TWI778854B - 電子系統及晶片 - Google Patents

電子系統及晶片 Download PDF

Info

Publication number
TWI778854B
TWI778854B TW110141037A TW110141037A TWI778854B TW I778854 B TWI778854 B TW I778854B TW 110141037 A TW110141037 A TW 110141037A TW 110141037 A TW110141037 A TW 110141037A TW I778854 B TWI778854 B TW I778854B
Authority
TW
Taiwan
Prior art keywords
voltage
pad
coupled
transistor
controlled current
Prior art date
Application number
TW110141037A
Other languages
English (en)
Other versions
TW202320488A (zh
Inventor
陳柏安
吳祖儀
Original Assignee
新唐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新唐科技股份有限公司 filed Critical 新唐科技股份有限公司
Priority to TW110141037A priority Critical patent/TWI778854B/zh
Priority to CN202210138320.8A priority patent/CN116073810A/zh
Application granted granted Critical
Publication of TWI778854B publication Critical patent/TWI778854B/zh
Publication of TW202320488A publication Critical patent/TW202320488A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Credit Cards Or The Like (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Power Conversion In General (AREA)
  • Amplifiers (AREA)

Abstract

一種電子系統及晶片。晶片包括第一至第五接墊、第一及第二壓控電流元件、第一及第二偏壓元件。第一至第三接墊分別耦接第一氮化鎵電晶體的汲極、源極及閘極,第三接墊至第五接墊分別耦接於第二氮化鎵電晶體的汲極、源極及閘極。第一壓控電流元件耦接於第一及第二接墊。第二壓控電流元件耦接於第三及第四接墊。第一偏壓元件耦接於第二及第三接墊。第二偏壓元件耦接於第四及第五接墊。第一偏壓元件依第一壓控電流元件的控制以調整第二接墊的偏壓,第二偏壓元件依據第二壓控電流元件的控制以調整第四接墊的偏壓。

