CN111566255A - 通过原子层沉积涂覆的耐化学性多层涂层 - Google Patents

通过原子层沉积涂覆的耐化学性多层涂层 Download PDF

Info

Publication number
CN111566255A
CN111566255A CN201880086065.9A CN201880086065A CN111566255A CN 111566255 A CN111566255 A CN 111566255A CN 201880086065 A CN201880086065 A CN 201880086065A CN 111566255 A CN111566255 A CN 111566255A
Authority
CN
China
Prior art keywords
coating
layer
deposition
substrate
yttria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880086065.9A
Other languages
English (en)
Inventor
林奕宽
C·文卡特拉曼
C·瓦尔德弗里德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Entegris Inc
Original Assignee
Entegris Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Entegris Inc filed Critical Entegris Inc
Publication of CN111566255A publication Critical patent/CN111566255A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明描述了多层涂层、涂有多层涂层的基板(即,物品)以及通过原子层沉积制备多层涂层的方法,其中所述涂层包括氧化铝层和氧化钇层。

Description

通过原子层沉积涂覆的耐化学性多层涂层
相关申请的交叉引用
本申请依据35 USC 119要求2017年12月18日所提交的美国临时专利申请第62/599,865号的权益,所述申请的揭示内容特此以全文引用的方式并入本文中用于所有目的。
技术领域
本说明书涉及通过原子层沉积(atomic layer deposition;ALD)方法涂覆所得的多层涂层、表面上具有多层涂层的衬底以及通过原子层沉积制备多层涂层的方法,其中所述涂层包括至少两层不同沉积材料,包括氧化铝和氧化钇。
背景技术
半导体和微电子装置加工需要的步骤涉及高反应性工艺材料,例如等离子体。涉及这些反应性工艺材料的工艺,例如等离子体蚀刻步骤、等离子体沉积步骤和等离子体清洁步骤,在含有工件和反应性工艺材料的工艺腔室的内部进行。工艺腔室还包括组件(也称为“反应器组件”)例如腔室壁、流动管道(例如流动管线、莲蓬头等)、紧固件、托盘、支架和用于支撑工件或相对于工艺腔室输送或容纳反应性工艺材料的其它结构。为了用作工艺腔室的部分,反应器组件对将在工艺腔室内使用的反应性工艺材料应具有耐性。反应器组件不应被工艺材料降级或损坏,尤其是以将产生可能进入正在进行的工艺或可能污染正在加工的工件的碎片、微粒或痕量金属污染物的方式。
在用于制造半导体和微电子装置的工艺中使用的反应器组件常由基底或衬底制成,所述基底或衬底是金属或非金属材料,例如不锈钢或阳极氧化铝,或矿物或陶瓷材料等。反应器组件衬底通常涂有相对于衬底材料,对反应性工艺材料具有提高的耐性的薄膜涂层。在过去,所述保护性薄膜涂层通常通过各种适用方法,通常通过阳极氧化(例如以产生阳极氧化铝)、喷涂或物理气相沉积(physical vapor deposition;PVD)的工艺而被置于衬底上。
发明内容
根据本说明书,所述涂层为通过原子层沉积涂覆于衬底表面的多层保护性涂层,且包括至少两种不同沉积材料的层,其包括无定形氧化铝(AlyOx)层及氧化钇(YyOx)层。相对于先前的保护性涂层,例如通过非ALD方法(例如通过PVD)涂覆所得的涂层,或与可通过ALD方法制备但不以产生本说明书的示例多层涂层的有利性质的方式进行制备或构造的类似的涂层(例如含有氧化钇、氧化铝或氧化钇及氧化铝的混合物)相比,本发明涂层在其实体结构、作为保护性涂层的性能或两者的方面可以是适用的及潜在有利的。
因此,原子层沉积方法可用于将多层涂层涂覆于衬底上,其中多层涂层具有特别适用的物理性质,包括以下中的一或多种:适用或有利的耐化学性水平及适用或有利的耐破裂性水平。例如,包括氧化钇层及氧化铝层的多层涂层,其中氧化钇层以所选厚度或输入比提供,可非常有效地用作保护性涂层,且可表现出本文中所述的适用或改进的物理性质或性能中的一或多种。此外,如所述的通过原子层沉积涂覆所得的涂层也可具有有利的涂层性质例如在表面区域上的高度均匀涂层、降低的缺陷(例如小孔、裂痕、裂隙及晶界)水平,且在三维且任选地具有高纵横比的表面上涂覆可具有这些适用或所需性质。相较于某些在衬底上形成保护性涂层(例如在如本文中所述的工艺腔室中使用的保护性涂层)的其它先前方法,例如阳极氧化、喷涂及物理气相沉积,可以通过使用原子层沉积以涂布可适用于(其它应用的一)半导体及微电子装置制造行业的设备的组件来达成。
与产生薄膜涂层的各种其它方法相比,本发明已揭示在通过ALD技术制备的多层涂层中可以获得某些特定优势。所述的多层涂层的有利性质,其例如通过制备包括厚度或输入比优选的氧化钇层的多层涂层来实现,可以包括以下中的一或多种:微晶尺寸小于10nm的纳米晶结构(大体上无定形);涂层的X射线衍射(XRD)峰的期望的半高宽(FWHM)大于2.5度2θ(2-theta);涂层的高密度(与先前的保护性涂层相比);低孔隙率(与先前的保护性涂层相比);及降低的缺陷(例如小孔、开裂、裂隙或晶界)水平。另外,通过原子层沉积形成的涂层也可受益于:ALD涂层与衬底(例如三维衬底)的优异一致性;小尺度下的精确厚度控制;涂层在表面上的大面积均一性;垂直堆栈的尖锐接口;至包括非平面结构例如具有高纵横比的孔、通道或过道的表面的有效及均匀涂覆;及能够制备多种材料薄层的涂层的多层加工。
在一个方面中,本发明涉及通过原子层沉积制备的耐化学性多层保护性涂层,所述涂层包含氧化钇和无定形氧化铝的交替层。
在另一个方面中,本发明涉及包括耐化学性多层保护性涂层的经涂布的物品,所述涂层是通过原子层沉积制备且包含交替的氧化钇层和无定形氧化铝层,所述涂层涂布于衬底上,例如真空稳定衬底,例如用作半导体或微电子装置制造系统的反应器组件,例如用于加工等离子体的反应腔室。
在另一个方面中,本发明涉及使用包括涂布于衬底上的通过原子层沉积制备且包括氧化钇和无定形氧化铝的交替层的耐化学性多层保护性涂层的经涂布的物品的方法。经涂布的物品可以用作半导体或微电子装置制造系统的反应器组件,例如用于加工等离子体的反应腔室。
附图说明
图1是展示本说明书的多层涂层的x射线衍射数据的图。
具体实施方式
以下描述:呈通过原子层沉积涂覆于衬底表面的多层薄膜形式的保护性涂层;通过原子层沉积涂覆薄膜涂层的方法;包括具有涂覆于其一或多个表面的薄膜涂层的衬底的经涂布的物品;及在加工设备例如工艺腔室(也称为“反应器”或“反应腔室”)的组件中使用经涂布的物品的方法。
如本文中所述的通过原子层沉积涂覆所得的保护性涂层可以是制造为包括两种不同沉积材料层(包括例如氧化钇层和氧化铝层)的多层涂层。所述涂层对工艺材料,尤其(但不仅)对在使用用于已知或将来研发的工艺的工艺腔室期间将存在于工艺腔室中的酸及等离子体具有耐性,本文中描述某些示例方法。与通过先前的保护性涂层所达到的耐性水平相比,通过目前所述的多层涂层所达到的耐化学性水平可以非常适用或相对得到提高。耐化学性的类型及对不同化学材料的耐性水平可以是多层涂层的材料类型及多层涂层的物理性质,例如涂层的密度;涂层的结晶度及晶体结构;涂层的孔隙率;多层涂层中缺陷的存在减少;以及多层涂层的不同层的性质(例如厚度),尤其是氧化钇层的厚度的结果。
作为一个实例,多层涂层的适用的耐化学性可以通过涂层的氧化铝和氧化钇层,尤其是具有如所述的优选厚度或输入比的氧化钇层的组合效应来达成。氧化铝提供对氯基及溴基等离子体曝露的有效或高效的耐性,例如可以通过曝露于盐酸来证明。还可预期对其它酸,包括磷酸的耐性。虽然本说明书的多层涂层的氧化铝层提供对这些卤素的适用或高效的耐性水平,但氧化铝可能对氟基等离子体组合物没有特别高的耐性。另一方面,氧化钇层可包括于保护性涂层中,以提供对氟基等离子体的适用或特别有效的耐性。因此,本说明书的多层涂层,其包括组合的氧化铝层和氧化钇层,可用于提供对各种酸性材料(基于氧化铝层的存在)以及对所有卤基等离子体包括例如氟基等离子体的卤素基等离子体(基于氧化钇层的存在)的耐化学性。
经涂布的物品可包括具有以固体连续形式或以图案化形式涂覆于衬底表面的多层涂层的衬底。经涂布的物品的实例包括例如用于制备半导体材料、微电子装置等的工艺腔室的各种反应器组件中的任一者的物品。对例如酸及等离子体的工艺材料具有耐性,多层涂层在这些及其它工艺材料存在下可用于保护工艺腔室的组件。优选的保护性涂层具有少量缺陷例如裂痕、裂隙、小孔及晶界,并且由对工艺材料具有耐性的沉积材料层制成;因而,与先前的保护性涂层相比,所述涂层在曝露于工艺材料时经历减少的降级及颗粒化量。
如本文中所用,术语“多层”如同“多层涂层”是指通过一系列原子层沉积步骤,通过将表面曝露于将形成多种不同且交替的沉积材料“层”的一连串气态前体材料而涂覆于表面的涂层。“层”可并非整个表面上的完整或连续的组合物。若沉积产生不完整的个别层,则多层涂层可视为复合涂层。交替放置在不同类型的沉积材料(例如各别为氧化钇或氧化铝)上及之间的具有各量沉积材料(例如氧化铝或氧化钇)的涂层,无论发生完整沉积或不完整沉积,皆被视为“层”。“双层”膜仅由两种不同沉积材料制成,例如氧化铝和氧化钇的交替层。“双重层”仅由两个不同层制成。
通过原子层沉积,如所述的多层膜的各“层”由衍生自与氧化剂(包括O2、O3、H2O、NO、NO2、N2O、CO、CO2等)组合的气态前体例如含铝前体(包括AlCl3、Al(CH3)3等)的沉积材料的一或多个单层形成。各气态前体包括例如在“反应位点”处将沉积于衬底表面或先前沉积的ALD层上的一部分,以产生至表面的“单层”前体沉积部分。根据本说明书,用不同前体材料进行一系列原子层沉积步骤,以形成至少两种不同类型的沉积材料层(例如交替层)。在连续的ALD步骤中,不同的前体(例如AlCl3及H2O)可个别曝露于表面,以产生单一类型沉积材料或沉积材料层(例如AlyOx)。
如所述的涂层被视为包括并被称为包括多个“层”,此是由于多步骤工艺,通过所述工艺,将规定量的沉积材料例如以交替顺序置于衬底上。本说明书使用术语“多层”来指代通过ALD的多个沉积步骤产生的涂层,尽管通过使用已知技术来鉴别涂层的不同沉积材料的离散“层”可能具有挑战性。另外,如上文所论述,沉积步骤可形成不完整层(例如沉积材料岛状物),并且,多个步骤可被视为形成呈不完整多个“层”的复合物形式的多层涂层。在一些多层涂层中,可形成离散层且其可使用穿隧式电子显微镜进行侦测。
如本文中所用,术语“单层”是指已沉积在(例如添加至或与其反应)衬底表面或先前ALD层上,使得沉积材料使衬底或先前ALD层上的反应位点饱和的前体沉积部分的量;单层的厚度仅为少量原子数,即通过与表面处有限数量的反应位点结合而覆盖表面以产生厚度不超过约2、3或5个原子的单层的单层原子或分子的厚度。
还如本文中所用,在描述多层涂层的沉积材料“层”时的术语“层”是指通过在表面处沉积前体沉积部分的一或多个单层而衍生的连续或脉冲量的单一类型的沉积材料,即其为前体材料被曝露于表面并与表面的反应位点反应以提供为多层保护性涂层的功能层(例如氧化铝“层”或氧化钇“层”)的所需沉积材料的结果;沉积材料(例如氧化钇或氧化铝)“层”可以由一或多个单层的衍生自两种或更多种不同气态前体材料的沉积材料形成。
通过原子层沉积涂覆所得的优选多层涂层与不同形状或形式的表面具有良好的均覆性,所述不同形状或形式包括三维形状,其包括通道、凹槽或开口,例如纵横比相对较高,例如纵横比高达或大于20:1、50:1、100:1、200:1、500:1或更大的结构。
优选多层涂层还可以使用原子层沉积来涂覆,以在整个涂层表面上表现出高水平的涂层厚度均一性,尤其是在与通过其它方法(例如通过物理气相沉积)涂覆所得的涂层相比时。优选地,涂层在垂直于涂层的厚度以及整个涂层的长度/宽度上在组成上为均匀的。
优选涂层还包括低水平的涂层缺陷,例如裂痕、裂隙、小孔或晶界,其中的任一或多者皆可能在工艺腔室中使用多层涂层的时段变为较大缺陷。例如小孔、裂痕、裂隙及晶界的缺陷可以通过目视检查,任选地使用借助于光学显微镜或扫描电子显微镜的放大率或通过其它合适的检查方法来鉴别。与通过其它方法,例如通过物理气相沉积涂覆所得的先前的保护性涂层相比,本说明书的作为适用于类似用途的保护性涂层,例如如所述的工艺腔室组件的保护性涂层的某些优选多层涂层可以包括大体上较少的小孔(例如小孔量减少50%、70%、80%或90%)。优选保护性涂层的实例可以大体上不包括小孔且大体上不包括晶界,意指例如各别地,涂层平均每平方公分具有少于一个小孔,且涂层平均每平方公分具有少于一个晶界。
本说明书的优选多层涂层表现出对工艺腔室中所用的工艺材料(包括但不限于酸及等离子体)具有有利的耐性水平,尤其是曝露于工艺腔室中所用的工艺材料的延长的期间。对工艺材料的高耐性水平至少部分可归因于包括以下的因素:用于制备不同层(例如氧化钇、氧化铝)的沉积材料的类型(化学);膜的低至无的长程有序(long range order)(无定形);膜的高质量,意指低水平的缺陷,例如小孔、裂痕、裂隙及晶界;以及涂层的低孔隙率和高密度。
