基底內定義出複數個網格區;一第一導電層,設置在該蕭基層上;一第二導電層,設置在該半導體基底下;以及複數個插塞,該些插塞設置在該第一導電層上,其中各該網格區的一部分未設置該些插塞。
  2. 如申請專利範圍第1項所述的半導體裝置,其中該蕭基層直接接觸該些第一摻雜區和該些第二摻雜區。
  3. 如申請專利範圍第1項所述的半導體裝置,其中該半導體基底還包含:一矽基材,具有該第一導電類型;以及一磊晶層,具有該第一導電類型並設置於該矽基材上。
  4. 如申請專利範圍第3項所述的半導體裝置,其中該磊晶層的摻雜濃度小於該矽基材的摻雜濃度。
  5. 如申請專利範圍第1項所述的半導體裝置,還包含:複數個第三摻雜區,具有該第二導電類型並且設置於該些網格區內。
  6. 如申請專利範圍第1項所述的半導體裝置,還包含:至少一防護結構,具有該第二導電類型並且設置於該半導體基底內,該防護結構環繞該些第一摻雜區與該些第二摻雜區。
  7. 如申請專利範圍第1項所述的半導體裝置,其中該些第一摻雜區與該些第二摻雜區具有相同的摻雜濃度。
  8. 如申請專利範圍第1項所述的半導體裝置,其中該些第一摻雜區的數量等同於該些第二摻雜區的數量。
  9. 如申請專利範圍第6項所述的半導體裝置,其中該防護結構分離於該些第一摻雜區與該些第二摻雜區,且該防護結構中的該些網格區沿著該第一方向及該第二方向均勻分佈。
TW109117438A 2020-05-26 2020-05-26 半導體裝置 TWI804731B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109117438A TWI804731B (zh) 2020-05-26 2020-05-26 半導體裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109117438A TWI804731B (zh) 2020-05-26 2020-05-26 半導體裝置

Publications (2)

Publication Number Publication Date
TW202145588A TW202145588A (zh) 2021-12-01
TWI804731B true TWI804731B (zh) 2023-06-11

Family

ID=80783671

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109117438A TWI804731B (zh) 2020-05-26 2020-05-26 半導體裝置

Country Status (1)

Country Link
TW (1) TWI804731B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314098A (ja) * 2001-04-13 2002-10-25 Sanken Electric Co Ltd 半導体装置
US20040173801A1 (en) * 2002-12-18 2004-09-09 Infineon Technologies Ag Schottky diode having overcurrent protection and low reverse current
CN102084487A (zh) * 2008-05-21 2011-06-01 克里公司 具有电流浪涌能力的结势垒肖特基二极管
US20120223333A1 (en) * 2011-03-03 2012-09-06 Kabushiki Kaisha Toshiba Semiconductor rectifier device
CN107924953A (zh) * 2015-07-03 2018-04-17 Abb瑞士股份有限公司 具有增强的浪涌电流能力的结势垒肖特基二极管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314098A (ja) * 2001-04-13 2002-10-25 Sanken Electric Co Ltd 半導体装置
US20040173801A1 (en) * 2002-12-18 2004-09-09 Infineon Technologies Ag Schottky diode having overcurrent protection and low reverse current
CN102084487A (zh) * 2008-05-21 2011-06-01 克里公司 具有电流浪涌能力的结势垒肖特基二极管
US20120223333A1 (en) * 2011-03-03 2012-09-06 Kabushiki Kaisha Toshiba Semiconductor rectifier device
CN107924953A (zh) * 2015-07-03 2018-04-17 Abb瑞士股份有限公司 具有增强的浪涌电流能力的结势垒肖特基二极管

Also Published As

Publication number Publication date
TW202145588A (zh) 2021-12-01

Similar Documents

Publication Publication Date Title
US4399449A (en) Composite metal and polysilicon field plate structure for high voltage semiconductor devices
CA1175953A (en) Planar structure for high voltage semiconductor devices with gaps in glassy layer over high field regions
US7859076B2 (en) Edge termination for semiconductor device
JP2023179690A (ja) SiC半導体装置
TWI430432B (zh) 具有防靜電結構之功率半導體元件及其製作方法
JP2009141062A (ja) 半導体装置及びその製造方法
JP2016058498A (ja) 半導体装置および半導体装置の製造方法
JP7464763B2 (ja) 窒化物半導体装置
KR101461886B1 (ko) 쇼트키 배리어 다이오드 및 그 제조 방법
US20160126100A1 (en) Semiconductor device with equipotential ring contact at curved portion of equipotential ring electrode and method of manufacturing the same
JP3987957B2 (ja) 半導体素子及びその製造方法
JP2000277733A (ja) 絶縁ゲート型電界効果トランジスタ
TWI804731B (zh) 半導體裝置
JP6854598B2 (ja) 半導体装置
JP7371724B2 (ja) 半導体装置とその製造方法
TWI790141B (zh) 寬能隙半導體元件與其製造方法
US20230155021A1 (en) Silicon carbide semiconductor device
JP2022088500A (ja) 半導体装置
JP5239254B2 (ja) 絶縁ゲート型半導体素子の製造方法
JP2003347548A (ja) 炭化珪素半導体装置
CN113745349A (zh) 半导体装置
US11164979B1 (en) Semiconductor device
JPH07118542B2 (ja) 縦型mosfet
US20230223435A1 (en) Pillar structure and super junction semiconductor device including the same
TWI837700B (zh) 合併PiN蕭特基(MPS)二極體與其製造方法