TWI796400B - 厚膜導體形成用粉末組成物及厚膜導體形成用糊料 - Google Patents

厚膜導體形成用粉末組成物及厚膜導體形成用糊料 Download PDF

Info

Publication number
TWI796400B
TWI796400B TW107144766A TW107144766A TWI796400B TW I796400 B TWI796400 B TW I796400B TW 107144766 A TW107144766 A TW 107144766A TW 107144766 A TW107144766 A TW 107144766A TW I796400 B TWI796400 B TW I796400B
Authority
TW
Taiwan
Prior art keywords
powder
mass
thick
parts
film conductor
Prior art date
Application number
TW107144766A
Other languages
English (en)
Other versions
TW201927927A (zh
Inventor
粟窪慎吾
Original Assignee
日商住友金屬鑛山股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商住友金屬鑛山股份有限公司 filed Critical 日商住友金屬鑛山股份有限公司
Publication of TW201927927A publication Critical patent/TW201927927A/zh
Application granted granted Critical
Publication of TWI796400B publication Critical patent/TWI796400B/zh

Links

Images

Abstract

本發明提供可形成容易施以鍍敷之厚膜導體之厚膜導體形成用粉末組成物及厚膜導體形成用糊料。 本發明之厚膜導體形成用粉末組成物包含導電粉末、無鉛玻璃粉末及氧化錳粉末,前述玻璃粉末含量,相對於前述導電粉末100質量份,為1.5質量份以上5質量份以下,前述氧化錳粉末含量,相對於前述導電粉末100質量份,為0.5質量份以上3.5質量份以下。

Description

厚膜導體形成用粉末組成物及厚膜導體形成用糊料
本發明係關於厚膜導體形成用粉末組成物及厚膜導體形成用糊料,更詳言之,係有關於製造晶片電阻器、電阻網路及混成IC等時,用以於陶瓷基板上形成厚膜導體而使用之厚膜導體形成用粉末組成物及厚膜導體形成用糊料,尤其有關無鉛厚膜導體形成用粉末組成物及厚膜導體形成用糊料。
使用厚膜技術形成厚膜導體時,一般將導電率高的導電粉末與玻璃粉末等之氧化物粉末一起分散於有機載劑中,獲得厚膜導體形成用糊料。接著,進行將該糊料使用網版印刷法於氧化鋁等之陶瓷基板上塗佈成特定形狀,於500℃以上900℃以下燒成而形成厚膜導體。
作為導電粉末係使用可在氮氣環境中燒成之導電率高的Au、Ag、Pd及Pt等之數平均粒徑10μm以下之粉末,該等中,主要使用便宜之Ag粉末及Pd粉末。
作為玻璃粉末,係使用軟化點容易控制且化學耐久性高的硼矽酸鉛粉末或鋁酸硼矽酸鉛系玻璃粉末。然而,近幾年來,基於防止環境汙染之觀點,對於不含鉛的導體糊料的要求日益提高,故作為玻璃粉末,要求其替代材料。因此專利文獻1中揭示無鉛之厚膜導體形成用組成物。
不過,使用此等厚膜導體形成用組成物形成之厚膜導體適合使用作為電子工業所用之晶片電阻器、電阻網路、混成IC等之電子零件之電極等。例如,如圖1之剖面示意圖所示,晶片電阻器100具備氧化鋁基板10、藉由厚膜導體形成之由上面電極21與側面電極22與背面電極23所成之內部電極20、由氧化釕系厚膜等所成之電阻膜30、及覆蓋電阻之絕緣玻璃的保護膜40。且,內部電極20之露出電極面上,為了提高焊料性,藉由電解鍍敷進而分別形成由Ni鍍層等所成之中間電極50與由Sn-Pb焊料鍍層或代替其之Sn系合金之無鉛焊料鍍層等所成之外部電極60。 [先前技術文獻] [專利文獻]
[專利文獻1] 日本特開2012-043622號公報
[發明欲解決之課題]
厚膜導體形成用組成物中,為了確保厚膜導體與氧化鋁基板等之陶瓷基板之密著性,而含有玻璃粉末。然而,玻璃粉末之含量多時,有對厚膜導體不易施以鍍敷之問題。
本發明係鑒於此等情況,而可形成容易施以鍍敷之厚膜導體。目的在於提供厚膜導體形成用粉末組成物及厚膜導體形成用糊料。 [用以解決課題之手段]
為了解決上述課題,本發明之厚膜導體形成用粉末組成物係包含如下之厚膜導體形成用粉末組成物:導電粉末、無鉛玻璃粉末、及氧化錳粉末,前述玻璃粉末含量,相對於前述導電粉末100質量份,為1.5質量份以上5質量份以下,前述氧化錳粉末含量,相對於前述導電粉末100質量份,為0.5質量份以上3.5質量份以下。
前述氧化錳粉末可為Mn3 O4 粉末。
前述導電粉末可選自銀粉末、鈀粉末及鉑粉末中之至少一種。
前述玻璃粉末之玻璃轉移溫度可為400℃以上600℃以下,軟化點為500℃以上700℃以下。
前述玻璃粉末可包含鉍。
又,為了解決上述課題,本發明之厚膜導體形成用糊料係包含前述厚膜導體形成用粉末組成物、溶劑與樹脂之混合物的厚膜導體形成用糊料。
又,為了解決上述課題,本發明之厚膜導體形成用糊料係包含如下之厚膜導體形成用糊料:導電粒子、無鉛玻璃粒子、氧化錳粒子、溶劑、及樹脂,前述玻璃粒子含量,相對於前述導電粒子100質量份,為1.5質量份以上5質量份以下,前述氧化錳粒子含量,相對於前述導電粒子100質量份,為0.5質量份以上3.5質量份以下。 [發明效果]
依據本發明之厚膜導體形成用粉末組成物及厚膜導體形成用糊料,可獲得容易施以鍍敷之厚膜導體。
以下,針對本發明之具體實施形態詳細說明。又,本發明並非限定於以下實施形態,在不變更本發明要旨之範圍內可適當變更。
本發明之厚膜導體形成用粉末組成物包含導電粉末、無鉛玻璃粉末及氧化錳粉末。該組成物中,前述無鉛玻璃粉末含量,相對於前述導電粉末100質量份,為1.5質量份以上5質量份以下,前述氧化錳粉末含量,相對於前述導電粉末100質量份,為0.5質量份以上3.5質量份以下。依據此厚膜導體形成用粉末組成物,如以下所說明,藉由燒成易施以鍍敷之玻璃而熔融,而可抑制浮出於厚膜導體表面之現象,可獲得施以鍍敷優異之厚膜導體。
本發明人等,為了改善厚膜導體之施以鍍敷性,對浮出於厚膜導體表面的玻璃重複積極研究之結果,發現藉由於厚膜導體形成用組成物中添加氧化錳粉末,可抑制於燒成所得之厚膜導體表面浮出之玻璃。進而意外的是藉由添加氧化錳,可於厚膜導體表面形成微細階差之條紋花樣。而且,由於於厚膜導體表面析出微細階差之花樣,故可期待厚膜導體表面與Ni鍍敷膜等之密著性因錨定效果而提高。亦即藉由玻璃浮起抑制與錨定效果,而使厚膜導體與鍍敷膜之密著性更良好。
本發明係基於此等見解而完成者。以下針對本發明,以(1)厚膜導體形成用粉末組成物及(2)厚膜導體形成用糊料之順序詳細說明。又,亦針對(3)使用本發明之厚膜形成用糊料之厚膜導體之製造方法及(4)厚膜導體分別詳細說明。
[(1)厚膜導體形成用粉末組成物]   本發明可成為無鉛之厚膜導體形成用粉末組成物,該組成物可至少由導電粉末及氧化物粉末構成。此處,所謂無鉛意指於不包含鉛時,容許起因於例如含鉛之導電粉末或氧化物粉末等之原料粉末或製造過程中混入鉛而作為不可避免雜質之鉛包含100質量ppm以下之情況。
(導電粉末)   本發明所用之導電粉末宜為通常之厚膜導體形成所用者,舉例為例如Au、Ag、Pd、Pt等之貴金屬。該等貴金屬之粉末可使用1種或組成2種以上使用。其中,基於熔點低或成本之觀點,較好使用Ag粉末、Pd粉末或該等之混合粉末。
導電粉末之數平均粒徑較好為10μm以下,基於本發明之厚膜導體形成用糊料之塗佈性惡化之觀點,更好為0.1μm以上5.0μm以下。數平均粒徑超過10μm時,有升溫過程之燒成變慢之情況,而欠佳。例如使用Ag粉末與Pd粉末之混合粉末時,基於本發明之厚膜導體形成用糊料之塗佈性惡化之觀點或Ag粉末與Pd粉末之均質分散之觀點,較好將Ag粉末之數平均粒徑設為0.1μm以上3.0μm以下,Pd粉末之數平均粒徑設為0.01μm以上0.3μm以下。此處,數平均粒徑係自粉末的掃描顯微鏡照片(SEM像)求出之數平均粒徑。又,導電粉末之形狀有粒狀、片狀等,但對於使用何種形狀者,係對應於其用途適當選擇。
(無鉛玻璃粉末)   本發明中,作為無鉛玻璃粉末,可使用SiO2 -B2 O3 -鹼土類氧化物系玻璃粉末、或Bi2 O3 -SiO2 -B2 O3 系玻璃粉末或ZnO-SiO2 -B2 O3 系玻璃粉末等之玻璃粉末。考慮用以作成厚膜導體之燒成溫度,該等玻璃粉末之玻璃轉移點期望為400℃以上600℃以下,軟化點為500℃以上700℃以下。作為所用之無鉛玻璃,可為結晶化玻璃,意可為未結晶化之玻璃。又,無鉛玻璃粉末係不含鉛之玻璃,或者為作為不可避免雜質的鉛含100質量ppm以下之玻璃粉末。此處,玻璃轉移點係於大氣中以熱機械分析法(TMA)測定使玻璃粉末再熔融所得之桿狀試料,作為顯示熱膨脹曲線之轉折點的溫度而測定。且,軟化點係以示差熱分析法(TG-DTA)於大氣中測定玻璃粉末,比展現最低溫側之示差熱曲線減少的溫度更於高溫側之下一示差熱曲線所減少之峰值溫度。
作為無鉛玻璃粉末,藉由含有鉍,而獲得提高藉由厚膜導體形成之內部電極與氧化鋁基板等之陶瓷基板的接著強度之效果。例如,無鉛玻璃粉末中之鉍含量藉由將作為Bi2 O3 設為30質量%以上70質量%以下,而可獲得接著強度之提高效果。
厚膜導體形成用粉末組成物中之無鉛玻璃粉末之含量,相對於導電粉末100質量份,設為1.5質量份以上5質量份以下,考慮與基板之接著強度或鍍敷性、焊料之濡濕性等時,更好為1.5質量份以上3質量份以下,又更好為1.5質量份以上2.7質量份以下。無鉛玻璃粉末之含量少於1.5質量份時,有與陶瓷基板之接著強度降低之虞。又,該含量多於5質量份時,有發生於厚膜導體表面浮出玻璃之現象之情況,藉此,有對於厚膜導體之鍍敷性、焊料之濡濕性等降低之虞。
無鉛玻璃粉末中之玻璃組成,可使用可實現上述玻璃轉移點或軟化點之組成者。玻璃粉末中,SiO2 之含量較好為15質量%以上60質量%以下。SiO2 之含量少於15質量%時,有玻璃之耐藥品性降低之虞,或厚膜導體中之玻璃耐候性、耐水性及耐藥品性降低之虞,其結果,對厚膜導體進行Ni鍍敷時有發生鍍敷不良等問題之虞。另一方面,SiO2 含量多於60質量%時,玻璃之軟化點變過高,而有損害厚膜導體與陶瓷基板之密著性之情況。
關於無鉛玻璃粉末之形狀,舉例為球狀或針狀等之各種者,並未特別限定,但無鉛玻璃粉末之藉由利用雷射繞射之粒度分佈計測定之體積累積粒度分佈之D50 徑(中值徑)較好為10μm以下,基於本發明之厚膜導體形成用糊料之塗佈性等或導電粉末與無鉛玻璃之均質分散之觀點,更好為0.5μm以上3μm以下。D50 徑為10μm以上時,會阻礙導電粉末與無鉛玻璃粉末之均質分散,產生無鉛玻璃粉末之偏置,而成為使厚膜導體與基板之接著強度降低之傾向而欠佳。
(氧化錳粉末)   氧化錳粉末之含量,相對於導電粉末100質量份,設為0.5質量份以上3.5質量份以下。該含量少於0.5質量份時,有無法期待玻璃於厚膜導體表面浮出之抑制效果之虞,有無法改善鍍敷性之情況。另一方面,該含量若為3.5質量份,則可充分獲得鍍敷之改善效果,含量即使多於此,亦無法提高鍍敷性之改善效果。
針對厚膜導體之鍍敷性進行探討。於厚膜導體表面浮出玻璃時,對於厚膜導體表面之Ni鍍敷等之鍍敷性變差。於厚膜導體表面之Ni鍍敷或Sn合金系鍍敷之實施性差,於該等鍍敷面有針孔等之孔洞時,厚膜導體之Ag因大氣中之硫成分而硫化,而有電子零件之連接變不良之虞。
不過,若對無鉛玻璃與不可避免地含有鉛作為構成成分之玻璃,於溫度上升之過程中的熔融性進行檢討時,兩者於同樣之軟化點,無鉛玻璃者之熔融溫度處於高溫側。於用以獲得厚膜導體之燒成過程中,以於升溫中與於一定時間之峰值溫度保持中可獲得玻璃熔融狀態之限制時間,進行氧化鋁基板等之陶瓷基板與玻璃之熔著,而確保厚膜導體之密著性。由於無鉛玻璃不易熔融,於使用無鉛玻璃之厚膜導體形成用粉末組成物,為了與基板之密著性,必須使玻璃粉末含量較多。然而,相對於導電粉末100質量份的玻璃粉末含量超過1.5質量份時,有於厚膜導體表面產生玻璃浮出之情況。相對於導電粉末100質量份的玻璃粉末含量即使超過1.5質量份,玻璃含量接近於1.5質量份時,玻璃之浮出為局部,但隨著玻璃含量增加,於厚膜導體表面之玻璃浮出面積增加。因此,藉由將相對於導電粉末100質量份的氧化錳粉末含量設為0.5質量份以上3.5質量份以下,可改善厚膜導體之鍍敷性,藉由防止施以鍍敷之厚膜導體的Ag硫化等,結果可改善電子零件之連接不良。
又,使用利用無鉛玻璃的厚膜導體形成用粉末組成物形成厚膜導體時,相對於導電粉末100質量份的氧化錳粉末含量未達0.5質量份時,雖改善與陶瓷基板之密著性,但有無法改善鍍敷性之虞。另一方面,相對於導電粉末100質量份的氧化錳粉末含量超過3.5質量份時,有與陶瓷基板之密著性降低之情況。基於該等方面,相對於導電粉末100質量份的氧化錳粉末含量期望為0.5質量份以上3質量份以下,更期望為0.5質量份以上2.5質量份以下。
又,氧化錳粉末之數平均粒徑較好為0.8μm以下,基於抑制於厚膜導體表面浮出玻璃之現象的觀點,更好設為0.2μm以上0.8μm以下。數平均粒徑大於0.8μm時,導電粉末或無鉛玻璃粉末無法均質分散,有氧化錳粉末偏置之虞。又,雖亦可使用數平均粒徑未達0.2μm者,但一般可容易獲得0.2μm以上的粉末。此處,數平均粒徑係自粉末之掃描顯微鏡照片(SEM像)求出之數平均粒徑。
又,作為氧化錳可使用MnO2 (二氧化錳)或Mn3 O4 (四氧化三錳)等,例如藉由使用Mn3 O4 (四氧化三錳),可於厚膜導體表面形成微細階差狀之條紋花樣,發揮錨定效果。
(氧化物粉末)   厚膜導體形成用粉末組成物除了上述無鉛玻璃粉末或氧化錳粉末以外,在不阻礙本發明效果之範圍可含有該等以外之氧化物粉末。例如,基於提高厚膜導體之接著強度、耐酸性、焊料濡濕性等之目的,可添加至少一種以上之Bi2 O3 、SiO2 、CuO、ZnO、TiO2 、ZrO2 、MnO2 等之氧化物粉末。惟,基於抑制電阻值上升之觀點,無鉛玻璃粉末及氧化錳粉末以外之氧化物粉末的含量,相對於導電粉末100質量份,該等之合計較好侷限於0~10質量份左右之範圍內。
又,本發明之厚膜導體形成用粉末組成物較好為導電粉末、無鉛玻璃粉末及氧化錳混合而成之混合物。藉由為混合物,可獲得內容物更均一的厚膜導體形成用糊料或厚膜導體。作為混合方法,可使用球磨機、珠磨機等之習知技術,藉由該等技術,可獲得充分均一之混合物。
[(2)厚膜導體形成用糊料]   本發明之厚膜導體形成用糊料之一例係包含上述之厚膜導體形成用粉末組成物、溶劑與樹脂之混合物的糊料。
作為溶劑,可使用糊料中一般使用之松油醇或丁基卡必醇等,關於樹脂,亦可使用糊料中一般使用之乙基纖維素或甲基丙烯酸酯等。樹脂與溶劑係預先混合作成有機載劑之狀態,使用其可製造厚膜導體形成用糊料。例如基於成本及處理之容易性之觀點,可將乙基纖維素溶解於松油醇者作成有機載劑。有機載劑中,樹脂與溶劑之比例係對應於最終厚膜導體形成用糊料組成的印刷性或塗佈方法而適當選擇。
作為有機載劑之於厚膜導體形成用糊料中之含量,相對於前述導電粉末100質量份,可為15質量份以上250質量份以下。有機載劑之含量未達15質量份時,有黏度過高而實質上無法塗佈之情況,且,該含量超過250質量份時,有產生粒子沉降或燒成後之厚膜導體之膜緻密性大為降低的問題之虞。考慮印刷性或塗佈容易性、作為糊料之粒子沉降或厚膜導體之膜的緻密性時,該含量較好設為20質量份以上100質量份以下。
本發明之厚膜導體形成用糊料可藉由混練厚膜導體形成用粉末組成物與有機載劑而製造。作為混練方法並未特別限定,但可使用例如濕式混練磨機、輥磨機、輥柱磨機等之習知技術進行混練。又,所得導體糊料之黏度係根據目的之厚膜導體的膜厚或陶瓷基板種類等而適當選擇。
又,作為本發明之厚膜導體形成用糊料之上述以外之例,舉例為下述厚膜導體形成用糊料,其包含導電粒子、無鉛玻璃粒子、氧化錳粒子、溶劑及樹脂,前述玻璃粒子之含量,相對於前述導電粒子100質量份,為1.5質量份以上5質量份以下,前述氧化錳粒子含量,相對於前述導電粒子100質量份,為0.5質量份以上3.5質量份以下。
關於導電粒子、無鉛玻璃粒子、氧化錳粒子、無鉛玻璃粒子含量及氧化錳粒子含量,係如上述厚膜導體形成用粉末組成物脂項目中所說明,於此處省略說明。又,關於溶劑及樹脂,由於亦如上述厚膜導體形成用糊料之一例中所說明,故省略說明。
本發明之厚膜導體形成用糊料可藉由於例如有機載劑中分別添加導電粒子、無鉛玻璃粒子、氧化錳粒子作成混合物,混練該混合物而製造。作為混練方法並未特別限定,但可使用例如濕式混練磨機、輥磨機、輥柱磨機等之習知技術進行混練。又,所得導體糊料之黏度係根據目的之厚膜導體的膜厚或陶瓷基板種類等而適當選擇。
又,上述說明之厚膜導體形成用糊料中,除了上述無鉛玻璃粉末或氧化錳粉末以外,在不阻礙本發明效果之範圍可含有該等以外之氧化物粉末。例如,基於提高厚膜導體之接著強度、耐酸性、焊料濡濕性等之目的,可添加至少一種以上之Bi2 O3 、SiO2 、CuO、ZnO、TiO2 、ZrO2 、MnO2 等之氧化物粉末。惟,基於抑制電阻值上升之觀點,無鉛玻璃粉末及氧化錳粉末以外之氧化物粉末的含量,相對於導電粉末100質量份,該等之合計較好侷限於0~10質量份左右之範圍內。
[(3)厚膜導體之製造方法]   厚膜導體之製造方法可包含將例如本發明之厚膜導體形成用糊料塗佈於陶瓷基板之塗佈步驟,將塗佈有前述糊料之基板乾燥之乾燥步驟,及隨後於500℃以上且未達900℃之溫度下燒成之燒成步驟。
(塗佈步驟)   又,作為塗佈方法並未特別限定,可使用網版印刷、凸版印刷或凹版印刷等之印刷法,此外可使用利用佈膠器之描繪方式等之習知技術,但基於適當膜厚且進行大量生產之觀點,較好藉由網版印刷法塗佈。作為陶瓷基板,係對應於電子零件之用途,使用96%氧化鋁基板、鎂橄欖石等,但本發明之厚膜導體形成用糊料可適用於任何基板。
(乾燥步驟)   塗佈厚膜導體形成用糊料後,將塗佈後之膜連同陶瓷基板一起於80℃以上200℃以下之溫度條件下,乾燥2分鐘以上15分鐘以下之時間。如此,藉由於塗佈步驟與燒成步驟之間設置乾燥步驟,由於可防止燒成時因溶劑等之揮發成分殘存所致之溶劑等之揮發及燃燒,故於燒成步驟中使用燒成爐時等,可獲得防止燒成爐汙染之效果。該步驟中,乾燥方法並未特別限制,可使用烘箱或輸送式乾燥爐等之習知手段,但基於量產性之觀點,較好為利用輸送式乾燥爐之乾燥。又,乾燥溫度未達80℃時,乾燥所需之時間變長,故有生產性惡化而欠佳之情況。又,乾燥溫度超過200℃時,由於有樹脂氧化而乾燥後之膜變脆之情況,故而欠佳。
(燒成步驟)   乾燥步驟後之燒成步驟中,將乾燥後之膜與陶瓷基板一起加熱燒成膜。作為燒成方法較好使用輸送爐。該情況下,燒成中之峰值溫度為500℃以上且未達900℃,較好為700℃以上且未達900℃。峰值溫度未達500℃時,玻璃粉末之熔融未充分進行,有阻礙與陶瓷基板的密著性的問題之虞。另一方面,峰值溫度為900℃以上時,有膜過度燒結之虞,尤其是使用以熔點低的Ag作為主成分之厚膜導體形成用糊料時,導電粒子與玻璃粒子等會分離而使厚膜導體形成為島狀,有產生無法形成均一電極膜的問題之虞。
於上述峰值溫度,必須保持5分鐘以上20分鐘以下,較好7分鐘以上13分鐘以下。峰值溫度之保持時間超過20分鐘時,有厚膜導體膜變過度燒結之可能性,該保持時間未達5分鐘時,有燒結不充分之虞。且,升溫至峰值溫度、峰值溫度之保持及自峰值溫度之冷卻之燒成步驟中的總時間必須為20分鐘以上90分鐘以下,較好為30分鐘以上60分鐘以下。總時間未達20分鐘時,升溫速度及冷卻速度過大,有因急遽溫度變化而於厚膜導體發生龜裂之虞。又,總時間超過90分鐘時,有產生生產性惡化的問題之虞。
為了以上述峰值溫度及燒成時間進行燒成,直至峰值溫度之升溫速度較好設為20℃/分鐘以上150℃/分鐘以下,自峰值溫度之冷卻速度設為20℃/分鐘以上200℃/分鐘。升溫速度未達20℃/分鐘或冷卻速度未達20℃/分鐘時,由於有生產性惡化之虞故而欠佳。且,升溫速度超過150℃/分鐘或冷卻速度超過200℃/分鐘時,由於有因急遽溫度變化而於厚膜導體產生龜裂之可能性之虞,故而欠佳。
又,燒成中之環境並未特別限定,但基於無鉛玻璃的軟化點之觀點,較好於空氣環境中燒成。
[(4)厚膜導體]   藉由上述製造方法,自本發明之厚膜導體形成用糊料所得之厚膜導體包含導電成分、因玻璃粉末熔融所得之玻璃成分與氧化錳。氧化錳意指熔入玻璃中之狀態。
而且該厚膜導體因包含氧化錳,而使玻璃浮出於表面較少,且於表面產生微細階差狀之條紋花樣。
厚膜導體之期望膜厚為5.0μm以上10.0μm以下。若為該膜厚範圍,則滿足厚膜導體對陶瓷基板之密著性,並且可抑制玻璃朝厚膜導體表面之浮出。
因此,使用本發明之厚膜導體形成用糊料製造之厚膜導體與陶瓷基板之接著強度亦良好,可謂滿足良好之鍍敷附著性,成為具備鍍敷優異之特性者。良好鍍敷附著性可以Ni電鍍之膜厚予以評價。以相同電流密度實施Ni電鍍時,確認到於表面局部有浮出玻璃之厚膜導體,其鍍敷膜厚亦薄於添加氧化錳而抑制表面玻璃浮起之厚膜導體。 [實施例]
以下,針對本發明,利用實施例進一步進行說明,但本發明之範圍並非受該實施例之限制。
實施例1~7及比較例1~3中,使用以下所示之導電粉末及氧化錳粉末及表1所示之球狀無鉛玻璃粉末1、2之任一者,製作厚膜導體形成用粉末組成物及厚膜導體形成用糊料,進而製造厚膜導體。針對所得厚膜導體,進行燒成膜厚之測定、表面狀態之觀察、電阻值之測定及與基板之接著強度之評價。又,表1中之鹼金屬氧化物的總計主要為Li、K及Na之金屬氧化物之總計。
Figure 02_image001
(導電粉末)   作為導電粉末係使用銀粉末或銀與鈀之合金粉末。銀粉末A為數平均粒徑為2.0μm之粉末,銀粉末B為數平均粒徑為5.0μm之粉末。又,鈀粉末之數平均粒徑為0.2μm。
(氧化錳粉末)   作為氧化錳粉末係使用Mn3 O4 (數平均粒徑為0.5μm)。
[厚膜導體形成用粉末組成物之製作]   將導電粉末、無鉛玻璃粉末及氧化錳粉末以如表2所示組成予以混合,藉由球磨機攪拌,製作厚膜導體形成用粉末組成物。
[厚膜導體形成用糊料之製作]   將上述製作之厚膜導體形成用粉末組成物72.5質量%與有機載劑27.5質量%混合,隨後藉由3輥研磨機混練,製作厚膜導體形成用糊料。又,有機載劑係將乙基纖維素7質量%與溶劑的松油醇溶液93質量%混合並加熱使乙基纖維素溶解而製作。
[厚膜導體之製作]   將上述製作之厚膜導體形成用糊料藉由網版印刷機網版印刷於96%氧化鋁基板(25.4mm×25.4mm×1mm)上(塗佈步驟),使用輸送式乾燥爐於150℃乾燥5分鐘(乾燥步驟)。經乾燥之膜及氧化鋁基板於峰值溫度850℃燒成9分鐘以總計30分鐘之輸送爐燒成(燒成步驟),形成特定圖型之厚膜導體。
[厚膜導體之物性評價]   針對上述製造之厚膜導體,藉由以下所示方法,進行燒成膜厚之測定、表面狀態之觀察、電阻值之測定、與氧化鋁基板之接著強度及鎳鍍敷之鍍敷膜厚的評價。評價結果示於表2。
(燒成膜厚之測定)   針對燒成後之厚膜導體膜厚,使用接觸式表面粗糙度計以n=5進行測定。
(鍍敷膜厚)   對燒成後之厚膜導體實施Ni電鍍之樣品,使用接觸式表面粗糙度計以n=5測定自氧化鋁基板至Ni電鍍面之厚度,自所得結果導出厚膜導體之膜厚算出鍍敷膜厚。
(表面狀態之觀察)   針對厚膜導體表面狀態,使用SEM(掃描型電子顯微鏡)予以觀察,確認階差狀條紋花樣之有無及玻璃浮出之有無。且,圖2顯示實施例1之厚膜導體的SEM圖像,圖3顯示比較例1之厚膜導體的SEM圖像。
(電阻值測定)   針對於氧化鋁基板上以寬0.5mm、長50mm之圖型形成之厚膜導體的樣品,藉由數位萬用表測定其電阻值。
(接著強度之評價)   對於氧化鋁基板上以2.0mm×2.0mm之墊片狀圖型作成之厚膜導體,作為Ni鍍敷液係使用調製為硫酸鎳係280g/L、氯化鎳係60g/L、硼酸係40g/L的鍍敷液,將電流密度設為5×10-3 A/mm2 (5×10-9 A/m2 ),實施2分鐘之Ni電鍍,作為樣品。對實施該鍍敷之樣品,使用96.5質量% Sn-3質量%Ag-0.5質量%Cu組成之無鉛焊料,施以直徑0.65mm之Sn鍍敷銅線之焊接者作為試驗片。藉由拉伸試驗機,將試驗片之Sn鍍敷銅線於氧化鋁基板之垂直方向拉伸,將厚膜導體膜自氧化鋁基板剝離,測定該剝離時之拉伸力,算出最大值、最小值及平均值而評價接著強度之初期強度。且,對於與上述試驗片同樣者,施加150℃24小時之熱負載而劣化後,進行同樣拉伸試驗,算出最大值、最小值及平均值而評價熱劣化接著強度。初期接著強度及熱劣化接著強度均評價15片試驗片。
Figure 02_image003
(關於厚膜導體之膜厚及電阻值)   厚膜導體之膜厚於實施例1~7及比較例1~3之任一者均為5.0μm以上10.0μm以下之範圍內,未見到膜厚異常。且,關於電阻值,使用銀作為導電粉末或使用銀與鈀作為導電粉末所得之值雖見到不同,但該等值並無異常,且實施例1~7及比較例1~3之任一者均為無問題之值。
(接著強度之評價)   由實施例1~7之評價結果,接著強度於初期評價及熱劣化後之評價其值均無問題。又,藉由使用包含鉍之玻璃粉末,於初期及熱劣化後之任一者,均見到接著強度提高之效果(實施例5、6)。
又,由實施例1~3與比較例1之結果,於初期及熱劣化後之任一者均確認到藉由含有錳而接著強度提高之效果。該效果於併用銀與鈀作為導電粉末時顯著見到(實施例4、比較例2),尤其為對熱劣化後之接著強度有較大影響之結果。
又,因含有錳而對接著強度之效果,確認到若相對於導電粉末100質量份含有0.3質量份則可發揮(比較例3)。
(表面狀態之觀察結果)   實施例1~7中,確認到因含有錳所致之階差狀條紋花樣,係因錨定效果而可期待鍍敷附著性提高之表面狀態。比較例1、2中,未含有錳,未見到條紋花樣。且,比較例3中,雖大致見到因含有錳所致之條紋花樣,但並無可期待錨定效果程度之階差狀花樣。
又,針對玻璃浮出之有無,於實施例1~7中,因含有錳而未見到玻璃之浮起,可知係可抑制銀硫化者。又,比較例3中,由於見到玻璃浮起,故可知錳含量不足。且,比較例1、2中,因不含錳而見到玻璃浮起,成為提示即使施以Ni鍍敷亦有發生銀的硫化現象之虞的結果。
(鍍敷膜厚)   比較實施例2與7、比較例1之Ni電鍍膜厚時,可知含有氧化錳之實施例2、7比不含氧化錳之比較例1更厚。且,亦可明瞭由添加氧化錳之厚膜導體形成用粉末組成物所得之厚膜導體之鍍敷附著性比不含氧化錳者更優異。
[總結]   如由實施例所了解,可知依據本發明之厚膜導體形成用粉末組成物及厚膜導體形成用糊料之製造方法,可提供容易施以鍍敷且抑制銀硫化之厚膜導體。
以上,針對本發明之較佳實施形態詳細說明,但本發明不限定於該等例。若為本發明所屬技術領域中具有通常知識者,可明瞭在申請專利範圍所記載之技術思想範圍內,可想到各種變化例或修正例,針對該等,應了解當然屬於本發明之技術範圍。
10‧‧‧氧化鋁基板20‧‧‧內部電極21‧‧‧上面電極22‧‧‧側面電極23‧‧‧背面電極30‧‧‧電阻膜40‧‧‧保護膜50‧‧‧中間電極60‧‧‧外部電極100‧‧‧晶片電阻器
圖1係晶片電阻器之剖面示意圖。   圖2係顯示實施例1之厚膜導體的SEM圖像的圖。   圖3係顯示比較例1之厚膜導體的SEM圖像的圖。
10‧‧‧氧化鋁基板
20‧‧‧內部電極
21‧‧‧上面電極
22‧‧‧側面電極
23‧‧‧背面電極
30‧‧‧電阻膜
40‧‧‧保護膜
50‧‧‧中間電極
60‧‧‧外部電極
100‧‧‧晶片電阻器

Claims (9)

  1. 一種厚膜導體形成用粉末組成物,作為粉末,其僅包含導電粉末、無鉛玻璃粉末、及氧化錳粉末,前述無鉛玻璃粉末含量,相對於前述導電粉末100質量份,為1.5質量份以上5質量份以下,前述氧化錳粉末含量,相對於前述導電粉末100質量份,為0.5質量份以上3.5質量份以下,前述氧化錳粉末之數平均粒徑為0.8μm以下。
  2. 一種厚膜導體形成用粉末組成物,作為粉末,其僅包含導電粉末、無鉛玻璃粉末、氧化錳粉末、氧化物粉末,前述無鉛玻璃粉末含量,相對於前述導電粉末100質量份,為1.5質量份以上5質量份以下,前述氧化錳粉末含量,相對於前述導電粉末100質量份,為0.5質量份以上3.5質量份以下,前述氧化錳粉末之數平均粒徑為0.8μm以下, 前述氧化物粉末為選自Bi2O3、SiO2、CuO、ZnO、TiO2、ZrO2、MnO2中之至少1種以上,前述氧化物粉末含量,相對於前述導電粉末100質量份,為0~10質量份。
  3. 如請求項1或2之厚膜導體形成用粉末組成物,其中前述氧化錳粉末為Mn3O4粉末。
  4. 如請求項1或2之厚膜導體形成用粉末組成物,其中前述導電粉末係選自銀粉末、鈀粉末及鉑粉末中之至少一種。
  5. 如請求項1或2之厚膜導體形成用粉末組成物,其中前述無鉛玻璃粉末之玻璃轉移溫度為400℃以上600℃以下,軟化點為500℃以上700℃以下。
  6. 如請求項1或2之厚膜導體形成用粉末組成物,其中前述無鉛玻璃粉末包含鉍。
  7. 一種厚膜導體形成用糊料,其包含如請求項1至6中任一項之厚膜導體形成用粉末組成物、溶劑與樹脂之混合物。
  8. 一種厚膜導體形成用糊料,其包含導電粒子、 無鉛玻璃粒子、氧化錳粒子、溶劑、及樹脂,前述無鉛玻璃粒子含量,相對於前述導電粒子100質量份,為1.5質量份以上5質量份以下,前述氧化錳粒子含量,相對於前述導電粒子100質量份,為0.5質量份以上3.5質量份以下,前述氧化錳粉末之數平均粒徑為0.8μm以下,作為粉末,僅包含前述導電粒子、前述無鉛玻璃粒子、前述氧化錳粒子。
  9. 一種厚膜導體形成用糊料,其包含導電粒子、無鉛玻璃粒子、氧化錳粒子、氧化物粒子、溶劑及樹脂,前述無鉛玻璃粒子含量,相對於前述導電粒子100質量份,為1.5質量份以上5質量份以下,前述氧化錳粒子含量,相對於前述導電粒子100質量份,為0.5質量份以上3.5質量份以下,前述氧化錳粉末之數平均粒徑為0.8μm以下, 作為粉末,僅包含前述導電粒子、前述無鉛玻璃粒子、前述氧化錳粒子、前述氧化物粉末,前述氧化物粉末為選自Bi2O3、SiO2、CuO、ZnO、TiO2、ZrO2、MnO2中之至少1種以上,前述氧化物粉末含量,相對於前述導電粉末100質量份,為0~10質量份。
TW107144766A 2017-12-15 2018-12-12 厚膜導體形成用粉末組成物及厚膜導體形成用糊料 TWI796400B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017240609 2017-12-15
JP2017-240609 2017-12-15
JP2018-113784 2018-06-14
JP2018113784A JP7187832B2 (ja) 2017-12-15 2018-06-14 厚膜導体形成用粉末組成物および厚膜導体形成用ペースト

Publications (2)

Publication Number Publication Date
TW201927927A TW201927927A (zh) 2019-07-16
TWI796400B true TWI796400B (zh) 2023-03-21

Family

ID=67180028

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107144766A TWI796400B (zh) 2017-12-15 2018-12-12 厚膜導體形成用粉末組成物及厚膜導體形成用糊料

Country Status (2)

Country Link
JP (1) JP7187832B2 (zh)
TW (1) TWI796400B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0488067A (ja) * 1990-07-31 1992-03-19 Nippon Cement Co Ltd 導体ペースト
CN106683744A (zh) * 2016-12-16 2017-05-17 苏州博望新能源科技有限公司 低温烧结太阳能电池背电极银浆

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3209089B2 (ja) * 1996-05-09 2001-09-17 昭栄化学工業株式会社 導電性ペースト
JP3637286B2 (ja) 2001-03-14 2005-04-13 株式会社ノリタケカンパニーリミテド 焼成ジルコニア基材用導体ペースト
CN104185875B (zh) 2012-03-28 2017-07-18 东丽株式会社 感光性导电糊剂以及带导电性配线的基板的制造方法
JP6869531B2 (ja) 2017-02-22 2021-05-12 ナミックス株式会社 導電性ペースト、窒化アルミニウム回路基板及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0488067A (ja) * 1990-07-31 1992-03-19 Nippon Cement Co Ltd 導体ペースト
CN106683744A (zh) * 2016-12-16 2017-05-17 苏州博望新能源科技有限公司 低温烧结太阳能电池背电极银浆

Also Published As

Publication number Publication date
JP2019110105A (ja) 2019-07-04
TW201927927A (zh) 2019-07-16
JP7187832B2 (ja) 2022-12-13

Similar Documents

Publication Publication Date Title
KR102488165B1 (ko) 도전성 조성물, 도체의 제조 방법 및 전자 부품의 배선의 형성 방법
US10403421B2 (en) Thick film resistor and production method for same
US11174193B2 (en) Conductive composition and method for producing terminal electrode
JP4466402B2 (ja) 厚膜導体形成用組成物
JP5426241B2 (ja) チップ抵抗器の表電極および裏電極
US10446290B2 (en) Resistive composition
JP2000048642A (ja) 導電性ペースト及びガラス回路基板
JP6623919B2 (ja) 導電性組成物、導体の製造方法及び電子部品の配線の形成方法
JP5673515B2 (ja) 厚膜導体形成用組成物およびこれを用いた厚膜導体とその製造方法
TWI647710B (zh) 厚膜導體形成用組成物以及使用其獲得的厚膜導體
KR102639865B1 (ko) 후막 도체 형성용 분말 조성물 및 후막 도체 형성용 페이스트
TWI796400B (zh) 厚膜導體形成用粉末組成物及厚膜導體形成用糊料
JP6769208B2 (ja) 鉛フリー導電ペースト
JP6623920B2 (ja) 導電性組成物及び端子電極の製造方法
JP7322534B2 (ja) 厚膜導体形成用粉末組成物および厚膜導体形成用ペースト
JP2022082004A (ja) 厚膜導体形成用粉末組成物、厚膜導体形成用ペーストおよび厚膜導体
JP2019110105A5 (zh)
JP4630616B2 (ja) Pbフリー導電性組成物
JP2022089460A (ja) 厚膜導体及びその形成用組成物並びに該形成用組成物を含んだ厚膜導体ペースト
JP2021144961A (ja) 厚膜抵抗体被覆用粉末組成物および厚膜抵抗体被覆用ガラスペースト
JP2006054061A (ja) 導電性ペースト
JP2019032993A (ja) 厚膜導体形成用組成物および厚膜導体の製造方法
JP2012238443A (ja) 導電性組成物
JPH11322371A (ja) 導電層付ガラス板、その製造方法、導電性ペ―ストおよび自動車用窓