“耐性”涂层是在使用工艺腔室,尤其是经数周或数月的时段的延长的使用期间,在工艺腔室中曝露于例如酸或气体等离子体的工艺材料后,经历商业上适用的低量,优选地包括与先前已使用的其它保护性涂层一致或相对于其(例如相对于用于工艺腔室中以加工半导体或微电子装置衬底的先前涂层)减少的量的降级的涂层,例如通过物理气相沉积(PVD)涂覆所得的氧化钇或氧化铝涂层。作为工艺腔室中的保护性涂层,本说明书的优选涂层可以具有有利的长使用寿命,最优选显著大于先前的保护性涂层的使用寿命。保护性涂层的降级或不降级可使用保护性涂层技术中常用的各种技术中的任一种,包括例如其中对裂痕、裂隙或其它缺陷区域进行检查的光学或扫描电子显微术的目视手段,或通过评估膜对其衬底的黏附强度来确定,其中较大的黏附对应于较少的降级。
还优选地,相对于用于类似用途(例如工艺腔室的组件)的先前的保护性涂层,例如通过物理气相沉积(PVD)涂覆所得的氧化钇或氧化铝保护性涂层,本说明书的多层膜可具有相对较高的密度及较低的孔隙率。例如,如所述,包括氧化钇和氧化铝层的ALD涂层的密度可比具有类似组分但通过PVD涂覆所得的涂层的密度大至少10%或20%。如所述,包括氧化钇和氧化铝层的ALD涂层的孔隙率可比具有类似组分但通过PVD涂覆所得的涂层的孔隙率小。通过ALD涂覆所得的氧化铝层的密度可在3.0-4.0公克/立方公分范围内且孔隙率可小于0.5%。
通过原子层沉积而沉积于衬底表面上的某些目前优选的多层涂层可为包括仅两种不同沉积材料:大体上为无定形氧化物例如氧化铝(AlyOx)的第一沉积材料;及为氧化钇(YyOx)层的第二沉积材料的交替层的双层涂层。特别优选的涂层可含有这两种沉积材料的层,且大体上不含由任何其它材料制成的层,例如,以涂层的总层数计,其它材料层小于1%、0.5%或0.1%。例如,优选的多层涂层可含有总计2至10,000个氧化钇及氧化铝的交替层。
如所述的多层涂层为通过原子层沉积(ALD)涂覆所得的,所述原子层沉积为用于将薄层材料(例如薄膜)以涂层形式沉积于表面上的技术。所述技术作为一系列气相沉积步骤进行。各沉积步骤涉及一种气态化学反应物,其通常被称为前体,以使气态反应物或其一部分或衍生物沉积于表面上或与存在于表面处的材料反应的方式存在于表面上。前体的至少一部分(即,沉积部分)在反应位点处与表面处的材料反应,所述反应位点存在于表面处的数量受到限制。向表面供应一定量的前体,以允许气态前体与所有反应位点反应,此时沉积材料被称为已形成单层。
一或多种气态前体个别且依序存在于表面上,以允许前体在反应位点处与表面反应或以其它方式沉积于表面上,作为前体的沉积部分。关于可与表面处的反应位点反应的前体的量,以及关于单层的厚度,其为包括被沉积的原子或分子的尺寸及经前体涂覆的表面的性质(包括反应位点的数量)的因素的函数,沉积工艺具有自限性。经由在个别沉积步骤中重复且连续将表面曝露于不同前体,由多层不同沉积材料(各层任选地通过多个沉积步骤及多个沉积单层形成)制成的薄膜涂层可以在表面上生长,其中各层皆为通过选择性地沉积一或多种特定前体而形成的沉积材料。为了比较,用于将材料薄膜或涂层沉积于表面上的其它已知技术包括化学气相沉积(chemical vapor deposition;CVD)和物理气相沉积(PVD),其是以连续、稳态方式将材料以薄膜涂层形式沉积于表面上的工艺,在此期间沉积材料形成在沉积工艺范围期间厚度持续增加的膜。
通过原子层沉积技术,气相前体在前体沉积于其上的衬底表面处的反应位点处反应。反应受到在表面处存在反应位点的限制,因为前体的气相原子或分子仅能与表面上的有限数量的反应性位点反应。一旦所有那些位点已被耗尽,则形成了“单层”且单层的沉积及生长包括单层厚度的生长结束。已沉积于表面上的一定量的沉积材料(前体的沉积部分)称为单层,其特征厚度高达几埃至数埃厚,且基于通过ALD进行涂覆,其在整个单层区域上的厚度非常均匀(假设形成连续层)。
通过原子层沉积制备的涂覆于本说明书的衬底的多层保护性涂层可实现的优势包括涂层与衬底的优异一致性;涂层厚度的精确控制;涂层厚度在涂层区域上的高均一性;能够将两种或更多种不同沉积材料以涂层的不同层形式涂覆;在整个涂层中垂直方向上的组分均一性;将涂层制备为具有非常低水平的缺陷,例如小孔、裂痕、裂隙及晶界;能够制备具有高密度及低孔隙率的涂层;及能够将具有这些物理性质的涂层置于衬底上,所述衬底包括非平面结构、高度成形结构、成角结构或包括开口、通道、沟槽或其类似物的结构,包括具有高纵横比的所述结构。
在原子层沉积的第一示例步骤中,将第一气态前体材料(例如AlCl3)提供至反应腔室(也称为“反应器”)中的衬底的表面。第一气态前体的原子或分子在表面上的位点处发生反应,直至所有位点皆已耗尽,此时前体的单层沉积部分已在表面上形成且单层生长结束。单层厚度因此由可供用于前体原子或分子的反应位点的数量以及前体原子或分子的沉积部分的尺寸来控制及确定。在后续步骤中,可将第二前体(例如氧化剂,例如水)引入反应腔室中以与先前沉积的单层反应,以在先前沉积的单层的表面处形成新的单层。由于这些类型的沉积步骤中的一或多个,因此在表面上形成沉积材料(例如AlyOx)。用以沉积一系列单层,在表面处引起一系列产生沉积材料的反应的这些步骤的多个顺序可以增加沉积材料层的厚度。
视需要,在两个单层沉积物之间,或在沉积不同类型前体以形成两种不同沉积材料的层的步骤之间,可以例如使用惰性气体冲洗(或“吹扫”)反应腔室中的气态气氛,以去除剩余的前体原子或分子。
通过原子层沉积制备的多层保护性涂层的生长(即,厚度的增加)以逐个单层的顺序并以逐层的顺序进行。沉积材料(例如氧化铝或氧化钇)的各层通过以形成所述层沉积材料的方式,任选地包括前体材料之间的化学反应,将一或多个单层置于表面处来形成。为了产生各单原子或单分子层(单层),需要将前体用剂均匀地输送至衬底表面,以达到衬底表面反应位点的饱和度。当所有可用的表面结合位点皆填充有源自前体与表面结合位点之间的反应的新化学物质时,即发生饱和。所得表面不会为所使用的前体创建新的结合位点,但形成用于下一前体的结合位点。饱和后,表面可被曝露于不同前体(以继续形成所需的沉积材料层),或可进行处理以重新创建新的结合位点。视需要,可冲洗工艺腔室以去除残余前体。通过在交替循环中,用循环之间的任选的冲洗步骤,交替呈现于第一系列或一连串可用于形成第一类型的沉积材料(例如氧化铝)的前体材料的衬底,以及第二系列或一连串可用于形成第二种类型的沉积材料(例如氧化钇)的前体材料(不同于第一组或系列)的衬底,可以产生一层包括两种不同沉积材料的交替层的薄多层涂层,其中每个层皆具有所需或可控的厚度。
可以选择用于原子层沉积的前体,以使所需材料(沉积材料)或其反应物适用且高效地沉积于表面上,以形成沉积材料层。一般而言,前体原子或分子可以是将以化学方式吸附于经前体材料涂覆的衬底表面上,或将与先前沉积的单层的沉积材料反应的前体原子或分子。前体可呈固体、液体或气体形式,其可挥发为可以蒸气形式有效引入反应腔室及衬底表面的气态形式。前体的蒸气压力不必过高,只要气态前体为表面饱和提供足够的材料通量即可。例如,若前体可在前体不分解的温度下,在约1托的蒸气压力下以气态形式提供,则前体可适用。适用的前体不应与自身反应且应足够稳定,从而不在表面上或以气相形式分解,以便实现自终止表面反应。
优选地,如所述的多层保护性涂层可为通过对包含第一沉积材料及第二沉积材料、基本上由其组成或由其组成的材料进行原子层沉积所形成的多层(例如双层涂层或复合涂层)薄膜。优选第一沉积材料为大体上呈无定形形式的氧化铝,即AlyOx(其中y/x在1.5/3至2.5/3的范围内)。优选第二沉积材料为氧化钇,意指YyOx(其中y/x在1.5/3至2.5/3的范围内)。一种“基本上由以下各者组成”的多层涂层:两种不同沉积材料层,例如,氧化钇层和大体上无定形的氧化铝层,是指包括仅两种不同沉积材料层及以涂层的总层数计不超过1%、0.5%或0.1%的任何另一材料层的涂层;所述涂层在本文中也称为“双层”涂层。
作为多层涂层的一层的氧化铝可以提供对某些工艺化学品(例如酸)的高水平耐性,并且可以通过原子层沉积以大体上无定形形式(例如涂层的XRD峰的FWHM宽于4度2θ,即无定形形式)来沉积。
无定形氧化铝层的示例厚度可以是至少1埃,且可视需要涂覆为厚于1埃,例如,具有在1至50埃范围内的厚度。氧化铝层在一定厚度范围内可为大体上无定形的。然而,可以基于其它因素选择氧化铝层的厚度,以便为多层涂层提供对某些氧化铝可能对其具有特别耐性的工艺材料的所需耐性水平,例如提高多层保护性涂层对酸的耐性。可以制备100nm的厚度。
多层保护性涂层的第二沉积材料可以是氧化钇。氧化钇可优选沉积在衬底上,以使得氧化钇层和整个保护性涂层提供对工艺材料(例如酸和等离子体)的相对较高的耐性水平,以及相对较高的耐破裂性和减少的晶界和其它缺陷的存在。
优选的多层涂层可以包括以将使氧化钇层采用并保持氧化铝层形态的(氧化钇层的)厚度沉积于氧化铝上的氧化钇层。无定形的氧化铝层提供一种在其上可以涂覆氧化钇层的无定形基底,此将促进氧化钇以无定形形式形成。通过将氧化钇层涂覆至无定形氧化铝层上,氧化钇层(若以有效厚度涂覆)将趋向于非晶质,借此产生表现出如所述的所需物理性质(包括耐化学性、耐破裂性及不存在晶界及其它缺陷)的大体上非晶质的多层涂层。因此,可优选将使用无定形氧化铝作为多层涂层的一层的沉积材料作为一种提高以无定形形式沉积氧化钇的能力的方式,使总的多层涂层的结晶度水平较低。出于此原因,多层涂层的涂覆于衬底表面上的第一层可优选为自然倾向于高度无定形的沉积材料,例如氧化铝。
参看图1,此图示出来自如本文中所述的测试实例氧化铝-氧化钇双层ALD涂层的资料,其中示例涂层具有在10:1至1:10范围内的不同的氧化钇:氧化铝输入比(原子)。与所制备的样品有关的详情于表1中。
表1
Figure BDA0002576781900000091
因此,例如,由使用产生氧化钇的前体的1ALD沉积循环,接着为使用产生氧化铝的前体的10ALD沉积循环制备目标输入Y/Al比为1:10的涂层。Y/AL比定义为at%Y/(at%Y+at%Al)且因此假定氧在涂层中的氧化钇与氧化铝之间同等分布。通过能量色散X射线光谱仪(EDAX)确定所测量的Y/Al比。使用X射线荧光(XRF)和X射线衍射(XRD)进行类似的测量。1:1Y/Al样品的结果示于表2中。测量值之间的差异反映技术的局限性/特征,并且将由本领域中的技术人员预期。
表2
测量技术 所测量的Y/Al比
EDAX 0.35
XRF 0.45
XPS 0.6
因此,目标输入Y/Al比为1:1的多层涂层将被视为所测量的Y/Al比在约0.35与约0.6之间的范围内(约1:2至约2:1)。
所述测试通过如相关技术中已知的使用掠入射附接件以仅侦测自膜表面衍射的X射线的X射线衍射(XRD)进行。图示出每秒相对于2θ的计数。如在图1的图下所示,测试结果表明,通过增加氧化钇层的厚度,峰变得更陡。更陡的峰指示更高水平的长程有序具有较大微晶尺寸。参看图1,10:1(氧化钇:氧化铝)具有2.501度2θ的FWHM,指示其微晶尺寸为
Figure BDA0002576781900000101
8:1具有3.793度2θ的FWHM,指示其微晶尺寸为
Figure BDA0002576781900000102
1:1、1:3、1:10的FWHM宽于4度2θ,此指示双层为无定形。
出人意料地,已发现与Y/Al比较高的涂层相比,输入Y/Al比为1:1(且所测量的Y/Al比为2:1至1:2)的氧化钇和氧化铝的多层ALD涂层的结晶度显著降低。无定形多层涂层在各种应用中将为优选的。因此,出人意料地已发现,氧化钇层可以沉积于无定形氧化铝层上,其厚度允许氧化钇层大体上为非晶质(例如,如通过x射线衍射所测量的小于10%、5%或1%的晶质)或结晶度水平超低(即,无定形),例如使得涂层的XRD峰的FWHM宽于2度2θ。与相对较厚的氧化钇层相比,相对较薄的氧化钇层将更不易于形成晶质结构---即氧化钇层厚度的增加提高了氧化钇将形成晶体的可能性。薄足以维持个别氧化钇层及含有氧化钇层的整个多层涂层的低水平结晶度的氧化钇层因此为优选的。如所述的优选多层涂层的氧化钇层的示例厚度可以是使氧化钇大体上为无定形的厚度,其具体范围为,例如,在6至12埃的范围内,通常在约8至10埃的范围内。
根据本发明的示例保护性涂层,多层涂层大体上为非晶质或超小晶质。优选多层涂层的晶粒尺寸可小于10nm,即涂层的XRD峰的FWHM宽于2度2θ。
如所述的多层涂层,例如由(非晶质)氧化钇及无定形氧化铝的交替层形成的涂层的总厚度,可以是提供如本文中所述的所需性质(包括对工艺材料具有良好耐性、涂层厚度在涂层区域上的高均一性、低缺陷、高密度、低孔隙率、低结晶度、高组分均一性等)的任何厚度。供将多层涂层用作工艺腔室的组件上的保护性涂层的适用厚度的实例可以是至少10纳米(即,至少0.01微米),例如至少100纳米(0.1微米)及厚度达2微米,优选不超过1.0微米。
可以选择多层涂层中氧化钇(YyOx)及氧化铝(AlyOx)的相对量以提供如本文中所述的保护性涂层的所需特征,例如以下中的一或多种:对工艺化学品具有期望的耐性;多层涂层的所需低结晶度(及晶界)水平;期望的高密度及低孔隙率;低缺陷水平;及如所述的多层涂层的其它适用及优选特征。包含大体上无定形的氧化铝及大体上无定形或非晶质的氧化钇、由其组成或基本上由其组成的多层涂层中氧化钇及氧化铝的相对量的实例可以在约1:50至50:1的范围内,其中AlyOx:YyOx的优选相对量例如在1:15至12:1,例如1:15至10:1的范围内。
与氧化钇(YyOx)及氧化铝(AlyOx)的相对量的这些实例一致,可以选择氧化钇(YyOx)层及氧化铝(AlyOx)层的相对厚度以提供如本文中所述的所需性质及所需性质平衡,例如以下中的一或多种:对工艺化学品具有期望的耐性、多层涂层的所需低结晶度(及晶界)水平;期望的高密度及低孔隙率,及如所述的多层涂层的其它适用及优选特征。通常,涂层的各类型的沉积材料的所有层皆选择大约相同的厚度;所有氧化铝层的厚度将大致相同,且所有氧化钇层的厚度将大致相同,但氧化钇层的厚度可以不同于氧化铝层的厚度。可以选择各沉积材料层的厚度,以提供氧化钇的所需的(低)结晶度及对某些工艺组件的高耐性。如所述的多层涂层可以包括具有任何相对厚度,例如1:50至50:1的氧化钇(YyOx)层及氧化铝(AlyOx)层。此图可用于描述多层涂层的个别层,或用于描述多层涂层的所有层的总组合厚度。在某些特定实施例中,这两层(AlyOx:YyOx)(个别或组合)的相对厚度可在1:15至12:1,例如1:15至10:1的范围内。
此外,与氧化钇(YyOx)及氧化铝(AlyOx)的这些相对量及氧化钇(YyOx)层及多层涂层中氧化铝(AlyOx)层的相对厚度一致,多层涂层可以具有可有效提供如所述的多层涂层,优选包括如所述的所需特征及特征的组合的钇及铝的相对原子量。在示例涂层中,钇(作为氧化钇层的氧化钇的部分)与铝(作为氧化铝层的氧化铝的部分)的相对原子量(Y(原子):Al(原子))可以是1:50至50:1,例如1:10至10:1。
能有效制备如所述的适用或优选多层涂层,例如无定形氧化钇和无定形氧化铝沉积材料的交替层的原子层沉积方法可以视需要使用可有效提供多层涂层的各种适用前体及工艺条件中的任一个,且通过使用已知及市售的ALD设备、工艺条件及技术来进行。示例ALD工艺可通过包括在反应腔室中将气态前体沉积于衬底表面上以在表面上形成单层前体材料的个别步骤的一系列步骤来进行。第二前体的第二单层可以沉积于(例如与第一单层反应)第一单层上,例如,以形成沉积材料层。涂覆这些两种前体以形成沉积材料的循环可以重复,以增加沉积材料层的厚度。
作为一个实例,为了形成氧化铝层,可以将第一前体例如AlCl3引入至表面以与表面反应并提供连接至表面的铝原子(连接有氯原子);可以将第二前体例如水、臭氧、氧引入至表面以用氧原子替换氯原子以形成氧化铝(AlyOx)。含铝前体的替代实例为三甲基铝(TMA)。这两个沉积步骤的多个循环可以交替顺序进行,以产生厚度增加的氧化铝层。优选地,作为氧化铝及氧化钇多层膜的初始层,可以在氧化钇层之前首先沉积氧化铝层,以使得氧化铝的无定形性质防止随后涂覆所得的氧化钇层形成为包括晶质结构。可以选择加工温度以使氧化铝有效地沉积。
作为形成氧化钇层的步骤的实例,可以将含钇前体(例如Y(thd)3,其中thd=2,2,6,6-四甲基-3,5-庚二酮基)引入至表面以与表面(优选为先前涂覆所得的ALD沉积无定形材料,例如无定形氧化铝)反应并在表面处提供钇原子(连接有thd基团)。可以将第二前体(例如水、臭氧、氧)引入至表面以用氧原子替换thd基团以形成氧化钇(YyOx)。含钇前体的替代实例为三(环戊二烯基)钇(III)(YCp3)。这两个沉积步骤的多个循环可以交替顺序进行,以产生厚度增加的氧化钇层。可以选择加工温度以使氧化钇以大体上非晶态的形式有效地沉积。
这些个别沉积步骤,或形成单一沉积材料(例如氧化铝或氧化钇)层的一连串步骤,可与其它中间物例如冲洗反应腔室以吹扫剩余的气态前体的步骤组合进行。
如所述的多层涂层可形成于任何表面或衬底上并适用于所述表面或衬底,在其上可通过原子层沉积有效地涂覆一层或单层材料。在具体实施例中,衬底可由真空稳定衬底材料制成,并且可呈包括工艺腔室的内部组件的工艺腔室的组件的形式,所述工艺腔室用于通过使用具有高度反应性、腐蚀性或以其它方式能够使其它材料强力降级或与其反应的一或多种不同的工艺材料来加工衬底、材料或装置。在此上下文中,可将如所述的多层保护性涂层有利地涂覆于在本文中被称为“真空兼容性衬底”的衬底上,且其形成为充当被用于通过处理工艺材料例如等离子体来加工微电子装置、半导体设备及装置等的工艺腔室的组件。
工艺腔室可用于含有可呈液体、气体或等离子体形式的高度腐蚀性或反应性工艺材料,其例如用于在制造微电子或半导体装置的步骤期间蚀刻微电子装置衬底或半导体装置衬底的材料。反应性工艺材料的特定实例包括溴等离子体、氯等离子体及氟等离子体等等。工艺腔室必须含有可用于运输、保持、固定、支撑衬底或将衬底移入工艺腔室中、自其中移出及移入其内,而不会由将存在于工艺腔室中的工艺材料过度降级的组件及表面。工艺腔室也必须含有可有效将反应性工艺材料(例如等离子体)流动、输送至工艺腔室内部以及自其中去除的结构系统。这些不同类型的工艺腔室组件的实例包括流头(莲蓬头)、防护罩、托盘、支架、喷嘴、阀门、管道、供处置或保持衬底的载台、晶圆处置固定件、腔室衬垫、陶瓷晶圆载体、晶圆保持器、基座、主轴、夹头、环、挡板以及各种类型的紧固件(螺钉、螺帽、螺栓、钳夹、铆钉等)。
本发明的优选涂层可特别适用于制备可在工艺腔室中用作工艺腔室组件的涂层物品。此包括通常具有任何形状的此类型的物品,但也有利地包括具有物理形状或形式的物品,所述物理形状或形式包括开口、孔、通道、隧道、螺纹螺钉、螺纹螺帽、多孔膜、过滤器、三维网状物、孔洞、通道或其类似物,包括被认为具有高纵横比的所述特征。与先前沉积类似涂层的方法不同,如所述的无定形涂层的原子层沉积可有效地在所述结构(包括具有纵横比为至少20:1、50:1、100:1、200:1或甚至500:1的结构)的物品上提供均匀且高质量的涂层。
腔室组件可由被称为衬底的材料制成,所述材料可优选为真空兼容性衬底。一般而言,实例可包括可涂有保护性涂层并用于工艺腔室中的陶瓷材料、金属及金属合金。可用作真空兼容性衬底的陶瓷材料的实例包括氧化铝、碳化硅及氮化铝。金属及金属合金的实例包括不锈钢及铝。真空兼容性衬底也可以是石英、蓝宝石、二氧化硅、熔融二氧化硅、熔融石英、硅、阳极氧化铝、氧化锆以及塑料,例如半导体工业中所用的某些塑料,例如聚醚醚酮(PEEK)及聚酰亚胺。
虽然本说明书通常是指工艺腔室及工艺腔室组件(例如蚀刻腔室组件)作为保护性涂层的适用的衬底,但所述涂层不限于这些物品。将受益于对高度反应性化学材料具有高耐性水平的保护性涂层的各种其它陶瓷、矿物、金属及金属合金物品及衬底也可如本文中所述进行涂布。
因此,本发明涉及所述的多层涂层;包括涂有如所述的多层涂层的衬底(例如工艺腔室组件)的经涂布的物品和装置;设备和装置,例如包括具有如所述的保护性多层涂层的一或多个组件的反应腔室或其它工艺设备(包括但不限于半导体加工设备);及工艺及使用包括已涂有如所述的保护性多层涂层的一或多个组件的反应腔室或其它工艺设备的方法,以供使用反应腔室或工艺设备,例如通过用等离子体处理衬底来加工例如半导体装置或微电子装置的衬底。所述加工的实例包括使用例如衍生自NF3、Cl2、CHF3、CH2F2、SF6及HBr的那些等离子体进行等离子体蚀刻(例如干式等离子体蚀刻)。

Claims (20)

1.一种通过原子层沉积制备的耐化学性多层保护性涂层,所述涂层包含交替的氧化钇层和无定形氧化铝层。
2.根据权利要求1所述的涂层,其中所述氧化钇层是无定形氧化钇层。
3.根据权利要求1所述的涂层,其中所述涂层在垂直方向上是均一的并且所述无定形氧化铝层的总厚度相对于所述氧化钇层的总厚度的比率(YyOx层总厚度:AlyOx总厚度)在1:50到50:1之间的范围内。
4.根据权利要求1所述的涂层,其中所述涂层的Y/Al比在10:1至1:10之间的范围内。
5.根据权利要求1所述的涂层,其中所述涂层的Y/Al比在2:1至1:2之间的范围内。
6.根据权利要求1所述的涂层,其中所述涂层是氧化钇与无定形氧化铝的复合涂层。
7.根据权利要求1所述的涂层,其中所述涂层基本上不含晶界。
8.根据权利要求1中任一权利要求所述的涂层,其中所述涂层基本上不含针孔。
9.根据权利要求1所述的涂层,其中所述氧化钇层具有小于10nm的晶粒尺寸。
10.一种经涂布的物品,其包含表面上具有通过原子层沉积制备的涂层的衬底,所述涂层包含交替的氧化钇层和无定形氧化铝层。
11.根据权利要求10所述的经涂布的物品,其中所述衬底是微电子装置或半导体制造系统的反应器组件。
12.根据权利要求10所述的经涂布的物品,其中所述衬底是真空兼容性衬底。
13.根据权利要求11所述的经涂布的物品,其中所述衬底包含等离子体蚀刻腔室的壁表面、晶片基座、卡盘、莲蓬头、内衬、环、喷嘴、挡板、紧固件、晶片支撑件、晶片输送结构,或任一种或这些中的一部分或组件。
14.根据权利要求11所述的经涂布的物品,其中所述衬底包括选自螺纹螺钉、螺纹螺帽、多孔膜、过滤器、三维网状物、孔洞和通道的三维特征。
15.根据权利要求10所述的经涂布的物品,其中所述衬底包括纵横比为至少20:1的三维结构。
16.一种包含反应腔室的加工设备,所述反应腔室包含具有通过原子层沉积制备的保护性涂层的组件,所述涂层包含交替的氧化钇层和无定形氧化铝层,其中所述加工设备是微电子加工设备或半导体加工设备。
17.根据权利要求16所述的加工设备,其中所述反应腔室是蚀刻腔室或沉积腔室。
18.根据权利要求16所述的加工设备,其中所述组件是壁表面、晶片基座、卡盘、莲蓬头、内衬、环、喷嘴、挡板、紧固件、晶片支撑件、晶片输送结构,或任一种或这些中的一部分或组件。
19.根据权利要求16所述的加工设备,其中所述组件包括衬底,所述衬底具有选自螺纹螺钉、螺纹螺帽、多孔膜、过滤器、三维网状物、孔洞和通道的三维特征。
20.根据权利要求16所述的加工设备,其中所述组件包括纵横比为至少20:1的三维结构。
CN201880086065.9A 2017-12-18 2018-12-18 通过原子层沉积涂覆的耐化学性多层涂层 Pending CN111566255A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762599865P 2017-12-18 2017-12-18
US62/599,865 2017-12-18
PCT/US2018/066216 WO2019126155A1 (en) 2017-12-18 2018-12-18 Chemical resistant multi-layer coatings applied by atomic layer deposition

Publications (1)

Publication Number Publication Date
CN111566255A true CN111566255A (zh) 2020-08-21

Family

ID=66814261

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880086065.9A Pending CN111566255A (zh) 2017-12-18 2018-12-18 通过原子层沉积涂覆的耐化学性多层涂层

Country Status (7)

Country Link
US (2) US11390943B2 (zh)
EP (1) EP3728692A4 (zh)
JP (2) JP7382935B2 (zh)
KR (2) KR20230023820A (zh)
CN (1) CN111566255A (zh)
TW (3) TWI748145B (zh)
WO (1) WO2019126155A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117265480A (zh) * 2023-10-31 2023-12-22 华南理工大学 一种低粗糙度氧化钇涂层的制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11639547B2 (en) * 2018-05-03 2023-05-02 Applied Materials, Inc. Halogen resistant coatings and methods of making and using thereof
WO2021029970A1 (en) * 2019-08-09 2021-02-18 Applied Materials, Inc. Protective multilayer coating for processing chamber components
CN114868225A (zh) * 2019-12-09 2022-08-05 恩特格里斯公司 由多种阻障材料制得的扩散阻障和其相关物品与方法
KR20230107643A (ko) * 2020-11-18 2023-07-17 엔테그리스, 아이엔씨. 내균열성 플루오로-어닐링된 필름으로 코팅된 물품 및 제조 방법
FI130562B (en) * 2021-05-21 2023-11-21 Picosun Oy Plasma resistant coating, related manufacturing process and uses
CN116417322A (zh) * 2021-12-31 2023-07-11 中微半导体设备(上海)股份有限公司 一种复合涂层结构及其制备方法
KR20230170463A (ko) 2022-06-10 2023-12-19 태영에스티 주식회사 내식성 코팅제품 및 그 코팅제품의 제작방법
KR20230170465A (ko) 2022-06-10 2023-12-19 태영에스티 주식회사 내식성 코팅제품 및 그 코팅제품의 제작방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050136188A1 (en) * 2003-12-18 2005-06-23 Chris Chang Yttria-coated ceramic components of semiconductor material processing apparatuses and methods of manufacturing the components
US20080008839A1 (en) * 2004-10-20 2008-01-10 Lee Hee D YAG barrier coatings and methods of fabrication
CN102575345A (zh) * 2009-09-14 2012-07-11 贝尼科公司 多层涂层、制作多层涂层的方法及其应用
TW201634265A (zh) * 2015-02-13 2016-10-01 安特格利斯公司 用於增強基材製品及設備之性質與表現的塗層
CN107313027A (zh) * 2016-04-27 2017-11-03 应用材料公司 用于半导体工艺腔室部件的保护涂层的原子层沉积

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4552851A (en) * 1984-05-02 1985-11-12 Gte Products Corporation Formation of yttrium aluminate as sintering aid for silicon nitride bodies
US20030232501A1 (en) * 2002-06-14 2003-12-18 Kher Shreyas S. Surface pre-treatment for enhancement of nucleation of high dielectric constant materials
US8236485B2 (en) 2002-12-20 2012-08-07 Advanced Technology Materials, Inc. Photoresist removal
BRPI0416067A (pt) 2003-10-29 2007-01-02 Mallinckrodt Baker Inc removedores alcalinos de resìduo de cinza/gravação pós-plasma e composições de descascamento de fotorresistes contendo inibidores de corrosão de haleto de metal
US20090194233A1 (en) * 2005-06-23 2009-08-06 Tokyo Electron Limited Component for semicondutor processing apparatus and manufacturing method thereof
TW200840880A (en) * 2007-04-13 2008-10-16 Hsin-Chih Lin Method of forming protection layer on contour of workpiece
TW200941582A (en) 2007-10-29 2009-10-01 Ekc Technology Inc Methods of post chemical mechanical polishing and wafer cleaning using amidoxime compositions
US20090120457A1 (en) 2007-11-09 2009-05-14 Surface Chemistry Discoveries, Inc. Compositions and method for removing coatings and preparation of surfaces for use in metal finishing, and manufacturing of electronic and microelectronic devices
US8206829B2 (en) * 2008-11-10 2012-06-26 Applied Materials, Inc. Plasma resistant coatings for plasma chamber components
TWI548738B (zh) 2010-07-16 2016-09-11 安堤格里斯公司 用於移除蝕刻後殘餘物之水性清潔劑
US10920141B2 (en) 2013-06-06 2021-02-16 Entegris, Inc. Compositions and methods for selectively etching titanium nitride
US10767259B2 (en) * 2013-07-19 2020-09-08 Agilent Technologies, Inc. Components with an atomic layer deposition coating and methods of producing the same
US20150104952A1 (en) 2013-10-11 2015-04-16 Ekc Technology, Inc. Method and composition for selectively removing metal hardmask and other residues from semiconductor device substrates comprising low-k dielectric material and copper
SG10201806706VA (en) * 2014-02-07 2018-09-27 Entegris Inc Electrostatic chuck and method of making same
KR101626045B1 (ko) 2014-07-29 2016-06-01 경희대학교 산학협력단 눈물 방울을 이용한 바이러스 감염진단 방법 및 기기
US20160379806A1 (en) * 2015-06-25 2016-12-29 Lam Research Corporation Use of plasma-resistant atomic layer deposition coatings to extend the lifetime of polymer components in etch chambers
EP3319912B1 (en) * 2015-07-10 2020-01-15 Entegris, Inc. Coated molds for glass forming

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050136188A1 (en) * 2003-12-18 2005-06-23 Chris Chang Yttria-coated ceramic components of semiconductor material processing apparatuses and methods of manufacturing the components
US20080008839A1 (en) * 2004-10-20 2008-01-10 Lee Hee D YAG barrier coatings and methods of fabrication
CN102575345A (zh) * 2009-09-14 2012-07-11 贝尼科公司 多层涂层、制作多层涂层的方法及其应用
TW201634265A (zh) * 2015-02-13 2016-10-01 安特格利斯公司 用於增強基材製品及設備之性質與表現的塗層
CN107313027A (zh) * 2016-04-27 2017-11-03 应用材料公司 用于半导体工艺腔室部件的保护涂层的原子层沉积

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117265480A (zh) * 2023-10-31 2023-12-22 华南理工大学 一种低粗糙度氧化钇涂层的制备方法
CN117265480B (zh) * 2023-10-31 2024-05-10 华南理工大学 一种低粗糙度氧化钇涂层的制备方法

Also Published As

Publication number Publication date
JP2021507112A (ja) 2021-02-22
US20190185997A1 (en) 2019-06-20
TWI773465B (zh) 2022-08-01
TW202210652A (zh) 2022-03-16
TW201930634A (zh) 2019-08-01
KR20230023820A (ko) 2023-02-17
US11713504B2 (en) 2023-08-01
US11390943B2 (en) 2022-07-19
EP3728692A1 (en) 2020-10-28
US20220316056A1 (en) 2022-10-06
JP2022180352A (ja) 2022-12-06
JP7382935B2 (ja) 2023-11-17
WO2019126155A1 (en) 2019-06-27
TW202233879A (zh) 2022-09-01
TWI748145B (zh) 2021-12-01
KR20200089765A (ko) 2020-07-27
EP3728692A4 (en) 2021-09-15
TWI777911B (zh) 2022-09-11

Similar Documents

Publication Publication Date Title
TWI773465B (zh) 藉由原子層沉積塗覆所得之耐化學性多層塗層
JP6956212B2 (ja) 半導体処理チャンバコンポーネント用の保護コーティングの原子層堆積
JP2023011660A (ja) 基材物品および装置の特性および性能を増強するためのコーティング
JP5028755B2 (ja) 半導体処理装置の表面処理方法
JP2024001007A (ja) 半導体プロセスツールにおける静電気散逸用の超薄型共形コーティング
TW201927996A (zh) 抗濕塗層
US20220010426A1 (en) Coatings that contain fluorinated yttrium oxide and a metal oxide, and methods of preparing and using the coatings
CN115485411A (zh) 氟化钇膜和制备和使用氟化钇膜的方法
US20210175325A1 (en) Diffusion barriers made from multiple barrier materials, and related articles and methods
WO2023039425A1 (en) Methods of forming a plasma resistant coating of y-o-f and substrates having such coating
Cleveland et al. ALD conformality and optimization in ultrahigh aspect ratio nanopores for electrical energy storage nanodevices
KR20240060723A (ko) 제거가능한 코팅을 갖는 물품 및 관련 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination