TWI773465B - 藉由原子層沉積塗覆所得之耐化學性多層塗層 - Google Patents

藉由原子層沉積塗覆所得之耐化學性多層塗層 Download PDF

Info

Publication number
TWI773465B
TWI773465B TW110128034A TW110128034A TWI773465B TW I773465 B TWI773465 B TW I773465B TW 110128034 A TW110128034 A TW 110128034A TW 110128034 A TW110128034 A TW 110128034A TW I773465 B TWI773465 B TW I773465B
Authority
TW
Taiwan
Prior art keywords
coating
layer
coatings
deposition
yttrium oxide
Prior art date
Application number
TW110128034A
Other languages
English (en)
Other versions
TW202210652A (zh
Inventor
奕寬 林
錢德拉斯卡朗 文卡特拉曼
卡羅 沃得法萊德
Original Assignee
美商恩特葛瑞斯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商恩特葛瑞斯股份有限公司 filed Critical 美商恩特葛瑞斯股份有限公司
Publication of TW202210652A publication Critical patent/TW202210652A/zh
Application granted granted Critical
Publication of TWI773465B publication Critical patent/TWI773465B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本發明描述多層塗層、塗有多層塗層之基板(亦即,物件)及藉由原子層沉積製備多層塗層之方法,其中該塗層包括氧化鋁層及氧化釔層。

Description

藉由原子層沉積塗覆所得之耐化學性多層塗層
本說明書係關於藉由原子層沉積(atomic layer deposition;ALD)方法塗覆所得之多層塗層、在表面上具有多層塗層之基板及藉由原子層沉積製備多層塗層的方法,其中該塗層包括至少兩層不同沉積材料,包括氧化鋁及氧化釔。
半導體及微電子裝置加工需要之步驟涉及高反應性製程材料,諸如電漿。涉及此等反應性製程材料之製程,例如電漿蝕刻步驟、電漿沉積步驟及電漿清潔步驟,在含有工件及反應性製程材料之製程腔室的內部進行。製程腔室亦包括組件(亦稱為「反應器組件」)諸如腔室壁、流動管道(例如流動管線、蓮蓬頭及其類似物)、緊固件、托盤、支架及用於支撐工件或相對於製程腔室輸送或容納反應性製程材料之其他結構。為了用作製程腔室之部分,反應器組件應對將在製程腔室內使用的反應性製程材料具有耐性。反應器組件不應被製程材料降級或損壞,尤其係以將產生可能進入正在進行的製程或可能污染正在加工的工件之碎片、微粒或痕量金屬污染物之方式。
在用於製造半導體及微電子裝置之製程中使用的反應器組件常由基底或基板製成,該基底或基板為金屬或非金屬材料諸如不鏽鋼或陽極氧化鋁,或礦物或陶瓷材料等。反應器組件基板通常塗有相對於基板材料,對反應性製程材料具有提高的耐性之薄膜塗層。在過去,該等保護性薄膜塗層通常藉由各種適用方法,通常藉由陽極氧化(例如以產生陽極氧化鋁)、噴塗或物理氣相沉積(physical vapor deposition;PVD)之製程而被置於基板上。
根據本說明書,該等塗層為藉由原子層沉積塗覆於基板表面之多層保護性塗層,且包括至少兩種不同沉積材料之層,其包括非晶形氧化鋁(Aly Ox )層及氧化釔(Yy Ox )層。相對於先前之保護性塗層,諸如藉由非ALD方法例如藉由PVD塗覆所得之塗層,或與可藉由ALD方法製備但不以產生本說明書的示例多層塗層的有利性質之方式進行製備或構造之類似的塗層(例如含有氧化釔、氧化鋁或氧化釔及氧化鋁之混合物)相比,本發明塗層在其實體結構、作為保護性塗層之性能或兩者之方面可以係適用的及潛在有利的。
因此,原子層沉積方法可用於將多層塗層塗覆於基板上,其中多層塗層具有特別適用之物理性質,包括以下各者中之一或多者:適用或有利之耐化學性水準及適用或有利之耐破裂性水準。例如,包括氧化釔層及氧化鋁層之多層塗層,其中氧化釔層以所選厚度或輸入比提供,可非常有效地用作保護性塗層,且可表現出本文中所描述的適用或經改良之物理性質或性能中之一或多者。此外,如所描述之藉由原子層沉積塗覆所得之塗層亦可具有有利的塗層性質諸如在表面區域上的高度均勻塗層、降低的缺陷(諸如小孔、裂痕、裂隙及晶界)水準,且在三維且視情況具有高縱橫比之表面上塗覆可具有此等適用或所需性質。相較於某些在基板上形成保護性塗層(諸如在如本文中所描述之製程腔室中使用的保護性塗層)之其他先前方法,例如陽極氧化、噴塗及物理氣相沉積,可以藉由使用原子層沉積以塗佈可適用於(其他應用之一)半導體及微電子裝置製造行業之設備之組件來達成。
與產生薄膜塗層之各種其他方法相比,本發明已揭示在藉由ALD技術製備之多層塗層中可以獲得某些特定優勢。所描述之多層塗層之有利性質,其例如藉由製備包括厚度或輸入比較佳之氧化釔層之多層塗層來實現,可以包括以下各者中之一或多者:微晶尺寸小於10 nm之奈米晶結構(大體上非晶形);塗層的X射線繞射(XRD)峰之期望的半高寬(FWHM)大於2.5度2θ (2-theta);塗層之高密度(與先前的保護性塗層相比);低孔隙率(與先前的保護性塗層相比);及降低的缺陷(諸如小孔、開裂、裂隙或晶界)水準。另外,藉由原子層沉積形成之塗層亦可受益於:ALD塗層與基板(例如三維基板)的優異一致性;小尺度下之精確厚度控制;塗層在表面上之大面積均一性;垂直堆疊之尖銳介面;至包括非平面結構諸如具有高縱橫比之孔、通道或過道的表面之有效及均勻塗覆;及能夠製備多種材料薄層之塗層的多層加工。
在一態樣中,本發明係關於藉由原子層沉積製備之耐化學性多層保護性塗層,該等塗層包含氧化釔及非晶形氧化鋁之交替層。
在另一態樣中,本發明係關於包括耐化學性多層保護性塗層的經塗佈之物件,該塗層係藉由原子層沉積製備且包含交替的氧化釔層及非晶形氧化鋁層,該塗層塗佈於基板上,諸如真空穩定基板,例如用作半導體或微電子裝置製造系統之反應器組件,諸如用於加工電漿的反應腔室。
在另一態樣中,本發明係關於使用包括塗佈於基板上之藉由原子層沉積製備且包括氧化釔及非晶形氧化鋁之交替層的耐化學性多層保護性塗層的經塗佈之物件的方法。經塗佈之物件可以用作半導體或微電子裝置製造系統之反應器組件,諸如用於加工電漿之反應腔室。
相關申請案之交叉參考 本申請案主張2017年12月18日申請之美國臨時專利申請案第62/599,865號之35 USC 119下的權益,出於所有目的該申請案之揭示內容特此以全文引用之方式併入本文中。
以下描述:呈藉由原子層沉積塗覆於基板表面的多層薄膜形式之保護性塗層;藉由原子層沉積塗覆薄膜塗層之方法;包括具有塗覆於其一或多個表面的薄膜塗層之基板的經塗佈之物件;及在加工設備諸如製程腔室(亦稱為「反應器」或「反應腔室」)之組件中使用經塗佈之物件的方法。
如本文中所描述之藉由原子層沉積塗覆所得之保護性塗層可為製造為包括兩種不同沉積材料層包括(例如)氧化釔層及氧化鋁層的多層塗層。該塗層對製程材料,尤其(但不僅)對在使用用於已知或將來研發之製程的製程腔室期間將存在於製程腔室中之酸及電漿具有耐性,本文中描述某些示例製程。與藉由先前的保護性塗層所達到之耐性水準相比,藉由目前所描述之多層塗層所達到之耐化學性水準可以非常適用或相對得到提高。耐化學性之類型及對不同化學材料之耐性水準可為多層塗層的材料類型及多層塗層的物理性質諸如塗層的密度;塗層之結晶度及晶體結構;塗層之孔隙率;多層塗層中缺陷之存在減少;及多層塗層之不同層的性質(例如厚度),尤其係氧化釔層之厚度的結果。
作為一實例,多層塗層之適用的耐化學性可以藉由塗層之氧化鋁及氧化釔層,尤其係具有如所描述之較佳厚度或輸入比之氧化釔層的組合效應來達成。氧化鋁提供對氯基及溴基電漿曝露之有效或高效的耐性,諸如可以藉由曝露於鹽酸來證明。亦可預期對其他酸,包括磷酸之耐性。雖然本說明書之多層塗層的氧化鋁層提供對此等鹵素之適用或高效的耐性水準,但氧化鋁可能對氟基電漿組合物沒有特別高的耐性。另一方面,氧化釔層可包括於保護性塗層中,以提供對氟基電漿之適用或特別有效的耐性。因此,本說明書之多層塗層,其包括組合的氧化鋁層及氧化釔層,可用於提供對各種酸性材料(基於氧化鋁層的存在)以及對所有鹵素基電漿包括諸如氟基電漿之鹵素基電漿(基於氧化釔層的存在)之耐化學性。
經塗佈之物件可包括具有以固體連續形式或以圖案化形式塗覆於基板表面之多層塗層的基板。經塗佈之物件的實例包括諸如用於製備半導體材料、微電子裝置及其類似物的製程腔室的各種反應器組件中之任一者的物品。對諸如酸及電漿之製程材料具有耐性,多層塗層在此等及其他製程材料存在下可用於保護製程腔室之組件。較佳的保護性塗層具有少量缺陷諸如裂痕、裂隙、小孔及晶界,並且由對製程材料具有耐性之沉積材料層製成;因而,與先前的保護性塗層相比,該等塗層在曝露於製程材料時經歷減少的降級及顆粒化量。
如本文中所用,術語「多層」如同「多層塗層」係指藉由一系列原子層沉積步驟,藉由將表面曝露於將形式多種不同及交替的沉積材料「層」之一連串氣態前驅物材料而塗覆於表面之塗層。「層」可並非整個表面上之完整或連續的組合物。若沉積產生不完整的個別層,則多層塗層可視為複合塗層。交替放置在不同類型之沉積材料(例如各別為氧化釔或氧化鋁)上及之間的具有各量沉積材料(例如氧化鋁或氧化釔)之塗層,無論發生完整沉積或不完整沉積,皆被視為“層”。「雙層」膜僅由兩種不同沉積材料製成,例如氧化鋁及氧化釔之交替層。「雙重層」僅由兩個不同層製成。
藉由原子層沉積,如所描述之多層膜的各「層」由衍生自與氧化劑(包括O2 、O3 、H2 O、NO、NO2 、N2 O、CO、CO2 等)組合的氣態前驅物諸如含鋁前驅物(包括AlCl3 、Al(CH3 )3 等)之沉積材料的一或多個單層形成。各氣態前驅物包括例如在「反應位點」處將沉積於基板表面或先前沉積之ALD層上的一部分,以產生至表面之「單層」前驅物沉積部分。根據本說明書,用不同前驅物材料進行一系列原子層沉積步驟,以形成至少兩種不同類型之沉積材料層(例如交替層)。在連續的ALD步驟中,不同的前驅物(例如AlCl3 及H2 O)可個別曝露於表面,以產生單一類型沉積材料或沉積材料層(例如Aly Ox )。
如所描述之塗層被視為包括並被稱為包括多個「層」,此係由於多步驟製程,藉由該製程,將規定量之沉積材料諸如以交替順序置於基板上。本說明書使用術語「多層」來指示藉由ALD之多個沉積步驟產生之塗層,儘管藉由使用已知技術來鑑別塗層之不同沉積材料之離散「層」可能具有挑戰性。另外,如上文所論述,沉積步驟可形成不完整層(例如沉積材料島狀物),並且,多個步驟可被視為形成呈不完整多個「層」的複合物形式之多層塗層。在一些多層塗層中,可形成離散層且其可使用穿隧式電子顯微鏡進行偵測。
如本文中所用,術語「單層」係指已沉積在(例如添加至或與其反應)基板表面或先前ALD層上,使得沉積材料使基板或先前ALD層上之反應位點飽和的前驅物沉積部分之量;單層之厚度僅為少量原子數,即藉由與表面處有限數量之反應位點結合而覆蓋表面以產生厚度不超過約2、3或5個原子的單層的單層原子或分子之厚度。
亦如本文中所用,在描述多層塗層之沉積材料「層」中的術語「層」係指藉由在表面處沉積前驅物沉積部分的一或多個單層而衍生的連續或脈衝量之單一類型的沉積材料,即其為前驅物材料被曝露於表面並與表面之反應位點反應以提供為多層保護性塗層的功能層(例如氧化鋁「層」或氧化釔「層」)的所需沉積材料之結果;沉積材料(例如氧化釔或氧化鋁)「層」可以由一或多個單層之衍生自兩種或更多種不同氣態前驅物材料之沉積材料形成。
藉由原子層沉積塗覆所得之較佳多層塗層與不同形狀或形式之表面具有良好的均覆性,該等不同形狀或形式包括三維形狀,其包括通道、凹槽或開口,諸如縱橫比相對較高,例如縱橫比高達或大於20:1、50:1、100:1、200:1、500:1或更大之結構。
較佳多層塗層亦可以使用原子層沉積來塗覆,以在整個塗層表面上表現出高水準之塗層厚度均一性,尤其係在與藉由其他方法諸如藉由物理氣相沉積塗覆所得之塗層相比時。較佳地,塗層在垂直於塗層之厚度以及整個塗層之長度/寬度上在組成上為均勻的。
較佳塗層亦包括低水準之塗層缺陷,諸如裂痕、裂隙、小孔或晶界,其中之任一或多者皆可能經在製程腔室中使用多層塗層之時段變為較大缺陷。諸如小孔、裂痕、裂隙及晶界之缺陷可以藉由目視檢查,視情況使用藉助於光學顯微鏡或掃描電子顯微鏡之放大率或藉由其他合適的檢查方法來鑑別。與藉由其他方法,諸如藉由物理氣相沉積塗覆所得之先前的保護性塗層相比,本說明書之作為適用於類似用途之保護性塗層,諸如如所描述之製程腔室組件的保護性塗層之某些較佳的多層塗層可以包括大體上較少的小孔(例如小孔量減少50%、70%、80%或90%)。較佳保護性塗層之實例可以大體上不包括小孔且大體上不包括晶界,意謂例如各別地,塗層平均每平方公分具有少於一個小孔,且塗層平均每平方公分具有少於一個晶界。
本說明書之較佳多層塗層表現出對製程腔室中所用之製程材料(包括但不限於酸及電漿)具有有利的耐性水準,尤其係經曝露於製程腔室中所用之製程材料之延長的期間。對製程材料之高耐性水準至少部分可歸因於包括以下之因素:用於製備不同層(例如氧化釔、氧化鋁)之沉積材料的類型(化學);膜之低至無的長程有序(long range order) (非晶形);膜之高品質,意謂低水準之缺陷諸如小孔、裂痕、裂隙及晶界;及塗層之低孔隙率及高密度。
「耐性」塗層為在使用製程腔室,尤其係經數周或數月之時段的延長的使用期間,在製程腔室中曝露於諸如酸或氣體電漿之製程材料後,經歷商業上適用的低量,較佳地包括與先前已使用之其他保護性塗層一致或相對於其(例如相對於用於製程腔室中以加工半導體或微電子裝置基板的先前塗層)減少之量的降級的塗層,諸如藉由物理氣相沉積(PVD)塗覆所得之氧化釔或氧化鋁塗層。作為製程腔室中之保護性塗層,本說明書之較佳塗層可以具有有利的長使用壽命,最佳為顯著大於先前的保護性塗層之使用壽命。保護性塗層之降級或不降級可使用保護性塗層技術中常用的各種技術中之任一者,包括諸如其中對裂痕、裂隙或其他缺陷區域進行檢查之光學或掃描電子顯微術之目視手段,或藉由評估膜對其基板之黏附強度來確定,其中較大的黏附對應於較少的降級。
亦較佳地,相對於用於類似用途(例如製程腔室之組件)之先前的保護性塗層,諸如藉由物理氣相沉積(PVD)塗覆所得之氧化釔或氧化鋁保護性塗層,本說明書之多層膜可具有相對較高的密度及較低的孔隙率。例如,如所描述,包括氧化釔及氧化鋁層之ALD塗層的密度可比具有類似組分但藉由PVD塗覆所得之塗層的密度大至少10%或20%。如所描述,包括氧化釔及氧化鋁層之ALD塗層的孔隙率可比具有類似組分但藉由PVD塗覆所得之塗層的孔隙率小。藉由ALD塗覆所得之氧化鋁層之密度可在3.0-4.0公克/立方公分範圍內且孔隙率可小於0.5%。
藉由原子層沉積而沉積於基板表面上之某些目前較佳的多層塗層可為包括僅兩種不同沉積材料:大體上為非晶形氧化物諸如氧化鋁(Aly Ox )之第一沉積材料;及為氧化釔(Yy Ox )層之第二沉積材料的交替層的雙層塗層。特別較佳的塗層可含有此等兩種沉積材料之層,且大體上不含由任何其他材料製成之層,例如,以塗層之總層數計,其他材料層小於1%、0.5%或0.1%。例如,較佳的多層塗層可含有總計2至10,000個氧化釔及氧化鋁之交替層。
如所描述之多層塗層為藉由原子層沉積(ALD)塗覆所得的,該原子層沉積為用於將薄層材料(例如薄膜)以塗層形式沉積於表面上之技術。該技術作為一系列氣相沉積步驟進行。各沉積步驟涉及一種氣態化學反應物,其通常被稱為前驅物,以使氣態反應物或其一部分或衍生物沉積於表面上或與存在於表面處之材料反應的方式存在於表面上。前驅物之至少一部分(亦即,沉積部分)在反應位點處與表面處之材料反應,該反應位點存在於表面處之數量受到限制。向表面供應一定量之前驅物,以允許氣態前驅物與所有反應位點反應,此時沉積材料被稱為已形成單層。
一或多種氣態前驅物個別且依序存在於表面上,以允許前驅物在反應位點處與表面反應或以其他方式沉積於表面上,作為前驅物之沉積部分。關於可與表面處之反應位點反應的前驅物之量,亦及關於單層之厚度,其為包括被沉積之原子或分子的尺寸及經前驅物塗覆之表面的性質(包括反應位點的數量)的因素的函數,沉積製程具有自限性。經由在個別沉積步驟中重複且連續將表面曝露於不同前驅物,由多層不同沉積材料(各層視情況藉由多個沉積步驟及多個沉積單層形成)製成之薄膜塗層可以在表面上生長,其中各層皆為藉由選擇性地沉積一或多種特定前驅物而形成之沉積材料。為了比較,用於將材料薄膜或塗層沉積於表面上之其他已知技術包括化學氣相沉積(chemical vapor deposition;CVD)及物理氣相沉積(PVD),其為以連續、穩態方式將材料以薄膜塗層形式沉積於表面上之製程,在此期間沉積材料形成在沉積製程範圍期間厚度持續增加之膜。
藉由原子層沉積技術,氣相前驅物在前驅物沉積於其上之基板表面處之反應位點處反應。反應受到在表面處存在反應位點之限制,因為前驅物之氣相原子或分子僅能與表面上的有限數量的反應性位點反應。一旦所有彼等位點已被耗盡,則形成了「單層」且單層之沉積及生長包括單層厚度之生長結束。已沉積於表面上之一定量的沉積材料(前驅物之沉積部分)稱為單層,其特徵厚度高達幾埃至數埃厚,且基於藉由ALD進行塗覆,其在整個單層區域上之厚度非常均勻(假設形成連續層)。
藉由原子層沉積製備之塗覆於本說明書之基板的多層保護性塗層可實現的優勢包括塗層與基板的優異一致性;塗層厚度之精確控制;塗層厚度在塗層區域上之高均一性;能夠將兩種或更多種不同沉積材料以塗層之不同層形式塗覆;在整個塗層中垂直方向上之組分均一性;將塗層製備為具有非常低水準之缺陷,諸如小孔、裂痕、裂隙及晶界;能夠製備具有高密度及低孔隙率之塗層;及能夠將具有此等物理性質之塗層置於基板上,該基板包括非平面結構、高度成形結構、成角結構或包括開口、通道、溝槽或其類似物之結構,包括具有高縱橫比之該等結構。
在原子層沉積之第一示例步驟中,將第一氣態前驅物材料(例如AlCl3 )提供至反應腔室(亦稱為「反應器」)中之基板之表面。第一氣態前驅物之原子或分子在表面上的位點處發生反應,直至所有位點皆已耗盡,此時前驅物之單層沉積部分已在表面上形成且單層生長結束。單層厚度因此由可供用於前驅物原子或分子之反應位點的數量以及前驅物原子或分子之沉積部分的尺寸來控制及確定。在後續步驟中,可將第二前驅物(例如氧化劑,諸如水)引入反應腔室中以與先前沉積之單層反應,以在先前沉積之單層的表面處形成新的單層。由於此等類型之沉積步驟中之一或多者,在表面上形成沉積材料(例如Aly Ox )。用以沉積一系列單層,在表面處引起一系列產生沉積材料之反應的此等步驟的多個順序可以增加沉積材料層之厚度。
視需要,在兩個單層沉積物之間,或在沉積不同類型前驅物以形成兩種不同沉積材料之層的步驟之間,可以例如使用惰性氣體沖洗(或「吹掃」)反應腔室中之氣態氣氛,以移除剩餘的前驅物原子或分子。
藉由原子層沉積製備之多層保護性塗層之生長(亦即,厚度的增加)以逐個單層的順序並以逐層的順序進行。沉積材料(例如氧化鋁或氧化釔)之各層藉由以形成該層沉積材料之方式,視情況包括前驅物材料之間的化學反應,將一或多個單層置於表面處來形成。為了產生各單原子或單分子層(單層),需要將前驅物用劑均勻地輸送至基板表面,以達到基板表面反應位點之飽和度。當所有可用的表面結合位點皆填充有源自前驅物與表面結合位點之間的反應的新化學物質時,即發生飽和。所得表面不會為所使用之前驅物創建新的結合位點,但形成用於下一前驅物之結合位點。飽和後,表面可被曝露於不同前驅物(以繼續形成所需之沉積材料層),或可進行處理以重新創建新的結合位點。視需要,可沖洗製程腔室以移除殘餘前驅物。藉由在交替循環中,用循環之間的視情況選用之沖洗步驟,交替呈現於第一系列或一連串可用於形成第一類型之沉積材料(例如氧化鋁)的前驅物材料的基板,以及第二系列或一連串可用於形成第二種類型之沉積材料(例如氧化釔)的前驅物材料(不同於第一組或系列)的基板,可以產生一層包括兩種不同沉積材料之交替層的薄的多層塗層,其中各層皆具有所需或受控之厚度。
可以選擇用於原子層沉積之前驅物,以使所需材料(沉積材料)或其反應物適用且高效地沉積於表面上,以形成沉積材料層。一般而言,前驅物原子或分子可為將以化學方式吸附於經前驅物材料塗覆之基板表面上,或將與先前沉積之單層的沉積材料反應之前驅物原子或分子。前驅物可呈可經揮發為可以蒸氣形式被有效引入反應腔室及基板表面之氣態形式之固體、液體或氣體形式。前驅物之蒸氣壓力不必過高,只要氣態前驅物為表面飽和提供足夠的材料通量即可。例如,若前驅物可在前驅物不分解之溫度下,在約1托之蒸氣壓力下以氣態形式提供,則前驅物可適用。適用的前驅物不應與自身反應且應足夠穩定,以不在表面上或以氣相形式分解,以便實現自終止表面反應。
較佳地,如所描述之多層保護性塗層可為藉由對包含第一沉積材料及第二沉積材料、基本上由其組成或由其組成的材料進行原子層沉積所形成之多層(例如雙層塗層或複合塗層)薄膜。較佳第一沉積材料為大體上呈非晶形式之氧化鋁,即AlyOx (其中y/x在1.5/3至2.5/3之範圍內)。較佳第二沉積材料為氧化釔,意謂YyOx (其中y/x在1.5/3至2.5/3之範圍內)。一種「基本上由以下各者組成」之多層塗層:兩種不同沉積材料層,例如,氧化釔層及大體上非晶形之氧化鋁層,係指包括僅兩種不同沉積材料層及以塗層之總層數計不超過1%、0.5%或0.1%之任何另一材料層的塗層;該塗層在本文中亦稱為「雙層」塗層。
作為多層塗層之一層的氧化鋁可以提供對某些製程化學品諸如酸之高水準耐性,並且可以藉由原子層沉積以大體上非晶形式(例如塗層的XRD峰之FWHM寬於4度2θ,即非晶形式)來沉積。
非晶形氧化鋁層之示例厚度可為至少1埃,且可視需要經塗覆為厚於1埃,例如,具有在1至50埃範圍內之厚度。氧化鋁層在一定厚度範圍內可為大體上非晶形的。然而,可以基於其他因素選擇氧化鋁層之厚度,以便為多層塗層提供對某些氧化鋁可能對其具有特別耐性之製程材料之所需耐性水準,例如提高多層保護性塗層對酸之耐性。可以製備100 nm之厚度。
多層保護性塗層之第二沉積材料可為氧化釔。氧化釔可較佳沉積在基板上,以使得氧化釔層及整個保護性塗層提供對製程材料諸如酸及電漿之相對較高的耐性水準,以及相對較高的耐破裂性及減少的晶界及其他缺陷之存在。
較佳的多層塗層可以包括以將使氧化釔層採用並保持氧化鋁層之形態的(氧化釔層之)厚度沉積於氧化鋁上之氧化釔層。非晶形之氧化鋁層提供一種在其上可以塗覆氧化釔層之非晶形基底,此將促進氧化釔以非晶形式形成。藉由將氧化釔層塗覆至非晶形氧化鋁層上,氧化釔層(若以有效厚度塗覆)將趨向於非晶質,籍此產生表現出如所描述之所需物理性質包括耐化學性、耐破裂性及不存在晶界及其他缺陷的大體上非晶質之多層塗層。因此,可較佳將使用非晶形氧化鋁作為多層塗層之一層的沉積材料作為一種提高以非晶形式沉積氧化釔的能力之方式,使總的多層塗層之結晶度水準較低。出於此原因,多層塗層之塗覆於基板表面上之第一層可較佳為自然傾向於高度非晶形的沉積材料,例如氧化鋁。
參看圖1,此圖式示出來自如本文中所描述之測試實例氧化鋁-氧化釔雙層ALD塗層之資料,其中示例塗層具有在10:1至1:10範圍內之不同的氧化釔:氧化鋁輸入比(原子)。與所製備之樣品有關之詳情於表1中。 1
      組分(at%)   
輸入Y/Al比 複合塗佈循環 Y Al O 所量測之Y/Al比
0.91 (10:1) 10Y循環+ 1 Al循環 23.8 2.5 73.7 0.90
0.89 (8:1) 8Y循環+ 1 Al循環 20.7 7.7 71.6 0.73
0.5 (1:1) 1Y循環+ 1 Al循環 11.2 22.0 66.8 0.34
0.25 (1:3) 1Y循環+ 3 Al循環 6.4 30.9 62.7 0.17
0.09 (1:10) 100(1Y循環+ 10 Al循環) 1.9 39.0 59.1 0.05
因此,例如,由使用產生氧化釔之前驅物的1 ALD沉積循環,接著為使用產生氧化鋁之前驅物的10 ALD沉積循環製備目標輸入Y/Al比為1:10的塗層。Y/AL比定義為at% Y/ (at% Y + at% Al)且因此假定氧在塗層中之氧化釔與氧化鋁之間同等分佈。藉由能量色散X射線光譜儀(EDAX)確定所量測之Y/Al比。使用X射線螢光(XRF)及X射線繞射(XRD)進行類似的量測。1:1 Y/Al樣品之結果示於表2中。所量測之值之間的差異反映技術的侷限性/特徵,並且將由熟習此項技術者預期。 2
量測技術 所量測之Y/Al比
EDAX 0.35
XRF 0.45
XPS 0.6
因此,目標輸入Y/Al比為1:1之多層塗層將被視為所量測之Y/Al比在約0.35與約0.6之間的範圍內(約1:2至約2:1)。
該測試藉由如相關技術中已知的使用掠入射附接件以僅偵測自膜表面繞射之X射線的X射線繞射(XRD)進行。圖式示出每秒相對於2θ之計數。如在圖1之圖式下所示,測試結果表明,藉由增加氧化釔層之厚度,峰變得更陡。更陡的峰指示更高水準之長程有序具有較大微晶尺寸。參看圖1,10:1 (氧化釔:氧化鋁)具有2.501度2θ之FWH,指示其微晶尺寸為33 Å。8:1具有3.793度2θ之FWHM,指示其微晶尺寸為22 Å。1:1、1:3、1:10之FWHM寬於4度2θ,此指示雙層為非晶形。
出人意料地,已發現與Y/Al比較高之塗層相比,輸入Y/Al比為1:1 (且所量測之Y/Al比為2:1至1:2)之氧化釔及氧化鋁之多層ALD塗層的結晶度顯著降低。非晶形多層塗層在各種應用中將為較佳的。因此,出人意料地已發現,氧化釔層可以沉積於非晶形氧化鋁層上,其厚度允許氧化釔層大體上為非晶質(例如,如藉由x射線繞射所量測之小於10%、5%或1%的晶質)或結晶度水準超低(亦即,非晶形),例如使得塗層的XRD峰之FWHM寬於2度2θ。與相對較厚的氧化釔層相比,相對較薄的氧化釔層將更不易於形成晶質結構---即氧化釔層厚度之增加提高了氧化釔將形成晶體之可能性。足夠薄以維持個別氧化釔層及含有氧化釔層之整個多層塗層之低水準結晶度的氧化釔層因此為較佳的。如所描述之較佳多層塗層的氧化釔層之示例厚度可為使氧化釔大體上為非晶形的厚度,其具體範圍為,例如,在6至12埃之範圍內,通常在約8至10埃之範圍內。
根據本發明之示例保護性塗層,多層塗層大體上為非晶質或超小晶質。較佳多層塗層之晶質尺寸可小於10 nm,即塗層的XRD峰之FWHM寬於2度2θ。
如所描述之多層塗層,諸如由(非晶質)氧化釔及非晶形氧化鋁之交替層形成之塗層的總厚度,可為提供如本文中所描述之所需性質包括對製程材料具有良好耐性、塗層厚度在塗層區域上之高均一性、低缺陷、高密度、低孔隙率、低結晶度、高組分均一性等之任何厚度。供將多層塗層用作製程腔室之組件上的保護性塗層的適用厚度之實例可為至少10奈米(亦即,至少0.01微米),例如至少100奈米(0.1微米)及厚度達2微米,較佳不超過1.0微米。
可以選擇多層塗層中氧化釔(Yy Ox )及氧化鋁(Aly Ox )之相對量以提供如本文中所描述之保護性塗層的所需特徵,諸如以下各者中之一或多者:對製程化學品具有期望的耐性;多層塗層之所需低結晶度(及晶界)水準;期望的高密度及低孔隙率;低缺陷水準;及如所描述之多層塗層的其他適用及較佳特徵。包含大體上非晶形之氧化鋁及大體上非晶形或非晶質之氧化釔、由其組成或基本上由其組成的多層塗層中氧化釔及氧化鋁的相對量的實例可以在約1:50至50:1的範圍內,其中Aly Ox :Yy Ox 之較佳相對量例如在1:15至12:1,例如1:15至10:1的範圍內。
與氧化釔(Yy Ox )及氧化鋁(Aly Ox )之相對量之此等實例一致,可以選擇氧化釔(Yy Ox )層及氧化鋁(Aly Ox )層之相對厚度以提供如本文中所描述之所需性質及所需性質平衡,諸如以下各者中之一或多者:對製程化學品具有期望的耐性、多層塗層之所需低結晶度(及晶界)水準;期望的高密度及低孔隙率,及如所描述之多層塗層的其他適用及較佳特徵。通常,將塗層之各類型之沉積材料的所有層皆選擇為大約相同的厚度;所有氧化鋁層之厚度將大致相同,且所有氧化釔層之厚度將大致相同,但氧化釔層之厚度可以不同於氧化鋁層之厚度。可以選擇各沉積材料層之厚度,以提供氧化釔之所需的(低)結晶度及對某些製程組件之高耐性。如所描述之多層塗層可以包括具有任何相對厚度,例如1:50至50:1之氧化釔(Yy Ox )層及氧化鋁(Aly Ox )層。此圖可用於描述多層塗層之個別層,或用於描述多層塗層之所有層的總組合厚度。在某些特定實施例中,此等兩層(Aly Ox :Yy Ox ) (個別或組合)之相對厚度可在1:15至12:1,例如1:15至10:1之範圍內。
此外,與氧化釔(Yy Ox )及氧化鋁(Aly Ox )之此等相對量及氧化釔(Yy Ox )層及多層塗層中氧化鋁(Aly Ox )層之相對厚度一致,多層塗層可以具有可有效提供如所描述之多層塗層,較佳包括如所描述之所需特徵及特徵之組合的釔及鋁的相對原子量。在示例塗層中,釔(作為氧化釔層的氧化釔之部分)與鋁(作為氧化鋁層的氧化鋁之部分)之相對原子量(Y(原子):Al(原子))可為1:50至50:1,例如1:10至10:1。
能有效製備如所描述之適用或較佳多層塗層,例如非晶形氧化釔及非晶形氧化鋁沉積材料之交替層的原子層沉積方法可以視需要使用可有效提供多層塗層的各種適用前驅物及製程條件中之任一者,且藉由使用已知及市售的ALD設備、製程條件及技術來進行。示例ALD製程可藉由包括在反應腔室中將氣態前驅物沉積於基板表面上以在表面上形成單層前驅物材料之個別步驟的一系列步驟來進行。第二前驅物之第二單層可以沉積於(例如與第一單層反應)第一單層上,例如,以形成沉積材料層。塗覆此等兩種前驅物以形成沉積材料之循環可以重複,以增加沉積材料層之厚度。
作為一實例,為了形成氧化鋁層,可以將第一前驅物諸如AlCl3 引入至表面以與表面反應並提供連接至表面之鋁原子(連接有氯原子);可以將第二前驅物例如水、臭氧、氧引入至表面以用氧原子替換氯原子以形成氧化鋁(Aly Ox )。含鋁前驅物之替代實例為三甲基鋁(TMA)。此等兩個沉積步驟之多個循環可以交替順序進行,以產生厚度增加之氧化鋁層。較佳地,作為氧化鋁及氧化釔多層膜之初始層,可以在氧化釔層之前首先沉積氧化鋁層,以使得氧化鋁之非晶形性質防止隨後塗覆所得之氧化釔層形成為包括晶質結構。可以選擇加工溫度以使氧化鋁有效地沉積。
作為形成氧化釔層之步驟之實例,可以將含釔前驅物(例如Y(thd)3 ,其中thd = 2,2,6,6-四甲基-3,5-庚二酮基)引入至表面以與表面(較佳為先前塗覆所得之ALD沉積非晶形材料,諸如非晶形氧化鋁)反應並在表面處提供釔原子(連接有thd基團)。可以將第二前驅物(例如水、臭氧、氧)引入至表面以用氧原子替換thd基團以形成氧化釔(Yy Ox )。含釔前驅物之替代實例為三(環戊二烯基)釔(III) (YCp3 )。此等兩個沉積步驟之多個循環可以交替順序進行,以產生厚度增加之氧化釔層。可以選擇加工溫度以使氧化釔以大體上非晶態之形式有效地沉積。
此等個別沉積步驟,或形成單一沉積材料(諸如氧化鋁或氧化釔)層之一連串步驟,可與其他中間物諸如沖洗反應腔室以吹掃剩餘的氣態前驅物之步驟組合進行。
如所描述之多層塗層可形成於任何表面或基板上並適用於該表面或基板,在其上可藉由原子層沉積有效地塗覆一層或單層材料。在具體實施例中,基板可由真空穩定基板材料製成,並且可呈包括製程腔室之內部組件的製程腔室的組件之形式,該製程腔室用於藉由使用具有高度反應性、腐蝕性或以其他方式能夠使其他材料強力降級或與其反應的一或多種不同的製程材料來加工基板、材料或裝置。在此上下文中,可將如所描述之多層保護性塗層有利地塗覆於在本文中被稱為「真空相容性基板」之基板上,且其形成為充當被用於藉由處理製程材料諸如電漿來加工微電子裝置、半導體設備及裝置等的製程腔室之組件。
製程腔室可用於含有可呈液體、氣體或電漿形式之高度腐蝕性或反應性製程材料,其例如用於在製造微電子或半導體裝置之步驟期間蝕刻微電子裝置基板或半半導體裝置基板之材料。反應性製程材料之特定實例包括溴電漿、氯電漿及氟電漿等等。製程腔室必須含有可用於運輸、保持、固定、支撐基板或將基板移入製程腔室中、自其中移出及移入其內,而不會由將存在於製程腔室中的製程材料過度降級之組件及表面。製程腔室亦必須含有可有效將反應性製程材料(例如電漿)流動、輸送至製程腔室內部及自其中移除之結構系統。此等不同類型之製程腔室組件之實例包括流頭(蓮蓬頭)、防護罩、托盤、支架、噴嘴、閥門、管道、供處置或保持基板之載台、晶圓處置固定件、腔室襯墊、陶瓷晶圓載體、晶圓保持器、基座、主軸、夾頭、環、擋板及各種類型的緊固件(螺釘、螺帽、螺栓、鉗夾、鉚釘等)。
本發明之較佳塗層可特別適用於製備可在製程腔室中用作製程腔室組件之塗層物件。此包括通常具有任何形狀的此類型之物件,但亦有利地包括具有物理形狀或形式之物件,該物理形狀或形式包括開口、孔、通道、隧道、螺紋螺釘、螺紋螺帽、多孔膜、過濾器、三維網路、孔洞、通道或其類似物,包括被認為具有高縱橫比之該等特徵。與先前沉積類似塗層之方法不同,如所描述之非晶形塗層的原子層沉積可有效地在該等結構,包括具有縱橫比為至少20:1、50:1、100:1、200:1或甚至500:1之結構的物件上提供均勻且高品質的塗層。
腔室組件可由被稱為基板之材料製成,該材料可較佳為真空相容性基板。一般而言,實例可包括可塗有保護性塗層並用於製程腔室中之陶瓷材料、金屬及金屬合金。可用作真空相容性基板之陶瓷材料之實例包括氧化鋁、碳化矽及氮化鋁。金屬及金屬合金之實例包括不鏽鋼及鋁。真空相容性基板亦可為石英、藍寶石、二氧化矽、熔融二氧化矽、熔融石英、矽、陽極氧化鋁、氧化鋯以及塑膠,諸如半導體工業中所用的某些塑膠,例如聚醚醚酮(PEEK)及聚醯亞胺。
雖然本說明書通常係指製程腔室及製程腔室組件(例如蝕刻腔室組件)作為保護性塗層之適用的基板,但所描述之塗層不限於此等物品。將受益於對高度反應性化學材料具有高耐性水準之保護性塗層之各種其他陶瓷、礦物、金屬及金屬合金物件及基板亦可如本文中所描述進行塗佈。
因此,本發明係關於所描述之多層塗層;包括塗有如所描述之多層塗層的基板(例如製程腔室組件)的經塗佈之物件及裝置;設備及裝置,諸如包括具有如所描述之保護性多層塗層的一或多個組件之反應腔室或其他製程設備(包括但不限於半導體加工設備);及製程及使用包括已塗有如所描述之保護性多層塗層的一或多個組件之反應腔室或其他製程設備之方法,以供使用反應腔室或製程設備,例如藉由用電漿處理基板來加工諸如半導體裝置或微電子裝置之基板。該加工之實例包括使用諸如衍生自NF3 、Cl2 、CHF3 、CH2 F2 、SF6 及HBr之彼等電漿進行電漿蝕刻(例如乾式電漿蝕刻)。
圖1係展示本說明書之多層塗層的x射線繞射資料之圖。

Claims (9)

  1. 一種藉由原子層沉積製備之耐化學性多層保護性塗層,該塗層包含交替的具有小於10%之結晶度的氧化釔層及非晶形氧化鋁層,其中該塗層具有在2:1至1:2之間之範圍內的Y/Al比且具有0.01至1.0微米的厚度。
  2. 如請求項1之塗層,其中該氧化釔層為非晶形氧化釔層。
  3. 如請求項1之塗層,其中該塗層為氧化釔及非晶形氧化鋁之複合塗層。
  4. 一種經塗佈之物件,其包含表面上具有藉由原子層沉積製備之塗層的基板,該塗層包含交替的具有小於10%之結晶度的氧化釔層及非晶形氧化鋁層,其中該塗層具有在2:1至1:2之間之範圍內的Y/Al比且具有0.01至1.0微米的厚度。
  5. 如請求項4之經塗佈之物件,其中該基板包括選自螺紋螺釘、螺紋螺帽、多孔膜、過濾器、三維網路、孔洞及通道之三維特徵。
  6. 如請求項4之經塗佈之物件,其中該基板包括縱橫比為至少20:1之三維結構。
  7. 一種加工設備,其包含反應腔室,該反應腔室包含具有藉由原子層 沉積製備之保護性塗層的組件,該塗層包含交替的具有小於10%之結晶度的氧化釔層及非晶形氧化鋁層,其中該塗層具有在2:1至1:2之間之範圍內的Y/Al比且具有0.01至1.0微米的厚度,及其中該加工設備為微電子加工設備或半導體加工設備。
  8. 如請求項7之加工設備,其中該反應腔室為蝕刻腔室或沉積腔室。
  9. 如請求項7之加工設備,其中該組件包括縱橫比為至少20:1之三維結構。
TW110128034A 2017-12-18 2018-12-18 藉由原子層沉積塗覆所得之耐化學性多層塗層 TWI773465B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762599865P 2017-12-18 2017-12-18
US62/599,865 2017-12-18

Publications (2)

Publication Number Publication Date
TW202210652A TW202210652A (zh) 2022-03-16
TWI773465B true TWI773465B (zh) 2022-08-01

Family

ID=66814261

Family Applications (3)

Application Number Title Priority Date Filing Date
TW111117323A TWI777911B (zh) 2017-12-18 2018-12-18 藉由原子層沉積塗覆所得之耐化學性多層塗層
TW107145745A TWI748145B (zh) 2017-12-18 2018-12-18 藉由原子層沉積塗覆所得之耐化學性多層塗層
TW110128034A TWI773465B (zh) 2017-12-18 2018-12-18 藉由原子層沉積塗覆所得之耐化學性多層塗層

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW111117323A TWI777911B (zh) 2017-12-18 2018-12-18 藉由原子層沉積塗覆所得之耐化學性多層塗層
TW107145745A TWI748145B (zh) 2017-12-18 2018-12-18 藉由原子層沉積塗覆所得之耐化學性多層塗層

Country Status (7)

Country Link
US (2) US11390943B2 (zh)
EP (1) EP3728692A4 (zh)
JP (2) JP7382935B2 (zh)
KR (2) KR20200089765A (zh)
CN (1) CN111566255A (zh)
TW (3) TWI777911B (zh)
WO (1) WO2019126155A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11639547B2 (en) * 2018-05-03 2023-05-02 Applied Materials, Inc. Halogen resistant coatings and methods of making and using thereof
US20220277936A1 (en) * 2019-08-09 2022-09-01 Applied Materials, Inc. Protective multilayer coating for processing chamber components
WO2021119000A1 (en) * 2019-12-09 2021-06-17 Entegris, Inc. Diffusion barriers made from multiple barrier materials, and related articles and methods
KR20230107643A (ko) * 2020-11-18 2023-07-17 엔테그리스, 아이엔씨. 내균열성 플루오로-어닐링된 필름으로 코팅된 물품 및 제조 방법
FI130562B (en) * 2021-05-21 2023-11-21 Picosun Oy Plasma resistant coating, related manufacturing process and uses
CN116417322A (zh) * 2021-12-31 2023-07-11 中微半导体设备(上海)股份有限公司 一种复合涂层结构及其制备方法
KR20230170463A (ko) 2022-06-10 2023-12-19 태영에스티 주식회사 내식성 코팅제품 및 그 코팅제품의 제작방법
KR20230170465A (ko) 2022-06-10 2023-12-19 태영에스티 주식회사 내식성 코팅제품 및 그 코팅제품의 제작방법
CN117265480B (zh) * 2023-10-31 2024-05-10 华南理工大学 一种低粗糙度氧化钇涂层的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080008839A1 (en) * 2004-10-20 2008-01-10 Lee Hee D YAG barrier coatings and methods of fabrication
CN107313027A (zh) * 2016-04-27 2017-11-03 应用材料公司 用于半导体工艺腔室部件的保护涂层的原子层沉积

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4552851A (en) * 1984-05-02 1985-11-12 Gte Products Corporation Formation of yttrium aluminate as sintering aid for silicon nitride bodies
US20030232501A1 (en) 2002-06-14 2003-12-18 Kher Shreyas S. Surface pre-treatment for enhancement of nucleation of high dielectric constant materials
US8236485B2 (en) 2002-12-20 2012-08-07 Advanced Technology Materials, Inc. Photoresist removal
JP4620680B2 (ja) 2003-10-29 2011-01-26 マリンクロッド・ベイカー・インコーポレイテッド ハロゲン化金属の腐食阻害剤を含有するアルカリ性のプラズマエッチング/灰化後の残渣の除去剤およびフォトレジスト剥離組成物
US7220497B2 (en) * 2003-12-18 2007-05-22 Lam Research Corporation Yttria-coated ceramic components of semiconductor material processing apparatuses and methods of manufacturing the components
US20090194233A1 (en) * 2005-06-23 2009-08-06 Tokyo Electron Limited Component for semicondutor processing apparatus and manufacturing method thereof
TW200840880A (en) 2007-04-13 2008-10-16 Hsin-Chih Lin Method of forming protection layer on contour of workpiece
TW200941582A (en) 2007-10-29 2009-10-01 Ekc Technology Inc Methods of post chemical mechanical polishing and wafer cleaning using amidoxime compositions
US20090120457A1 (en) 2007-11-09 2009-05-14 Surface Chemistry Discoveries, Inc. Compositions and method for removing coatings and preparation of surfaces for use in metal finishing, and manufacturing of electronic and microelectronic devices
US8206829B2 (en) 2008-11-10 2012-06-26 Applied Materials, Inc. Plasma resistant coatings for plasma chamber components
FI20095947A0 (fi) 2009-09-14 2009-09-14 Beneq Oy Monikerrospinnoite, menetelmä monikerrospinnoitteen valmistamiseksi, ja sen käyttötapoja
JP2013533631A (ja) 2010-07-16 2013-08-22 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド エッチング後残渣を除去するための水性洗浄剤
KR102338550B1 (ko) 2013-06-06 2021-12-14 엔테그리스, 아이엔씨. 질화 티타늄의 선택적인 에칭을 위한 조성물 및 방법
US10767259B2 (en) 2013-07-19 2020-09-08 Agilent Technologies, Inc. Components with an atomic layer deposition coating and methods of producing the same
US20150104952A1 (en) 2013-10-11 2015-04-16 Ekc Technology, Inc. Method and composition for selectively removing metal hardmask and other residues from semiconductor device substrates comprising low-k dielectric material and copper
JP6527524B2 (ja) * 2014-02-07 2019-06-05 インテグリス・インコーポレーテッド 静電チャックおよびその作製方法
KR101626045B1 (ko) 2014-07-29 2016-06-01 경희대학교 산학협력단 눈물 방울을 이용한 바이러스 감염진단 방법 및 기기
WO2016131024A1 (en) * 2015-02-13 2016-08-18 Entegris, Inc. Coatings for enhancement of properties and performance of substrate articles and apparatus
US20160379806A1 (en) * 2015-06-25 2016-12-29 Lam Research Corporation Use of plasma-resistant atomic layer deposition coatings to extend the lifetime of polymer components in etch chambers
JP6638057B2 (ja) * 2015-07-10 2020-01-29 インテグリス・インコーポレーテッド ガラス成形モールドのためのコーティング及びそれを含むモールド

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080008839A1 (en) * 2004-10-20 2008-01-10 Lee Hee D YAG barrier coatings and methods of fabrication
CN107313027A (zh) * 2016-04-27 2017-11-03 应用材料公司 用于半导体工艺腔室部件的保护涂层的原子层沉积

Also Published As

Publication number Publication date
CN111566255A (zh) 2020-08-21
TW202210652A (zh) 2022-03-16
EP3728692A4 (en) 2021-09-15
EP3728692A1 (en) 2020-10-28
US11713504B2 (en) 2023-08-01
KR20230023820A (ko) 2023-02-17
JP2022180352A (ja) 2022-12-06
TW201930634A (zh) 2019-08-01
TW202233879A (zh) 2022-09-01
TWI748145B (zh) 2021-12-01
JP7382935B2 (ja) 2023-11-17
US11390943B2 (en) 2022-07-19
KR20200089765A (ko) 2020-07-27
US20220316056A1 (en) 2022-10-06
WO2019126155A1 (en) 2019-06-27
JP2021507112A (ja) 2021-02-22
TWI777911B (zh) 2022-09-11
US20190185997A1 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
TWI773465B (zh) 藉由原子層沉積塗覆所得之耐化學性多層塗層
JP2018082201A (ja) 半導体処理チャンバコンポーネント用の保護コーティングの原子層堆積
TWI737933B (zh) 用於腔室產量提升之稀土基氧氟化物原子層沉積塗層
US20220010426A1 (en) Coatings that contain fluorinated yttrium oxide and a metal oxide, and methods of preparing and using the coatings
JP2023552291A (ja) 耐クラック性フルオロアニールド膜でコーティングされた物品、および作製方法
TW202212615A (zh) 藉由ald沉積的混合、實質均勻塗層
US20210175325A1 (en) Diffusion barriers made from multiple barrier materials, and related articles and methods
US12031212B2 (en) Yttrium fluoride films and methods of preparing and using yttrium fluoride films
US20210317572A1 (en) Yttrium fluoride films and methods of preparing and using yttrium fluoride films
US20230044068A1 (en) Plasma Resistant YxHfyOz Homogeneous Films and Methods of Film Production
US20230100791A1 (en) Articles having removable coatings and related methods
WO2023039425A1 (en) Methods of forming a plasma resistant coating of y-o-f and substrates having such coating
JP2024522081A (ja) 耐プラズマ性被膜、関連する製造方法及び使用