Description

電子系統及晶片
本發明是有關於一種系統及晶片,且特別是有關於一種電子系統及適於耦接於氮化鎵電晶體的晶片。
氮化鎵(gallium nitride, GaN)電晶體由於一些的優點而被廣泛的使用。但另一方面,氮化鎵電晶體同時又具有較低的閥值電壓,往往造成電路中較大的功率消耗。
現有技術中提出了一些增強型(enhanced mode, e-mode)的氮化鎵電晶體,試圖降低氮化鎵電晶體的功耗。但這些增強型的氮化鎵電晶體往往需要特殊製程來改變氮化鎵電晶體的結構,又或者是透過將電晶體與氮化鎵電晶體串接(cascode),因此往往會導致較高的製造成本,或是氮化鎵電晶體的電流被串接的電晶體所限制,因而影響氮化鎵電晶體的電路表現。
本發明提供一種電子系統及晶片,其可在改善氮化鎵電晶體的製造成本時,又不影響氮化鎵電晶體本身的電路表現。
本發明的晶片包括第一至第五接墊、第一及第二壓控電流元件、第一及第二偏壓元件。第一至第三接墊分別耦接第一氮化鎵電晶體的汲極、源極及閘極,第三接墊至第五接墊分別耦接於第二氮化鎵電晶體的汲極、源極及閘極。第一壓控電流元件耦接於第一及第二接墊。第二壓控電流元件耦接於第三及第四接墊。第一偏壓元件耦接於第二及第三接墊。第二偏壓元件耦接於第四及第五接墊。第一偏壓元件依第一壓控電流元件的控制以調整第二接墊的偏壓,第二偏壓元件依據第二壓控電流元件的控制以調整第四接墊的偏壓。
本發明的電子系統包括晶片、第一及第二氮化鎵電晶體。第一氮化鎵電晶體的源極耦接於第二氮化鎵電晶體的汲極。晶片包括第一至第五接墊、第一及第二壓控電流元件、第一及第二偏壓元件。第一至第三接墊分別耦接第一氮化鎵電晶體的汲極、源極及閘極,第三接墊至第五接墊分別耦接於第二氮化鎵電晶體的汲極、源極及閘極。第一壓控電流元件耦接於第一及第二接墊。第二壓控電流元件耦接於第三及第四接墊。第一偏壓元件耦接於第二及第三接墊。第二偏壓元件耦接於第四及第五接墊。第一偏壓元件依第一壓控電流元件的控制以調整第二接墊的偏壓,第二偏壓元件依據第二壓控電流元件的控制以調整第四接墊的偏壓。
基於上述,本發明的電子系統及晶片透過氮化鎵電晶體、偏壓元件及壓控電流元件的耦接關係來控制氮化鎵電晶體操作為導通及/或截止。
圖1為本發明實施例一電子系統1的方塊示意圖。電子系統1包含有晶片10、氮化鎵電晶體GT1、GT2。晶片10上設置有接墊P1~P5,晶片10透過接墊P1~P5耦接於氮化鎵電晶體GT1、GT2。晶片10可用來驅動氮化鎵電晶體GT1、GT2。
在一實施例中,氮化鎵電晶體GT1、GT2可為第一導通型態(例如是n型)的氮化鎵電晶體,在其閘極與源極之間所接收的電壓差大於或等於閥值電壓時被導通。氮化鎵電晶體GT1的汲極、源極及閘極可分別耦接於接墊P1、P2、P3。氮化鎵電晶體GT2的汲極、源極及閘極可分別耦接於接墊P3、P4、P5。另一方面,氮化鎵電晶體GT1的汲極可接收參考電壓HVDD,氮化鎵電晶體GT2的源極可接收參考電壓GND。
晶片10包含有驅動電路11、上橋電路12、下橋電路13、壓控電流元件14、16及偏壓元件15、17。壓控電流元件14具有第一端及第二端,分別耦接於接墊P1及接墊P2。壓控電流元件16具有第一端及第二端,分別耦接於接墊P3及接墊P4。上橋電路12耦接壓控電流元件14的控制端,下橋電路13耦接壓控電流元件16的控制端。驅動電路11耦接於上橋電路12、下橋電路13的操作。
詳細來說,驅動電路11可產生驅動訊號DS1、DS2,用以控制上、下橋電路12、13的操作。上橋電路12、下橋電路13可分別依據驅動訊號DS1、DS2來產生控制訊號DS1’、DS2’,進而控制壓控電流元件14、16以選擇性地產生偏壓電流。當壓控電流元件14產生偏壓電流時,偏壓電流會被提供至偏壓元件15,進而抬升接墊P2的電壓,進而使氮化鎵電晶體GT1的閘極及源極間的電壓差被降低至小於閥值電壓(例如是-11V),導致氮化鎵電晶體GT1的截止,並斷開氮化鎵電晶體GT1的汲極及源極之間的連接。相似地,當壓控電流元件16產生偏壓電流時,偏壓電流會被提供至偏壓元件17,進而抬升接墊P4的電壓,進而使氮化鎵電晶體GT2的閘極及源極間的電壓差被降低至小於閥值電壓(例如是-11V),導致氮化鎵電晶體GT2的截止,並斷開氮化鎵電晶體GT2的汲極及源極之間的連接。
因此,晶片10可透過壓控電流元件14及偏壓元件15來控制氮化鎵電晶體GT1的導通及/或截止,並透過壓控電流元件16及偏壓元件17來控制氮化鎵電晶體GT2的導通及/或截止。具體來說,當壓控電流元件14被致能或導通時,則氮化鎵電晶體GT1的閘極及源極間的電壓差會被降低而截止,可較佳地控制氮化鎵電晶體GT1為禁能,並避免氮化鎵電晶體GT1的漏電流,進而改善其功率消耗。
在一些實施例中,壓控電流元件14、偏壓元件15及氮化鎵電晶體GT1三者可整體視為一功率電晶體T1來進行操作,功率電晶體T1可具有第一導通型態或第二導通型態,以下以第二導通型態(例如是p型)為例來進行說明。功率電晶體T1的第一端(例如是功率電晶體T1的汲極)可耦接接墊P3,功率電晶體T1的第二端(例如是功率電晶體T1的源極)可接收參考電壓HVDD,功率電晶體T1的控制端(例如是功率電晶體T1的閘極)可接收上橋電路12的控制。功率電晶體T1可依據其控制端所接收端的電壓來控制第一端與第二端之間的導通。
當功率電晶體T1的控制端,也就是壓控電流元件14接收到致能的控制訊號DS1’時,氮化鎵電晶體GT1會依據控制訊號DS1’的控制而被截止,在壓控電流元件14未提供偏壓電流至偏壓元件15的情況下,氮化鎵電晶體GT1的閘極與源極之間的電壓差會大於閥值電壓,使功率電晶體T1導通。相對地,當功率電晶體T1的控制端接收到禁能的控制訊號DS1’時,氮化鎵電晶體GT1會依據控制訊號DS1’的控制而被導通,以提供偏壓電流至偏壓元件15,造成氮化鎵電晶體GT1的源極電壓會上升,因此,氮化鎵電晶體GT1的閘極與源極之間的電壓差會小於閥值電壓,使功率電晶體T1截止。
相似地,壓控電流元件16、偏壓元件17及氮化鎵電晶體GT2三者可整體視為一功率電晶體T2來進行操作,功率電晶體T2可具有第一導通型態或第二導通型態,以下以功率電晶體T2具有第一導通型態(例如是n型)為例來進行說明。功率電晶體T2的第一端(例如是功率電晶體T2的汲極)可耦接接墊P3,功率電晶體T2的第二端(例如是功率電晶體T2的源極)可耦接接墊P5,功率電晶體T2的控制端(例如是功率電晶體T2的閘極)可接收下橋電路13的控制。功率電晶體T2可依據其控制端所接收端的電壓來控制第一端與第二端之間的導通。
當功率電晶體T2的控制端,也就是壓控電流元件16接收到致能的控制訊號DS2’時,氮化鎵電晶體GT2會依據控制訊號DS2’的控制而被截止,在壓控電流元件16未提供偏壓電流至偏壓元件17的情況下,氮化鎵電晶體GT2的閘極與源極之間的電壓差會大於閥值電壓,使功率電晶體T2導通。相對地,當功率電晶體T2的控制端接收到禁能的控制訊號DS2’時,氮化鎵電晶體GT2會依據控制訊號DS2’的控制而被導通,以提供偏壓電流至偏壓元件17,造成氮化鎵電晶體GT2的源極電壓會上升,因此,氮化鎵電晶體GT2的閘極與源極之間的電壓差會小於閥值電壓,使功率電晶體T2截止。
因此,電子系統1及晶片10可透過壓控電流元件14、16及偏壓元件15、17與氮化鎵電晶體GT1、GT2之間的耦接關係,來較佳地控制氮化鎵電晶體GT1、GT2的導通及/或截止,以改善整體的功率消耗。另一方面,由於壓控電流元件14、16並非與氮化鎵電晶體GT1、GT2互相串聯連接,因此壓控電流元件14、16並不會限制氮化鎵電晶體GT1、GT2的導通電流,可有效保留氮化鎵電晶體GT1、GT2本身高電流及快速切換的優點。
圖2為本發明實施例一電子系統2的示意圖。電子系統2包括晶片20及氮化鎵電晶體GT1、GT2。晶片20包括驅動電路21、上橋電路12、下橋電路13、壓控電流元件24、26及偏壓元件25、27。
氮化鎵電晶體GT1的汲極、源極及閘極可分別耦接接墊P1、P2、P3。氮化鎵電晶體GT2的汲極、源極及閘極可分別耦接接墊P3、P4、P5。在一些實施例中,氮化鎵電晶體GT1、GT2可為第一導通型態(例如是n型)的氮化鎵電晶體,當氮化鎵電晶體GT1、GT2的閘極與源極之間的電壓差小於閥值電壓時,氮化鎵電晶體GT1、GT2可被截止,而其汲極與源極之間的連接可被斷開。當氮化鎵電晶體GT1、GT2的閘極與源極之間的電壓差大於閥值電壓時,氮化鎵電晶體GT1、GT2可被導通,而其汲極與源極之間可被互相連接。
在此實施例中,驅動電路21包括電源電路210、控制器211、位準平移電路212。電源電路210用以提供電源電壓。控制器211用以透過控制上橋電路12、下橋電路13的操作,藉以控制功率電晶體T1、T2的導通及/或截止。位準平移電路212耦接控制器211,用以將控制器211所提供的電壓位準進行平移,以產生適合控制壓控電流元件24、26的驅動訊號DS1、DS2。因此,上橋電路12、下橋電路13可分別接收驅動訊號DS1、DS2來產生控制訊號DS1’、DS2’,進而驅動壓控電流元件24、26。
功率電晶體T1、T2兩者互相串聯連接於參考電壓HVDD及參考電壓GND之間。功率電晶體T1可具有例如是第二導通型態。功率電晶體T1的第一端(例如是功率電晶體T1的汲極)可耦接接墊P3,功率電晶體T1的第二端(例如是功率電晶體T1的源極)可接收參考電壓HVDD,功率電晶體T1的控制端(例如是功率電晶體T1的閘極)可耦接上橋電路12。功率電晶體T2可具有例如是第一導通型態。功率電晶體T2的第一端(例如是功率電晶體T2的汲極)可耦接於接墊P3,功率電晶體T2的第二端(例如是功率電晶體T2的源極)可接收參考電壓GND,功率電晶體T2的控制端(例如是功率電晶體T2的閘極)可耦接下橋電路13。
針對功率電晶體T1而言,功率電晶體T1包含壓控電流元件24、偏壓元件25及氮化鎵電晶體GT1。壓控電流元件24耦接於上橋電路12及接墊P1、P2。偏壓元件25耦接於接墊P2、P3。
壓控電流元件24包含電阻R1及電晶體MN1。電阻R1及電晶體MN1互相串聯於接墊P1、P2之間。在此實施例中,電晶體MN1可例如為第一導通型態(例如是n型)的金氧半場效電晶體(metal oxide semiconductor field effect transistor, MOSFET),在電晶體MN1的閘極接收到相對高準位的電壓時導通,並於閘極接收到相對低準位的電壓時截止。電晶體MN1的汲極透過電阻R1及接墊P1接收參考電壓HVDD,其源極耦接接墊P2,且其閘極耦接上橋電路12。在一些實施例中,氮化鎵電晶體GT1可具有較高的操作電壓(例如大約是600V),而電阻R1可將電晶體MN1汲極所接收的電壓降壓至適合金氧半電晶體操作的電壓(例如大約是30V)。
偏壓元件25包含電阻R2及齊納二極體(zener diode)ZD1。電阻R2及齊納二極體ZD1互相串聯於接墊P2、P3之間。電阻R2的一端耦接於接墊P2及電晶體MN1的源極,電阻R2的另一端耦接於齊納二極體ZD1的陰極。而齊納二集體ZD1的陽極則耦接於接墊P3。如此一來,當偏壓電流被提供至偏壓元件25時,偏壓元件25可透過電阻R2及齊納二極體ZD1來提供穩定的壓差。
就功率電晶體T1整體來說,當功率電晶體T1的控制端(也就是電晶體MN1的閘極)接收到相對高準位的電壓時,功率電晶體T1中的壓控電流元件24會提供偏壓電流至偏壓元件25,使氮化鎵電晶體GT1的源極電壓上升。由於上升的源極電壓會導致氮化鎵電晶體GT1的閘極與源極之間的電壓差小於閥值電壓,進而使氮化鎵電晶體GT1截止。因此,功率電晶體T1的控制端在接收到相對高準位的電壓時,整體可視為被截止。相對地,當功率電晶體T1的控制端(也就是電晶體MN1的閘極)接收到相對低準位的電壓時,功率電晶體T1中的壓控電流元件24不會提供偏壓電流至偏壓元件25,故氮化鎵電晶體GT1的閘極與源極之間的電壓差可為大於閥值電壓,進而控制氮化鎵電晶體GT1。故功率電晶體T1的控制端在接收到相對低準位的電壓時,整體可視為被導通。
簡言之,由於功率電晶體T1的壓控電流元件24中設置有第一導通型態的電晶體MN1,功率電晶體T1可被操作於第二導通型態下。也就是當功率電晶體T1的控制端在接收到相對高電壓準位時,功率電晶體T1可被截止。功率電晶體T1的控制端在接收到相對低電壓準位時,功率電晶體T1可被導通。
針對功率電晶體T2而言,功率電晶體T2包含壓控電流元件26、偏壓元件27及氮化鎵電晶體GT2。壓控電流元件26耦接於下橋電路13及接墊P3、P4。偏壓元件耦接於接墊P4、P5。
壓控電流元件26包含電阻R3及電晶體MP1。電阻R3及電晶體MP1互相串聯於接墊P3、P4之間。在此實施例中,電晶體MP1可例如為第二導通型態(例如是p型)的金氧半場效電晶體(metal oxide semiconductor field effect transistor, MOSFET),在電晶體MP1的閘極接收到相對低準位的電壓時導通,並於閘極接收到相對高準位的電壓時截止。電晶體MP1的源極透過電阻R3耦接於接墊P3,其汲極耦接接墊P4,且其閘極耦接下橋電路13。
偏壓元件27包含電阻R4及齊納二極體(zener diode)ZD2。電阻R4及齊納二極體ZD2互相串聯於接墊P4、P5之間。電阻R4的一端耦接於接墊P4及電晶體MP1的汲極,電阻R4的另一端耦接於齊納二極體ZD2的陰極。而齊納二集體ZD2的陽極則耦接於接墊P5,並透過接墊P5接收參考電壓GND。如此一來,當偏壓電流被提供至偏壓元件27時,偏壓元件27可透過電阻R4及齊納二極體ZD2來提供穩定的壓差。
就功率電晶體T2整體來說,當功率電晶體T2的控制端(也就是電晶體MP1的閘極)接收到相對低準位的電壓時,功率電晶體T2中的壓控電流元件26會提供偏壓電流至偏壓元件27,使氮化鎵電晶體GT2的源極電壓上升。由於上升的源極電壓會導致氮化鎵電晶體GT2的閘極與源極之間的電壓差小於閥值電壓,進而使氮化鎵電晶體GT2截止。因此,功率電晶體T2的控制端在接收到相對低準位的電壓時,整體可視為被截止。相對地,當功率電晶體T2的控制端(也就是電晶體MP1的閘極)接收到相對高準位的電壓時,功率電晶體T2中的壓控電流元件26不會提供偏壓電流至偏壓元件27,故氮化鎵電晶體GT2的閘極與源極之間的電壓差可為大於閥值電壓,進而控制氮化鎵電晶體GT2。因此,功率電晶體T2的控制端在接收到相對高準位的電壓時,整體可視為被導通。
簡言之,由於功率電晶體T2的壓控電流元件26中設置有第二導通型態的電晶體MP1,功率電晶體T2可被操作於第一導通型態下。也就是當功率電晶體T2的控制端在接收到相對低電壓準位時,功率電晶體T2可被截止。功率電晶體T2的控制端在接收到相對高電壓準位時,功率電晶體T2可被導通。
因此,整體來說,電子系統2中可透過晶片20內部設置的壓控電流元件24、26及偏壓元件25、27與氮化鎵電晶體GT1、GT2的耦接關係,使壓控電流元件24、偏壓元件25及氮化鎵電晶體GT1形成為具有第二導通型態的功率電晶體T1,且壓控電流元件26、偏壓元件27及氮化鎵電晶體GT2形成為具有第一導通型態的功率電晶體T2。透過晶片20上的壓控電流元件24、26及偏壓元件25、27控制氮化鎵電晶體GT1、GT2的導通及/或截止,以較佳地避免氮化鎵電晶體GT1、GT2的漏電流,進而改善電子系統2的功率消耗。
圖3為本發明實施例一電子系統3的示意圖。晶片30包括驅動電路21、上橋電路12、下橋電路13、壓控電流元件34、26、偏壓元件25、27及自舉式(bootstrap)電路38。圖3所繪示的電子系統3相似於圖2所繪示的電子系統2,故相同元件沿用相同的符號標示。電子系統3包括晶片30及氮化鎵電晶體GT1、GT2。電子系統3與電子系統2的差別在於,在電子系統2的晶片20中,壓控電流元件24在電子系統3的晶片30中,被替換為壓控電流元件34。並且,電子系統3的晶片30中還包含有自舉式電路38及電容C2。因此,關於驅動電路21、上橋電路12、下橋電路13、壓控電流元件26、偏壓元件25、27的操作請參考上方篇幅的相關段落,於此不另贅述。
壓控電流元件34包含電阻R1及電晶體MP2。電阻R1及電晶體MP2互相串聯於接墊P1、P2之間。在此實施例中,電晶體MP2可例如為第二導通型態(例如是p型)的金氧半場效電晶體(metal oxide semiconductor field effect transistor, MOSFET),在電晶體MP2的閘極接收到相對低準位的電壓時導通,並於閘極接收到相對高準位的電壓時截止。電晶體MP2的源極透過電阻R1及接墊P1接收參考電壓HVDD,其汲極耦接接墊P2,且其閘極耦接上橋電路12。在一些實施例中,氮化鎵電晶體GT1可具有較高的操作電壓(例如大約是600V),而電阻R1可將電晶體MP2汲極所接收的電壓降壓至適合金氧半電晶體操作的電壓(例如大約是30V)。
在一些實施例中,壓控電流元件34、偏壓元件25及氮化鎵電晶體GT1三者可整體視為一功率電晶體T3來進行操作,功率電晶體T3可具有例如是第一導通型態。功率電晶體T3的第一端(例如是功率電晶體T3的汲極)可接收參考電壓HVDD,功率電晶體T3的第二端(例如是功率電晶體T3的源極)可耦接接墊P3,功率電晶體T3的控制端(例如是功率電晶體T3的閘極)可接收上橋電路12的控制。功率電晶體T3可依據其控制端所接收端的電壓來控制第一端與第二端之間的導通。
就功率電晶體T3整體來說,當功率電晶體T3的控制端(也就是電晶體MP2的閘極)接收到相對低準位的電壓時,功率電晶體T3中的壓控電流元件34會提供偏壓電流至偏壓元件25,使氮化鎵電晶體GT1的源極電壓上升。由於上升的源極電壓會導致氮化鎵電晶體GT1的閘極與源極之間的電壓差小於閥值電壓,進而使氮化鎵電晶體GT1截止。因此,功率電晶體T3的控制端在接收到相對低準位的電壓時,整體可視為被截止。相對地,當功率電晶體T3的控制端(也就是電晶體MP2的閘極)接收到相對高準位的電壓時,功率電晶體T3中的壓控電流元件34不會提供偏壓電流至偏壓元件25,故氮化鎵電晶體GT1的閘極與源極之間的電壓差可大於閥值電壓,進而控制氮化鎵電晶體GT1。故功率電晶體T3的控制端在接收到相對高準位的電壓時,整體可視為被導通。
簡言之,由於功率電晶體T3的壓控電流元件34中設置有第二導通型態的電晶體MP2,功率電晶體T3可被操作於第一導通型態下。也就是當功率電晶體T3的控制端在接收到相對低電壓準位時,功率電晶體T3可被截止。功率電晶體T3的控制端在接收到相對高電壓準位時,功率電晶體T3可被導通。
對應於第一導通型態的功率電晶體T3,晶片30中還設置有自舉式電路38。自舉式電路38包含有二極體D1及電容C1,互相串接於驅動電路21及接墊P3之間。二極體D1的陽極耦接於驅動電路21的電源電路210,二極體D1的陰極耦接於電容C1的一端,而電容C1的另一端耦接於接墊P3。
針對自舉式電路38的操作而言,當功率電晶體T3為截止且功率電晶體T2為導通時,接墊P3上的電壓會對應地被下拉。故自舉式電路38中的電容C1的上板會被電源電路210充電。當功率電晶體T3為導通且功率電晶體T2為截止時,接墊P3上的電壓會被上拉,電容C1的上板電壓會被對應地抬升。因此,自舉式電路38可透過功率電晶體T3、T2的操作產生抬升的電源電壓至上橋電路12。
進一步,由於功率電晶體T3為具有第一導通型態的功率電晶體,故藉由抬升的電源電壓所產生的控制訊號DS1’,可更佳地控制功率電晶體T3的控制端與第一端之間的電壓差,以控制功率電晶體T3為截止。
綜上所述,本發明的電子系統及晶片可在不需額外製程來改變氮化鎵電晶體本身的結構下,且保留氮化鎵電晶體本身高電流及快速切換的優點下,較佳地控制氮化鎵電晶體的導通及/或截止,有效避免氮化鎵電晶體的漏電流,進而改善電子系統整體的功率消耗。
1、2、3:電子系統 10、20、30:晶片 11、21:驅動電路 12:上橋電路 13:下橋電路 14、16、24、26、34:壓控電流元件 15、17、25、27:偏壓元件 38:自舉式電路 210:電源電路 211:控制器 212:位準平移電路 P1~P5:接墊 C1、C2:電容 D1:二極體 DS1、DS2:驅動訊號 DS1’、DS2’:控制訊號 GT1、GT2:氮化鎵電晶體 HVDD、GND:參考電壓 MN1、MP1、MP2:電晶體 R1~R4:電阻 T1、T2、T3:功率電晶體 ZD1、ZD2:齊納二極體
圖1為本發明實施例一電子系統的方塊示意圖。 圖2為本發明實施例一電子系統的方塊示意圖。 圖3為本發明實施例一電子系統的方塊示意圖。
1:電子系統
10:晶片
11:驅動電路
12:上橋電路
13:下橋電路
14、16:壓控電流元件
15、17:偏壓元件
P1~P5:接墊
DS1、DS2:驅動訊號
DS1’、DS2’:控制訊號
GT1、GT2:氮化鎵電晶體
HVDD、GND:參考電壓
T1、T2:功率電晶體

Claims (14)

  1. 一種晶片,適於控制一第一氮化鎵(gallium nitride,GaN)電晶體及一第二氮化鎵電晶體,該第一氮化鎵電晶體的源極耦接於該第二氮化鎵電晶體的汲極,該晶片包括:一第一接墊、一第二接墊、一第三接墊、一第四接墊及一第五接墊,該第一接墊、該第二接墊及該第三接墊分別適於耦接於該第一氮化鎵電晶體的汲極、源極及閘極,該第三接墊、該第四接墊及該第五接墊分別適於耦接於該第二氮化鎵電晶體的汲極、源極及閘極;一第一壓控電流元件,具有第一端及第二端,分別耦接於該第一接墊及該第二接墊;一第二壓控電流元件,具有第一端及第二端,分別耦接於該第三接墊及該第四接墊;一第一偏壓元件,耦接於該第二接墊及該第三接墊之間;以及一第二偏壓元件,耦接於該第四接墊及該第五接墊之間,其中該第一偏壓元件依據該第一壓控電流元件的控制以調整該第二接墊的偏壓,該第二偏壓元件依據該第二壓控電流元件的控制以調整該第四接墊的偏壓。
  2. 如請求項1所述的晶片,還包括:一上橋電路,耦接該第一壓控電流元件的控制端;以及一下橋電路,耦接該第二壓控電流元件的控制端, 其中該第一壓控電流元件依據該上橋電路的控制以提供一第一偏壓電流至該第一偏壓元件,以控制該第一氮化鎵電晶體為導通或截止,其中該第二壓控電流元件依據該下橋電路的控制以提供一第二偏壓電流至該第二偏壓元件,以控制該第二氮化鎵電晶體為導通或截止。
  3. 如請求項1所述的晶片,其中該第一偏壓元件包括:一第一電阻,具有耦接於該第二接墊的第一端;以及一第一齊納二極體,具有耦接於該第一電阻的第二端的陰極以及耦接於該第三接墊的陽極,其中該第二偏壓元件包括:一第二電阻,具有耦接於該第四接墊的第一端;以及一第二齊納二極體,具有耦接於該第二電阻的第二端的陰極以及耦接於該第五接墊的陽極。
  4. 如請求項2所述的晶片,包括:一電源電路,耦接該上橋電路及該下橋電路,該電源電路用以提供一第一電源電壓;一控制器,耦接該上橋電路及該下橋電路,該控制器用以產生一第一驅動訊號及一第二驅動訊號,以控制該上橋電路及該下橋電路的操作;以及一位準平移電路(level shift),耦接於該控制器、該上橋電路及該下橋電路,該位準平移電路用以調整該第一驅動訊號及該第 二驅動訊號的電壓位準。
  5. 如請求項4所述的晶片,其中該第一壓控電流元件包括一n型金氧半場效電晶體(n-type metal oxide semiconductor field effect transistor,n-MOSFET),當該第一壓控電流元件接收到一高邏輯準位電壓時,該第一壓控電流元件提供該第一偏壓電流至該第一偏壓元件以控制該第一氮化鎵電晶體為截止,其中該第二壓控電流元件包括一p型金氧半場效電晶體(p-type metal oxide semiconductor field effect transistor,p-MOSFET),當該第二壓控電流元件接收到一低邏輯準位電壓時,該第二壓控電流元件提供該第二偏壓電流至該第二偏壓元件以控制該第二氮化鎵電晶體為截止。
  6. 如請求項4所述的晶片,其中該第一壓控電流元件包括一第一p型金氧半場效電晶體(p-type metal oxide silicon field effect transistor,p-MOSFET),當該第一壓控電流元件接收到一低邏輯準位電壓時,該第一壓控電流元件提供該第一偏壓電流至該第一偏壓元件以控制該第一氮化鎵電晶體為截止,其中該第二壓控電流元件包括一第二p型金氧半場效電晶體,當該第二壓控電流元件接收到該低邏輯準位電壓時,該第二壓控電流元件提供該第二偏壓電流至該第二偏壓元件以控制該第二氮化鎵電晶體為截止。
  7. 如請求項6所述的晶片,還包括:一自舉式(bootstrap)電路,耦接該電源電路及該第三接墊之 間,該自舉式電路對該第一電源電壓進行升壓,以產生經升壓的該電源電壓,該自舉式電路包括:一二極體,具有陽極與陰極,該二極體的陽極耦接於該電源電路;以及一電容,耦接於該二極體的陰極與第三接墊之間,其中該自舉式電路於該二極體的陰極產生升壓的該第一電源電壓,並將升壓的該電源電壓提供至該上橋電路。
  8. 一種電子系統,包括:一第一氮化鎵電晶體(gallium nitride,GaN),具有汲極、源極及閘極;一第二氮化鎵電晶體,具有汲極、源極及閘極,該第一氮化鎵電晶體的源極耦接於該第二氮化鎵電晶體的汲極;以及一晶片,用以控制該第一氮化鎵電晶體及該第二氮化鎵電晶體的操作,該晶片包括:一第一接墊、一第二接墊、一第三接墊、一第四接墊及一第五接墊,該第一接墊、該第二接墊及該第三接墊分別耦接於該第一氮化鎵電晶體的汲極、源極及閘極,該第三接墊、該第四接墊及該第五接墊分別耦接於該第二氮化鎵電晶體的汲極、源極及閘極;一第一壓控電流元件,具有第一端及第二端,分別耦接於該第一接墊及該第二接墊;一第二壓控電流元件,具有第一端及第二端,分別耦接 於該第三接墊及該第四接墊;一第一偏壓元件,耦接於該第二接墊及該第三接墊之間;以及一第二偏壓元件,耦接於該第四接墊及該第五接墊之間,其中該第一偏壓元件依據該第一壓控電流元件的控制以調整該第二接墊的偏壓,該第二偏壓元件依據該第二壓控電流元件的控制以調整該第四接墊的偏壓。
  9. 如請求項8所述的電子系統,其中該晶片還包括:一上橋電路,耦接該第一壓控電流元件的控制端;以及一下橋電路,耦接該第二壓控電流元件的控制端,其中該第一壓控電流元件依據該上橋電路的控制以提供一第一偏壓電流至該第一偏壓元件,以控制該第一氮化鎵電晶體為導通或截止,其中該第二壓控電流元件依據該下橋電路的控制以提供一第二偏壓電流至該第二偏壓元件,以控制該第二氮化鎵電晶體為導通或截止。
  10. 如請求項8所述的電子系統,其中該第一偏壓元件包括:一第一電阻,具有耦接於該第二接墊的第一端;以及一第一齊納二極體,具有耦接於該第一電阻的第二端的陰極以及耦接於該第三接墊的陽極,其中該第二偏壓元件包括: 一第二電阻,具有耦接於該第四接墊的第一端;以及一第二齊納二極體,具有耦接於該第二電阻的第二端的陰極以及耦接於該第五接墊的陽極。
  11. 如請求項9所述的電子系統,其中該晶片包括:一電源電路,耦接該上橋電路及該下橋電路,該電源電路用以提供一電源電壓;一控制器,耦接該上橋電路及該下橋電路,該控制器用以產生一第一驅動訊號及一第二驅動訊號,以控制該上橋電路及該下橋電路的操作;以及一位準平移電路(level shift),耦接於該控制器、該上橋電路及該下橋電路,該位準平移電路用以調整該第一驅動訊號及該第二驅動訊號的電壓位準。
  12. 如請求項11所述的電子系統,其中該第一壓控電流元件包括一n型金氧半場效電晶體(n-type metal oxide semiconductor field effect transistor,n-MOSFET),當該第一壓控電流元件接收到一高邏輯準位電壓時,該第一壓控電流元件提供該第一偏壓電流至該第一偏壓元件以控制該第一氮化鎵電晶體為截止,其中該第二壓控電流元件包括一p型金氧半場效電晶體(p-type metal oxide semiconductor field effect transistor,p-MOSFET),當該第二壓控電流元件接收到一低邏輯準位電壓時,該第二壓控電流元件提供該第二偏壓電流至該第二偏壓元件以控制該第二氮 化鎵電晶體為截止。
  13. 如請求項11所述的電子系統,其中該第一壓控電流元件包括一第一p型金氧半場效電晶體(p-type metal oxide semiconductor field effect transistor,p-MOSFET),當該第一壓控電流元件接收到一低邏輯準位電壓時,該第一壓控電流元件提供該第一偏壓電流至該第一偏壓元件以控制該第一氮化鎵電晶體為截止,其中該第二壓控電流元件包括一第二p型金氧半場效電晶體,當該第二壓控電流元件接收到該低邏輯準位電壓時,該第二壓控電流元件提供該第二偏壓電流至該第二偏壓元件以控制該第二氮化鎵電晶體為截止。
  14. 如請求項13所述的電子系統,其中該晶片還包括:一自舉式(bootstrap)電路,耦接該電源電路及該第三接墊之間,該自舉式電路對該電源電壓進行升壓,以產生經升壓的該電源電壓,該自舉式電路包括:一二極體,具有陽極與陰極,該二極體的陽極耦接於該電源電路;以及一電容,耦接於該二極體的陰極與第三接墊之間,其中該自舉式電路於該二極體的陰極產生升壓的該第一電源電壓,並將升壓的該第一電源電壓提供至該上橋電路。
TW110141037A 2021-11-03 2021-11-03 電子系統及晶片 TWI778854B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110141037A TWI778854B (zh) 2021-11-03 2021-11-03 電子系統及晶片
CN202210138320.8A CN116073810A (zh) 2021-11-03 2022-02-15 电子系统及芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110141037A TWI778854B (zh) 2021-11-03 2021-11-03 電子系統及晶片

Publications (2)

Publication Number Publication Date
TWI778854B true TWI778854B (zh) 2022-09-21
TW202320488A TW202320488A (zh) 2023-05-16

Family

ID=84958347

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110141037A TWI778854B (zh) 2021-11-03 2021-11-03 電子系統及晶片

Country Status (2)

Country Link
CN (1) CN116073810A (zh)
TW (1) TWI778854B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315169A (en) * 1992-06-08 1994-05-24 Hughes Aircraft Company Power-efficient sample and hold circuit using bipolar transistors of single conductivity type
TW550886B (en) * 1998-06-22 2003-09-01 Nat Semiconductor Corp Overshoot control and damping circuit for high speed drivers
US20110025397A1 (en) * 2009-01-20 2011-02-03 University Of South Carolina DRIVER CIRCUIT FOR GALLIUM NITRIDE (GaN) HETEROJUNCTION FIELD EFFECT TRANSISTORS (HFETs)
WO2013106962A1 (zh) * 2012-01-19 2013-07-25 Zou Gaozhi 一种高精度闭环型霍尔电流传感器用电子线路
TW201340056A (zh) * 2012-03-19 2013-10-01 Raydium Semiconductor Corp 電位平移電路
US20140266383A1 (en) * 2013-03-15 2014-09-18 Peregrine Semiconductor Corporation Self-Activating Adjustable Power Limiter
US20160049786A1 (en) * 2014-08-15 2016-02-18 Navitas Semiconductor Inc. GaN OVERVOLTAGE PROTECTION CIRCUIT
US20160105173A1 (en) * 2014-10-10 2016-04-14 Efficient Power Conversion Corporation High voltage zero qrr bootstrap supply
US20180234086A1 (en) * 2017-02-13 2018-08-16 Macom Technology Solutions Holdings, Inc. High speed pin diode driver circuit
US20200366182A1 (en) * 2019-05-16 2020-11-19 Solaredge Technologies Ltd. Gate Driver For Reliable Switching

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315169A (en) * 1992-06-08 1994-05-24 Hughes Aircraft Company Power-efficient sample and hold circuit using bipolar transistors of single conductivity type
TW550886B (en) * 1998-06-22 2003-09-01 Nat Semiconductor Corp Overshoot control and damping circuit for high speed drivers
US20110025397A1 (en) * 2009-01-20 2011-02-03 University Of South Carolina DRIVER CIRCUIT FOR GALLIUM NITRIDE (GaN) HETEROJUNCTION FIELD EFFECT TRANSISTORS (HFETs)
WO2013106962A1 (zh) * 2012-01-19 2013-07-25 Zou Gaozhi 一种高精度闭环型霍尔电流传感器用电子线路
TW201340056A (zh) * 2012-03-19 2013-10-01 Raydium Semiconductor Corp 電位平移電路
US20140266383A1 (en) * 2013-03-15 2014-09-18 Peregrine Semiconductor Corporation Self-Activating Adjustable Power Limiter
US20160049786A1 (en) * 2014-08-15 2016-02-18 Navitas Semiconductor Inc. GaN OVERVOLTAGE PROTECTION CIRCUIT
US20160105173A1 (en) * 2014-10-10 2016-04-14 Efficient Power Conversion Corporation High voltage zero qrr bootstrap supply
US20180234086A1 (en) * 2017-02-13 2018-08-16 Macom Technology Solutions Holdings, Inc. High speed pin diode driver circuit
US20200366182A1 (en) * 2019-05-16 2020-11-19 Solaredge Technologies Ltd. Gate Driver For Reliable Switching

Also Published As

Publication number Publication date
TW202320488A (zh) 2023-05-16
CN116073810A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
TWI413351B (zh) 用於將金屬氧化半導體電晶體之閘極驅動至非導電狀態之電路
KR101946006B1 (ko) 전력 관리 칩 및 이를 포함하는 전력 관리 장치
CN111835327B (zh) 栅极驱动器及半导体模块
JP5939947B2 (ja) ショットキー型トランジスタの駆動回路
JP2014072532A (ja) クランピング回路、それを含む半導体装置及び半導体装置のクランピング方法
TW201901333A (zh) 基體偏壓產生電路
US8174808B2 (en) Load driving device
JP2016127435A (ja) 半導体装置
JP2017168924A (ja) 半導体装置
JP2018182953A (ja) 電圧駆動型半導体素子の並列駆動回路
JP3597897B2 (ja) 動的バイアス回路とその方法
JP2010028522A (ja) 半導体装置
US10707870B2 (en) High-side driver circuit
WO2018181212A1 (ja) スイッチング回路
KR100846880B1 (ko) 높고 그리고 넓은 동작 전압 범위를 위한 바이어스 회로를구비한 게이트 드라이버 출력 단
TWI778854B (zh) 電子系統及晶片
JP2008029059A (ja) 半導体装置の駆動回路
KR102026929B1 (ko) 전력 스위치용 게이트 구동회로
KR20160034175A (ko) 부트스트랩 회로
TWI813374B (zh) 電壓追蹤電路以及電子電路
US20180097517A1 (en) Integrated high-side driver for p-n bimodal power device
TWI802096B (zh) 電晶體元件
TWI816218B (zh) 閘極驅動設備及控制方法
JP2024065314A (ja) 窒化物半導体モジュール
TWI668553B (zh) 具溫度補償機制的開關電路及使用此開關電路的調節器

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent